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Abstract. Antisymmetric tensor field (two-form field) is a ubiquitous component in string
theory and generally couples to the scalar sector through its kinetic term. In this paper,
we propose a cosmological scenario that the particle production of two-form field, which is
triggered by the background motion of the coupled inflaton field, occurs at the intermediate
stage of inflation and generates the sizable amount of primordial black holes as dark matter
after inflation. We also compute the secondary gravitational waves sourced by the curvature
perturbation and show that the resultant power spectra are testable with the future space-
based laser interferometers.
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1 Introduction

What is the nature of dark matter? Despite nearly a century of exploration, most of its
properties are still wrapped in mystery. In fact, the potential mass scale of dark matter
ranges over 90 orders of magnitudes from 10−31 GeV to 1060 GeV [1]. For decades, dark
matter searches have focused on particle models for dark matter, especially weakly interacting
massive particles (WIMPs). Recently, however, the non-detection of WIMPs provides strong
motivation for the search for alternative dark matter candidates.

Among various dark matter candidates, primordial black holes (PBHs) are well moti-
vated, requiring no extensions to the standard model of particle physics, and have received
a lot of attention owing to the recent detection of gravitational waves (GWs) from merging
black hole binaries [2–4]. PBHs can form by the gravitational collapse of local over-dense
regions in the early universe [5–7]. While the mass of PBHs can span many orders of mag-
nitude in principle, the non-detection of PBHs constrains their abundance in many mass
ranges. PBHs which formed with a mass . 1014g would have evaporated by today, and
could not contribute to the dark matter abundance today. For light PBHs (. 1017g), the
evaporation of PBHs through Hawking radiation would affect the extragalactic/galactic γ-
ray background [8–11]. On the other hand, the abundance of non-evaporating heavy PBHs
can be tested by their gravitational effects. The measurements of gravitational microlensing
events limit the abundance of PBHs with mass range around 1022g − 1035g [12–15]. Also,
stellar-mass PBHs (& 1033g) would emit high energy photons via gas accretion and could
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modify the thermal history of universe [16, 17]. Hence, PBHs can be the dominant component
of dark matter in the intermediate mass window, 1017g− 1022g.1

The abundance of PBHs is related to the amplitude of the primordial power spectrum of
the curvature perturbation originating from cosmic inflation. In order for PBHs to compose
a significant fraction of dark matter, it is required that a large amplitude of the curva-
ture perturbation is produced on scales much smaller than the measurement scale of cosmic
microwave background (CMB) anisotropies. In the simplest class of inflationary models,
however, the predicted spectral shape is almost scale-invariant. From the measurement of
CMB anisotropies, the amplitude of curvature perturbations is expected to be too small to
predict a sizable amount of PBHs. To go beyond this naive expectation, many mechanisms
for generating large curvature perturbation on small scales have been proposed, including
the running mass model [26], axion inflation [27–31], a waterfall transition during hybrid in-
flation [32–37], a quartic action during inflation and a variable sound speed [38], an inflation
coupled with the Gauss-Bonnet term [39], amongst many others.

Among these works, the mechanism of generating curvature perturbations via the parti-
cle production of coupled matter sectors has been intensively studied. Such a representative
sector is the form fields. A vector field (dubbed gauge field or one-form field) and an anti-
symmetric tensor field (two-form field) are predicted by string theory, which are naturally
coupled to the scalar sector in the low-energy effective action [40, 41]. In this framework, the
form field can experience an instability caused by the motion of coupled scalar field and can
source the coupled fluctuations on the super-horizon scales during the inflationary epoch,
which finally leads to a rich phenomenology such as the generation of PBHs or the accompa-
nied scale-dependent GWs. [28, 31, 42–49]. It is the aim of this paper to explore the particle
production of the two-form field and its observable consequences.

In recent years, the phenomenology of particle production of two-form field has also
been developed in parallel with studies of gauge field production. If the generation of the
two-form field is on large scales, then a coherent mode of two-form field would break isotropy
of universe due to its direction dependence [50–52]. It would predict a statistically-anisotropic
power spectrum [53], whose spectral anisotropies are different from the case of inflationary
model with U(1) gauge field [54]. On the other hand, the possibility of the generation of
two-form field on small scales has been overlooked. In this paper, we extend our previous
work on a U(1) gauge field [48] to the particle production of two-form field. We show that
the two-form field can be amplified at an intermediate stage of inflation and can predict a
sizable amount of PBHs as dark matter.

This paper is organized as follows. In section 2, we build up the model of the 2-form field
kinetically coupled to the inflaton. In section 3, we calculate the curvature power spectrum
sourced by two-form field. We estimate the PBH abundance in section 4. In section 5, we
also discuss the generation of tensor perturbations sourced by two-form field and estimate
the amount of secondary GWs after inflation. We finally summarize our study in section 6.
Throughout this paper, we will set the units ~ = c = 1 unless otherwise specified.

1Although there have been other constraints discussed in this mass range such as the femtolensing events
of γ-ray bursts [18], the dynamical capture of PBHs by stars [19–22], and the ignition of white dwarfs by
PBHs [23]. However, recent studies have revisited these constraints and claimed that this mass window
remains open for PBHs as dark matter candidates [24, 25].
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2 Model setup

In this paper, we consider the following inflationary model where an antisymmetric two-form
field Bµν is kinetically coupled to the inflaton:

L = M2
Pl

2 R− 1
2∂µϕ∂

µϕ− V (ϕ)− 1
12I(ϕ)2HµνρH

µνρ , (2.1)

where Hµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν is the antisymmetric field strength of the two-form
field and I(ϕ) is a non-trivial kinetic function deriving from the compactified volume of extra
dimensions in the framework of string theory [40, 41]. Hereafter, we assume that two-form
field induces negligible backreaction to the background inflaton dynamics, which we will
confirm in section 3. For a gauge condition of two-form field, we can take

∂iBij(t,x) = 0 , ∂iB0i(t,x) = 0, (2.2)

with the gauge transformation δgBµν = ∂µξν − ∂νξµ and the redundant degree of freedom
ξµ → ξµ+∂µχ. One can show that B0i is a non-dynamical variable and can be integrated out
in the action. At a quadratic order in perturbation, B0i could couple only to Bij , because Bij
is assumed to have no background components. Due to the gauge conditions (2.2), however,
those quadratic interactions between B0i and Bij vanish and hence B0i gives a higher-order
contribution in perturbations. Therefore, hereafter we neglect B0i in our analysis since its
contribution becomes relevant only for the trispectrum.

Throughout this paper, we assume that Bµν does not have its homogeneous component
that leads to the breaking of the isotropy of space [50–52]. Hence, we consider the spatially-
flat FLRW metric, ds2 = −dt2 + a(t)2dx2 = a(τ)2(−dτ2 + dx2), and the perturbation of
two-form field at zeroth-order level: Bµν(t,x) = δBµν(t,x). We decompose δBij in Fourier
space as

δBij(t,x) =
∫

dk

(2π)3 δBkεij(k̂)eik·x , (2.3)

where εij is the antisymmetric tensor

εij(k̂) = i

 0 kz −ky
−kz 0 kx
ky −kx 0

 = i

 0 cos θk̂ − sin θk̂ sinϕk̂
− cos θk̂ 0 sin θk̂ cosϕk̂

sin θk̂ sinϕk̂ − sin θk̂ cosϕk̂ 0

 (2.4)

with k̂ = (sin θk̂ cosϕk̂, sin θk̂ sinϕk̂, cos θk̂) represented in terms of the polar coordinates.
Then, it satisfies the following relationships:

kiεij(k̂) = 0 , εij(−k̂) = ε∗ij(k̂) , εij(k̂)ε∗ij(k̂) = 2 . (2.5)

Then, the equation of motion (EoM) for δBk is given by[
∂2
x + 1− Īxx

Ī
− 2Īx
xĪ

] (
ĪδBk/a

)
= 0 , (2.6)

where we ignored the inflaton perturbation δϕ(t,x) = ϕ(t,x) − ϕ̄(t) in the kinetic function
Ī ≡ I(ϕ̄(t)) because it gives a higher-order contribution in perturbation, and introduced a
dimensionless conformal time variable, x ≡ −kτ . For a varying Ī, the EoM is modified and
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the two-form field can be produced. To avoid the strong coupling problem, we assume Ī
decreases with time. Here, we define the logarithmic decay rate of the kinetic function

n(t) ≡ d ln Ī
dN

= − Īϕ
Ī

˙̄ϕ
H
, (2.7)

with respect to the number of e-foldings dN = −Hdt. As we will see later, Ī decreases and
the decay rate is positive during inflation, n(t) > 0.

To find useful analytic expressions, we first consider the case where n(t) is varying slowly
enough to neglect its time-variation: n ' const. Then (2.6) is rewritten as[

∂2
x + 1− n(n+ 1)

x2

] (
ĪδBk/a

)
' 0 . (2.8)

With the Bunch-Davies initial condition, the solution is given by the Hankel function of the
first kind. The “electromagnetic-like” components of the two-from field, Ek ≡ ĪδḂk/a

2 and
Mk ≡ kĪδBk/a3, are computed as

Ek = H2ei
n+1

2 π

√
2k3

√
πx5

2 H
(1)
n+3/2(x) ∝ x1−n (x� 1) , (2.9)

Mk = H2ei
n+1

2 π

√
2k3

√
πx5

2 H
(1)
n+1/2(x) ∝ x2−n (x� 1) , (2.10)

where we took the super-horizon limit in right proportional relations. The contribution to
the electric energy density ρE ≡ I2Ḃ2

ij/(4a4) from each Fourier mode is proportional to |Ek|2.
Thus, the two-form field increases its energy density on the super-horizon scale if n > 1. Even
if n(t) varies in time and the solution would not be given analytically, the particle production
of two-form field occurs on the super-horizon regime for n & 1 as we will see in section 3.
On the other hand, the gradient (magnetic) energy density is suppressed by a factor of x2

in comparison with electric energy density. Therefore, hereafter we ignore the contribution
from the gradient terms.

Regarding the kinetic function, we consider the following functional form [48]

I(ϕ) = B1 exp
(
c1

ϕ

MPl

)
+B2 , (2.11)

where B1, B2, and c1 are model parameters which are all positive. In addition to a conven-
tional exponential function, we also introduce another constant term expected to arise from
a string-loop modification in powers of a dilaton-dependent coupling constant [55]. We also
assume this constant term plays a role of stabilizing the dilatonic field and controlling the
generation of two-form field at around the end of inflation. For the infaton potential, we adopt
the Starobinsky model consistent with the current (ns, r) constraint in CMB observation2

V (ϕ) = µ4(1− e−γϕ)2 , γ =
√

2
3M

−1
Pl , (2.12)

2In view of string theory, this kind of potential is known to be arisen from the presence of D-brane
defect [56]. In any case, however, we emphasis that our prediction is not sensitive to a specific choice of
potential.
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and solve the background system of inflaton:

¨̄ϕ+ 3H ˙̄ϕ+ Vϕ = 0 , (2.13)

3M2
PlH

2 = 1
2

˙̄ϕ2 + V (ϕ̄) , (2.14)

where we have ignored the backreaction effect from the two-form field and we will discuss
the validity of this in the next section. As discussed in ref. [48], one can find approximated
analytic expressions for the e-folds N(t) and the decay rate n(t) under the slow-roll approx-
imation. However, they do not enable us to compute the power spectrum of the two-form
field with sufficient accuracy, and we do not present them here.

We set the following values of model parameters3

B2/B1 ' 5.5× 1016 , c1 = 15, (2.15)

and numerically solve the background equation for ϕ(t) and plot the evolution of the decay
rate n(t) in figure 1. Here, n(t) increases until the background inflaton ϕ̄(t) reaches a value
for which the two terms in (2.11) become comparable. Before that point, the first term
in (2.11) is dominant and the decrease of Ī is accelerated, because the inflaton is accelerated
by the potential. After that point, on the other hand, Ī quickly settles at the constant value
B2 and the decay rate n(t) vanishes. In figure 1, one observes that n(t) is larger than unity
for about 15 e-folds, and the two-form field significantly grows during this period of time.

3 Generation of scalar mode

In this section, we compute the scalar mode induced by the particle production of the two-
form field via the interaction Lagrangian, Lint = −I(ϕ)2HµνρH

µνρ/12. At leading order, it
is written as

Lint '
Īϕδϕ

2Ī
Ī2δḂ2

ij

a4 , (3.1)

where we ignored the contribution from the gradient term of two-form field because it is al-
ways suppressed on the super-horizon scale in comparison with the electric-like term (see (2.9)
and (2.10)). We quantize the fluctuation of the inflaton field and decompose it in Fourier
mode as

δϕ(t,x) =
∫

dk

(2π)3 δ̂ϕke
ik·x . (3.2)

The equation of motion for inflaton in the slow-roll regime is approximately given by[
∂2
x + 1− 2

x2

]
(aδ̂ϕk) ' a3 2

k2
Īϕ

Ī
δ̂ρE,k , (3.3)

δ̂ρE,k = 1
4

∫
dp

(2π)3 Êpεij(p̂)Êk−pεij(k̂ − p) . (3.4)

The solution can be split into the vacuum mode and the sourced mode as

δ̂ϕk = δ̂ϕk,v + δ̂ϕk,s . (3.5)
3We don’t need to specify the absolute values of B1 and B2 because they appear only in the form of ratio

B2/B1 in the equations of motions.
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NCMB-N(t)0

1

2
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4
n(t)

Figure 1. The time evolution of n(t) numerically computed with the parameter set (2.15). The
horizontal axis is the number of e-folds NCMB −N(t) = ln(a(t)/aCMB) and inflation ends at NCMB −
N(tend) ≈ 51. n(t) increases roughly inversely proportional to N , and it quickly decays a few e-folds
before the inflation end. The two-form field grows on the super-horizon scale, while n(t) is larger than
unity (horizontal dashed line).

By using the Green function method, the solution of sourced mode is given by

aδ̂ϕk,s(x) = 2
k2

∫ ∞
−∞

dyGR(x, y)a3(y) Īϕ
Ī
δ̂ρE , y ≡ −kτ ′ , (3.6)

with the retarded Green function GR(x, y) ≡ −Θ(y − x)(x3 − y3)/(3xy) obtained by solving
the homogeneous solution of (3.4) in de Sitter approximation. Since the two inflaton modes
are statistically-independent, the power spectrum is written as

〈δ̂ϕkδ̂ϕk′〉 = (2π)3(k + k′)2π2

k3

(
Pδϕ,v(k) + Pδϕ,s(k)

)
. (3.7)

Without loss of generality, we can choose k̂ = (0, 0, 1). In this case, the following relation of
the antisymmetric tensor holds:

εij(p̂)εij(k̂ − p) = −2 cos(θp̂ + θ
k̂−p

) = 2
|k − p|

(p− k cos θp̂) . (3.8)

Combining (3.4), (3.6) and (3.7), we obtain

Pδϕ,s(k) = k3

π2H4

∫
dp

(2π)3 cos2(θp̂ + θ
k̂−p

)
[∫ τ

τmin

dτ ′

τ ′
Īϕ

Ī

y3 − x3

3y3 EpE|k−p|

]2

, (3.9)

where we approximate the lower bound of the time integral by |τmin| = min(1/p, 1/|k − p|),
because the two-form field can grow only after the horizon crossing and we focus on the
contribution from the super-horizon modes.

To perform the time and momentum integrals in (3.9) separately, we find an analytical
formula for Ek(τ). The electric mode function of the two-form field is well approximated by
the following Gaussian fitting function on the scales where the particle production is relevant:

Ek '
H2
√

2k3
Epeak(k) exp

[
−(ln(τ/τpeak))2

σ2

]
, (3.10)
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<latexit sha1_base64="T4D9iMJcpRgS2uDq3I1PwOxk/fE="></latexit>

n(t) = nmax

<latexit sha1_base64="kzdtge5gIfB4WoevDrB3zbYZVa8="></latexit>

n(t) = 1
<latexit sha1_base64="rUYFClFE46mX/v/Hc0n2kqhR6Po="></latexit>

n(t) = 0.1

Figure 2. The time evolution of Ek which crosses the horizon at 25 e-folds before the inflation end.
We normalize it to be dimensionless and multiply

√
n ∝

√
Iϕ/I to match the source term of the

inflaton perturbation in (3.3). The solid blue line shows the exact numerical solution of (2.6). The
dashed black line shows the fitting function (3.10) with σ2 = 1.0 and |τpeak| ∼ 2 × 10−18 Mpc. The
vertical dotted lines denote the time when n(t) = 1, nmax and 0.1 from right to left.

where Epeak(k) is a maximum amplitude of Ek at τ = τpeak and σ characterizes the time
period for which Ek stays around the peak amplitude. We simply use the numerical result
for Epeak(k). τpeak corresponds to the time when n(t) falls below unity at NCMB −N ≈ 49
where the growth of the two-form field stops. σ is determined by n(t) which is governed
by the background dynamics, and hence σ does not depend on k. Figure 2 shows the time
evolution of the electric mode function crossing the horizon at Nk ≈ 25 , and compare it
with the fitting solution. One can see that (3.10) fits well the numerical solution in the time
domain. We also plot the time evolution of the dimensionless power spectrum of the electric
field PE(k) ≡ k3|Ek|2/(2π2) in figure 3 and find that this fitting function agrees well with all
the relevant modes at around the time when the particle production occurs significantly.

Using (3.10), we rewrite (3.9) in the late time limit as

Pδϕ,s(k)|τ→0 '
H4F2

72M2
Plπ

2εH

∫
dp∗

(2π)3

cos2(θp̂ + θ
k̂−p

)
p∗3|k − p|∗3

E2
peak(p)E2

peak(|k − p|) , (3.11)

F ≡
∫ ∞
−∞

dτ ′

τ ′
n(τ ′) exp

[
−2ln(τ ′/τpeak)2

σ2

]
, (3.12)

where p∗ ≡ p/k , |k− p|∗ ≡ |k− p|/k and we have used the slow-roll approximation Īϕ/Ī '
n/(MPl

√
2εH). We notice that the time integration of F can be extended to infinity because

its integral receives its support almost around the peak τ = τpeak. We numerically integrate
the time and momentum integrals in (3.11) and obtain Pδϕ,s.

– 7 –
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1000 106 109 1012 1015
k[Mpc-1]10-4

0.01

1

100

104

106

E /H
4

Figure 3. The power spectrum of the two-form field PE(k) at several e-folds; N = N(t1) ' 4 (solid
red), N = N(t1)− 0.5 (solid orange) and N = N(t1)− 1 (solid blue), where t1 denotes the time when
the growth of the two-form field stops, n(t1) = 1, and the spectral peak gets a maximum value. The
black lines show our fitting function (3.10) evaluated at N = N(t1) (dotted) and N = N(t1) − 0.5
(dashed), and N = N(t1)−1 (dot-dashed). They agree well until the peak amplitude becomes around
two orders of magnitude less than that at t = t1.

Now we convert the obtained Pδϕ,s into the power spectrum of the curvature pertur-
bation using the relation on the flat-slicing, ζ = −Hδϕ/ ˙̄ϕ. Corresponding to (3.7), the
curvature power spectrum is also separated into two contributions

Pζ(k) = Pζ,v(k) + Pζ,s(k) . (3.13)

The first term Pζ,v = H2/(8π2M2
PlεH) is the power spectrum of the vacuum mode normalized

as Pζ,v(kCMB) ' 2.1 × 10−9 on CMB scale. On the other hand, the second term denotes
that of the sourced mode which has a peak around k = kp ' 1013Mpc−1, inheriting a similar
feature as that seen in PE(k). Around its peak, the numerically computed Pζ,s(k) is well
described by the following fitting function:

Pζ,s(k) ' A exp
[
−(ln(k/kp))2

σ2
ζ

]
. (3.14)

In the plot of figure 4, we set

A ' 3.2× 10−4 , kp ' 5.6× 1012Mpc−1 , σ2
ζ ' 3.72Θ(kp − k) + 3.12Θ(k − kp). (3.15)

In figure 4, one can confirm the agreement between the numerical and the fitting results. We
will also use the same values of the parameters as (3.15) to estimate the abundance of PBHs
in the next section. Before closing this section, we estimate the backreaction effect of the
two-form field on our background dynamics. The electric energy density of the two-form field

〈ρE〉 =
∫
d ln p p

3

4π2 |Ep|
2 = 1

2

∫
d ln p PE(p) (3.16)

is included in the Friedmann equation and the equation of motion for inflaton as

3M2
PlH

2 = 1
2 ϕ̇

2 + V (ϕ) + 〈ρE〉 , (3.17)

¨̄ϕ+ 3H ˙̄ϕ+ Vϕ = 2Īϕ
Ī
〈ρE〉 . (3.18)

– 8 –
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0.001

0.100

ζ (k)

Figure 4. Power spectrum of the curvature perturbation Pζ = Pζ,v + Pζ,s against the wave number
k[Mpc−1]. The solid blue line represents the full result which numerically estimates (3.11), whereas
the dashed blue line shows the contribution only from the vacuum mode. The black dashed line
denotes the approximate fitting function (3.14) with the parameter set (3.15).

We can roughly estimate the magnitude of 〈ρE〉 as

〈ρE〉 ∼
1
2∆NPE(kpeak) , (3.19)

where ∆N = O(1) is the logarithmic width of the power spectrum at around the peak
k = kpeak. Therefore, the backreaction of the energy density of two-form field is negligible
when the following conditions holds:

〈ρE〉
3M2

PlH
2 � 1 ↔ PE(kpeak)

H4 � 6M2
Pl

H2∆N ∼
12

π2rvPζ,v∆N
, (3.20)

2〈ρE〉
3ΛHϕ̇ � 1 ↔ PE(kpeak)

H4 � 6M2
PlεH

H2nmax∆N ∼
3

4π2nmaxPζ,v∆N
, (3.21)

where rv is a tensor-to-scalar ratio of vacuum modes. Therefore, (3.20) is automatically sat-
isfied if (3.21) holds. The amount of r.h.s. in (3.21) is roughly 107 around the spectral peak,
which is greater than l.h.s. by an order of magnitude (see figure 3). Thus, we can safely
ignore the backreaction of the two-form field at the background level.

4 Estimate of primordial black hole mass function

In this section we will discuss the generation of PBHs in our model. We will consider the
formation of PBHs from the collapse of large-amplitude scalar perturbations during the
radiation dominated epoch. When a perturbation, which is initially super-horizon re-enters
the horizon, it can quickly collapse to form a PBH if above some threshold amplitude. In
order to estimate the abundance, we use the Press-Schechter-type (PS) formalism [57]. A
more accurate constraint on the power spectrum can be obtained by using peaks theory [58]
(as well as modifications to peaks theory for application to PBHs [59, 60]). However, using
the Press-Schechter formalism is straightforwards to adapt to non-Gaussian distributions -
which needs to be accounted for since the abundance of PBHs depends strongly on any non-
Gaussianity [33, 61–70]. The PS approach provides constraints on the power spectrum which
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are accurate to O(10%) when compared to peaks theory calculations [71], which is sufficient
for our purposes here.

If the amplitude of a density perturbation is large enough, it will collapse to form a
PBH upon horizon entry. In order to determine whether a perturbation will collapse, the
appropriate criterion to use is the compaction function [72–74] defined as

C(x, r) ≡ 2δM(x, r, t)
R(t, r) , (4.1)

where δM(x, R) is the mass excess within a sphere of areal radius R centred at location x,
where we have used G = 1 in this section for convenience. We note that this is equivalent
to the smoothed density contrast evaluated at horizon entry if the transfer function is ne-
glected. On super-horizon scales, the time-dependence of δM and R cancel, making C a
time-independent quantity. On super-horizon scales, at the centre of spherically symmetric
peaks, the compaction function is related to the curvature perturbation ζ as [73]

C(x, r) = −2
3rζ

′(r)
(
2 + rζ ′(r)

)
, (4.2)

where the prime denotes a spatial derivative (which here only includes the radial term due to
the spherical symmetry). We have assumed spherical symmetry because the large, rare peaks,
from which PBHs form, are expected to be close to spherically symmetric [58]. The notation
ζ ′(r) then represents the value of ζ ′ at a distance r from the centre of a peak located at x.

Typically, ζ is expected to follow a Gaussian distribution. However, in the model
discussed here, the large contribution to the power spectrum Pζ,s is highly non-Gaussian and
is expected to follow a χ-squared distribution, allowing us to write:

ζ = χ2, (4.3)

where χ is a Gaussian variable - which will be helpful because the derivative of a Gaussian-
distributed variable remains Gaussian. The compaction is then related to χ as

C(x, r) = −4
3rχ

′(r)χ(r)
(
2 + 2rχ′(r)χ(r)

)
, (4.4)

where the component −rχ′(r) is what one would expect from smoothing the second derivative
of 1

3χ with a top-hat smoothing function of radius as below r [75].

χ2,r = −rχ′(r) = r2

3

∫
d3yχ′′(x− y)W (y, r), (4.5)

where the subscript r indicates a smoothing at scale r, and the subscript 2 denotes the
second spatial derivative. The factor of r2 is included as the compaction is calculated as 1/r,
whilst the smoothing function (below) includes a term 1/r3. The top hat smoothing function
W (x, r) is given by

W (x, r) = Θ (r − |x|)
4
3πr

3 , (4.6)

where Θ is the Heaviside step function. The Fourier transform of the smoothing function is

W̃ (k, r) = 3sin(kr)− kr cos(kr)
(kr)3 . (4.7)
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In principle, χ(r) and χ2,r are correlated Gaussian variables, and their respective PDFs
should be integrated over to find the PDF of C(x, r). However, in the high peak limit relevant
for PBHs, the PDF of χ(r) given a value of χ2,r is well approximated by a Dirac-delta function.
For typical PBH-forming perturbations, we can make the substitution χ(rm) ≈ −0.756χ2,r
without significant loss in accuracy, where rm is the smoothing scale at which the compaction
peaks [76] (see also appendix A for a brief discussion). This allows us to write the compaction
as a function of a single variable,

C(x, r) ≈ 0.336χ2
2,r

(
2− 0.504χ2

2,r

)
≈ 0.336C1 (2− 0.504C1) , (4.8)

where in the second equality, for convenience we have rewritten χ2
2,r = C1 (to represent

the linear component of the compaction). We here note that, since this follows a quadratic
relationship, there is a maximum value for the compaction Cmax = 2/3 at C1,max = 1.982.
Perturbations with C1 < C1,max are referred to as type I perturbations, and perturbations
with C1 > C1,max are referred to as type II perturbations [73]. We will not consider further
type II perturbations for 2 reasons: firstly, because the abundance of such perturbations is
exponentially suppressed and has a negligible impact on PBH abundance; and secondly, the
evolution of type II perturbations cannot be simulated simply using density perturbations
and is thus not well understood.

C1 follows a χ-squared distribution given by

P (C1) = 1√
2πσ2C1

exp
(
− C1

2σ2

)
. (4.9)

The variance is calculated from the power spectrum Pζ,s as a function of the smoothing scale
r as

2σ4(r) = 〈C2
1 〉(r) =

∞∫
0

dk
k

(kr)4Pζ,s(k)W̃ 4(k, r). (4.10)

The variance 2σ2 is plotted in figure 5 as a function of r, for the power spectrum given in
equation (3.14), with parameter choices as in equation (3.15).

In order to determine the abundance of PBHs, we need to know the mass of PBH which
will form from a perturbation, and this depends on both the scale r and amplitude C of the
perturbation as [75, 77, 78]

MPBH(C, r) = KMH(r) (C − Cc)γ , (4.11)

where MH(r) is the horizon mass of the unperturbed background when the horizon scale
is equal to the perturbation scale, (aH)−1 = r, Cc ≈ 0.5 is the critical value for PBH
formation (with corresponding value for the linear component C1,c ≈ 0.992). The value of K
depends mildly on the specific profile shape of the perturbation collapsing, but we will here
simply take K = 4, which is valid for typical profile shapes, and γ = 0.36 during radiation
domination [75].

Substituting equation (4.8) to write the PBH mass in terms of C1, we obtain

MPBH(C1, r) = KMH(r) (0.336C1 (2− 0.504C1)− Cc)γ . (4.12)
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Figure 5. The variance of the linear component of the compaction, 〈C2
1 〉, is plotted against the

smoothing scale r, for the power spectrum given in equation (3.14). PBH formation peaks strongly
at the scale where the variance of perturbations is largest.

Whilst there is no upper limit for the horizon mass which can form a PBH of given mass,
there is a lower limit, given by

Mmin = 1
(2/3− Cc)γ K

MPBH ≈ 0.477MPBH. (4.13)

Solving to write C1 as a function of the mass, which will be useful later, gives

C1(MPBHMH) =
0.336−

√
0.336

(
0.336− 0.504

(
Cc +

(
MPBH
KMH

)1/γ
))

0.170 , (4.14)

where we have kept only the solution corresponding to type 1 perturbations.
The horizon mass associated with a particular smoothing scale r is given by [71]

MH(r) ≈ 0.5
(

g∗
10.75

)−1/6 ( r

10−6Mpc

)2
M�, (4.15)

where g∗ is the number of relativistic degrees of freedom (changes in g∗ have a minimal effect
due to the power of 1/6 and will be neglected here). This allows us to relate the smoothing
scale r to a specific horizon mass MH - and therefore calculate the variance as a function of
horizon mass, 2σ2 = 2σ2(MH).

The fraction of the universe collapsing to form PBHs at the time of formation (we
consider this as the time of horizon entry [74]) can be calculated by following a PS formalism
by integrating over the range of perturbations which form PBHs:

β(MH) = 2
C1,max∫
C1,c

dC1
MPBH
MH

P (C1,MH) , (4.16)
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where the scale-dependence is encoded in the horizon mass MH. Assuming that the universe
evolves strictly as radiation-dominated up until the time of matter-radiation equality, we can
calculate the density parameter for PBHs at matter-radiation equality:

ΩPBH|eq =
∫ dMH

MH

(
Meq
MH

)1/2
β (MH) , (4.17)

where Meq = 2.8× 1017M� is the horizon mass at matter-radiation equality (using the same
parameter choices as [79]). The term (Meq/MH)1/2 is included to account for the redshift
of PBH energy density (which evolves as matter) during radiation domination. Solving the
integral numerically, we find that PBHs form with the correct abundance to make up the
entirety of dark matter when the amplitude of the power spectrum is A ' 3.2× 10−4, for the
power spectrum given in equation (3.14).

Finally, we define the mass function of PBHs as

f(MPBH) = 1
ΩCDM|eq

d ΩPBH|eq
d lnMPBH

, (4.18)

where f(MPBH) is normalized to integrate to unity if PBHs make up the entirety of dark
matter. Expressing the integral in equation (4.16) in terms of MPBH using equation (4.14)
allows us to write the final expression for PBH mass function

f(MPBH) = MPBH
ΩCDM|eq

Mmax∫
Mmin

dMH

(
Meq
MH

)1/2 dC1(MPBH)
dMPBH

MPBH
MH

P (C1(MPBH),MH). (4.19)

The PBH mass function f(MPBH) is shown in figure 6, for which PBHs make up the entirety
of dark matter, and which evades constraints on the PBH abundance.

5 Generation of tensor modes

In this section, we compute the generation of tensor modes hij defined as

gij(t,x) = a(t)2
(
δij + 1

2hij(t,x)
)
, (5.1)

in our model. There are apparently two significant contributions to the tensor mode. One
is the perturbation of the two-form field itself, and the other is the curvature perturbation
sourced by the two-form field. We will consider them in order.

5.1 Primordial tensor modes
We first calculate the primordial tensor power spectrum directly sourced by the two-form
field. The EoM for hij is given by(

∂2
t + 3H∂t −∇2

)
hij ' −

4Ī2

M2
Pla

4 Πlm
ij δḂlnδḂmn , (5.2)

where Πlm
ij is a projection operator into transverse and traceless components. We decompose

hij into Fourier modes4

hij =
∑

λ=+,×

∫
dk

(2π)3 ĥ
λ
ke
λ
ij(k̂)eik·x . (5.3)

4Hereafter for tensor modes we will use the same notation of wave vector k as is used for scalar mode. But
we notice that they are independent and hence are not related to each other.
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Figure 6. The mass spectrum of PBHs in our model when we choose the parameter set in (2.15). The
green region around M < O(1017)g is excluded by the extragalactic gamma ray [8] and the orange
region O(1022)g < M is excluded by the Subaru/HSC [12]. We note that the constraints plotted are
the constraints on a monochromatic PBH mass function (whilst the black line represents the extended
mass function predicted by the model presented here) - and so are not completely applicable to our
mass function. However, the constraints for extended mass functions are similar to the constraints
for monochromatic mass functions.

Using the relations, ĥsk = esij(k̂)ĥij(k) and Πlm
ij e

s
lm(k̂) = esij(k̂), we obtain

[
∂2
x + 1− 2

x2

]
(aĥsk) = −esij(k̂) 4a3

k2M2
Pl

∫
dp

(2π)3EpEk−pεin(p̂)εjn(k̂ − p) . (5.4)

Regarding the calculation of the polarization tensors, we use the following identities

e+
ij(k̂)εin(p̂)εjn(k̂ − p) = − 1√

2
sin θp̂ sin θ

k̂−p
cos 2φp̂ , (5.5)

e×ij(k̂)εin(p̂)εjn(k̂ − p) = − 1√
2

sin θp̂ sin θ
k̂−p

sin 2φp̂ . (5.6)

Remarkably, they vanish in the integration over φp̂. Therefore, as has been shown in the
previous studies [51, 53], the two-form field does not directly produce the primordial tensor
modes at leading order.5

5We could interpret this property as the fact that the spatial component of two-form field Bij does not
have the spin-1 or spin-2 modes which are necessary to source tensor modes in view of spin conservation
law. Although the non-dynamical component B0i has spin-1 modes [53], its contribution is sub-dominant in
comparison with the induced tensor modes discussed in next section.
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5.2 Induced tensor modes

Next, we compute the tensor mode induced by the scalar modes after inflation by following
a method developed in the previous works [80–88] (see e.g. [89] for detailed review). We take
the conformal Newtonian gauge:

ds2 = a(τ)2
[
−(1 + 2Φ)dτ2 +

{
(1− 2Ψ)δij + 1

2hij
}
dxidxj

]
, (5.7)

where we neglected the vector perturbations and assumed that the two scalar perturbations Φ
and Ψ satisfy the condition of no anisotropic pressure: Φ = Ψ. The density power spectrum
has the peak at k ∼ 1013Mpc−1 in our setup, and such modes reenter the horizon during the
radiation-dominated era, τ < τeq. Then, the equation of motion for tensor mode is given by[

∂2
τ −∇2

]
(ahij) = −4aΠlm

ij Slm , (5.8)

Sij ≡ 4Ψ∂i∂jΨ + 2∂iΨ∂jΨ−
1
H2∂i(Ψ

′ +HΨ)∂j(Ψ′ +HΨ), (5.9)

with H ≡ aH, and we obtain the solution of the induced tensor mode in the momentum
space hsk,i(τ):

hsk,i(τ) = 4
a(τ)

∫ ∞
0

dτ ′a(τ ′)Gk(τ, τ ′)Sk(τ ′) , (5.10)

Gk(τ, τ ′) ≡ Θ(τ − τ ′) 1
k

sin(kτ − kτ ′) , (5.11)

Sk(τ) = esij(k̂)
∫
dppipj
(2π)3

[
3ΨpΨk−p + 1

H

(
ΨpΨ′k−p + Ψ′pΨk−p

)
+ 1
H2 Ψ′pΨ′k−p

]
. (5.12)

To evaluate (5.12), we decompose Ψk(τ) into the primordial field ψk and the transfer function
Ψ(kτ) during the radiation-dominated era:

Ψk(τ) = ψkΨ(kτ) , (5.13)

Ψ(kτ) = 9
(kτ)2

[
sin(kτ/

√
3)

kτ/
√

3
− cos(kτ/

√
3)
]
. (5.14)

Using ψk = −2ζk/3 at the radiation-dominated era, we can obtain the power spectrum of
the tensor mode Ph(k, τ) as

∑
λ=+,×

〈hλk,i(τ)hλk′,i(τ)〉 = 128
81

1
τ2k3k′3

∫
dpdq

(2π)6

∑
λ=+,×

eλij(k̂)pipjeλkl(k̂′)qkql

× I(p/k, |k − p|/k, kτ)I(q/k′, |k′ − q|/k′, k′τ)〈ζpζk−pζqζk′−q〉

≡ (2π)3δ(k + k′)2π2

k3 Ph(k, τ) , (5.15)

where I is given by the time integral of transfer functions (its explicit form is given in
appendix B).

Then, we evaluate the current logarithmic energy density of GWs

ΩGW(k) ≡ 1
ρc

dρGW
d ln k , (5.16)
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where ρc = 3M2
PlH

2
0 is the critical density of present universe. In terms of the entropy

conservation law, it is found to be [83]

ΩGW(k)h2 ' 3.4× 10−7 Ωr,0h
2

4.2× 10−5

( g∗,c
106.75

)−1/3 ( k

aH(τc)

)2
Ph(k, τc) , (5.17)

where Ωr,0 is the radiation density parameter at present, h ' 0.68 is the dimensionless Hubble
parameter, τc is the time when the production of GWs finished, and g∗,c is the relativistic
degree of freedom at τc. The over line on Ph(k, τc) denotes the average of the oscillation
of I in (5.15). The averaged product of two I’s can be approximately decomposed as the
following analytical formula:

I
(
p

k
,
|k − p|
k

, kτc

)
I
(
q

k′
,
|k′ − q|
k′

, k′τc

)
'
∑
σ=1,2

1
2Kσ

(
p

k
,
|k − p|
k

)
Kσ

(
q

k′
,
|k′ − q|
k′

)
,

(5.18)
where Ki is obtained as [86]

K1(ν, u) = 27(ν2 + u2 − 3)
16ν3u3

(
−4νu+ (ν2 + u2 − 3) log

∣∣∣∣∣3− (ν + u)2

3− (ν − u)2

∣∣∣∣∣
)
, (5.19)

K2(ν, u) = 27π(ν2 + u2 − 3)2

16ν3u3 Θ(ν + u−
√

3) (5.20)

(more explanations on how to obtain this formula is written in appendix B).
Now, let us compute the 4-point correlation function 〈ζ4〉 in (5.15). The explicit form

of ζ with a momentum mode k is given by the sourced scalar mode (3.6) evaluated at the
time of inflation end τ = τend:

ζk = −H
ϕ̇
δϕk = 1

H2M2
PlεHk

∫ ∞
−∞

dτ ′

τ ′3
(−τend)GR(τend, τ

′)n(τ ′)δρE,k , (5.21)

where we have used (2.7) and the slow-roll approximation. It is important to notice that
it cannot be merely replaced by 〈ζ2〉2 since ζ is non-Gaussian: ζ ∼ δBδB. In particular,
we need to calculate the 8-point correlation function of primordial electric component of
two-form field in 〈ζ4〉:

〈ζpζk−pζqζk′−q〉

=
(

1
2HMPl

√
εH

)8 ∫
dp1dp2dq1dq2

(2π)12

4∏
i=1

[∫ +∞

−∞

dτi
τ3
i

n(τi)(−τend)GR(τend, τi)
]

× εij(p̂1)εij(p̂− p1)εkl(p̂2)εkl( ̂k − p− p2)εop(q̂1)εop(q̂ − q1)εqr(q̂2)εqr( ̂k′ − q − q2)
× 〈Êp1(τ1)Êp−p1(τ1)Êp2(τ2)Êk−p−p2(τ2)Êq1(τ3)Êq−q1(τ3)Êq2(τ4)Êk′−q−q2(τ4)〉 . (5.22)

As shown in the previous studies [45, 90–92], these non-Gaussian sources contribute to
the generation of induced GWs via three distinct diagrams shown in figure 7. In the
left diagram (called “Reducible” diagram), the contraction is taken as 〈ζpζk−pζqζk′−q〉 →
〈ζpζq〉 〈ζk−pζk′−q〉 and is therefore simply replaced by the sourced power spectrum of cur-
vature perturbation Pζ . To perform this, let us calculate the contribution to the reducible
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Figure 7. Diagrams of the contractions of 2-form field to calculate the power spectrum of induced
GWs. We label these diagrams as “Reducible” (left), “Planar” (center) and “Non-Planar” (right).
The external solid line represents the gravitational wave perturbation h+/×. The intermediate dashed
(wiggly) line represents the curvature perturbation ζ (the two-form field B).

diagram. Using the slow-roll approximation, it leads to

(5.22)|reducible=8
(

1
2HMPl

√
εH

)8

(2π)6δ(k+k′)δ(p+q)
∫
dp1dp2
(2π)6

4∏
i=1

[∫ τ

−∞

dτi
τi
n(τi)

τ3
i −τ3

3τ3
i

]
εr

×Ep1(τ1)E∗p1(τ3)Ep−p1(τ1)E∗p−p1(τ3)Ep2(τ2)E∗p2(τ4)Ek−p−p2(τ2)E∗k−p−p2(τ4), (5.23)

where we have used GR(τ, τi) ≡ Θ(τ − τi)(τ3 − τ3
i )/(3ττi) and defined

εr(k,p,p1,p2) ≡ εij(p̂1)εij(p̂− p1)εkl(p̂2)εkl( ̂k − p− p2)

× εop(−p̂1)εop(− ̂(p− p1))εqr(−p̂2)εqr(− ̂(k − p− p2)) . (5.24)

The factor 8 comes from the symmetry. Therefore, we can rewrite (5.23) as the simplest form

(5.23) = 8(2π)6δ(k + k′)δ(p + q)2π2

p3
2π2

|k − p|3
Pζ(p)Pζ(k − p) . (5.25)

This is the same expression of the power spectrum of induced GWs as that from the standard
scenario in which the curvature perturbation is Gaussian [80–88]. However, we notice that
the relationship of abundance between PBH mass function and the curvature power spectrum
is different because of the non-Gaussianity of ζ in our scenario. In the other two contributions
(“Planar” and “Non-Planar” diagrams), δBs are contracted across more than two ζs, and
hence we cannot replace the contracted ζ2 with Pζ . The contractions of two-form fields in
Planar diagram lead to

(5.22)|planar=32
(

1
2HMPl

√
εH

)8

(2π)3δ(k+k′)
∫

dp1
(2π)3

4∏
i=1

[∫ τ

−∞

dτi
τi
n(τi)

τ3
i −τ3

3τ3
i

]
εp (5.26)

×Ep1(τ1)E∗p1(τ2)E|p−p1|(τ1)E∗|p−p1|(τ3)E|p+q−p1|(τ3)E∗|p+q−p1|(τ4)E|k−p+p1|(τ2)E∗|k−p+p1|(τ4),

where

εp(k,p, q,p1) ≡ εij(p̂1)εij(p̂− p1)εkl(−p̂1)εkl( ̂k − p + p1) (5.27)

× εop( ̂p + q − p1)εop(− ̂(p− p1))εqr(− ̂(p + q − p1))εqr(− ̂(k − p + p1)) .

And that in Non-Planar diagram is given by

(5.22)|non−planar

= 32
(

1
2HMPl

√
εH

)8

(2π)3δ(k+k′)
∫

dp1
(2π)3

4∏
i=1

[∫ τ

−∞

dτi
τi
n(τi)

τ3
i −τ3

3τ3
i

]
εn (5.28)

×Ep1(τ1)E∗p1(τ3)Ep−p1(τ1)E∗p−p1(τ4)Ek−p+q+p1(τ2)E∗k−p+q+p1(τ4)E−q−p1(τ2)E∗−q−p1(τ3) ,

– 17 –



J
C
A
P
0
9
(
2
0
2
2
)
0
1
7

where

εn(k,p, q,p1) ≡ εij(p̂1)εij(p̂− p1)εkl( ̂k − p + q + p1)εkl(− ̂(q + p1))

× εop(−p̂1)εop(q̂ + p1)εqr(− ̂(k − p + q + p1))εqr(− ̂(p− p1)) . (5.29)

These contributions have been computed numerically in the previous work in the case of not
two-form field but U(1) gauge field [45] or the local-type non-Gaussian field [92] and it was
found that the Reducible diagram and Planar diagram had the same order of contributions
to the spectrum, whereas that from Non-Planar diagram is suppressed compared to the other
two diagrams.6 Therefore, in this work, we numerically estimate the contributions only from
the Reducible diagram and the Planar diagram.

The computation of the Reducible diagram is easily performed since we can factorize
the two loops of B-B into the power spectrum of ζ. The formula of reducible diagram is
written in the same way to that of induced GWs without non-Gaussianity [80–88]

ΩGW(k)h2 = 0.39
( g∗,c

106.75

)−1/3
Ωr,0h

2 8
243

∫ ∞
0

dν
∫ 1+ν

|1−ν|
duPζ(ku)Pζ(kν)ν

2

u2

×
(

1− (1 + ν2 − u2)2

4ν2

)2

I(u, ν, kτc)
2
, (5.30)

where we followed expressions in [48]. On the other hand, the Planar diagram has three loops
of momentum integrals which cannot be fuctorized into Pζ , so that the simple analytical
method cannot be used. In this work, we investigate an efficient method to calculate the
Planar type diagram and show the reduced formulae on the Planar-type GWs in appendix. C.
The basic idea is as follows: the Planar diagram has two ζ-ζ-B loops and we can firstly
contract them as two effective vertices of h-B-B. Afterwards, we can calculate only one
residual B-B loop in terms of the obtained vertices. To reduce the computational costs, we
approximate the profile of two-form mode function as a Gaussian fitting function (3.10).

We numerically estimate ΩGW(k) for Reducible diagram (5.30) (dotted black line) and
Planar diagram (C.4) (dashed black line) shown in figure 8. Both the Reducible and the
Planar type GWs have similar contributions, while the Planar type has a peak at smaller
frequency than Reducible type. This relation is consistent with the previous study on the
axion-U(1) inflationary model [45].7 The GWs around this frequency is potentially observ-
able with the future interferometer experiments like LISA, DECIGO, and BBO, while the
strength of GWs depends on the uncertainty on the PBH formation rate and the momentum
dependence of the factor F (3.12).

6 Conclusion

In this work, we have suggested an inflationary model where the inflaton is kinetically coupled
to a two-form field, and developed a possibility of particle production of the two-form field on

6More precisely, the Reducible diagram is dominant on the high momentum side of the peak, whereas the
Planar diagram becomes comparable to the Reducible diagram at the tail of the low momentum side.

7The authors in [45] used a different computational method from our work. To simplify the procedure,
they approximated the profile of the gauge mode function as a Dirac delta function peaked at the momentum
scale where particle production mostly occurs (so called “zero-width” approximation), and reduced a number
of integration variables to solve.
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Figure 8. The power spectrum of induced GWs is shown. We evaluate the Reducible-type GWs
(dotted black line) in (5.30), the Planar-type GWs (dashed black line) in (C.4), and a sum of them
(solid black line). We also show the future sensitivity curves of interferometers as orange lines; LISA
(solid) [93], DECIGO (dotted), and BBO (dashed), respectively [94].

intermediate scales during inflation. Depending on the configuration of the kinetic function,
the two-form field is enhanced at a later stage of inflation and amplifies the coupled curvature
perturbation at second-order level. Then, we showed that the sourced curvature perturbation
can explain the formation of PBHs in sufficient abundance to act as dark matter. This
production mechanism would be similar to that from the model of U(1) gauge field coupled
with a dilatonic field [48] or an axionic field [44, 45]. Regarding tensor modes, however, the
two-form field does not directly produce primordial tensor modes because of its antisymmetric
feature.8 Therefore, the absence of primordial GWs could be a unique prediction from two-
form field model. On the other hand, our scenario predicts the associated induced GWs
after inflation. Since the primordial curvature perturbation is sourced by the second-order
of two-form field, three diagrammatic contributions appear in the spectrum of induced GWs:
Reducible, Planar, and Non-Planar diagram. We computed the contributions from Reducible
and Planar diagrams and found that they prodive a comparable amount of induced tensor
spectrum with different frequency regime, which modifies the relationship of spectral peaks
between PBH mass function and induced GWs from the standard prediction in Gaussian
field model. We also showed that the resultant spectraum is potentially testable with future
laser interferometers.

It is interesting to consider the possibility that this model can also explain a recent
NanoGrav event [95]. In our setup, however, the generation of sourced curvature perturbation
on that scale would be challenging. The reason is as follows. To provide NanoGrav event, we

8Although the integration of non-dynamical component of two-form field may provide the primordial tensor
modes, its contribution would be sub-dominant. Also, it does not provide any chirality in tensor mode like
the model of axion-U(1) coupling [44, 45].
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would need the particle production of two-form field occurring on scales much greater than
scales corresponding to a few number of e-foldings before inflation ends. However, on such
scales the slow-roll condition is sufficiently met and hence the value of n (given by the speed
of scalar field (2.7)) does not drastically change in time. This feature would make it hard
to provide the peaky spectral shape in PBH mass spectrum and associated induced GWs
testable with NanoGrav event. Therefore, we would need to extend this model to realize it
and we leave further consideration of this to future study.
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A Typical perturbation profile shapes

In this section, we will describe a simple calculation of the relation between χ(rm) and χ2,r
given in section 4. A more detailed and rigorous discussion of the probability density functions
and correlation functions in the context of peaks theory can be found in reference [76].

For power spectra which have a relatively narrow peak, we can approximate that large,
rare curvature perturbations ζ which form PBHs to be spherically symmetric and have a
profile shape given generically by [58, 74]

ζ = χ2(r) = C

(sin(k∗r)
k∗r

)2
, (A.1)

where C determines the amplitude of the perturbation and k∗ determines the scale of the
perturbation.

The characteristic scale of a perturbation rm is given by the scale at which the com-
paction function peaks, which can be found by solving [73]

ζ ′(rm) + rmζ
′′(rm) = 0, (A.2)

where a prime again denotes a derivative with respect to the radial coordinate r. For the
profile shape given above, we can numerically calculate rm, and the ratio between χ(rm) and
χ2,r is then given, independently of C and k∗, by

χ(rm)/χ2,r ≈ −0.756, (A.3)

which is the value used in section 4.

B Calculation of integral I

In this appendix, we briefly present the computation of integral I in the power spectrum of
induced GWs. In terms of (5.11)–(5.14), the original expression of I is obtained as

I(ν, u, x) =
∫ x

0
dyy sin(x− y)

[
3Ψ(νy)Ψ(uy) + y

{
Ψ(νy)udΨ(uy)

d(uy) + ν
dΨ(νy)
d(νy) Ψ(uy)

}
+y2uν

dΨ(νy)
d(νy)

dΨ(uy)
d(uy)

]
. (B.1)
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Since sin(x− y) = sin x cos y − cosx sin y, we can rewrite I as

I(ν, u, kτc) = sin(kτc)K1(ν, u, kτc)− cos(kτc)K2(ν, u, kτc) , (B.2)

K1(ν, u, kτc) =
∫ kτc

dzz cos(z)f(νk, uk, z/k) , (B.3)

K2(ν, u, kτc) =
∫ kτc

dzz sin(z)f(νk, uk, z/k) , (B.4)

f(νk, uk, z/k) =
[
3Ψ(νz)Ψ(uz) +

(
νzΨ̇(νz) + Ψ(νz)

) (
uzΨ̇(uz) + Ψ(uz)

)]
. (B.5)

I(ν, u, kτc) consists of two oscillating terms with sin(kτc) and cos(kτc).
Since the GW spectrum observed today is sufficiently within the sub-horizon regime,

we consider the late-time limit of I: kτc → ∞. In this limit, K1(ν, u, kτc) and K2(ν, u, kτc)
converge to constant and their asymptotic expressions (5.19) and (5.20) have been found [86].
Then, we need to take an oscillation average with respect to kτc to evaluate the amplitude
of spectrum. The product of two I’s can be decomposed as

I
(
p

k
,
|k − p|
k

, kτ

)
I
(
q

k′
,
|k′ − q|
k′

, k′τ

)
=
∑
σ=1,2

1
2Kσ

(
p

k
,
|k − p|
k

)
Kσ

(
q

k′
,
|k′ − q|
k′

)
(B.6)

where we use the momentum conservation, k = k′, and sin(kτc)2 = cos(kτc)2 = 1/2 and
sin(kτc) cos(kτc) = 0, where overlines represent the average over τc.

C Calculation of the planar diagram of induced GWs

In this appendix, we present the computation of Planar diagram of induced GWs (see fig-
ure 7). By using the fitting function of Ek (3.10) and the following relationship∑

ij

εij(p̂)εij(q̂) = −2p · q
pq

, (C.1)

(5.26) is rewritten as

(5.26) = 32
(

H2F
12M2

PlεH

)4

(2π)3δ3(k + k′)k−9
∫ d3r1

(2π)3k
9 (C.2)

× Epeak(r1)2

2r3
1

Epeak(|rpq − r1|)2

2|rpq − r1|3
Epeak(|p− r1|)2

2|p− r1|3
Epeak(|k − p + r1|)2

2|k − p + r1|3

× 2r1 · (p− r1)
r1|p− r1|

2r1 · (k − p + r1)
r1|k − p + r1|

2(rpq − r1) · (r1 − p)
|rpq − r1||r1 − p|

2(rpq − r1) · (p− k − r1)
|rpq − r1||p− k − r1|

,

where rpq ≡ p + q and F (defined in (3.12)) contains the integration over τ .
Here, we investigate the efficient method to calculate the planar diagram. Although all

diagrams contain three loops and require 3 × 3 = 9 integration of momenta, the Reducible
diagram is easy to estimate because we can firstly perform the momentum loop of two-form
field. Similarly, integration of triangle loops ζ-ζ-B in Planar diagram can be performed at
first to derive the “reduced vertex” of hBB:

Ωplanar
GW (k)h2 = AΩh

2
∫ d3r

(2π)3

∑
s=+,×

∑
σ=1,2

Epeak(|r|)2

|r|3
Epeak(|k − r|)2

|k − r|3
|Fs,σ(r,k)|2, (C.3)

AΩh
2 ≡ 0.39

( g∗,c
106.75

)−1/3
Ωr,0h

2 8
243

1
2

(
H2F

12M2
PlεH

)4 32
2π2 (C.4)
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where the reduced vertex Fs,σ(r,k) is given by

Fs,σ(r,k) ≡
∫ dp

(2π)3 e
s
ij(k)pjpjKσ

(
p

k
,
|k − p|
k

)
Epeak(|p− r|)2

|p− r|3
(C.5)

× (p− r) · r
|p− r||r|

(p− r) · (k − r)
|p− r||k − r|

.

The numerical factor AΩ is estimated as

AΩh
2 = 4.15× 10−43

( g∗,c
106.75

)−1/3 Ωr,0h
2

4.2× 10−5

( Pζ,v(kp)
1.5× 10−10

)4
F4, (C.6)

where Pζ,v(kp) is a power spectrum of curvature fluctuations directly induced by vacuum
mode fluctuations on the peak scale kp, which is slightly larger than that in CMB scale for the
Starobinsky inflation model (2.12). The time integration F is 1 ∼ 1.1 in our parameter setup.
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