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The AdS=CFT correspondence provides a unique way to study the vortex matter phases in super-
conductors. We solve the dynamical evolution of a superconductor in 2þ 1 dimensions at a finite
temperature subjected to a magnetic field quench in terms of a gravitational “hairy black hole” dual living
in an asymptotic AdS4 space. We exploit this to determine the nature of the equilibrium states realized at
long times after the quench of this two dimensional type II superconductor in a perpendicular external
uniform magnetic field B0. This holographic superconductor exhibits the generic lower (Bc1ðTÞ) and upper
(Bc2ðTÞ) critical fields. For B0 < Bc1ðTÞ the magnetic field is completely expelled revealing the Meissner
phase, while the superconductivity is destroyed when B0 > Bc2ðTÞ. Abrikosov lattices appear in the range
Bc1ðTÞ < B0 < Bc2ðTÞ that realize various configurations in the form of hexagonal, square and slightly
irregular square lattices pending the magnetic field strength and the influence of finite size boundaries. We
show this to be consistent with the expectations of Ginzburg-Landau theory where the upper and lower
critical fields are associated with the inverse squares of the coherence length and magnetic penetration
depth, respectively.

DOI: 10.1103/PhysRevD.105.L021901

I. INTRODUCTION

Awell-known property of the type II superconductors is
the quantization of the magnetic flux in the mixed state,
where the magnetic field penetrates in the form of vortices
that combine with the magnetic field into quantized fluxoids
each carrying a quantized magnetic flux Φ0 ¼ hc=2e,
forming an Abrikosov lattice [1]. The phenomenology is
governed by the Ginzburg-Landau (GL) theory revolving
around the parameter κ ¼ λ=ξ, in terms of the magnetic
penetration depth λ and the coherence length ξ of the order
parameter that are pending microscopic conditions. In a
conventional superconductor these can be computed by

employing the Bardeen-Cooper-Schrieffer (BCS) theory.
When κ < 1=

ffiffiffi
2

p
the interaction between vortices is attrac-

tive resulting in a complete expulsion of the flux in the
superconducting regions and a Meissner phase is realized.
On the other hand, for κ > 1=

ffiffiffi
2

p
, the vortices repel each

other and the type II state characterized by the Abrikosov
fluxoid lattice is formed in a magnetic field [2–6]. For
reviews of the GL theory see for instance [7–12].
The applications of the AdS=CFT correspondence

[13–15] or “holographic duality” to this condensed matter
inspired context [16–18] jump started with the discovery
[19,20] that superconductivity can be described in a
gravitational dual. One adds a charged scalar field to the
Einstein-Maxwell theory describing the planar black hole
living in the deep interior of the AdS bulk. Upon lowering
temperature this scalar field may acquire a finite amplitude
in the bulk. This translates in the boundary into a VEV
without source signalling the spontaneous breaking of
the Uð1Þ symmetry and the onset of superconductivity,
as confirmed by the presence of the super current in the
probe limit conductivity [20]. The magnetic field in the
boundary is in turn dual to a magnetically charged black
brane. However, the determination of the precise effects of
magnetic fields on holographic superconductors has been
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proven to be a hazardous affair, which has not been settled
up to now despite a number of attempts [21–23].
According to the probe limit the GL parameter κ

indicates that it is invariably of the type II kind [24–26].
Yet another approach is to involve the time evolution by
attempting to solve the time independent equation of
motions (EoMs) for the scalar and gauge fields in the bulk
spacetime to look for equilibrium solutions [27–34]. One is
confronted here with a highly nonlinear dynamical system
where one got as of yet not beyond the description of the
formation of a single vortex [27–30], while a static vortex
lattice solution was only addressed relying on a perturba-
tive method [31–34].
Here we will present a number of definitive answers in

this regard. We accomplish the feat to solve the holographic
equations describing the full time evolution within the
limitations of the minimal holographic set up that we just
discussed, in the physical setting of a quench involving the
magnetic field. We depart from zero field, suddenly switch-
ing on a magnetic field to then track how the magnetic flux
penetrates. A particular benefit of the holographic approach
is the “first principle” treatment of dissipation. The system
thermalizes and equilibrium sets in at long times. In a
forthcoming publication we will discuss in more detail the
transient dynamics that is similar to the outcomes of time
dependent Ginzburg-Landau theory [35,36]. Here we will
focus on what this has to tell about the equilibrium states in
the presence of the field. Our results are summarized in the
figures: the nature of the vortex lattice (Fig. 2), the temper-
ature dependence of the coherence length and the penetration
depth (Fig. 3), and the magnetization as function of field
(Fig. 4). Last but not least, we determine the phase diagram at
temperatures close to Tc (Fig. 5).

II. HOLOGRAPHIC MODEL

We depart from the standard set up for the minimal
holographic superconductor, the usual Einstein bulk action
with an Abelian-Higgs term describing the complex scalar
added. In units of ℏ ¼ c ¼ GN ¼ 1, the latter reads [19,20],

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

4
F2 − jDΨj2 −m2jΨj2

�
; ð1Þ

where Fμν ¼ ∂μAν − ∂νAμ and Dμ ¼ ∇μ − iqAμ with the
charge of scalar field q ¼ 2e (“Cooper pair”). In the
minimal setup one just takes the AdS4 black hole back-
ground, in Eddington-Finkelstein coordinates

ds2 ¼ l2

z2
ð−fðzÞdt2 − 2dtdzþ dx2 þ dy2Þ; ð2Þ

where l is the AdS radius, z is the radial coordinate of the
AdS bulk and fðzÞ ¼ 1 − ðz=zhÞ3: z ¼ 0 is the AdS
boundary while z ¼ zh is the horizon. As is well estab-
lished, ignoring completely the effects of finite density and

the gravitational backreaction of the scalar field on the
geometry limits the applicability of this set up to relatively
high temperatures. At temperatures ≪ Tc the backreaction
on the geometry becomes important but it is presently still
too difficult to compute these in a dynamical, inhomo-
geneous setting.
The dual field theory lives at z ¼ 0, and the information

needed for the dual superconductor can be read off from the
asymptotics of the bulk fields approaching the boundary.
These can be obtained by solving the dynamic coupled
equations of motion for Ψ and Aμ,

ðD2−m2ÞΨ¼ 0; ∇μFμν¼ iΨ�DνΨ− iΨðDνΨÞ�: ð3Þ

The spontaneous breaking of the local Uð1Þ symmetry in
the field theory is encoded by the induced nonzero expect-
ation value Ψð2Þ of the scalar operator dual to Ψ in the bulk,
which follows from the asymptotic behavior of Ψ near the
boundary,

Ψðz∼0; t;x;yÞ≈Ψð1Þðt;x;yÞzþΨð2Þðt;x;yÞz2; ð4Þ

where the source Ψð1Þ is set to be zero as a boundary
condition when solving the model. Furthermore, in order to
introduce a magnetic field in the dual holographic super-
conductor, the gauge fields on the boundary should be
dynamic. In the gauge Az ¼ 0, the behavior of the gauge
fields on the boundary corresponds with,

Aμðz ∼ 0; t; x; yÞ ≈ aμðt; x; yÞ þ bμðt; x; yÞz; ð5Þ

where aμ is identified with the gauge field of the boundary
theory, while bμ is according to the holographic dictionary
related to the current jμ as jμ ¼ −bμ − ∂μat þ ∂taμ in
Eddington coordinates. We control the charge density by
ρ ¼ −bt which is equivalent to tuning the temperature. In
the superconductor regime we fix jx ¼ jy ¼ 0 as the
Neumann boundary condition for Ax and Ay at z ¼ 0.
This is different from the neutral superfluid that is captured
by Dirichlet boundary conditions ax ¼ ay ¼ 0, leading to
vortex lattice solutions studied by [37–42].
We create a finite size “square” of superconducting

matter surrounded by a metal by switching of both the
scalar-and gauge fields outside this square. Similar to
experimental flux penetration circumstances we then
implement the following protocol. We prepare a homo-
geneous superconducting state at a fixed temperature as the
initial configuration by the Newton–Raphson method. We
then apply suddenly an uniform external magnetic field at
t ¼ 0 by turning on Axðt ¼ 0; z; x; yÞ ¼ −B0y=2 and
Ayðt ¼ 0; z; x; yÞ ¼ B0x=2 and track in time how the
magnetic flux penetrates into the superconducting square.
We solve this dynamical problem by combining a Runge-
Kutta method in the time direction and a Chebyshev
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spectral method for the other three coordinates z, x, y,
similar to previous work on vortex lattice formation in a
rotating holographic superfluid [38]. For the numerical
simulations we choose as parameters l ¼ 1, m2 ¼ −2 and
q ¼ 1 (implying Φ0 ¼ 2π).

III. ABRIKOSOV LATTICES

A typical outcome is shown at a temperature close to Tc
in Fig. 1 at long times where the system has completely
equilibrated. These correspond with a typical hexagonal
Abrikosov lattice (panels a, b), while the internal structure
of the fluxoid is according to expectations (panel c). The
widths of the flux lines λ and the order parameter defects ξ
can be fitted from the profile of the magnetic field and
the expectation value of the order parameter using BðrÞ ∼
0.3949 expð−r=λÞ and hOðrÞi ∼ 1.3693 tanhðr= ffiffiffi

2
p

ξÞ,
respectively. For T ¼ 0.95Tc and B0 ¼ 0.428 we find in
this way that λ ∼ 1.579 and ξ ∼ 1.1. This corresponds with
the GL parameter κ ∼ 1.435, consistent with type II
behavior.
According to the GL theory, lattices with equilateral

triangles are at a slightly lower free energy than square
lattices. This rests in essence on the simple wisdom that in
two dimensions a closed packed lattice just corresponds
with the triangular one, where every vortex is surrounded
by a hexagonal array of other vortices. In this array, the
nearest neighbor distance can be evaluated from the
averaged value of the magnetic field in a vortex hBi to be,

a△ ¼
�
4

3

�1
4

a□ ≈
�
4

3

�1
4

�
Φ0

hBi
�1

2

: ð6Þ

Thus, for a given flux density, a□ < a△. Taking into
account the mutual repulsion of the vortices, it is reasonable

to expect that the structure with the largest separation to the
nearest neighbors will be favored. From Eq. (6) the distance
between two nearest vortices can be computed to be
a△ ≈ 1.075

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π=0.178

p
≈ 6.39, close to the numerical sim-

ulation result a△ ≈ 6.63.
However, different things are happening according to our

simulations when the vortex density is increased by
ramping up the magnetic field. Two typical examples are
shown in Fig. 2. For the case with T ¼ 0.9Tc, B0 ¼ 0.8, we
find 9 vortices now forming a square pattern. In this case,
the distance between vortices is a□ ≈ 5.02 (close to the
value from (6) a□ ≈ 5.05); this is not sufficiently small
while the finite size of our square patch with its straight
boundaries prohibits the formation of a hexagon pattern.
For the case T ¼ 0.82Tc, B0 ¼ 1.7, the vortex number is
30, while the distance between two nearest vortices
computed by (6) a△ ≈ 3.43 is now close to the numerical
simulation value a△ ≈ 3.214. The finite size effect is now
moderated, and the hexagonal pattern is favored again.
However, the array does not admit a perfect lattice
configuration, which is again explained by finite size
effects—a substantial number of the vortices are still close
to the boundary.
In summary, our holographic simulations are consistent

with the expectation. We find that the lattice configurations
depend on (a) the density of vortices as controlled by the
magnetic field, (b) the spatial extent of the normal core of
the fluxoids controlled by temperature, and (c) the finite
size effects associated with the boundary. When (c) is
dominating, a square lattice configuration is preferred when
the vortex number is small and close to the square of an
integer. Otherwise large number of vortices always forms

FIG. 1. A hexagonal lattice at T ¼ 0.95Tc, B0 ¼ 0.428: con-
figurations of (a) the order parameter, (b) the magnetic field, and
(c) the radial profiles of the order parameter and magnetic field in
a single vortex.

FIG. 2. Two representative vortex lattice solutions:
(a–b) T ¼ 0.9Tc, B0 ¼ 0.8, and (c–d) T ¼ 0.82Tc, B0 ¼ 1.7.
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distorted hexagonal configurations, as also observed exper-
imentally in mesoscopic superconducting islands (super-
conducting PB [43], cuprate thin films [44].)
Finally, by increasing the magnetic field until it

approaches the upper critical fields Bc2, we find that the
superconducting area inside the square shrinks, leaving
behind a superconducting island with vortices crowded
together without a well defined nearest vortex distance.
The size of the normal core of the fluxoid is determined

by the coherence length ξ and according to GL theory [11]
for T close to Tc this length and the penetration depth λ
determining the spatial extend of the magnetic flux should
vary according to,

ξ∼0.74ξ0ð1−T=TcÞ−1=2; λ∼
λ0ffiffiffi
2

p ð1−T=TcÞ−1=2; ð7Þ

Our results shown in Fig. 3 closely comply to these
expectations. Both ξ and λ are almost independent of B0

and the temperature dependence follows closely these
formulas; for example we find a deviation of at most
∼3% at T ¼ 0.95Tc. This reveals that ξ0 ∼ 0.3313 and λ0 ∼
0.4825 implying the GL parameter to be κ ∼ 1.3916 for this
holographic superconductor. These formula’s are in general
expected to be only obeyed close to Tc but we find that it
applies quite well down to temperatures as small as ∼0.6Tc
(Fig. 3). Notice that in this regard it is quite similar as to
conventional BCS superconductors where it is well estab-
lished that these GL relations work well down to the lowest
temperatures (e.g., niobium [45]).

IV. MAGNETIZATION

The magnetizationM is the thermodynamical quantity of
choice to distinguish the Meissner- and vortex lattice phase.
This is defined as,

MðB0Þ ¼ B0 − hBðx; yÞi; ð8Þ
where B0 is the value of the applied external magnetic field,
while Bðx; yÞ is the magnetic field distribution in the

equilibrium state. When the added external field increases
from zero to Bc1, the magnetic field is completely expelled
and there is no magnetic field inside the sample, M ¼ B0.
On the other hand, above Bc2, the superconductivity is
completely destroyed, Bðx; yÞ ¼ B0 and M is zero. In the
interval Bc1 < B0 < Bc2 the mixed state is stable with the
ramification that the magnetization M will decrease from
Bc1 to zero gradually. In Fig. 4 we show the magnetization
versus B0 for three different temperatures confirming these
expectations.

V. PHASE DIAGRAM

From these magnetization curves one can directly read
off the values of two critical magnetic fields. Bc1 corre-
sponds with the field where the linear increase of M
terminates, while Bc2 is the field value where M vanishes.
The outcomes are summarized in our final result in the form
of the phase diagram as function of temperature and field,
Fig. 5. The critical fields actually conform closely to the
predictions of the canonical GL analysis [10,11] that
typically applies in conventional BCS superconductors,

0 1 2 3 4 5
0

0.5

1

1.5

FIG. 4. The magnetization M defined in Eq. (8) for three
different temperatures T ¼ 0.82Tc, 0.9Tc and 0.95Tc, from the
curves we can read the two critical fields where the magnetization
reaches its maximal value and reduces to zero respectively.

0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

FIG. 3. The temperature dependence of ξ (green) and λ (blue)
according to the numerics, fitted by the GL formulas Eq.’s (7)
using as free parameters ξ0 ¼ 0.3313 and λ0 ¼ 0.4825.

0.6 0.7 0.8 0.9 1
0

2

4

6

8

FIG. 5. The phase diagram of holographic superconductor in an
external magnetic field. The circles and squares indicate the
lower- and upper critical fields as determined from the numerical
results for the magnetization (Fig. 4) while the lines follow from
the expectations of GL theory, Eqs. (10), (11).

XIA, ZENG, TIAN, CHEN, and ZAANEN PHYS. REV. D 105, L021901 (2022)

L021901-4



see, e.g., [45,46]. Here Bc2 is estimated by the instance
where the separation of the fluxoids becomes of order of the
core size, where no longer a superconducting path remains
for the transport current. It follows from this criterium that,

Bc2 ¼
Φ0

2πξ2
¼ ξ−2; ð9Þ

where πξ2 is the size of the Abrikosov unit cell. Using the
result (7),

Bc2 ≈ 16.64ð1 − T=TcÞ; ð10Þ

The lower critical magnetic field Bc1 is determined by
the instance where the first vortex is created,

Bc1 ≈
Φ0

2πλ2
¼ λ−2; ð11Þ

where πλ2 corresponds with the area where the magnetic
field penetrates. These simple relations fit the numerically
determined results for the critical fields very well, see
Fig. 5.

VI. SUMMARY

The quantitative description of the formation of the
Abrikosov lattice in conventional type II superconductors is
a classic success of Ginzburg-Landau theory resting on the
microscopic BCS theory. Using dynamical quenches to
obtain an unbiased view on the equilibrium states we have
charted the outcomes for the minimal holographic super-
conductor. We find an excellent agreement with the expect-
ations of the GL theory also at temperatures quite some

distance away from the zero field critical temperature. This
emphasizes that in phenomenological regards holographic
superconductors behave in a way that is strikingly similar to
the BCS variety. This is hindsight not surprising—although
the metallic states described by holography are very
different from the simple Fermi gas underlying BCS the
description of the superconducting state is characterized by
striking similarities (see, e.g., Ref. [18]).
This study is limited to the “minimal” set up that is

expected to be representative for generic holographic
superconductors at elevated temperatures near Tc. There
is still quite some terrain to explore in the low temperature
realms where finite density and especially the gravitational
backreaction become important, forming still quite a
computational challenge. Similarly, it would be of interest
to extend this to three space dimensions. Yet another great
potential for holography is in the description of vortex
dynamics. Here we have been focussed on the equilibrium
that sets in a long time after the quench. However, there
appears to be much to be learned regarding the way that
flux penetrates the superconductor, while there is a myriad
of other nonequilibrium circumstances that can be studied
using time dependent holography. These will be the subject
of forthcoming publications.
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