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Chapter 1

1.1 Introduction

This thesis addresses the use of advanced statistical learning techniques to charac-
terize complex and large scale data in biomedical and pharmacological research to
enable development of precision medicine strategies.

1.1.1 Treatment variability

Addressing individual variability in patients’ responses to drug treatment is of crucial
importance to provide adequate treatment for each patient. To optimize treatment
outcomes, individualization of treatment strategies is needed. This is often referred
to as precision medicine, an approach based on individuals, rather than on average
population effects. Lack of individualization can lead to insufficient treatment efficacy
if underdosed, and adverse drug effects if overdosed.

Variation in treatment response can be due to between-patient variability and
within-patient variability. Between-patient variability occurs when patients react dif-
ferently to the same treatment. By quantifying this variability, patient- or disease-
specific predictors can be identified to inform design of precision treatment strate-
gies. Within-patient variability concerns the change of treatment response within a
patient, due to changes in progression or adaptation of the disease during treatment.
Understanding and explaining these types of variability can improve early medical
decision making, through monitoring of patient response biomarkers.

The explanation of treatment response variation in drug research is part of the
discipline of (clinical) pharmacology. At its core, pharmacological research concerns
characterization of the dynamics of drug exposure in the body, or pharmacokinetics
(PK), and the dynamics of corresponding drug effects as measured through biomark-
ers, or pharmacodynamics (PD). The PK describes the way the drug is moving through
and changing in the body, where aspects such as absorption, concentration at the tar-
get site and clearance of a drug play a central role. The PD is the effect a drug has on
a patient, mostly clinical outcomes such as blood pressure for hypertension drugs or
tumor size for anti-cancer drugs. Variability in treatment response between patients
can often be attributed to patient-specific factors which affect PK or PD relationships.
Quantitatively capturing PK-PD relationships and identifying factors associated with
inter-individual variability through mathematical and statistical models, commonly re-
ferred to as pharmacometrics, has developed as an important tool to aid in the design
of individualized treatment strategies.

An important topic in pharmacology is the occurrence and development of treat-
ment resistance. Treatment resistance can occur when a population of targeted cells
or pathogens adapts to the administered drug treatment. Many different mecha-
nisms of treatment resistance can arise due to evolutionary processes, selection pres-
sure and rapid cell division (zur Wiesch et al., 2011). Similar treatment resistance
mechanisms are observed in both oncology and infectious diseases (Groenendijk &
Bernards, 2014; zur Wiesch et al., 2011).

In oncology, treatment response variability is an important factor in treatment
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failure. Within patients, tumors are shown to develop resistance, which contributes
to high treatment failure (Sun & Hu, 2018). Understanding of resistance development
has improved cancer treatment, but there is still a lot of unexplained variability be-
tween patients (Sun & Hu, 2018; Yin et al., 2019). Understanding underlying factors
for resistance development and predictive biomarkers for treatment response could
improve cancer treatment outcomes.

In infectious diseases, resistance to antimicrobial drugs represent a global health
challenge (Talebi Bezmin Abadi et al., 2019; World Health Organization, 2014).
Pathogens can develop resistance against multiple antimicrobial treatments, turning
simple infections into serious health threats. Alternative treatment strategies could
help prevent the development of resistance and even reduce resistance (Maltas &
Wood, 2019). One such strategy is the use of collateral sensitivity, a phenomenon
where resistance to one antibiotic reduces the resistance to a second antibiotic. Col-
lateral sensitivity is one strategy which is of interest to design treatment strategies
which suppress the risk of resistance (Aulin et al., 2021; Pál et al., 2015; Roemhild &
Andersson, 2021).

1.1.2 Patient- and disease associated factors

Knowledge of underlying factors of treatment response variability, such as patient and
disease characteristics, is pivotal to develop strategies which can improve treatment
outcomes. Insight into the factors contributing to variation in treatment response
can help to predict the treatment response in different patients, enabling precision
treatment strategies. Data to support deriving such insights are increasingly available
from clinical studies and from routine patient care (Morrato et al., 2007).

The variability in treatment response and PK and PD of drugs between patients is
large. Different patient covariates can explain parts of this variance; these covariates
are for example age and body weight, but also include measurable biological factors,
known as biomarkers, which are concentrations of molecules, or other physiological
measures that can indicate underlying biological processes at a molecular or cellular
level (Depledge et al., 1993; Strimbu & Tavel, 2010). Most pharmacological studies
characterize time-dependent trends in the patients with regards to drug concentra-
tions, treatment response and biomarker levels. These trends can be determined
by measuring biomarkers reflecting different aspects of the patient’s physiological
characteristics. Next to the dependence structures introduced by longitudinal mea-
surements, most covariates are also interdependent. These covariates vary with each
other, often due to physical properties or biological processes, such as height being
related to weight physically.

Molecular profiling ‘omics’ technologies for characterization of DNA, RNA, pro-
teins, and metabolites are increasingly used to characterize biological samples from
patients and during drug research (Nice, 2018). Omics data are often high-dimen-
sional, having more variables than patients (p » n), due to the possibility to measure
hundreds (metabolomics), thousands (transcriptomics) or even millions (genomics) of
variables. These large sets of omics data allow for thorough characterization of pa-
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tients, but also pose a challenge in terms of data analysis, due to this high-dimensional
nature, and that they can be measured over time.

The increasing use of electronic health record databases has provided new op-
portunities for using routine health care data collected from patients in scientific
research (Currie & MacDonald, 2000; Swift et al., 2018). These real world data are
used to monitor patients and their treatment response in the clinic, and to make de-
cisions about treatments and dosing schedules. Improved data availability, due to
developments in data management and sharing, creates opportunities for studying
patient characteristics that can predict treatment response, enabling more individu-
alized dosing regimens in the clinic.

Overall, the complexity of these pharmacological, molecular and health care data
requires the use of appropriate statistical techniques that are able to address impor-
tant biomedical questions require appropriate handling of the associated heteroge-
neous, high dimensional, and longitudinal data.

1.1.3 Statistical methods and pharmacometrics

Complex data, such as longitudinal and high-dimensional data, require different data
analysis methods. Several methods have been developed in the fields of pharma-
cometrics and statistics with the aim to detect covariates and biomarkers that can
explain the treatment response variability and estimating their effect size.

Longitudinal data allow for studying treatment responses over time, but pose a
challenge for data analysis. Measurements within a patient often are typically more
similar than measurements between patients, violating the assumption of indepen-
dent residuals, which is assumed in standard regression models. Mixed effect models
have been developed to include the dependency structure between different mea-
surements, enabling the characterization of the inter patient variability (McCulloch &
Searle, 2000). With patient characteristics and biomarkers, part of this inter-patient
variability can be explained in order to better predict outcomes for specific patients.

Pharmacometrics concerns the modeling and prediction of PK and PD measures
using longitudinal data analysis methods. Through, mostly nonlinear, mixed effect
modeling, random effects are estimated which represent the individual variability,
thereby quantifying how diverse the response to certain drugs is over different pa-
tients, and predicting the drug effects in the population. Pharmacometric models can
then be used for simulations to predict treatment responses and variability in different
patient populations. These simulations take into account the unexplained between-
patient variability, as well as covariates used to explain part of the difference between
patients (Mould & Upton, 2012, 2013; Upton & Mould, 2014).

Next to variability between measurements, modeling interdependence between
covariates also poses a challenge. Pharmacometric models often include covariates
that are interdependent. To simulate different (special) patient populations, simu-
lation of realistic sets of patient covariates is crucial, but this requires an accurate
estimation of the dependence between covariates (Smania & Jonsson, 2021).

A third data analysis challenge is posed by high-dimensional data, such as most
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omics data, where standard linear regression and more complex nonlinear mixed ef-
fect models are not applicable anymore, because the parameters of a model cannot
be uniquely estimated (Johnstone & Titterington, 2009). One way of circumventing
this problem is to use shrinkage, where a penalty is placed on the size of the pa-
rameters (e.g., regression weights), which is a technique developed within the field of
statistics. The two most common shrinkage methods for linear regression are Ridge
regression (Hoerl & Kennard, 1970), which penalizes the sum of the squares of the
parameter values, effectively shrinking large parameter values more, and the lasso
(Tibshirani, 1996), which penalizes the sum of the absolute parameter values, which
shrinks some parameters to zero. So the lasso selects the most relevant parameters,
which are estimated to be non-zero. In both cases, a shrinkage parameter is used to
determine how strong the penalty is. Another way to analyze high-dimensional data is
by using dimension reduction techniques, such as principal component analysis and
proximity mapping, where variability in the high-dimensional data is summarized into
much less dimensions (Heiser et al., 2020).

Although methods for high-dimensional data, longitudinal data and other complex
data have been extensively developed and used, combining different data analysis
methods to study treatment response variability still remains a challenge. The com-
bination of pharmacometric approaches and statistical methods, and the application
of different statistical methods in pharmacological research, can potentially improve
our understanding of treatment variability and allow for the optimization of treatment
and dosing regimens for individual patients.

1.2 Scope

In this thesis, we studied the use of advanced statistical techniques for the analysis
of biomedical datasets to enable development precision medicine strategies, with a
particular focus on pharmacological applications. With an increase in data complex-
ity, techniques from different disciplines need to be integrated to answer research
questions regarding precision treatment and antibiotic resistance. This thesis first
describes this increasing data complexity and different data science techniques in
more detail (Section I). Next, the thesis aims to integrate statistical techniques for
analyzing high-dimensional data and pharmacometric methods to facilitate omics
biomarker research (Section II) and, finally, different statistical methods are used
to build tools for the pharmacological studies in clinical pathogens and populations
(Section III). Thus, the thesis contains the following sections.

Section I: Data science in pharmaceutical research

In Chapter 2, we discuss the use of different data types to enhance clinical phar-
macological research. These complex data require the use of different data analysis
techniques and could provide insights that are hard to obtain from randomized clini-
cal controlled trials.
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Section II: High-dimensional biomarker discovery

Section II focusses on detection of biomarkers in high-dimensional omics data, us-
ing methods from statistics and data science. First, in Chapter 3, we use the lasso in
combination with a pharmacometric model for tumor growth dynamics to identify po-
tential biomarkers for treatment response and resistance development. In Chapter 4,
we focus on biomarker detection to monitor the clinical course of bacterial infections
in patients with community acquired pneumonia (CAP), for early decision making con-
cerning monitoring disease progression. To detect possible biomarkers for disease
progression and treatment response, longitudinal, high-dimensional metabolomics
data are analyzed with dimension reduction through PCA, to explore different bio-
chemical metabolic classes and their roles in the changes over time.

Section III: Real world data

In Section III, we develop tools to study antibiotic resistance and patient character-
istics in clinical routine health care data, to support translation of concepts studied
in vitro and in silico to be researched in clinical pathogen and patient data. Chapter
5 describes a method for detection of collateral sensitivity in large clinical data on
antibiotic susceptibility. Using this method, Chapter 6 explores collateral sensitivity
in different bacterial species and over different antibiotic classes. In Chapter 7, the
statistical concept of copulas is used as a method for simulation of virtual patients
for pharmacometric research. Copulas are multivariate density functions that can
be used to estimate the joint density of multiple variables. We evaluate its use for
estimation joint densities and subsequent simulation of patient’s covariates used in
pharmacometric models.

Section IV: General discussion and summary

In Chapter 8 we discuss the findings in this thesis and the future prospects for the
use of statistics and pharmacometrics to evaluate treatment response variability. We
discuss overall themes that are of relevance for successful research in precision
medicine.
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