
Statistical learning for complex data to enable precision
medicine strategies
Zwep, L.B.

Citation
Zwep, L. B. (2023, April 12). Statistical learning for complex data to enable
precision medicine strategies. Retrieved from
https://hdl.handle.net/1887/3590763
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3590763
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3590763


Chapter 5

Identification of antibiotic
collateral sensitivity and
resistance interactions in
population surveillance data

Authors

Laura B. Zwep

Yob Haakman

Kevin L. W. Duisters

Jacqueline J. Meulman

Apostolos Liakopoulos

J. G. Coen van Hasselt

JAC-Antimicrobial Resistance 2021; 3(4), 1–9

81



Chapter 5

Abstract

Background Collateral effects of antibiotic resistance occur when resistance to one
antibiotic agent leads to increased resistance or increased sensitivity to a second
agent, known respectively as collateral resistance (CR) and collateral sensitivity (CS).
Collateral effects are relevant to limit impact of antibiotic resistance in design of an-
tibiotic treatments. However, methods to detect antibiotic collateral effects in clinical
population surveillance data of antibiotic resistance are lacking.
Objectives To develop a methodology to quantify collateral effect directionality and
effect size from large-scale antimicrobial resistance population surveillance data.
Methods We propose a methodology to quantify and test collateral effects in clinical
surveillance data based on a conditional t-test. Our methodology was evaluated using
MIC data for 419 Escherichia coli strains, containing MIC data for 20 antibiotics,
which were obtained from the Pathosystems Resource Integration Center (PATRIC)
database.
Results We demonstrate that the proposed approach identifies several antibiotic
combinations that show symmetrical or non-symmetrical CR and CS. For several of
these combinations, collateral effects were previously confirmed in experimental stud-
ies. We furthermore provide insight into the power of our method for multiple collat-
eral effect sizes and MIC distributions.
Conclusions Our proposed approach is of relevance as a tool for analysis of large-
scale population surveillance studies to provide broad systematic identification of
collateral effects related to antibiotic resistance, and is made available to the com-
munity as an R package. This method can help mapping CS and CR, which could
guide combination therapy and prescribing in the future.

5.1 Introduction

The treatment of bacterial infections increasingly relies on antibiotic combination
therapy (Tamma et al., 2012). Although physiological interactions, i.e. synergy and
antagonism, between pairs of antibiotics have been explored and exploited for such
combination therapies (Eliopoulos & Moellering, 1982), evolutionary interactions re-
sulting in collateral effects have only recently started to attract attention (Baym et
al., 2016). Negative evolutionary interactions between antibiotics, known as collateral
sensitivity (CS), occur when the emergence of resistance to an antibiotic is accompa-
nied by increased sensitivity to a second antibiotic. On the contrary, positive evolu-
tionary interactions, known as collateral resistance (CR), result in increased resistance
to the second antibiotic (Pál et al., 2015).

The broad systematic identification of CR can be clinically important to avoid evo-
lutionary unfavourable antibiotic combinations in empirical treatment (Amsalu et al.,
2020), whereas CS can enable the design of antibiotic combination treatment strate-
gies to suppress resistance (Imamovic & Sommer, 2013; Imamovic et al., 2018). Al-
though perturbations of gene expression networks that subsequently affect the vul-
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nerability of bacterial cells to chemicals have been proposed as the main mechanism
underlying CS, the mechanistic details of CS remain elusive (Pál et al., 2015). For
antibiotic pairs that show a CS relationship we may see either a unidirectional or
reciprocal relationship, where the latter is most suitable to design such resistance
suppressing cycling strategies (Imamovic & Sommer, 2013; Maltas & Wood, 2019;
Barbosa et al., 2017; Podnecky et al., 2018; Liakopoulos et al., 2022). CS has been
primarily identified and studied in controlled experimental evolution studies, mostly
utilizing laboratory strains (Wright, 2007; Aulin et al., 2020).

In the experimental setting, collateral effects, and CS in particular, are determined
by measuring the MIC against multiple antibiotics before and after desensitization, i.e.
through development of resistance to a chosen antibiotic by experimental evolution.
The fold change in MIC, the ratio of the MIC after and before desensitization, is then
used to quantify a collateral response

The clinical relevance of CS effects remains unclear, due to a lack of studies
that characterize collateral effects and CS in particular in clinically isolated bacte-
rial pathogens. Unlike experimentally evolved laboratory strains, clinical bacterial
isolates are associated with extensive genetic variability, and a parental wild-type
strain is lacking to readily determine collateral effects such as is done experimentally
(Turnidge et al., 2006).

Increasing availability of large-scale clinical antimicrobial susceptibility surveil-
lance data (Wattam et al., 2016; World Health Organization, 2014) may offer an oppor-
tunity to address this knowledge gap. Such datasets include MIC values for commonly
used antibiotics in clinically isolated pathogens. Recently, it was shown how dichoto-
mous resistance values, i.e. a classification of sensitivity or resistance, can be used
to estimate collateral effects of antibiotics in clinical population data (Obolski et al.,
2016). However, in order to address questions about the therapeutic relevance of CS,
it is of specific importance to be able to infer directionality and effect size of collateral
effects from available clinical MIC data, which is not possible when only dichotomous
MIC values are considered.

Here, we propose a methodology to systematically identify and quantify collateral
effects from clinical MIC surveillance data, by comparing two MIC distributions con-
ditional on the resistance to an antibiotic. Specifically, we develop a goodness-of-fit
measure for estimating a non-causal collateral effect using the easily interpretable
conditional t-test, which allows quantification of collateral effect directionality and
effect size (Figure 5.1). We apply our method to a large public dataset with MIC mea-
surements for multiple antibiotics in clinical Escherichia coli isolates to identify pos-
sible collateral effects.
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Figure 5.1: Collateral effects in the biological process and in population-based inference. Left panel:
MICs from the parental strain change due to desensitization to antibiotic B. The MIC for B increases; the
effect on the MIC for A indicates whether B has a collateral effect on antibiotic A.Right panel: The parental
strain is unknown, so population of strains is divided into a high MIC(B) and low MIC(B) group; instead of
MICs for individual strains, the MIC graphs show histograms of strains. Collateral effects are measured by
comparing the conditional distribution for high and low MIC for antibiotic B.

5.2 Methods

5.2.1 Data pre-processing

Antibiotic MIC data of clinically isolated E. coli strains were obtained from the Pathosys-
tems Resource Integration Center (PATRIC) (Wattam et al., 2016) using the command
line interface, resulting in a dataset of 60 antibiotics and 495 strains. Antibiotics
with MIC measurements for at least 200 strains were included in the study, resulting
in 20 antibiotics (Table S5.1). Only strains with data for two or more antibiotics were
used for further analysis, resulting in 419 eligible strains (Figure 5.2a). The MICs were
measured on a 2-fold concentration scale. The data can be considered discrete, with
only 26 unique values and 95% of the measurements falling within 9 of these values.
The MICs were log2 transformed [log2(MIC)] to put them on a linear scale.

5.2.2 Collateral effect identification

To reflect the biological process of collateral effects, a pair of antibiotics (A and B)
was tested by splitting the population of strains in two groups, one with high and
one with low MIC for antibiotic B (Figure 5.1). For computing the collateral effects,
only complete pairwise observations were considered (Figure 5.2b). Next, strains were
dichotomized on a dichotomization criterion τ , based on their MIC value for antibiotic
B. After dichotomization, the log2 fold change (FC) was calculated as the difference
between the mean log2(MIC) for A given high MIC for B (MICA|B=high) and the mean
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A. data pre-processing B. data analysis
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Figure 5.2: Data pre-processing steps (a) and data analysis strategy (b) schematic overview.

log2(MIC) for A given low MIC for B (MICA|B=low) (Equation 5.1).

log2 FC = mean(log2(MICA|B=high))− mean(log2(MICA|B=low)) (5.1)

where a log2 FC > 0 indicates a CR effect (or an MDR phenotype due to the co-
presence of distinct antibiotic resistance mechanisms) and a log2 FC < 0 indicates a
CS effect. Collateral effects between two antibiotics were tested in two directions: the
collateral effect of B on A and the collateral effect of A on B. To test the fold change, the
mean difference between the two groups was compared with an independent sample
t-test on the log scale. Let

µA|B=high = mean(log2(MICA|B=high))

then the tested hypotheses can be formulated as

H0 : µA|B=high = µA|B=low

HCS : µA|B=high < µA|B=low

HCR : µA|B=high > µA|B=low

The grouping in B depends on the dichotomization criterion τ . We chose the τ in
a way to make the two groups (high and low) most equally sized, to maximize the
power of detecting collateral effects. In continuous data, this is naturally the median.
The dichotomization does not depend on antibiotic A. To study the effect of different
values of s, we evaluated the results for multiple values. The number of options for τ
was very limited due to the discrete nature of the MIC observations. Importantly, the
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MIC for antibiotic A should not be dichotomized, to preserve statistical power and
retrieve continuous effect sizes. Between two sets of strains with either a high or low
MIC for an antibiotic B, the MIC of antibiotic A is expected to be similar; when this is
not the case, this might indicate a collateral effect.

The difference between the mean log2(MIC) for all the combinations of the 20
antibiotics was tested in two directions, which resulted in 380 statistical tests. A two-
sided t-test was used to test both CS and CR. The power, the probability of detecting
true effects, was evaluated analytically over different effect sizes of collateral effects
in MIC data based on sample sizes, disbalance between the sizes of the high and
low MIC(B)groups, and the standard deviation. The values over which the power was
calculated were between the ranges found in the extracted data from PATRIC.

The corresponding p-values were calculated and adjusted by controlling the false
discovery rate (FDR) with the Benjamini–Yekutieli procedure, which corrects for the
dependency between the tests (Benjamini & Yekutieli, 2001). The allowed FDR was set
to 0.05. The difference between the means was visualized for the significant results
in a heatmap. The distributions of the MICs with the most significant differences in
mean for CR and CS were also visualized as histograms.

The data analysis was done in the statistical scripting language R (R Core Team,
2020), using the ggplot2 (Wickham, 2008) package for visualization. The code used
in this study is available on github (github.com/vanhasseltlab/CollateralEffect
_MICmethod). The functions for testing collateral effects and producing figures are
made available in the R package collatRal (github.com/vanhasseltlab/collatRal).

5.3 Results

5.3.1 Detection of collateral effects

A total of 419 E. coli strains and 20 antibiotics was included in our analyses after ex-
clusion of antibiotics with low sample size (Figure 5.2a, Table S5.1). We identified 14
CS responses and 178 potential CR responses at an FDR of 0.05 with dichotomization
at the median (Figure 5.3). The top five largest and smallest t-statistics, i.e. the most
significant collateral responses, are summarized in Table 5.1, which show a very low
p-value and FDR-adjusted p-value (q-value). The largest CS response is ertapenem
on cefazolin, with a mean log2 FC of -1.95 (Figure 5.4a), which corresponds to a fold
change of 0.26. The opposite direction (Figure 5.4b), the effect of cefazolin on er-
tapenem, also shows a significant CS response, but with a smaller effect size (-0.86
log2 FC, q < 0.05). Cefazolin was associated with multiple CS responses with different
antibiotics. The most significant CR response is that of meropenem on ertapenem
with a mean log2 FC of 3.66 (Figure 5.4c), corresponding to a 12.6-fold change.

We chose the median to define the dichotomization criterion, but due to the dis-
crete nature of the data, many values are equal to the median. Including the strains
with a median MIC value in the low or high MIC group was not arbitrary, since it can
change the group sizes substantially. The median strains were included in the small-
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est group to make the sample sizes as equal as possible. For example, in Figure 5.4a,
depicting the effect of ertapenem on cefazolin, the median of ertapenem was -1, and
the strains with this median value were included in the B = low group to make the
groups most equal in size [hence the high group contained log2(MIC) ≤ 0]. This
equal splitting was found to improve power (next section).

5.3.2 Power for identification of collateral effects

To understand which collateral effect sizes are detectable using our method, the power
to detect collateral effects was calculated for different sample sizes, different group
disbalances and different standard deviations, based on the values we found in the
PATRIC data. The power to detect different effects greatly depends on the total sam-
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lines show the estimated means for the two groups. A) log2(MIC) distribution of cefazolin (CFZ) split by
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influence of meropenem, which has a significant CR response (3.66 log2 FC) and D) the distribution of
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This is a reciprocal collateral response.

ple size, with 2000 samples allowing the detection of a log2 FC of size 0.25 with power
over 80%, while for smaller sample sizes, such as 200 total samples, the detectable
effect size is 0.75 (Figure 5.5a). A larger disbalance of the two groups, high MIC and
low MIC for antibiotic B, which is often seen in our data, does affect the power, but
substantially only if the disbalance is greater than 25/75 (Figure 5.5b). Finally, the
standard deviation of the MIC values has a large effect on how large the power to de-
tect an effect is (Figure 5.5c), with the effect of the standard deviation on the power
being inversely proportional to the effect of the effect size.

5.3.3 The effect of the dichotomization criterion

For estimating the collateral effects, we dichotomize the sample based on the MIC of
one of the two antibiotics, at a chosen criterion (τ ). We studied whether this choice in-
fluences the results and found that the value of τ does impact our results (Figure 5.6).
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Table 5.1: Top 5 results of collateral sensitivity and resistance responses in the E. coli data, with lowest
and highest value for the t-statistic respectively. The effect size is the difference in mean log2 fold change
for the effect of splitting antibiotic B on testing antibiotic A. The number of observations in each group are
nB=high and nB=low respectively.

Testing An-
tibiotic (A)

Splitting
antibiotic
(B)

T-statistic p-value nB=high nB=low Difference
in mean
(log2 FC)

q-value

Collateral sensitivity
CFZ ETP -10.04 2.43 · 1020 69 201 -1.95 2.41 · 1018
TZP CFZ -6.13 4.09 · 1009 113 110 -1.61 1.25 · 1007
TZP CRO -5.58 5.67 · 1008 130 156 -1.32 1.46 · 1006
MEM CFZ -5.54 6.68 · 1008 154 140 -1.23 1.69 · 1006
CFZ MEM -5.13 5.29 · 1007 64 230 -1.16 1.21 · 1005
Collateral resistance
ETP MEM 26.73 5.82 · 1089 62 316 3.66 1.44 · 1085
MEM ETP 23.85 3.00 · 1077 81 297 3.37 3.71 · 1074
TOB GEN 21.99 6.54 · 1067 117 219 3 5.40 · 1064
CFZ CRO 21.09 6.61 · 1060 137 147 2.6 4.09 · 1057
GEN TOB 19.74 5.05 · 1058 146 190 2.82 2.50 · 1055
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The group size equality (transparency of the lines) is a measure for how equal the two
groups are, where an equality of 1 indicates a 50/50 split for the groups. The lines
themselves show how the test statistics change over different values of τ , showing a
dependence of collateral effect size and sometimes even direction (CR or CS) on MIC
for some of the antibiotics.

The estimated collateral effect is very stable over dichotomization criteria for e.g.
amoxicillin/clavulanic acid, piperacillin/tazobactam and tobramycin. Less stable are
for example cefazolin and ciprofloxacin. For cefazolin however, the different effect
sizes are found where the sample sizes of the group are very different, indicating that
the effect is driven by a small part of the data. In case of ciprofloxacin, the change of
estimated effect size over the different τ is not driven by a small part of the data.

5.4 discussion

Our analysis demonstrates that empirical determination of collateral effects is pos-
sible from MIC population surveillance data, by quantifying shifts in conditional MIC
distributions. Importantly, our approach enables detection of collateral responses in-
cluding directionality and effect size. We demonstrated the utility of our method to
a set of E. coli MIC data, identifying CS and potential CR responses from available
clinical surveillance data.

Collateral effects are experimentally established to show directionality, that is, the
effect size between two antibiotics in terms of their collateral effects is not symmet-
rical. Thus, a collateral effect of antibiotic A on antibiotic B can differ from the effect
of B on antibiotic A. Our method can be employed to detect both one-directional and
two-directional (reciprocal) collateral responses. This is in contrast to other statisti-
cal methods, such as the odds ratio used in a previous study (Obolski et al., 2016) or
a correlation, where both directions yield the same statistic. A correlation will thus
either identify two-directional responses or not detect a collateral effect at all, which
increases both the number of false discoveries and the number of false rejections, as
compared with our method.

The collateral effect metric proposed, using fold change, has a clear interpretation.
The effect size is the mean difference in log2(MIC)s, or log2 FC, between a group
with high MIC for an antibiotic B as compared with the group with a low MIC for the
same antibiotic. A fold change value enables interpretation of the clinical relevance
of detected MIC changes. This is of relevance, since, especially with large sample
sizes, statistical significance does not always imply clinical relevance (Kieser et al.,
2012). In addition, the fold change measure is comparable to the experimentally
determined fold change measures in experimental evolution studies that determine
collateral effects (Imamovic & Sommer, 2013; Imamovic et al., 2018; Maltas & Wood,
2019; Barbosa et al., 2017).

The choice of dichotomization criterion is not arbitrary, since it can affect the
effect size estimation, such as for ciprofloxacin (Figure 5.6). The type of the identified
collateral effects may even vary depending on the selected dichotomization criterion,
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which is, for example, the case for ceftriaxone (A) on ciprofloxacin (B). For the choice
of dichotomization criterion, three aspects need to be considered. Firstly, the data
limit the possible choices of τ . There need to be enough data at both sides of the split
to be able to use this test. Secondly, we showed that the power for detecting effects

91



Chapter 5

is highest when the two groups are similar in size. To this end, a dichotomization
on the equal group sizes yields the highest power and we chose this option for the
study. Thirdly, the change of the estimated effect sizes over different dichotomization
criteria indicates a dependence between collateral effect and MIC value, which could
have an underlying biological cause. The choice of τ could therefore also be decided
based on which MIC value you want to know about collateral effects. For instance, in
Figure 5.4a a CS response is shown in strains with a log2 MIC for cefoxitin larger or
equal to 0, indicating that the decrease in sensitivity for cefoxitin is correlated with an
increase in sensitivity for cefazolin, above this threshold. Whether the same collateral
effect is also detected at other dichotomization criteria can be tested by changing
this value.

For our proof-of-concept analysis of our E. coli dataset we identified 192 col-
lateral responses using the equal group splitting for the dichotomization, of which
14 were therapeutically interesting CS responses. Suggestive CR responses were
extensively more prevalent than CS responses. This was in line with expectations,
given the presence of antibiotics from the same class for which CR is likely to oc-
cur. For example, reciprocal CR responses were detected between the aminoglyco-
sides amikacin, gentamicin and tobramycin, and the fluoroquinolones ciprofloxacin
and levofloxacin. In accordance with previous studies showing CS between β-lactams
(Rosenkilde et al., 2019), we identified reciprocal CS effects between cefazolin and
the β-lactams meropenem and ertapenem, as well as between cefazolin and the β-
lactam/β-lactamase inhibitor combinations amoxicillin/clavulanic acid and piperacil-
lin/tazobactam. In contrast to the CS repeatedly found in the literature between
ciprofloxacin and gentamycin (Imamovic et al., 2018; Barbosa et al., 2017; Podnecky
et al., 2018; Liakopoulos et al., 2022), our analysis showed a CR response for this
antibiotic combination.

The MIC data deposited in PATRIC originate from a variety of studies and MIC
determination methods, which leads to large variation and possible error in MIC val-
ues. Therefore, the data were used as proof of concept. Large datasets that include
MICs determined in a more consistent manner may be able to further improve the
performance of our method. In larger datasets, our method could also be used to
identify multidrug effects, by splitting the high and low groups conditioned on more
than one antibiotic.

This statistical method does not set out to identify causal relationships, so while
use of an antibiotic may lead to resistance development, it is not possible to show
that the CS or resistance to another antibiotic has been caused by the use of the
first antibiotic. Also, due to the observational nature of the data, we are unable to
discriminate between CR responses and the occurrence of an MDR phenotype due to
the co-presence of distinct resistance mechanisms to each of the individual antibiotic
agents.

The occurrence of CS has been previously suggested as a phenomenon that can
be utilized to design dosing schedules that prevent emergence of antimicrobial re-
sistance and prolong the efficacy of the existing antimicrobial agents (Imamovic &
Sommer, 2013), but so far it has been mostly studied in reference laboratory strains
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of a limited number of bacterial species. Although our study suggests the occurrence
of CS in clinical populations, it remains unclear to what extent these effects actually
occur in clinically occurring pathogens. The developed methodology can be directly
applied to clinical datasets of antimicrobial susceptibility that are widely available via
national and international surveillance programmes, to both estimate the effect sizes
and occurrence of collateral effects and to provide further insight into the clinical
relevance of CS effects. These effects can be evaluated for specific antibiotic com-
binations and pathogen species, which may guide the design of CS-based dosing
strategies of high clinical relevance and the selection of empirical treatment (Aulin et
al., 2021). In addition, the quantification of CR in antimicrobial susceptibility surveil-
lance datasets is of interest to identify antibiotic combinations that should be avoided
as these could potentially lead to increased risk of treatment failure and the spread
of antimicrobial resistance.

We conclude that the proposed methodology is relevant for identification of col-
lateral responses based on clinical surveillance data. We implemented the functions
for the method in the R package collatRal to make the method accessible to other re-
searchers. Our method can be applied to larger surveillance datasets that also include
MIC data for additional antibiotics and for other clinically relevant bacterial species.
Identified collateral effects, and in particular CS, can provide important guidance for
combination therapy and in the further design of CS-based dosing strategies that aim
to suppress antibiotic resistance.
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