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Chapter 2

Abstract

Despite the application of advanced statistical and pharmacometric approaches to
pediatric trial data, a large pediatric evidence gap still remains. Here, we discuss
how to collect more data from children by using real-world data from electronic health
records, mobile applications, wearables, and social media. The large datasets col-
lected with these approaches enable and may demand the use of artificial intelli-
gence and machine learning to allow the data to be analyzed for decision making.
Applications of this approach are presented, which include the prediction of future
clinical complications, medical image analysis, identification of new pediatric end
points and biomarkers, the prediction of treatment nonresponders, and the predic-
tion of placebo-responders for trial enrichment. Finally, we discuss how to bring ma-
chine learning from science to pediatric clinical practice. We conclude that advantage
should be taken of the current opportunities offered by innovations in data science
and machine learning to close the pediatric evidence gap.

2.1 Introduction

Historically, the evidence basis of pediatric treatments has lagged behind those in
adult patients. A key aspect of this is the lack of pediatric data, which originates
from the logistic, ethical, and legal challenges of performing clinical investigations
in children (Brussee et al., 2016). Additionally, the pediatric population is more het-
erogeneous than the adult population, with maturational differences in pharmacoki-
netics, pharmacodynamics, and disease etiology across the pediatric age range from
preterm neonates to adolescents (Brussee et al., 2016). Consequently, data collected
in children within a narrow age range might still leave us with limited information
regarding the treatment of children outside the studied age range. Finally, similar
to other patient populations, optimal treatment will also differ for individuals within
the same age group, for instance, because of obesity, genetic polymorphisms, or dis-
ease severity, and should be improved with more personalized treatment approaches
(Allegaert et al., 2017).

To date, academic hospitals and industry perform clinical studies and randomized
clinical trials (RCTs) on current and new drugs in children. Many academic studies
focus on commonly used drugs in hospitalized patients, as the in-patient situation
facilitates the collection of data. Generally, to minimize the study burden on pediatric
subjects, the frequency and amount of data collection is limited and often not stan-
dardized. For example, to limit the number of venous samples, drug concentrations in
plasma might be quantified in scavenged samples that were taken as part of standard
of care (Krekels et al., 2017). Population pharmacometric modeling approaches have
been successfully used to deal with these unbalanced data to better understand pedi-
atric pharmacology (Brussee et al., 2016; Krekels et al., 2017). More recently, we have
seen an increased use of mechanistic or physiologically based models, which lever-
age prior knowledge regarding the physiological changes in organ weight, blood flow,
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and protein expression during a child’s life (Allegaert et al., 2017; Mehrotra et al., 2016;
Rostami-Hodjegan, 2012). An important aspect of such models is their improved pre-
dictive performance when used to extrapolate from adults to children (Danhof, 2015).

These pharmacometric modeling approaches are now, despite limited data, be-
ing used with success to support neonatal and pediatric drug development as well as
dosing of commonly used off-label drugs (Brussee et al., 2016; Mehrotra et al., 2016;
Barker et al., 2018). However, recent failures of RCTs in children have taught us that
there is more to these studies than confirming model-based predictions (Momper et
al., 2015). These failures have been attributed to different reasons, such as an in-
creased placebo effect in children, different disease etiology compared with adults,
and inadequate dose selection (Momper et al., 2015). Another important cause is the
failure to recruit sufficient patients, which can force investigators to costly increases
of the study duration or even premature termination of a study due to low feasibility
of recruiting the target sample size (Joseph et al., 2015; Denhoff et al., 2015). Failed
drug trials—and the general lack of pediatric clinical trials being performed particu-
larly in primary health care—contribute to the high prevalence of off-label drug use
in children, especially in the first years of life (Yackey et al., 2019). It is clear that
despite the advances in approaches to data collection and analysis, a large need for
additional research in pediatrics still remains.

To tackle the limitations of conventional clinical research, we need to move beyond
the RCTs and their analysis with traditional statistical and advanced pharmacometric
techniques. In this narrative review, we will discuss novel approaches to collecting
data in pediatric patients to get more information from both clinical trials and real-
world data. In addition, we will discuss how large datasets that are derived from new
data collection approaches enable, and may demand, the use of innovative data sci-
ence approaches, such as machine learning. Finally, we will discuss both applications
and challenges to the widespread use of machine learning in pediatric medicine. To-
gether, these innovations have the potential to greatly support our ability to generate
high-quality evidence to guide optimal pediatric clinical care, thereby closing the pe-
diatric evidence gap.

2.2 Advances in pediatric data collection

Improving our capacity for pediatric data collection is necessary for closing the pe-
diatric evidence gap. Pediatric (randomized) clinical studies are costly and time-
consuming to perform, and a sole reliance on these studies may limit our capacity for
medical research in children. These studies are generally site-centric, meaning that
most data is collected in a hospital or physical study site. Figure 2.1 illustrates how the
capacity for pediatric data collection can be increased by moving beyond site-centric
pediatric studies toward real-world data and new techniques for patient-centric data
collection (Swift et al., 2018). Below we elaborate on the different opportunities and
challenges (ethical and privacy) of these advances in data collection in pediatrics.
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Figure 2.1: Innovative pediatric data collection beyond the site-centric randomized clinical trial (RCT).
Data from these pediatric clinical studies can be supplemented by increased use of real-world pediatric
data from electronic health records. Additional information can be obtained without increasing patient
burden by using patient-centric data collection tools, such as mobile applications, wearables, and social
media data. Site-centric RCTs refer to studies in which data collection is limited to one or more hospitals
or physical study sites. Patient-centric data refers to data collected from the patient at home or during
other parts of their daily routine.

2.2.1 Real-world data collection

The collection of real-world data through electronic health records (EHRs) has sharply
increased in the last decade, which opens up an unprecedented potential for data col-
lection with more subjects, more variables, and lower costs (Goldstein et al., 2016).
The use of EHR data for research purposes comes with its own set of challenges, due
to the large amount of data and variables to be analyzed. Machine learning techniques
are often required to maximize the information extracted from EHRs. In addition to

20



22

Data Science in Pediatrics

large amounts of structured data, a part of the information in EHRs is hidden in clinical
or laboratory notes, which complicates data analysis when this information is required
to answer a particular question (Swift et al., 2018). To extract information from such
notes into structured data, techniques like natural-language processing may provide
a great opportunity for answering pediatric research questions (Nadkarni et al., 2011;
Savova et al., 2016). These techniques enable analyses that would be impossible to
perform on the text data itself when it would be too time-consuming to do a man-
ual extraction of the relevant features from the text data. For example, in radiology,
natural-language processing was used to automatically notate whether a certain con-
dition or finding is mentioned within the text of the report (Pons et al., 2016). In
another example, Liang and others used natural-language processing to allow the
use of unstructured information from EHRs for the development of a deep-learning
model for automatic pediatric diagnoses that surpassed the accuracy of junior, but
not senior, physicians (H. Liang et al., 2019). Finally, the data extracted using natural-
language processing might be required to identify patients eligible for inclusion in
cohorts for observational research (Savova et al., 2016).

Although effectiveness research with real-world data can be problematic due to
the difficulty in controlling for confounding variables and nonrandomized treatment
decisions, real-world data offer many other opportunities (Swift et al., 2018; Eichler
et al., 2018; Miksad et al., 2019). First, real-world data might be used to generate or
select hypotheses on the most effective treatment that can then be tested in an RCT.
Alternatively, real-world data might be used to confirm that the findings in a well-
controlled RCT also apply to the wider, more heterogeneous pediatric population or
establish that some subpopulations require additional research (Eichler et al., 2018).
Additionally, real-world data can also be used to better characterize patients outside
clinical studies as natural history cohorts that can subsequently be used as an exter-
nal control to replace placebo arms in pediatric trials (Miksad et al., 2019). Although
externally controlled studies require additional considerations to deal with potential
biases compared with traditional RCTs, this approach might provide an opportunity
for performing studies in cases where sufficiently powered RCTs are difficult to per-
form due to rarity of the indication or reluctance of parents to consent to a placebo-
controlled trial (Miksad et al., 2019; Dejardin et al., 2017; Food and Drug Administration
(FDA), 2019a). Finally, real-world data may be more suitable than RCTs for answering
drug safety questions regarding rare adverse effects or adverse effects that present
themselves years after the initial drug exposure (Eichler et al., 2018; McMahon & Pan,
2018).

To deliver the best medical practice tomorrow, it is important that we harness the
full potential of the data collected today. At the moment, data in EHRs are still pri-
marily collected for medical practice and may sometimes be ill suited for secondary
use as research data. This is compounded by the fact that physicians are primarily
responsible for treating patients and not for generating high-quality research data
(Eichler et al., 2018). In a learning healthcare system, real-world data are not only
collected to treat the individual patient but also readily usable to improve clinical
practice by contributing to the generation of knowledge and innovations (Eichler et
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al., 2018; C. P. Friedman et al., 2016). Examples of initiatives include the PEDSnet
learning healthcare system, a large clinical data research network that currently holds
data of over 6 million children from 2009 onward and has enabled the generating
of real-world evidence in a variety of clinical settings, including obesity, leukemia,
and long-term safety of (maternal) drug use (Forrest et al., 2014). In addition, impor-
tant are initiatives like the European EHR4CR project (Moor et al., 2015) that support
the integration of data from different EHR systems, as this allows the creation of
larger datasets, and the external validation of findings in datasets from different sites
(Goldstein et al., 2016; Eichler et al., 2018).

2.2.2 Patient-centric data collection

In addition to data from site-centric RCTs, in which most data is collected in one
or more physical study sites (McMahon & Pan, 2018), the collection of patient-centric
data has the potential to increase the capacity for data collection (Figure 2.1) (McMahon
& Pan, 2018; C. P. Friedman et al., 2016). Patient-centric data refers to data collected
from the patient at home or during other parts of their daily routine. Depending on
the context, data could be collected using mobile applications, wearables, and so-
cial media. A specific advantage of patient-centric data is the increase of study data
without increasing the study burden associated with additional study visits that may,
in the case of children, affect their parents or caregivers as well. The opportunities of
patient-centric data collection are particularly important for studying chronic diseases
in children that do not require hospitalization or frequent hospital check-ups as part
of their treatment. Another potential application would be the long-term follow-up of
previously hospitalized patients.

Mobile applications. In its simplest form, a mobile application might be an elec-
tronic diary, designed to collect self-reported outcomes, which can be reported by
children when they are beyond a certain age or by the parents in case of younger
children. Compared with a paper diary, electronic diaries are reported to improve
compliance with alerts and to reduce the risk of errors during data entry (Izmailova et
al., 2018). In other cases, the primary aim of the application is to promote healthy be-
havior in the child through motivation or education, for example, in applications that
help older children with self-management of asthma or type 1 diabetes (Majeed-Ariss
et al., 2015). The interactions by the child and/or their parents with these applications
may offer great opportunities for data collection.

Wearables. The use of wearables creates the possibility of continuous data col-
lection in an at-home setting, which supports characterizing the intra-individual and
inter-individual variability in disease and drug response, as well as quantifying exposure–
response relationships for drugs in the pediatric population (Kothare et al., 2018). The
latter is especially true if the clinical outcome or a surrogate end point can be quan-
tified at home. Similar to mobile applications, the wearable itself might not only be
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used to collect data but also to motivate desirable behavior. For example, Hooke et
al. evaluated the use of activity trackers to promote physical activity in children with
acute lymphoblastic leukemia in an effort to reduce treatment-induced fatigue (Hooke
et al., 2016).

Wearables can also include biochemical sensors to noninvasively measure elec-
trolytes, metabolites, and proteins in an at-home setting. Wearables worn on the skin
can be used to measure analytes directly in sweat, but can also noninvasively extract
analytes, such as proteins and glucose from the skin’s interstitial fluid (Kim et al.,
2019). Although many analytes of interest cannot yet be measured using wearable
sensors, future developments in this area will likely expand the applicability of these
techniques for patient-centric collection of pediatric biochemical data.

Although these wearables may provide great opportunities for data collection in
otherwise difficult to study patient populations, like children, it is important to note
that the field of clinical application of wearables is still in its infancy when we consider
its clinical utility, even for adult patients (Khozin & Coravos, 2019). There are a variety
of challenges that need to be met in scientific, logistic, ethical, and privacy aspects, as
covered extensively by a recent review by Izmailova et al (Izmailova et al., 2018). For
example, commercially available wearables frequently do not report the raw data, but
only the summary or secondary data that has been processed with undisclosed and
proprietary algorithms. This complicates the interpretation of wearable data, espe-
cially when collecting data from multiple types of wearables with differing terminology
and data standards. For the pediatric application of wearables, additional validation
will be required to ensure devices are also fit-for-purpose for children of a particular
age group, and whether the data measured with these devices have the same rel-
evance for the clinical outcome. Finally, the use of wearables by study participants
might affect their behavior (e.g., they might walk more when wearing a wearable that
tracks their daily step count), which could be a problem depending on the research
question and design of the study. Despite these challenges, their ability for contin-
uous data collection at low burden to the patient could provide a great opportunity
in the effort to fill the pediatric evidence gap, especially if the link can be made to
clinical outcomes and biomarkers.

Social media data. The use of social media has increased dramatically over the
last decade. It has been reported that children who use medication might use these
platforms to share experiences that are not communicated to their healthcare prac-
titioner (Dreisbach et al., 2019). As such, social media might contain information
useful to pediatric pharmacovigilance that is not available elsewhere. Recent stud-
ies explored patient reports of adverse effects on social media platforms, such as
Twitter (Patel et al., 2018) and patient fora (Marshall et al., 2015). This information
was explored by counting how many times different adverse effects were mentioned
in combination with a certain drug. These studies could serve as a method for sig-
nal detection of rare adverse effects, or to supplement information on known adverse
effects that are underestimated in children.

At the moment, the use of social media data for pharmacovigilance is still in its
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infancy. In a recent study from the IMI project WEB-RADR, natural-language process-
ing techniques that were used to automatically label social media posts with drugs
and adverse effects combinations were only correct in about 40% of the cases (van
Stekelenborg et al., 2019). Using these imprecise techniques, the authors found no in-
dication that posts on general social media platforms like Facebook and Twitter would
have an added value to traditional methods of pharmacovigilance. Another challenge
identified in the WEB-RADR project is that some drugs are hardly discussed in social
media posts, thus having little to no potential for advancing pharmacovigilance (van
Stekelenborg et al., 2019). The use of social media posts in pharmacovigilance might
be more beneficial with further advances in natural-language processing and by di-
recting research efforts toward patient fora, which would carry a higher percentage of
relevant posts than general social media platforms.

2.3 Ethical and Privacy Aspects of Pediatric Data Col-
lection

Innovations in data collection will support our ability to effectively treat pediatric pa-
tients in the future, especially when the collected data is Findable, Accessible, In-
teroperable, Reusable to allow secondary analyses to be performed by the broader
research community. These benefits need to be balanced with the right to privacy
of the patients whose data are used in this research. Maintaining and further devel-
oping ethical and data security standards are crucial to ensure ongoing support by
patients and their parents of data collection for research purposes (Shaw et al., 2019).
Maintaining data security is particularly challenging for patient-centric data collection
where sensitive data are collected on a mobile phone or wearable, as data leaks could
occur when the device is lost or during data transfer from the device to the central
database.

Appropriate security measures need to be in place to minimize the risk of violat-
ing the patient’s privacy. In this respect, the removal of identifying information can
contribute to maintaining privacy when using data for research purposes. However,
when the research question requires that data from different databases are linked,
some form of patient identifier might be needed to do this (Currie, 2013). A potential
solution to this issue is to add a small amount of noise to the data to ensure patients
cannot be identified (Currie, 2013). Another interesting approach is to “share the an-
swers, not the data.” In this case, a data analysis or model might be run on the data,
and only the aggregated results are returned to the researchers.

The issue of consent is particularly complex for pediatrics. Depending on the age
of the child, (written) informed consent might be obtained from the parents, the child,
or both. However, in the case of reuse of the data, there are questions that remain
unanswered (Taylor et al., 2017). Can the parental informed consent be considered
to be valid for reuse of the data years later, even if the patient has since reached
adolescence or adulthood? It is recognized that retrospectively obtaining informed
consent for large datasets of observational real-world data could likely result in lengthy
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and costly procedures, which would limit their use in practice (Currie, 2013). However,
for some observational analyses of de-identified data, the need for informed consent
can be waived by institutional review board, if appropriate privacy measures are taken
(Currie, 2013).

2.4 Machine Learning for Evidence Generation

Innovations in pediatric data collections provide great opportunities for research and
hold great promise in closing the pediatric evidence gap, but this promise can only be
fulfilled if these data are used effectively to address clinically relevant questions. To
do so is challenging due to the size and complexity of datasets collected with these
novel techniques. Collecting new types of data will, therefore, go hand in hand with
the increasing use of artificial intelligence and machine learning in pediatrics.

The term machine learning is often used interchangeably with the term artificial
intelligence (AI). AI is an area in the discipline of computer science that aims to create
intelligently perceiving, reasoning, and acting machines. A subset of AI is machine
learning, which encompasses a wide range of advanced data analyses techniques. De-
pending on techniques used, machine learning algorithms can predict both numerical
outcomes (e.g., a disease severity score) or class labels (e.g., healthy vs. diseased).

With respect to the different classes of machine learning techniques, linear models
are an easy to interpret class of machine learning techniques for the analysis of struc-
tured data (Figure 2.2). Linear regression, which is the most common linear modeling
technique, can be used for both prediction and hypothesis testing, but is not suitable
when there are many variables in the dataset. In those cases, penalized regression
techniques can be used, which have a penalty term to constrain overfitting. Exam-
ples of such techniques include lasso (Tibshirani, 1996) and ridge regression (Hoerl &
Kennard, 1970). A second class of machine learning techniques are tree-based mod-
els, such as Classification and Regression Trees (Breiman et al., 1984; J. H. Friedman,
2001) and random forests (Breiman, 2001a). Depending on the specific type of tech-
nique, the output of a tree-based model might be a form of a decision tree, which
can still be relatively well explained. A third class of machine learning techniques is
deep learning or deep neural networks. Deep learning has been used extensively for
image analysis and text mining outside the medical world and has recently started
to be used on medical images and EHRs (Figure 2.2) (Miotto et al., 2017). Complex
deep-learning models can have a good predictive performance when dealing with un-
structured data due to flexibility of such models (Figure 2.2). However, deep-learning
models are often difficult to explain, as it is generally difficult to understand how the
input data leads to the model prediction.

Of note, it is important to recognize that machine learning will supplement, and not
replace, traditional statistics in pediatric research. The use of traditional statistical
tests or linear models might be more appropriate if the primary goal of the analysis
is not to obtain a prediction model (Breiman, 2001b; Donoho, 2017). This includes
situations when the goal of the analysis is hypothesis testing (“Does the treatment
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Figure 2.2: Explicability of the various machine learning techniques. On the far left, linear models have
a clear explanation, but require that the data are structured. Linear regression, the most common linear
modeling technique, can be used for both prediction and hypothesis testing, but is not suitable when there
are many variables in the dataset. On the opposite end of the spectrum, deep-learning models are generally
difficult to interpret and explain, and not suitable for hypothesis testing. However, due to the flexibility of
deep-learning models, they are able to handle complex and unstructured data, such as image and text data.
Depending on the data (structured or unstructured) and the goal of the analysis (raw predictive performance
or testing hypotheses), different techniques will be most appropriate.

work better than placebo?”) or estimation of treatment effect (”What effect does
the treatment have on the outcome?”). However, there are various clinical problems
in which the predictions made by machine learning can contribute to closing the
pediatric evidence gap, as will be illustrated with examples in the next section.

2.5 Applications of Machine Learning in Pediatrics

The opportunities offered by the various machine learning techniques can benefit
pediatric practice in a variety of ways. In this section, we will discuss different appli-
cations of machine learning in pediatrics, including: the prediction of future clinical
complications, medical image analysis, identification of new pediatric end points and
biomarkers, prediction of treatment nonresponders, and the prediction of placebo-
responders to allow pediatric trial enrichment.

2.5.1 Predicting future clinical complications

The ability to predict clinical complications in the future can be used to deliver more
personalized medicine in pediatrics. For this purpose, machine learning plays a cru-
cial role due to its improved potential predictive performance compared with tra-
ditional statistical methods, especially when the data are unstructured or otherwise
complex. Children, who are predicted to be at high risk for a certain event, can sub-
sequently be monitored and treated more intensively. In recent research, new al-
gorithms have been explored to make good predictions using data from previous
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studies or real-world data. Box 1 shows three case studies in which machine learning
techniques were used to make predictions about future clinical complications, such
as childhood obesity (Dugan et al., 2015), late onset sepsis (Mani et al., 2014), and
neonatal hyperbilirubinemia (Daunhawer et al., 2019).

Box 1 Prediction of clinical complications in pediatrics using machine learn-
ing
Case study 1. Childhood obesity Dugan et al. (2015) explored predictors of child-
hood obesity, with the aim of eventually being able to provide targeted obesity pre-
vention for high-risk children. The answers on a dynamic questionnaire and mea-
surements of clinical staff were mined from over 7000 children below the age of
2 years. These features were used to predict the prevalence of obesity after their
second birthday. Using tree-based machine learning, an accurate model predicting
childhood obesity was obtained, which included predictors like pre-existing obesity,
ethnicity, height and maternal depression.
Case study 2. Neonatal sepsis Mani et al. (2014) evaluated the usefulness of
different classification algorithms to predict late onset sepsis in neonates, using
early results of laboratory tests and nursing observations. The best classification al-
gorithm surpassed the clinician in both the sensitivity and specificity of predicting
neonatal sepsis. After validation, clinical implementation could allow earlier treat-
ment of sepsis while reducing the number of patients unnecessarily treated with
antibiotics.
Case study 3. Neonatal hyperbilirubinemia Daunhawer et al. (2019) used ma-
chine learning techniques to predict neonatal hyperbilirubinemia. An ensemble
classifier combining the logistic regression lasso and random forests was able to
predict accurately whether a neonate would undergo phototherapy treatment in the
next 48 hours. The predictions were made using clinical variables, such as birth
weight and health information about the mother. This model could support a more
personalized bilirubin monitoring approach, with more intensive monitoring of high-
risk patients.

2.5.2 Medical image analysis

Deep-learning models have been particularly effective in image analysis, mainly in
radiology (Yamashita et al., 2018). A deep-learning model can learn to classify images
as healthy or diseased or can notate the areas in the image that correspond to organs
or other anatomic structures. For example, a deep-learning model was able to identify
the segmentation of white matter, gray matter, and cerebrospinal fluid in the brains
of babies (Zhang et al., 2015). The automation of these tasks with a deep-learning
model can reduce the time spent on an image by limiting the radiologist’s task to
checking and adjusting the lines drawn by the algorithm. In another example, a deep-
learning model was able to identify the skeletal maturity of children by assessing
hand radiographs (Larson et al., 2018). Another common application is the detection
of malignant tumors in medical images, which could serve as a second opinion to
detect malignancies that might have been missed by the radiologist (Suzuki et al.,
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2005; M. Liang et al., 2016).
In addition to increasing efficiency, deep-learning models could also extract in-

formation from image data that is not included in the radiologist report. This would
include features that are too complex and time-consuming to extract manually or
features that are not currently being used in clinical decision making (Hosny et al.,
2018). With automated extraction of additional information from medical images,
deep learning-based image analysis can be used to perform research on imaging-
based pediatric biomarkers that would not be feasible with manual image analysis.

2.5.3 Identifying end points and biomarkers in pediatrics

The development and validation of pharmacodynamic end points for children is rec-
ognized as an important methodological step in closing the evidence gap of pediatric
medicine (Kelly et al., 2018). Having suitable disease-specific pharmacodynamic end
points for children is essential for demonstrating efficacy and for establishing the
exposure-response relationship of drugs needed for pediatric drug labeling. Addi-
tionally, these measures of patient disease severity or well-being can guide treat-
ment decisions in clinical practice. For this, the efficacy and safety end points used
in adults may not be fit-for-purpose across the pediatric age range: the clinical end
point might not occur until later in life, might not be directly measurable, or the clinical
presentation of the disease might differ too much from any adult counterpart (Kelly
et al., 2018).

Machine learning can be used in biomarker and end-point discovery by performing
variable selection and dimension-reduction when there are multiple variables consid-
ered to be potentially relevant for pediatric outcome. For example, Hartley et al. used
electroencephalography data to derive a summary measure for nociceptive brain ac-
tivity in infants (Hartley et al., 2017). In this example, the electroencephalography-
based measure of pain was learned from the context (i.e., by comparing the response
profiles after non-noxious or noxious stimulation). In another example, a supervised
learning approach was used to derive a measure of iatrogenic withdrawal severity
in children by combined analysis of nurse’s expert opinion of the child’s withdrawal
severity and the observed withdrawal symptoms (Goulooze et al., 2019). Finally, ma-
chine learning may be used to identify early biomarkers that correspond to long-term
clinical end points or quality of life (Bera et al., 2019). For example, a machine learning
tool is currently being developed to analyze cough sound data as a digital biomarker
of acute respiratory disease in children (Coravos et al., 2019).

2.5.4 Predicting treatment responders

Machine learning techniques can also be used to identify nonresponders (i.e., children
who are unlikely to respond to a particular treatment). The clinical benefit lies in
avoiding therapy that might give adverse effects at low chance of beneficial effects, as
well as reducing the need for trial-and-error approaches for treatment personalization
(Doherty et al., 2018).
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For the adults, machine learning techniques have been used to predict nonre-
sponders to drug treatment in different settings, including oncology, immunology,
and postoperative pain (Doherty et al., 2018; Gram et al., 2016; Huang et al., 2018).
Depending on the similarity of disease between adults and children, and the explica-
bility and the biological plausibility of the machine learning model, models developed
in adults might be also applicable in the pediatric setting after validation. In other
cases, the pediatric pathophysiology might be too different or the disease might be
absent in adults. In this case, efforts would be warranted to develop new machine
learning models to predict drug response in children, so that they can also benefit
from these innovations.

2.5.5 Predicting placebo responders to improve trial success

Prospective (randomized) clinical trials remain the gold standard to get drugs regis-
tered for the pediatric population. However, some of these RCTs fail to demonstrate
efficacy in children (Momper et al., 2015). These failures have been attributed to a
numbers of reasons, one of which is the high placebo response observed in indica-
tions such as depression, migraine, and bipolar disorder (Momper et al., 2015). A high
placebo response would limit the ability of a trial to demonstrate efficacy or would re-
quire a very large sample size to do so. Additionally, it has been shown that younger
children tend to have a stronger placebo response than older children (Weimer et
al., 2013). This would make it especially difficult to demonstrate efficacy in younger
children, which is problematic considering that the off-label drug use is highest in
children in the first year of life (Yackey et al., 2019).

One way to limit the impact of placebo response on trial outcomes would be to
identify baseline predictors of placebo response so that trials can be enriched preran-
domization with subjects that are less likely to respond strongly to placebo (Momper
et al., 2015). This strategy has been used in pediatric trials, resulting, for example,
in the successful application for a pediatric indication of rizatriptan for acute treat-
ment of migraine (Sun et al., 2013). For adults, it has been proposed that machine
learning techniques may have better predictive power when using multiple variables
to predict placebo response, as was demonstrated for depression in a geriatric pop-
ulation (Zilcha-Mano et al., 2018). The use of machine learning techniques to reduce
the placebo response in pediatric trials might, therefore, increase the success rate of
pediatric drug trials and support pediatric drug labeling.

2.6 Bringing Machine Learning to Pediatric Practice

Whereas promising, more work needs to be done before the machine learning ap-
plications mentioned in the previous section are ready for widespread clinical use in
children. Methods for predicting placebo response need to be developed for different
therapeutic indications and prove their worth in practice by increasing the success
of pediatric registration trials (Figure 2.3, left column). Biomarkers and end points
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suggested by machine learning need to be validated and supported by the relevant
stakeholders (Figure 2.3, middle column). When this is the case, having better pe-
diatric end points and biomarkers will impact not only pediatric practice, but also
pediatric research. Considerable work is also required to bring a machine learning
model to the clinic as a medical decision support tool, as this requires extensive ex-
ternal validation of the model, the development of a user-friendly software tool, and
assessment of the impact of the use of this tool in clinical practice (Figure 2.3, right
column). Below, we will discuss the issue of validation of machine learning models for
clinical use and the particular challenges of implementing medical decision support
tools in pediatric clinical practice.

Figure 2.3: How applications of machine learning in pediatrics can support pediatric clinical practice.

2.6.1 Validation for clinical use in pediatrics

Machine learning models enable us to use complex data to achieve improved predic-
tions of health and disease in children compared with traditional methods. However, it
is important that the trained model does not “overfit” the data. An overfitted machine
learning model has good predictive performance in the dataset it was trained on, but
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poor performance when predicting for new cases. Validation of the model on an inde-
pendent test data set is, therefore, essential to ensure the scientific quality and the
clinical utility of the model (Figure 2.3, right column). Obtaining suitable datasets for
this external validation can be challenging, especially in pediatric research, which un-
derlines the importance of efforts to promote data sharing and the use of real-world
data for research purposes (Ince et al., 2009).

Considering the heterogeneity of the pediatric population aged 0–18 years, it is
also important to consider that a model might have a good predictive performance
for children in a particular age group, but a poor performance for others (e.g., preterm
neonates vs. term neonates). This risk is particularly high if certain age groups are
underrepresented or absent in the dataset used to develop the model (Vayena et al.,
2018). Transparency about the validity of the model and for which pediatric population
this validity has been shown is, therefore, crucial.

Finally, it is important to recognize that even externally validated model predic-
tions are not guaranteed to improve patient outcome when used in clinical practice.
Some have, therefore, proposed that the clinical use of models as medical decision
support tools should be supported by studies that demonstrate their impact on rel-
evant clinical end points (Figure 2.3, right column) (Darcy et al., 2016). Considering
the added difficulty to perform such trials in children, we argue that it is important
to consider the need for such trials on a case-by-case basis, depending on the po-
tential risk and benefits of the use (and nonuse) of machine learning tools in clinical
decision making. In cases where dedicated pediatric trials are not feasible, modeling
and simulation workflows used in pharmacometrics might be used to assess the likely
clinical benefit-risk ratio of decision support tools by integrating available data from
adult and pediatric patients (Bellanti et al., 2015).

2.6.2 Implementation of medical decision support tools

Implementation of findings from machine learning studies into pediatric clinical prac-
tice will not happen without focused efforts and close involvement of the various stake-
holders. Currently, the widespread clinical implementation of scientific evidence is a
lengthy process (> 15 years on average) and only achieved in about half of the cases
(Bauer et al., 2015). Wittmeier et al. have argued in favor of systematic stepwise ap-
proaches to bring scientific knowledge to pediatric clinical practice. An important
aspect of this is to engage in activities that have been shown to successfully support
implementation, such as educational outreach and meetings, use of local opinion
leaders, computerized reminders, audit, and feedback (Wittmeier et al., 2015). For
the implementation of machine learning as a medical decision support tool in pedi-
atrics, there are additional challenges to overcome (Figure 2.3, right column) (Shaw
et al., 2019).

Because the predictions or classifications of machine learning tools can incor-
porate information of multiple variables, they are not as readily integrated in clinical
guidelines as knowledge that relies on a single variable (e.g., age or bodyweight) for
decision making. Therefore, software packages might be needed so that physicians
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can easily use models in medical decision making (Figure 2.3, right column). It is
important to stress that such software packages should be quick and simple to use
and ideally linked to the EHR system so that there is no need for error-prone data
entry of a large number of variables by the clinician.

The need to integrate machine learning tools into software packages does compli-
cate their implementation, as they can be classified by the US Food and Drug Admin-
istration (FDA) as a medical device if the physician is not able to independently eval-
uate the basis of the recommendation (Food and Drug Administration (FDA), 2019b).
With complex machine learning models, this is likely the case. Many software pack-
ages that provide recommendations based on models obtained with machine learning
would, therefore, require lengthy regulatory approval procedures before they can be
used in clinical practice.

In addition to being easy to use, the advice of the model should be explicable
by the clinician. Here lies a key challenge for machine learning tools, especially for
techniques like neural networks, which provide more “black box” predictions (Zorc et
al., 2019). The integration of such black box predictions in clinical decision making
is problematic because it means a departure from the paradigm of evidence-based
medicine (Adkins, 2017). Additionally, shared decision making between the patient
and physician also requires that decisions supported by machine learning tools can
also be explained (Vayena et al., 2018; Zorc et al., 2019). Therefore, explicability for
both the physician and the patient is likely a requirement for meaningful contribu-
tions to the decision process. Ongoing efforts to improve the explicability of complex
machine learning models are, therefore, crucial to support their clinical acceptance
and implementation (Cabitza et al., 2017).

2.7 Conclusions

Innovations in data collection and analysis could revolutionize many aspects of med-
ical science and clinical practice in the upcoming decades. With the increased use
of real-world data within a learning healthcare system and patient-centric data col-
lection there is a potential to significantly expand our capacity for pediatric data col-
lection. There are many useful potential applications of the predictive performance
of machine learning models, and future work may integrate these applications with
mechanistic modeling to improve understanding of the underlying biology. In addi-
tion, even though efforts are required to bring these innovations to the clinic, it is
crucial that we capitalize on this opportunity to close the pediatric evidence gap.
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