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Chapter 3

Abstract

Pharmacometric modeling can capture tumor growth inhibition (TGI) dynamics and
variability. These approaches do not usually consider covariates in high-dimensional
settings, whereas high-dimensional molecular profiling technologies (“omics”) are
being increasingly considered for prediction of anticancer drug treatment response.
Machine learning (ML) approaches have been applied to identify high-dimensional
omics predictors for treatment outcome. Here, we aimed to combine TGI modeling
and ML approaches for two distinct aims: omics-based prediction of tumor growth
profiles and identification of pathways associated with treatment response and resis-
tance. We propose a two-step approach combining ML using least absolute shrink-
age and selection operator (lasso) regression with pharmacometric modeling. We
demonstrate our workflow using a previously published dataset consisting of 4706
tumor growth profiles of patient-derived xenograft (PDX) models treated with a va-
riety of mono- and combination regimens. Pharmacometric TGI models were fit to
the tumor growth profiles. The obtained empirical Bayes estimates-derived TGI pa-
rameter values were regressed using the lasso on high-dimensional genomic copy
number variation data, which contained over 20,000 variables. The predictive model
was able to decrease median prediction error by 4% as compared with a model with-
out any genomic information. A total of 74 pathways were identified as related to
treatment response or resistance development by lasso, of which part was verified by
literature. In conclusion, we demonstrate how the combined use of ML and pharma-
cometric modeling can be used to gain pharmacological understanding in genomic
factors driving variation in treatment response.

3.1 Introduction

Pharmacometric modeling of tumor growth inhibition (TGI) dynamics is extensively
used to model the longitudinal response of tumor size in response to drug treat-
ment in preclinical animal models or patients. Pharmacometric TGI models have
increasingly been used to characterize drug-exposure response relationships using
semi-mechanistic parameters related to, for instance, direct treatment effects or re-
sistance to personalize drug treatment (Ribba et al., 2014; Bender et al., 2014). Using
TGI models, interindividual variation in tumor growth rate, treatment efficacy, and
treatment resistance can be quantified and related to patient-specific characteris-
tics (Ribba et al., 2014; Rodriguez-Brenes et al., 2013). In recent years, TGI models
have been integrated with time-to-event models to predict clinical outcomes, such
as overall survival, which allow prediction of clinical outcomes based on the patient-
specific tumor growth dynamics parameters (Claret et al., 2009; van Hasselt et al.,
2015b, 2015a).

The use of high-dimensional molecular profiling technologies, including next-gen-
eration sequencing, to develop personalized treatment schedules is rapidly develop-
ing. In particular in oncology, the use of “omics” technologies to characterize tumor-
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specific molecular differences to predict variation in treatment response is of great
interest (Shlien & Malkin, 2009). Although both omics and TGI modeling are of rel-
evance toward personalized treatment strategies, pharmacometric TGI models are
not frequently directly applied to high-dimensional covariates. In pharmacometric
modeling, stepwise covariate inclusion approaches are still the most commonly used
approach to include covariates, which is unsuitable for testing of covariates in a high-
dimensional setting.

Current analyses of high-dimensional “omics” datasets predicting treatment re-
sponse are mostly performed using machine learning (ML) methodologies, such as
sparse regression models, random forests, and deep learning, to obtain predictive sig-
natures of treatment response (Degenhardt et al., 2017; Nicolò et al., 2020; Xie et al.,
2019). The majority of studies with ML approaches are based on either dichotomous
survival response or clinical response metrics, such as based on the Response Evalua-
tion Criteria in Solid Tumors (RECIST) system (Lathrop & Kaklamani, 2018; Eisenhauer
et al., 2009), wherein the observed dynamic tumor disease progression profile is re-
duced into a limited number of categories. These simplified categorical treatment
response metrics lack biological or pharmacological relevance, because factors, such
as resistance and direct treatment effects, are merged (Chadeau-Hyam et al., 2013).

A commonly used ML method is the least absolute shrinkage and selection opera-
tor (lasso), which is a linear regression method with ℓ1 regularization that can be used
for high-dimensional analysis, and results in variable selection (Tibshirani, 1996). Al-
though ML approaches, such as sparse regression models using the lasso (Bertrand
et al., 2008, 2015; Ribbing et al., 2007; Haem et al., 2017), have been implemented
in pharmacometric modeling, they are computationally expensive due to the com-
bination of nonlinearity and estimation of random effects, which often lead to con-
vergence problems. The implementations of the lasso involve alternating algorithms,
which alternate between estimating the random effects and the lasso optimization, so
although lasso is rather efficient, iterating through multiple random effect estimation
steps can severely reduce computational efficiency. This can lead to long computa-
tion times and poor convergence rates, especially in high-dimensional settings.

In this study, we propose a two-step approach combining ML, using lasso regres-
sion, with pharmacometric modeling. We demonstrate our approach using a large
dataset consisting of longitudinal tumor growth profiles of patient-derived xenograft
(PDX) models treated with a variety of mono- and combination regimens (Gao et al.,
2015). We develop pharmacometric tumor growth models quantifying intertumor vari-
ation in growth rates, drug effect, and resistance, after which we implement ML-based
lasso models to address the following aims: (1) to predict longitudinal tumor growth
profiles based on omics-derived predictors using a multivariate lasso model; and
(2) to identify biological pathways associated with interindividual variation in treat-
ment response or resistance development using a group lasso regression model (Fig-
ure 3.1).
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Results and Application
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Figure 3.1: A schematic visualization of the proposed two-step approach. First, the tumor growth curves
were modeled to obtain tumor growth parameter estimates, second, the individual estimates tumor growth
parameter estimates were regressed on copy number variations (genomics) by different least absolute
shrinkage and selection operator (lasso) techniques. The group lasso was applied to obtain biological
pathways. The multivariate lasso was applied to predict the tumor growth parameter values, which were
then inserted into the tumor growth inhibition model equations to obtain predictions of the tumor growth
curves.

3.2 Methods

3.2.1 Data

Data from a large scale preclinical study in PDX mice models were used (Gao et al.,
2015). This dataset consisted of over 4000 PDX experiments, which were derived
from a total of 277 patients, where multiple PDX experiments were derived from the
same tumor. The PDX experiments from one tumor were all treated with different an-
ticancer agents as mono treatment or combination treatment, or left untreated (e.g.,
natural growth experiments). There was a total of 62 unique treatments and for every
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tumor treated one PDX was left untreated, leading to an incomplete design with mul-
tiple PDX experiments per treatment. Tumor volume was measured daily. For each
unique tumor, at the start of the treatment, genomic data based on gene copy number
variations (CNVs) were obtained, yielding a total of 23,852 CNVs. We included data
for 174 unique tumors and 55 unique treatments, corresponding with 3244 tumor-
treatment combinations. This selection was based on availability of CNV data and
adequate fit (see section below). The analysis was conducted separately for every
treatment, so the number of observations differed per analysis, ranging from 17 to 171
observations (Table S3.1).

3.2.2 Tumor growth inhibition model

A TGI model was fitted to the longitudinal tumor volume measurements using the non-
linear regression modeling software NONMEM (Beal & Sheiner, 1980), with first order
conditional estimation with interaction(Claret et al., 2009). The TGI model captured
the longitudinal tumor volume measurements, per PDX, through estimation of three
parameters: growth rate (kg), treatment efficacy (kd), and time-dependent resistance
development (kr) in an ordinary differential equation (Equation 3.1).

dVi(t)

dt
= kg,i · Vi(t)− kd,i · e−kr,i·t · Vi(t) (3.1)

with tumor volume V (t) at time t and tumor growth model parameters kg , kd and
kr . Random effects with a log-normal distribution, were added to all fixed effect TGI
parameters as following: kg,i = kg · exp (ηkgi).

To fit the TGI model, we first estimated individual value for kg separately for every
tumor using the untreated PDX data (Equation 3.2).

dVi(t)

dt
= kg,i × Vi(t) (3.2)

The empirical Bayes estimates (EBEs) of kg were extracted and included as data
in the TGI model. EBEs in NONMEM is the estimation of the posterior individual
random effects (�η̂i), based on the empirically obtained prior distribution of η and the
individual data, as previously described (Sheiner et al., 1972). The residual error was
modeled with both an additive and proportional error.

We observed that not all tumor growth curves showed time-dependent resistance
development (e.g., regrowth), so both a full TGI model and a reduced model, without
a term for resistance, were fitted, effectively allowing kr to become zero. For every
PDX, a likelihood ratio test was conducted to evaluate whether inclusion of kr added
significantly to the model fit (at significance level 0.05). A second criterium was added
to only select the full model if the kr was estimated to be smaller than 1.0, because
the term kd · ekr·t goes to zero very fast with t for larger kr , effectively making kd
unidentifiable.

To evaluate the model fit separately for each treatment, we plotted the conditional
weighted residuals per treatment, which represent the goodness of fit for the TGI
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models (Nguyen et al., 2017). Due to the large number of tumor growth curves, treat-
ments with curves with a bad model fit were removed from further analysis. The EBEs
of kd and kr were extracted for the treatments with good model fit.

3.2.3 Tumor growth profile prediction

The multivariate outcome the log-transformed kg , log-transformed kd, and kr was re-
gressed on the genomic CNV data within every treatment using a multivariate lasso
(Equation 3.3) (Simon et al., 2013). The multivariate lasso, similarly to the standard
lasso, minimized the loss function to estimate the linear parameters β is mainly due
to outcome Y and parameter β, which are, in this case, both matrices containing a
column for every outcome. The penalty term is the root of the summed square error
over the vector βj .

β̂MV lasso = arg min
β

(||Y −Xβ||22 + λ

p∑
j=1

||βj ||2) (3.3)

The lasso hyperparameter λ, which determines the size and number of non-zero
parameters, was chosen through 10-fold cross-validation, to identify the λ which mini-
mized the prediction error in terms of mean squared error. This minimizing λ differed
per treatment. The treatments where the minimizing λ did not outperform the null
model, which estimated no non-zero coefficients for the CNVs, were removed from
further analysis, both in prediction of the tumor growth curves and the pathway se-
lection. In a second analysis, only the log-transformed kg , log-transformed kd were
regressed on the CNV data. Prediction errors were evaluated both on the scale of the
predicted parameter values and on the scale of the predicted tumor growth curves.

The individual TGI parameter values predicted from the lasso were extracted. The
ordinary differential equation (Equation 3.1 was solved for these predicted parameter
values to bring the predictions back on the longitudinal tumor volume scale. For
robustness, the cross-validation step was repeated twenty times over different cross-
validation splits and the predicted curves were averaged over the twenty repetitions.

A measure of prediction error was defined on tumor curve scale through compar-
ing the curves from the estimated parameters from the TGI model to the curves with
the predicted parameters from lasso. The prediction error was defined as the abso-
lute fraction of the area between the predicted and the estimated curves (ABC) over
the area under the estimated curve (AUC), called the scaled ABC (sABC, Equation 3.4).

sABCi(τ) =

τ∫
0

|Ṽi(t)− V̂i(t)|dt
τ∫
0

Ṽi(t)dt

(3.4)

for individual i with volume Ṽi(t) estimated from the TGI model fit (IPRED) and volume
V̂i(t) predicted from the multivariate lasso. The area is considered until some cut-off
τ , which in our study was set to 56 days (two months). The sABC was used because
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it is a one-dimensional and interpretable error measure. The sABC metric allowed
for the comparison of the two functions produced by the TGI model fit and the lasso
parameter value prediction. The sABC of the lasso with CNVs was compared with the
sABC of the null model, to see whether the CNVs added predictive power.

3.2.4 Pathway selection

To gain biological insight gained beyond selection of individual genes contributing
to the predictive performance of treatment efficacy and time-dependent resistance
development, the log-transformed kd and kr were separately regressed on the CNVs
through pathway analysis using overlapping group lasso (Yuan & Lin, 2006; Jacob
et al., 2009). The overlapping grouped lasso uses a combination of the lasso and
the ℓ2 norm, a square root of the sum of squares of the coefficients, which is also
used for RIDGE regression (Hoerl & Kennard, 1970), to select variables on a group
level (Equation 3.5). Each of the G groups contain a set of indices ℑg , including all
parameter indices of the β’s in group g. The size of the group is denoted as |ℑg| ,
which is used to scale the penalty to account for the different group sizes.

β̂grouplasso = arg min
β

(||Y −Xβ||22 + λ

G∑
g=1

√
|ℑg|||βℑg

||2) (3.5)

The groups were defined as the pathways from the WikiPathways ontology, which
contains a comprehensive overview of biological pathways and processes (Kuleshov
et al., 2016; Chen et al., 2013; Kutmon et al., 2015). A total of 5,998 CNVs was grouped
to one or more pathways.

Again, ten-fold cross-validation was used to identify the λ, which determined how
many pathways were selected. While utilizing a combination of ℓ1 and ℓ2 penalties,
there is only one hyperparameter in the group lasso (Yuan & Lin, 2006). Subsequently,
part of the discovered correlations between pathways and treatment response was
researched in literature for validation. This analysis was conducted in R (R Core
Team, 2020) (version 3.6.3) using the library grpregOverlap (https://github.com/
YaohuiZeng/grpregOverlap).

3.2.5 Code availability

All scripts and models use for the analysis are available on github (https://github
.com/vanhasseltlab/PDX).

3.3 Results

3.3.1 Tumor growth inhibition model development

The TGI model was fitted to the PDX tumor growth curves, separately for every treat-
ment. For three treatments, no model was converged, these were left out of the anal-
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ysis. The model fit was evaluated through the conditional weighted residuals (Fig-
ure S3.1) and the visual inspection of the PDX fits (Figure S3.2). The visual inspection
showed the tumor dynamics for treatment TAS266 were not captured. Combination
therapy LFW527 and binimetinib showed skewed residual distributions. The two treat-
ments were discarded for further analysis. The model fit for the other treatments was
sufficient.

All individual parameter estimates (EBEs) were extracted from the TGI model (Fig-
ure 3.2a). Figure 3.2b shows how the values of the parameter estimates affect the
curve. The percentage of PDX experiments with non-zero time-dependent resistance
development was 12.6%. The TGI model for the chosen treatments showed sufficient
fits for the next step parameter values prediction step.

kg (day−1) kd (day−1) kr (day−1)

0.0 0.1 0.2 0.0 0.3 0.6 0.9 1.2 0.0 0.1 0.2 0.3 0.4
0.000

0.005

0.010

0.015

0.020

0.00

0.05

0.10

0.15

0.20

0.00

0.02

0.04

0.06

P
ro

po
rt

io
n

A

●

●

●

●

●

0.11 0.00 0.00

kg kd k r

●

●●

●

●●

●

●

●
●

●

●

●

●
●

0.11 0.08 0.00

kg kd k r

●● ● ●●● ● ●● ●●● ●● ●●●●

●

●●●●●● ●● ●●
●

●● ●● ●● ●● ●●● ●●● ●● ●● ●●

0.11 0.26 0.00

kg kd k r

●●
●

●● ●●● ●● ●●
●

●● ●

●

●●

●

●

●

●

●

●

●

●●●
●

● ●● ●● ●

0.11 0.41 0.02

kg kd k r

LDK378 BKM120 encorafenib + binimetinib encorafenib

0 100 200 0 100 200 0 100 200 0 100 200
0

500

1000

1500

Time (days)

V
ol

um
e 

( m
m

3  )

Modeled untreated Modeled treated ● Observed treated

B

Figure 3.2: Results of the tumor growth inhibition (TGI) model estimation. A) The distributions of the
individual, estimated TGI parameters. B) Selected tumor growth profiles showing how kd and kr vary for
different treatments, with from left to right a very ineffective treatment, a slightly effective treatment, a very
effective treatment and a very effective treatment with time-dependent resistance development.

The effect of shrinkage of the individual prediction values (η), often referred to as
eta-shrinkage, was evaluated in Figure S3.2. The fit of the individual growth curves
was not influenced by shrinkage. Since the tumor volumes were densely sampled
over time, with an averages of 0.3 samples per day, 50 days follow-up time and 14
measurements per experiment, we did not expect problems with shrinkage.
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3.3.2 Prediction of tumor growth profiles using genomic predic-
tors

The estimated individual TGI parameters kr , log-transformed kd and log-transformed
kg were simultaneously predicted by the multivariate lasso. The prediction errors for
the kg , kd and kr were calculated as root mean square error. Although the variation
between the treatments was high (Figure S3a), overall the RMSE was high. For kg ,
the RMSE was 0.035, while a mean estimated kg of 0.0564. For both the kd and
the kr the RMSEs, 0.044 and 0.049 respectively, were actually higher than the mean
estimated kd (0.033) and the kr (0.0564), indicating a bad prediction of the tumor
growth dynamics from CNVs. A multivariate lasso with only the log-transformed kd and
log-transformed kg was also fitted. These two lasso models were compared based on
the prediction error of the log-transformed kd and log-transformed kg and the sABC
error measure (Figure S3), where the model without predicting the kr seemed to fit
better, especially in the case of combination therapies BYL719 and cetuximab, and
BKM120 and LJC049, which was used for consecutive analysis.

Out of 52 treatments, 33 treatments were detected with a better prediction than
the null model, based on the average MSE over the cross-validation replications. For
the other treatments, the predictive ability was not improved by adding CNVs as pre-
dictors to the lasso regression. The log kg and log kd were transformed back to their
original scale and the parameters were used to solve the ordinary differential equation
(Eq. 1) from the model.

The predictive performance of the lasso for predicting the TGI parameter values
was evaluated by comparing the curves from the predicted estimates to the curves
from the TGI model fit, since the estimated curves were already shown to fit the
data well. The predictions and estimations are functions instead of measures, so the
scaled area between the curves was calculated as error. The overall median sABC
is 0.456, which can be interpreted as the area between the predicted and estimated
curve, is less than half the area below the estimated curve (Figure 3.3a). The sABC
distributions for the different treatments were shown (Figure 3.3b). A lower sABC
shows a lower prediction error. 23.6% of the curves has an sABC below 0.2, so the
difference between the curves is less than 20% of the AUC of the estimated curve.
The treatment LFA102 has a median sABC of only 0.153, indicating a good prediction.
The worst predictions are in the treatment LGH447 with a median sABC of 0.867.
Compared to the null model, the lasso reduced the sABC by a median decrease of
3.8%. This shows low predictive ability of the CNVs to predict tumor growth curves.

3.3.3 Identification of pathways associated with treatment effi-
cacy and resistance

The TGI parameter values of kd and kr were regressed on CNVs grouped in path-
ways using the overlapping group lasso. The group lasso selected the pathways with
predictive power for the 33 treatments where predictiveness was shown in the curve
prediction step. Out of the 472 pathways from WikiPathways (Kutmon et al., 2015), 71
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Figure 3.3: Predicted curves from the multivariate least absolute shrinkage and selection operator. A) Tu-
mor growth curves visualized with the area under the estimated curve (orange) and between the estimated
and predicted curves (grey) and the error (in scaled area between the predicted and the estimated curves
[sABC]). From left to right show a very good prediction to a very poor prediction. B) The distributions of
the individual patient-derived xenograft sABCs for the different treatments given by the interquartile range.
Outliers are not included in the plot.

different pathways were selected for one or more of 19 different treatments, with a to-
tal of 118 detected pathway-treatment response correlations (Figure 3.4, Figure 3.5).
The pathways were specifically correlated to either treatment efficacy or resistance
development. More pathways were identified for kd than kr , due to smaller variation
in kr .

For paclitaxel, trastuzumab, encorafenib and figitumumab, the FDA approved drugs
administered as monotherapy, we compared identified pathways with literature re-
ports to evaluate their biological validity. We identified for 14 pathways for these four
drugs, of which nine could be confirmed in literature (Table 3.1), where we confirm
previously described mechanisms were detected through our method.
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Figure 3.4: Selected pathways obtained by the group least absolute shrinkage and selection operator for
the treatment efficacy (kd = black), time- dependent resistance development (kr = orange) or both (blue)
over the different treatments. The distribution of pathways found for different treatments (top).
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3.4 Discussion

In order to utilize high-dimensional omics data to further advance treatment response
prediction and understanding, we developed a two-step approach combining a ma-
chine learning method with pharmacometric modeling.

We showed how CNVs can contribute to prediction of variability in tumor growth
dynamics. This approach establishes a practical framework to enable personalized
treatment selection or even dose optimization. Even though we have applied our ap-
proach to preclinical PDX data, TGI models have been widely used for modeling of
clinical tumor size measurements to which our approach can be applied. Pharma-
cometric models including TGI models are typically based on ODE models, which is
why we have chosen to formulate our model as ODEs and not using an analytical ex-
pression. Importantly, the use of a TGI model enables further integration with either
clinical outcome prediction models (Claret et al., 2013) or it can be integrated with
PK-PD models for TGI to refine dosing regimens to optimally suppress tumor growth.
We expect this approach can also be implemented for the analysis of clinical tumor
growth data.

In this study, we have set a cut-off of 56 days to evaluate the ability to back-
predict tumor growth profiles; however, the predictions can also be extrapolated over
a longer time-span, depending on the nature of available omics-data or specific dis-
ease or treatment characteristics. In terms of this sABC, the CNVs did however not
show great improvement of predictive ability as compared to a null model. This was
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already visible in the large prediction errors on the tumor growth parameter values.
The predictive ability was evaluated instead of the model fit in order to study more
generalizable results. A large proportion of variance can often be explained by omics
data, but the high-dimensional nature of the data makes it hard or impossible to
distinguish between noise and structural differences.

To identify biological factors predictive for either treatment efficacy or resistance
development we used a group lasso, grouping individual gene-associated CNVs to
known biological pathways. We have used the Wikipathways ontology for grouping
pathways, although other pathway databases can be used in a similar fashion. The
pathway group lasso yields a set of pathways predictive of the outcomes treatment
efficacy and time-dependent resistance development. Out of 14 identified pathways
predictive of treatment efficacy and resistance development, nine pathways were con-
firmed by literature search. This is an indication of how omics pathway analysis for
dynamic tumor growth responses could be a useful tool for validating pathway asso-
ciations with factors responsible for treatment response, as well as discovering new
correlations with pathways. Such a pathway-oriented approach has been previously
proposed, but not in context with TGI or pharmacometric modeling (Silver et al., 2012).

In this study, we have used two versions of lasso regression for two distinct aims:
variable selection and prediction. We selected the use of the lasso over other ML
approaches due to its intrinsic property of variable selection.14 The selection for vari-
ables in high-dimensional data is not well accommodated in many algorithms, while
the lasso inherently shrinks noise variables to zero. The lasso can achieve high sen-
sitivity, but it can suffer from low specificity, this, however, is not considered as much
of a problem in exploratory analyses.

The use of the group lasso allows for direct pathway selection based on omics data,
which is computationally efficient and interpretable (Silver et al., 2012). The variable
selection performance of the lasso has been investigated previously, and has been
shown to perform competitively or comparatively better than other methods (Lenters
et al., 2017; Hastie et al., 2017; Zheng & Liu, 2011).

The multivariate lasso was used to simultaneously predict the three model param-
eter values. A limitation of the multivariate lasso used in this study is that it does
not take into account the dependence between the outcome variables, while the tu-
mor growth model parameters are expected to be correlated. A second limitation
was shown by the comparison between the predictions with and without adding kr to
the multivariate outcome. Prediction of one parameter can restrict the prediction of
another parameter. We expect this problem can be overcome by better modeling of
the joint and marginal distributions of the multivariate outcome.

The lasso has been previously implemented in pharmacometric nonlinear mixed
effect models.16–18 These direct implementations have the advantage of informing
the lasso directly within the longitudinal modeling. Models with a very high number
of variables, however, become computationally hard. To our knowledge, these lasso
implementations have not been successfully applied to very high-dimensional data,
where the number of variables (p) was an order of magnitude larger than the number
of observations (n), either due to convergence problems, or exploding computation

51



Chapter 3

times. The two-step method is more dependent on the fit of the first model and the
accuracy of the EBEs. Our method is more feasible in high-dimension, since the steps
of the complex longitudinal model estimation and the high-dimensional predictors are
separated.

The two-step approach can directly use other ML algorithms besides the lasso.
Algorithms such as Random Forests and Gradient Boosting are able to capture non-
linearity more easily, and can be used to improve model prediction accuracy. There is
still a challenge in modeling multiple outcomes at the same time, such as the kg , kd
and kr in our study, but multivariate outcome modeling extensions have been made
in in other high-dimensional methods, such as random forests (Segal & Xiao, 2011),
which can be also used to predict tumor growth parameter values, as in the second
step of our approach.

In summary, we demonstrated how combining machine learning and pharmaco-
metric modeling can be used to gain pharmacological understanding of factors driving
variation in treatment response, and to enable omics-based personalized treatment
regimens.

52



333

Biomarkers for tumor growth inhibition

Table 3.1: Pathway-treatment correlations found in literature. Scientific literature indicating previous
findings on the pathways correlated to treatment efficacy and resistance, for the treatments paclitaxel,
trastuzumab and encorafenib.

Treatment Pathway Response
type

Literature Relation

Paclitaxel RalA downstream
regulated genes
(WP2290)

kr Ganapathy
et al.
(2016)

Paclitaxel is a mitotic inhibitor by
stabilizing the microtubule and RalA
has been previously shown to disrupt
microtubule formation and inducing
mitotic catastrophe.

Trastuzumab Synthesis and
degradation of
ketone bodies
(WP311)

kd Jobard et
al. (2017)

Ketone production was shown to be
increased with effective trastuzumab
treatment.

Macrophage
markers (WP4146)

kd Shi et al.
(2015)

Trastuzumab interacts with
Fcupgamma receptors on
macrophages for the killing of HER2
cancer cells

Pyrimidine
metabolism and
related diseases
(WP4225)

kd Ghosh et
al. (2009);
Liu et al.
(2019)

The pyrimidine metabolism pathway
has been found in previous studies
to correlate with drug response to
Trastuzumab, based on pathway
enrichment analysis in
transcriptomics and metabolomics
studies

Caloric restriction
and aging
(WP4191)

kd Chappell
et al.
(2011)

There is a connection between
Raf/MEK inhibitors and aging

Somatroph axis
(GH) and its
relationship to
dietary restriction
and aging
(WP4186)

kd Chappell
et al.
(2011)

There is a connection between
Raf/MEK inhibitors and aging

Encorafenib mir-124 predicted
interactions with
cell cycle and
differentiation
(WP3595)

kr Ross et al.
(2018)

Resistance to Encorafenib has been
shown to be correlated to cell cycle
and differentiation

Ethanol
metabolism
resulting in
production of ROS
by CYP2E1
(WP4269)

kd Friedlander
and
Cajulis
(2019)

Ethanol metabolism resulting in
production of ROS by CYP2E1 was
found to have a connection to the
development of melanoma, thus
might be related to drug efficacy of
encorafenib in melanoma treatment.

IL-10
Anti-inflammatory
Signaling Pathway
(WP4495)

kd Sloane et
al. (2017);
Sumimoto
et al.
(2006)

IL-10 has been researched in the
context of overexpression of Raf in
cancer patients, showing that IL-10
is an immunosuppressive factor that
is decreased by MEK inhibitors
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Figure S3.1: The conditional weighted residuals over the different treatments.
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Table S3.1: Number of observations for every treatment, that were used in the second step of the analysis
for the prediction of growth curves and the pathway selection.

Treatment Number of PDXs

5FU 41
abraxane 33
BGJ398 62
binimetinib 166
binimetinib-3.5mpk 34
BKM120 168
BKM120 + binimetinib 56
BKM120 + LDE225 31
BKM120 + LJC049 39
BYL719 138
BYL719 + binimetinib 40
BYL719 + cetuximab 39
BYL719 + cetuximab + encorafenib 40
BYL719 + encorafenib 39
BYL719 + LEE011 36
BYL719 + LGH447 24
BYL719 + LJM716 133
cetuximab 64
cetuximab + encorafenib 39
CGM097 129
CKX620 64
CLR457 156
dacarbazine 30
encorafenib 72
encorafenib + binimetinib 32
erlotinib 22
figitumumab” 36
figitumumab” + binimetinib 35
gemcitabine-50mpk 32
HDM201 134
HSP990 22
INC280 23
INC424 69
INC424 + binimetinib 32
LCL161 + paclitaxel 23
LDE225 30
LDK378 31
LEE011 166
LEE011 + binimetinib 17
LEE011 + everolimus 37
LFA102 37
LFW527 + binimetinib 44
LFW527 + everolimus 29
LGH447 25
LGW813 32
LJC049 39
LJM716 38
LJM716 + trastuzumab 37
LKA136 111
paclitaxel 61
tamoxifen 38
TAS266 32
trametinib 34
trastuzumab 37
untreated 171
WNT974 65
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X−1948, kg: 0.022557
kd: 0.020783

kr: 0

X−2017, kg: 0.062441
kd: 0.13634

kr: 0.0077544
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kr: 0.04057
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kr: 0

X−1916, kg: 0.065559
kd: 0.0082632
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Figure S3.2: Set of figures with the non−linear mixed effect model fits for a subset of PDXs. Within every
treatment, the volume (DV) is plotted against time (TIME) for every PDX. The modeled natural growth curves
are shown (blue dashed line) and the model (red solid line) fit to the observed values (dark blue points).
Tumor growth curves from treatment TAS266 show a bad model fit. Figures with model fits for all PDXs
can be found online:

https://ascpt.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fpsp4.12603&file=psp412603-sup-
0002-FigS2.pdf
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Figure S3.3: The prediction errors for the two models with (white) and without (grey) inclusion of kr in the
multivariate lasso for all treatments where the kr was estimated non-zero in the non-linear mixed effect
estimation. A) the absolute prediction error of the parameter values. B) the sABC for the same treatments.
Both the prediction errors and the sABC are generally higher for the lasso without inclusion of kr .
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