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A B S T R A C T

Anatomical magnetic resonance imaging (MRI), diffusion MRI and resting state functional MRI (rs-fMRI) have
been used for Alzheimer’s disease (AD) classification. These scans are typically used to build models for dis-
criminating AD patients from control subjects, but it is not clear if these models can also discriminate AD in
diverse clinical populations as found in memory clinics.

To study this, we trained MRI-based AD classification models on a single centre data set consisting of AD
patients (N = 76) and controls (N = 173), and used these models to assign AD scores to subjective memory
complainers (N = 67), mild cognitive impairment (MCI) patients (N = 61), and AD patients (N = 61) from a
multi-centre memory clinic data set. The anatomical MRI scans were used to calculate grey matter density,
subcortical volumes and cortical thickness, the diffusion MRI scans were used to calculate fractional anisotropy,
mean, axial and radial diffusivity, and the rs-fMRI scans were used to calculate functional connectivity between
resting state networks and amplitude of low frequency fluctuations. Within the multi-centre memory clinic data
set we removed scan site differences prior to applying the models.

For all models, on average, the AD patients were assigned the highest AD scores, followed by MCI patients,
and later followed by SMC subjects. The anatomical MRI models performed best, and the best performing
anatomical MRI measure was grey matter density, separating SMC subjects from MCI patients with an AUC of
0.69, MCI patients from AD patients with an AUC of 0.70, and SMC patients from AD patients with an AUC of
0.86. The diffusion MRI models did not generalise well to the memory clinic data, possibly because of large scan
site differences. The functional connectivity model separated SMC subjects and MCI patients relatively good
(AUC = 0.66). The multimodal MRI model did not improve upon the anatomical MRI model.

In conclusion, we showed that the grey matter density model generalises best to memory clinic subjects.
When also considering the fact that grey matter density generally performs well in AD classification studies, this
feature is probably the best MRI-based feature for AD diagnosis in clinical practice.
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1. Introduction

Early diagnosis of Alzheimer’s disease (AD) is important, because it
enables patients and caregivers to prepare for disease progression
(Prince et al., 2011). It is also beneficial for drug research, because early
phase AD patients are more likely to be susceptible to medication
(Cummings et al., 2016). Whereas the diagnosis of progressed AD is
feasible (Frisoni et al., 2010), early identification of AD is still proble-
matic (Frisoni et al., 2017).

Amyloid and tau pathology are hypothesised to occur early in AD
(Jack et al., 2010) and tau-PET and amyloid-PET are hypothesised
earliest AD biomarkers (Blennow and Zetterberg, 2018). However, for
clinical studies Magnetic resonance imaging (MRI) scans are advanta-
geous, because they are often available, they are non-invasive and they
are relatively cheap. Further, functional MRI measures have been hy-
pothesised to change in early AD as well (Buckner et al., 2005; Sperling,
2011).

Magnetic resonance imaging (MRI) has been used to characterise
brain changes that occur in AD. Most prominently, AD is characterised
by grey matter atrophy, starting in the hippocampus (Morra et al.,
2010), and later extending to other brain regions, including subcortical
structures and the medial temporal lobe (Jack et al., 2004; Seeley et al.,
2009). The location and extent of grey matter atrophy can be de-
termined using anatomical MRI. Brain alterations in AD patients also
involves white matter integrity (Douaud et al., 2011), which can be
shown by diffusion MRI. In addition, AD patients show altered func-
tional connectivity between brain regions (Agosta et al., 2012;
Binnewijzend et al., 2012), measured using resting state functional MRI
(rs-fMRI).

However, these group differences are not necessarily useful in a
clinical setting, since many AD markers have also been observed in
healthy ageing (Salat et al., 1999). AD markers are only helpful in a
clinical setting if they can accurately discriminate AD patients from
non-affected subjects at the individual level. The focus of research on
MRI biomarkers for AD has therefore shifted from the detection of
group differences toward disease classification. MRI-based classifica-
tion studies have progressed by using machine learning techniques, in
which many predictors can be combined into one predictive model.
This has led to good AD classification results for structural MRI
(Cuingnet et al., 2011; Davatzikos et al., 2011; de Vos et al., 2016),
diffusion MRI (Dyrba et al., 2013; Schouten et al., 2017) and resting
state fMRI (Challis et al., 2015; Chen et al., 2011; de Vos et al., 2018).
Moreover, combining these three MRI modalities can further improve
the classification accuracy (Schouten et al., 2016).

Although these results are promising, MRI-based classification
models still have to surmount at least two problems. First, most MRI-
based AD classification studies have used scans of AD patients and
healthy elderly controls, and other studies have used scans of mild
cognitive impairment (MCI) patients to predict AD conversion (see for
an overview Rathore et al., 2017). These models are trained specifically

for these classification problems, but it is not clear whether these
models can also discriminate AD in diverse clinical populations as
found in memory clinics. It is thus important to evaluate the gen-
eralisability of MRI-based AD classification models to diverse clinical
populations. Second, MRI scans are susceptible to scanner effects
(Ewers et al., 2006; Takao et al., 2014; Zhu et al., 2011). This is pro-
blematic when a classification model is trained with MRI scans from
one scanner, and applied to MRI scans from another scanner. To be
clinically useful, AD classification models should be robust to scanner
effects.

We will study to which extent MRI-based AD classification models
generalise to a diverse patient population. This study is novel on 2
important points. Firstly, we will apply an AD classification model to a
group of memory clinic patients, who are prone to AD. This is more
clinically relevant than classifying AD from healthy controls, but also
much more challenging. Second, we will use both structural MRI, dif-
fusion MRI and rs-fMRI scans. This enables a comparison between these
imaging modalities, and the use of a multimodal MRI classification
model. We will use two different data sets. The first data set consists of
AD patients and healthy controls, and will be used for training MRI-
based AD classification models. These classification models will then be
applied to the second data set, that consists of a diverse patient popu-
lation collected in four different memory clinics. The memory clinic
data set contains AD patients, MCI patients and subjects with subjective
memory complaints (SMC). We expect that AD patients will have a
higher likelihood of being classified as AD patient than both other
groups. Furthermore, we expect this to be higher for MCI patients than
for SMC subjects, because MCI is often an early stage of AD.

2. Methods

2.1. Participants

2.1.1. Training data
The training data were collected at the medical university of Graz in

Austria, and consisted of 76 clinically diagnosed probable AD patients
and 173 cognitively normal elderly controls (see Table 1). The AD pa-
tients were part of the prospective registry on dementia (PRODEM; see
also Seiler et al., 2012). The inclusion criteria for PRODEM are: de-
mentia diagnosis according to DSM-IV criteria (American Psychiatric
Association, 2000), AD diagnosis according to the NINCDS-ADRDA
Criteria (McKhann et al., 2011), non-institutionalisation or need for 24-
h care, and the availability of a caregiver who agrees to provide in-
formation on the patients’ and his or her own condition. Patients were
excluded if co-morbidities were likely to preclude successful completion
of the study. Informed consent was obtained from all patients and their
caregivers. We only included patients for which anatomical MRI, dif-
fusion MRI and rs-fMRI were available. The controls were scanned at
the same scanning site, over the same period, with the same scanning
protocol as the AD patients as a part of the Austrian stroke prevention

Table 1
Sample demographics.

Training data Memory clinic data

Controls AD patients SMC MCI AD patients

N 173 76 67 61 61
Sex (♂/♀) 74/99 30/46 48/19 35/26 34/27
Age 66.1 ± 8.7 68.6 ± 8.6 63.2 ± 10.3 69.7 ± 8.3 72.5 ± 9.2
Years of education 11.5 ± 2.8 10.8 ± 3.2 11.2 ± 3.4 11.2 ± 3.4 10.6 ± 3.5
MMSE 27.5 ± 1.8 20.4 ± 4.5 28.2 ± 1.6 26.9 ± 2.3 24.0 ± 2.7
CDR – 0.82 ± 0.34 0.34 ± 0.25 0.53 ± 0.15 0.78 ± 0.25
GDS 2.0 ± 2.4 2.7 ± 2.6 3.7 ± 2.8 3.0 ± 2.4 3.2 ± 2.8

Descriptives are presented as frequencies for the categorical variables and as mean ± standard deviation for the other variables. AD = Alzheimer’s disease,
SMC = Subjective memory complainers, MCI = Mild cognitive impairment, MMSE = mini mental state examination, CDR = clinical dementia rating,
GDS = geriatric depression scale.
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study. The Austrian Stroke Prevention Study is a community-based
cohort study on the effects of vascular risk factors on brain structure
and function in elderly participants without a history or signs of stroke
and dementia on the inhabitants of Graz, Austria (Schmidt et al., 1994;
Freudenberger et al., 2016). Informed consent was obtained from all
participants.

2.1.2. Memory clinic data
The memory clinic data (see Table 1) are part of the Leiden-Alz-

heimer research Nederland (LeARN) project (Handels et al., 2012;
Jansen et al., 2017), and consisted of 61 possible or probable AD pa-
tients, 61 MCI patients and 67 SMC subjects. The AD diagnosis was
according to the NINCDS-ADRDA Criteria (McKhann et al., 2011), and
the MCI diagnosis was according to the core clinical criteria for MCI due
to AD (Albert et al., 2011). Subjects that did not meet the criteria for
either AD or MCI were included in the SMC group. LeARN is a multi-
center collaboration of four memory clinics in the Netherlands; Leiden,
Maastricht, Nijmegen and Amsterdam (see suppl. Table 1 for the de-
mographics stratified over center). The inclusion criteria for LeARN are:
subjective and/or objective memory complaints, suspicion of having a
primary neurodegenerative disease, a Mini-Mental State Examination
≥20, clinical dementia rating between 0 and 1 and the availability of a
reliable informer or proxy who visits or contacts the patient at least
once a week. We only included patients for which anatomical MRI,
diffusion MRI and rs-fMRI were available and excluded patients diag-
nosed with MCI not due to AD or dementia not due to AD (e.g. vascular
dementia or frontotemporal dementia). Informed consent was obtained
from both the patient and the informal caregiver.

2.2. MR acquisition

The subjects in the training data were scanned on a Siemens
TrioTim 3T scanner at the Graz medical center. The memory clinic
subjects were scanned on a Philips Achieva 3T scanner at the Leiden
University Medical Center, a Philips Achieva 3T scanner at the
Maastricht University Medical Center, a Siemens TrioTim 3T scanner at
the Nijmegen University Medical Center and a GE Signa HDxt 3T
scanner at the VU university medical center in Amsterdam. The MRI
sequence parameter settings are listed in Table 2.

2.3. MRI preprocessing

The MRI data of all subjects were preprocessed using the FMRIB

Software Library (FSL version 5.0; Jenkinson et al., 2012; Smith et al.,
2004). For the anatomical MRI scans we applied brain extraction and
bias field correction. For the diffusion MRI scans, we applied brain
extraction and eddy current correction. For the rs-fMRI data, this in-
cluded brain extraction, motion correction, a temporal high pass filter
with a cutoff point of 100 s, 3 mm FWHM spatial smoothing, and non-
linear registration to standard MNI152 space. Additionally, we used
ICA-AROMA to automatically identify and remove noise components
from the fMRI time course (Pruim et al., 2015). ICA-AROMA adequately
removes motion related noise from fMRI data, without the need for
removing volumes with excessive motion (Parkes et al., 2018).

2.4. Anatomical MRI features

We used both the FSL and Freesurfer software packages to analyse
the anatomical MRI scans, because they have different approaches to
calculate measures of grey matter atrophy. These approaches are
complementary to each other, and combining them improves the ac-
curacy of AD classification (de Vos et al., 2016).

2.4.1. Grey matter density
We used voxel based morphometry (VBM; Ashburner and Friston,

2000) in FSL (Jenkinson et al., 2012; Smith et al., 2004) to calculate
grey matter density. This includes segmentation of the brain-extracted
images into grey matter, white matter, and cerebral spinal fluid (CSF),
and non-linear registration of the grey matter images to the ICBM-152
grey matter template. We then calculated weighted averages of the
voxel-wise grey matter density values within the 48 regions of the
probabilistic Harvard-Oxford cortical atlas, yielding 48 grey matter
density values per subject.

2.4.2. Subcortical volumes
We used the FMRIB’s Integrated Registration and Segmentation Tool

(FIRST; Patenaude et al., 2011) to calculate the volumes of the sub-
cortical structures and we corrected the volumes for intracranial vo-
lume. This yielded 14 subcortical volume features per subject (tha-
lamus, caudate, putamen, pallidum, hippocampus, amygdala, and
accumbens for both hemispheres).

2.4.3. Cortical thickness
We used the Freesurfer software package (Dale et al., 1999; Fischl

et al., 1999) to calculate cortical thickness. This includes intensity
normalisation of the brain-extracted image to obtain an image with

Table 2
MRI sequence parameter settings per scan site.

Slices TR (ms) TE (ms) Flip angle (°) Matrix size (voxels) Voxel size (mm)

anatomical MRI
Graz 176 1900 2.2 9 256 × 256 1.00 × 1.00 × 1.00
Leiden 180 9.8 4.6 8 288 × 288 0.78 × 0.78 × 1.00
Maastricht 180 8.2 3.7 8 240 × 240 1.00 × 1.00 × 1.00
Nijmegen 192 2300 4.7 12 256 × 256 1.00 × 1.00 × 1.00
Amsterdam 176 7.8 3.0 12 256 × 256 0.94 × 0.94 × 1.00
diffusion MRI Directionsa b0 scans
Graz 50 6700 95 90 125 × 125 2.00 × 2.00 × 2.50 12b 4
Leiden 70 8250 80 90 128 × 128 2.00 × 2.00 × 2.00 61 1
Maastricht 70 8250 80 90 128 × 128 2.00 × 2.00 × 2.00 61 1
Nijmegen 81 13,000 102 90 128 × 128 2.00 × 2.00 × 2.00 30 1
Amsterdam 45 13,000 94 90 128 × 128 2.00 × 2.00 × 2.40 30 1
rs-fMRI Volumes
Graz 40 3000 30 90 64 × 64 3.00 × 3.00 × 3.00 150
Leiden 38 2200 30 80 80 × 80 2.75 × 2.75 × 3.00 200
Maastricht 38 2200 30 80 112 × 112 2.00 × 2.00 × 2.50 200
Nijmegen 49 2380 30 90 64 × 64 3.50 × 3.50 × 3.50 110
Amsterdam 34 1800 35 80 64 × 64 3.30 × 3.20 × 3.00 202

a All diffusion directions were acquired with a b value of 1000.
b The diffusion directions were acquired four times.
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high contrast to noise ratio. This image is used to locate the boundaries
between grey matter, white matter and CSF. Subsequently, a triangular
mesh is constructed around the white matter surface, and this mesh is
deformed outwards to create a grey matter surface that closely follows
the boundary between grey matter and CSF. Cortical thickness is de-
fined as the distance between the white matter surface and the grey
matter surface. The image is registered to the Freesurfer common
template using the image’s cortical folding pattern, and the neocortex is
parcellated into the 68 neocortical regions (34 regions for each hemi-
sphere) of the Desikan-Killiany atlas (Desikan et al., 2006). This yielded
68 cortical thickness features per subject.

2.5. Diffusion MRI features

We used the diffusion MRI scans to calculate fractional anisotropy
(FA), mean diffusivity (MD), axial diffusivity (DA), and radial diffu-
sivity (DR). First, we used DTIFIT in FSL (Jenkinson et al., 2012; Smith
et al., 2004) to fit a diffusion tensor model at each voxel to calculate
voxel-wise FA, MD, DA and DR images for each subject. Then we pro-
jected subjects’ FA, MD, DA and DR images onto the FMRIB58_FA mean
FA image using tract based spatial statistics (TBSS; Smith et al., 2006).
Finally, we calculated weighted averages of the FA, MD, DA and DR
values within the 20 regions of the probabilistic JHU white-matter
tractography atlas, yielding 20 features for FA as well as MD, DA and
DR.

2.6. rs-fMRI features

2.6.1. Functional connectivity
Functional connectivity was calculated between resting state net-

works (RSNs) as obtained by an independent component analysis (ICA).
First, we used only the training sample to obtain 70 RSNs using tem-
poral concatenation ICA in FSL MELODIC (Beckmann and Smith, 2004).
Then, for all subjects we registered the ICA component weight maps to
subject space, weighted them by the subject specific grey matter density
maps, and multiplied them with the functional data. Subsequently, we
calculated the mean time courses for the 70 components and used these
for the FC analysis. We calculated sparse partial correlations using the
Graphical Lasso algorithm (Friedman et al., 2008), with ƛ=100 (Smith
et al., 2011). For each participant we thus calculated a 70 by 70 sparse
partial correlation matrix yielding (70 * 69)/2 = 2415 features.

2.6.2. Amplitude of low frequency fluctuations
To calculate the amplitude of low frequency fluctuations (ALFF;

Biswal et al., 2010; Zang et al., 2007), we used the REST software
package (Song et al., 2011). ALFF was defined as the power within the
0–0.1 Hz frequency band. For standardisation purposes we divided the
voxels’ ALFF values by the mean ALFF within a subjects’ whole brain
(Zang et al., 2007). The whole brain voxel-wise ALFF maps consist of
139,712 values.

2.7. Correction for age

We regressed out the age effects from the features. To this end we
first used the healthy controls from the training sample to estimate
‘normal’ age effects for all features. Then we used these estimated age
effects to regress out the age effects for all subjects.

2.8. Correction for scan site within the memory clinic data

We corrected for scan site effects within the memory clinic data
using ComBat (Johnson et al., 2007). ComBat is validated for structural
MRI data (Fortin et al., 2018), diffusion MRI data (Fortin et al., 2017),
and rs-fMRI data (Yu et al., 2018). ComBat fits a linear model of lo-
cation and scale for each feature, making the assumption that sites have
both an additive and multiplicative effect on the data. It uses empirical
Bayes to improve the estimation of the model parameters. The model
furthermore makes the assumption that the expected value of a feature
can be modelled by both the site effect, and biological and demo-
graphical factors. ComBat thus removes the unwanted site effects, while
it preserves the variation that is associated with the biological and
demographical factors. We included age, sex, years of education, clin-
ical label, and MMSE score as factors in the ComBat model.

We did not correct for scan site differences between the training
data and the memory clinic data, because the training data consists of
different clinical labels (healthy controls and probable AD) than the
memory clinic data (SMC, MCI and possible/probable AD). It is there-
fore not possible to decide whether differences between these data sets
should be attributed to scan site differences, or to differences in clinical
groups.

2.9. Statistical analysis

The nine different MRI feature groups, along with the number of
features per group are listed in Table 3. These feature groups were used
separately in nine different AD classification models, and combined into
an anatomical MRI, diffusion MRI, rs-fMRI and multimodal AD classi-
fication model. All features were normalised prior to the statistical
analyses.

2.9.1. Penalised logistic regression within the training data
The training data was used to fit AD classification models. We used

logistic regression to predict the true class of the subjects. In logistic
regression, the outcome variable is dichotomous (0 for healthy controls
and 1 for AD patients), and the predicted scores are continuous between
0 and 1. The subjects’ predicted scores are adopted as AD scores. To
prevent overfitting, we used penalised logistic regression techniques
that put penalties on the regression weights, such that only the most
relevant features enter the regression model. For the separate feature
groups, we used elastic net logistic regression (Friedman et al., 2010;
Zou and Hastie, 2005), that uses a combination of an L1 (LASSO;
Tibshirani, 1996) and L2 (Ridge; Hoerl and Kennard, 1970) penalty.
The L1 penalty tends towards sparse models, including only few fea-
tures. The L2 penalty tends to include all features, but limits the size of
their contributions. Two hyperparameters need to be tuned: the α
parameter determines the relative weight of the two different penalties,
and λ determines the size of those penalties. For the combined models
we used group lasso logistic regression (Simon et al., 2013), which uses
an L1 penalty on feature groups and an L2 penalty within the feature
groups. The group lasso thereby improves interpretation of the AD
classification model, because the L1 penalty on feature groups either
entirely includes or excludes feature groups. For the group lasso we
only need to tune λ: the size of the penalties.

2.9.2. Cross validation within the training data
To determine the performance of the AD classification models

within the training data, we used nested cross validation (Krstajic et al.,

Table 3
MRI features.

# of features

Anatomical MRI features
Grey matter density 48
Subcortical volumes 14
Cortical thickness 68
Diffusion MRI features
Fractional anisotropy 20
Mean diffusivity 20
Axial diffusivity 20
Radial diffusivity 20
resting state fMRI features
Functional connectivity 2,415
Amplitude of low frequency fluctuations 139,712
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2014). Nested cross validation takes into account two potential sources
of overfitting. One could either include too many predictors, or over-
estimate accuracy by looping over all the values of the hyperparameters
and only pick the best result. To ascertain that one is not subject to any
of these two sources of overfitting, nested cross validation uses an inner
loop to tune the hyperparameters and an outer loop to train and test the
AD classification model. For both the inner and outer loop we used 10-
fold cross validation. We repeated this procedure 10 times to reduce the
variance resulting from the random partitioning of the subjects into
folds.

2.9.3. Application to memory clinic data
To determine the performance of the AD classification models on

the memory clinic data, we fitted AD classification models on the entire
training data using optimal hyperparameter settings. These optimal
hyperparameters were determined using a single tenfold cross valida-
tion. The resulting regression models were directly applied to the MRI
features of the memory clinic subjects. This yielded AD scores for the
memory clinic subjects.

2.9.4. Model evaluation
To evaluate the results, we made receiver operating characteristic

(ROC) curves and calculated the area under the curve (AUC) as a
measure of classification performance. The AUC is invariant to the class
distribution (Bradley, 1997), which is an advantage, because within the
training data the number of control subjects is larger than the number
of AD patients. Within the training data we compared the healthy
controls with the AD patients, and within the memory clinic data we
pairwise compared the SMC, MCI patients and AD patients. The four
different patient comparisons, for the nine feature groups plus four
combined models, yielded 52 comparisons in total. To test the AUC
values against chance, we used a permutation procedure with 10.000
permutations. We combined all 52 comparisons within the same per-
mutation procedure to correct for multiple comparisons. For each
permutation we permuted the subjects’ labels, and calculated the AUC
value for all 52 comparisons. We only registered the maximum of those
52 AUC values, resulting in a permutation distribution of maximum
AUC values. The 52 observed AUC values were compared with this
distribution, yielding family-wise error corrected p-values.

In addition, we calculated sensitivity, specificity, positive predictive
values and negative predictive values. We used a cut-off score of 0.5,
such that Subjects with Alzheimer's scores below 0.5 were classified as

the less severe disease category, and subjects with Alzheimer's scores
above 0.5 were classified as the more severe disease category. For ex-
ample, in the comparison of subjective memory complainers (SMC) and
mild cognitive impaired (MCI) patients, the former is regarded as the
less severe disease category and the latter is regarded as the more se-
vere disease category. To evaluate the classification models in the
memory clinic data, 0.5 is not necessarily the optimal cut-off score. For
example, the subjective memory complainers (SMC) and mild cognitive
impaired (MCI) patients are not expected to receive Alzheimer's scores
close to either 0 or 1. Consequently, a cut-off score of 0.5 sometimes
yields high sensitivity values and low specificity values, or the other
way around. In these cases, other cut-off scores might result in a better
balance between sensitivity and specificity. We have nevertheless used
a fixed cut-off score of 0.5, because it eases the interpretation.

3. Results

3.1. Correction for scan site

We applied scan site correction to the four memory clinic centers
(Fig. S1). Before correction, there are large site effects for the diffusion
MRI features, moderate site effects for the anatomical MRI features, and
no visible site effects for the rs-fMRI features. These site effects have
been removed using the ComBat procedure, leaving no visible site ef-
fects between the four memory clinic centers afterwards. We did not
correct for scan site differences between the training data and the
memory clinic data, because the training data consists of different
clinical labels (healthy controls and probable AD) than the memory
clinic data (SMC, MCI and possible/probable AD). It is therefore not
possible to decide whether differences between these data sets are due
to scan site differences, or to differences in clinical groups. The differ-
ences between the training data and the corrected test data are largest
for the diffusion MRI measures.

3.2. Classification results

The single feature classification models and the multiple feature
classification models yielded individual AD scores for all participants
(Fig. 1 and Fig. 2 respectively). To evaluate these classification models,
we calculated AUC values (Table 4), sensitivity and specificity values
(Table 5) and positive predictive values and negative predictive values
(Table S2).

Fig. 1. Alzheimer’s disease scores for the feature groups. The top row shows the results on the training data, and the bottom row shows the results on the memory
clinic data. The error bars represent the median AD score and the interquartile range. SMC = subjective memory complainers, MCI = mild cognitive impairment,
ALFF = amplitude of low frequency fluctuations.
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3.2.1. Training data classification using single features
The median AD score for the AD patients is higher than those of the

healthy controls for all single feature classification models (Fig. 1, top
row). The AUC values for discriminating between AD patients and
controls range between 0.79 for functional connectivity and 0.92 for
cortical thickness. These AUC values are all above chance level,

showing that the classification models work well within the training
data itself (Table 4, left side).

3.2.2. Memory clinic data classification using single features
All models, except for the ALFF model, assigned the highest median

AD score to the AD patients, followed by the MCI patients and later
followed by the SMC subjects (Fig. 1, bottom row). The AUC values for
the pairwise discrimination between these three groups are depicted in
the right side of Table 4. The discrimination between SMC and MCI
patients is above chance level for grey matter density and functional
connectivity. The discrimination between MCI patients and AD patients
is above chance level for grey matter density, subcortical volumes, and
cortical thickness. The discrimination between SMC and AD patients is
above chance level for grey matter density, subcortical volumes, cor-
tical thickness, FA, MD, DA, and functional connectivity (Table 4, right
side).

3.2.3. Training data classification using multiple features
In order to increase classification accuracy, the feature groups were

combined into an anatomical MRI, diffusion MRI, rs-fMRI, and multi-
modal MRI model. For all combined classification models, the median
AD score for the AD patients is higher than those of the healthy controls
(Fig. 2, top row). The AUC values for discriminating between AD pa-
tients and controls are higher for the combined models than those for
the single feature models. The multimodal model does however not
improve upon the combined anatomical MRI model (Table 4, left side).

3.2.4. Memory clinic data classification using multiple features
The combined classification models were also applied to the

Fig. 2. Alzheimer’s disease scores for the combined models. The top row shows the results on the training data, and the bottom row shows the results on the memory
clinic data. The error bars represent the median AD score and the interquartile range. SMC = subjective memory complainers, MCI = mild cognitive impairment,
ALFF = amplitude of low frequency fluctuations.

Table 4
AUC values for the different MRI-based AD classification models.

Training data Memory clinic data

MRI measure HC vs AD SMC vs
MCI

MCI vs AD SMC vs AD

Grey matter density 0.91*** 0.69** 0.70** 0.86***

Subcortical volumes 0.82*** 0.62 0.66* 0.76***

Cortical thickness 0.92*** 0.64 0.66* 0.76***

Combined anatomical
MRI

0.94*** 0.69** 0.70** 0.85***

Fractional anisotropy 0.83*** 0.60 0.57 0.65*
Mean diffusivity 0.84*** 0.62 0.55 0.66*
Axial diffusivity 0.81*** 0.63 0.58 0.72***

Radial diffusivity 0.85*** 0.58 0.57 0.64
Combined diffusion

MRI
0.87*** 0.65* 0.57 0.71***

Functional connectivity 0.79*** 0.66* 0.54 0.71**

ALFF 0.81*** 0.49 0.56 0.55
Combined rs-fMRI 0.85*** 0.62 0.56 0.68**

Multimodal MRI 0.94*** 0.68** 0.69** 0.84***

HC = healthy controls, AD = Alzheimer’s disease, SMC = Subjective memory
complainers, MCI = Mild cognitive impairment, ALFF = amplitude of low
frequency fluctuations. *p < 0.05, **p < 0.01, ***p < 0.001.
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memory clinic data. All models assigned the highest median AD score to
the AD patients, followed by the MCI patients and later followed by the
SMC subjects (Fig. 2, bottom row). In contrast to the training data, the
AUC values of the combined models are most often not higher than the
AUC value of the best discriminating single feature group. The AUC
only increases when combining the diffusion MRI features in order to
classify SMC subjects and MCI patients. For all other combined models,
the AUC is either the same or lower (Table 4, right side).

3.3. Feature group importance

In order to inspect the contribution of the feature groups to the
combined models, we plotted their beta values (Fig. 3). The anatomical
MRI model takes all three anatomical feature groups into account, and
the largest weight is assigned to cortical thickness. The diffusion MRI
model takes FA, DA and DR into account, and disregards MD. The
largest weight is assigned to DR. The rs-fMRI model takes both func-
tional connectivity and ALFF into account, but weighs functional

connectivity more heavily. The multimodal MRI model relies mostly on
the anatomical MRI features, but also includes the DR features.

4. Discussion

In this study, we evaluated the generalisability of MRI-based AD
classification models. To this end, we used a single center training data
set consisting of AD patients and healthy controls, and a multicenter
application data set consisting of AD patients, MCI patients and SMC
subjects. First, we showed that within the training data there is good
classification performance for both the anatomical MRI, diffusion MRI
and rs-fMRI models. When a model was trained on one part of the
training data, it generalised well to the other part of the training data.
Second, we fitted models on the entire training data, and applied those
models to the memory clinic data, resulting in AD scores for the
memory clinic subjects. As expected, for all three MRI modalities, the
AD patients were on average assigned higher AD scores than MCI pa-
tients, and the MCI patients were on average assigned higher AD scores

Table 5
Sensitivity / specificity values for the different MRI-based AD classification models.

Training data Memory clinic data

MRI measure HC vs AD SMC vs MCI MCI vs AD SMC vs AD

Grey matter density 0.66 / 0.96 0.39 / 0.84 0.69 / 0.61 0.69 / 0.84
Subcortical volumes 0.51 / 0.91 0.46 / 0.78 0.70 / 0.54 0.70 / 0.78
Cortical thickness 0.70 / 0.95 0.25 / 0.91 0.54 / 0.75 0.54 / 0.91
Combined anatomical MRI 0.88 / 0.89 0.51 / 0.81 0.74 / 0.49 0.74 / 0.81
Fractional anisotropy 0.61 / 0.90 0.28 / 0.75 0.46 / 0.72 0.46 / 0.75
Mean diffusivity 0.57 / 0.92 0.11 / 0.96 0.20 / 0.89 0.20 / 0.96
Axial diffusivity 0.41 / 0.92 0.59 / 0.69 0.69 / 0.41 0.69 / 0.69
Radial diffusivity 0.62 / 0.94 0.11 / 0.90 0.21 / 0.89 0.21 / 0.90
Combined diffusion MRI 0.75 / 0.87 0.56 / 0.63 0.61 / 0.44 0.61 / 0.63
Functional connectivity 0.34 / 0.94 0.52 / 0.64 0.59 / 0.48 0.59 / 0.64
ALFF 0.39 / 0.96 0.25 / 0.79 0.25 / 0.75 0.25 / 0.79
Combined rs-fMRI 0.67 / 0.86 0.69 / 0.45 0.82 / 0.31 0.82 / 0.45
Multimodal MRI 0.84 / 0.88 0.56 / 0.81 0.84 / 0.44 0.84 / 0.81

HC = healthy controls, AD = Alzheimer’s disease, SMC = Subjective memory complainers, MCI = Mild cognitive impairment, ALFF = amplitude of low frequency
fluctuations.

Fig. 3. Content of the combined classification models that were fitted on the training data and applied to the memory clinic data. The left panel shows the
standardised beta values of the features, and the right panel shows the sums of the absolute standardised beta values per feature group. These plots illustrate the
importance of the feature groups for the combined models. The anatomical MRI model takes all three anatomical feature groups into account, the diffusion MRI
model takes FA, DA and DR into account, the rs-fMRI model takes both functional connectivity and ALFF into account, and the multimodal MRI model relies mostly
on the anatomical MRI features. ALFF = amplitude of low frequency fluctuations.
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than SMC subjects.
There is however large variation in the performance of the different

MRI models. The anatomical MRI models generalised best to the
memory clinic data. Especially the grey matter density model could
differentiate well between all three clinical groups. The cortical thick-
ness model and the subcortical volumes model could differentiate be-
tween the AD patients and the other two groups, but not between the
SMC subjects and MCI patients.

The diffusion MRI models did not perform as well as the anatomical
MRI models. Although classification performance was excellent within
the training data for all diffusion MRI measures, there was limited
generalisation to the memory clinic data. Possibly, this is due to the fact
that white matter alterations in AD mostly occur in the late phase of the
disease (Clerx et al, 2012). So, white matter changes might be already
present in the probable AD patients from the training data, but these
changes might not yet be as large in the MCI patients or possible AD
patients from the memory clinic data. Another explanation might lie in
the scan site differences for the diffusion MRI measures. It is known that
technical variabilities across scan sites can have large effects on diffu-
sion MRI scans (Zhu et al., 2011), and also in the current study the four
memory clinic centers largely differed on the diffusion MRI measures.
These site differences were removed as much as possible using the
ComBat procedure (Fortin et al., 2017; Johnson et al., 2007), but they
cannot be removed entirely. Furthermore, we did not remove scan site
differences between the training data and the memory clinic data, be-
cause the subjects within the training data are not comparable with the
memory clinic subjects with regard to their clinical labels. It is therefore
not possible to decide whether differences between these data sets
should be attributed to scan site differences, or to differences in clinical
labels. Yet, it is likely that scan site differences exist between the
training data and the memory clinic data, and that possibly they have
affected the AD scores of the memory clinic subjects. Diffusion MRI
have nevertheless been used successfully in a multicenter AD classifi-
cation study (Dyrba et al., 2013). However, this study only used
probable AD patients and healthy elderly controls, for which differences
in white matter are expected to be larger. Furthermore, they used
subjects from nine different scan sites, and they achieved the highest
accuracy when training and testing was partly done on subjects from
the same site. When they trained the model on subjects from eight scan
sites, and applied this model on subjects from the ninth scan site, this
resulted in lower accuracy.

Regarding the rs-fMRI models, there is a large difference between
the functional connectivity model and the ALFF model. The functional
connectivity model is somewhat inferior compared to the structural and
diffusion MRI measures within the training data, but it generalises
reasonably well to the memory clinic data. This model can differentiate
between SMC subjects and MCI patients, and between SMC subjects and
AD patients. The reasonably good generalisation performance of the
functional connectivity model might partly be explained by the absence
of large scan site differences. In addition, alterations in functional
connectivity likely start in an early phase of AD (Buckner et al., 2005;
Sperling, 2011), and this might explain why this model could distin-
guish reasonably well between SMC subjects and MCI patients. Func-
tional connectivity have previously been shown to be successful for the
classification of AD patients, MCI patients and controls in a multi-center
setting. However, this was only achieved after employing strict quality
measures, including visual inspection of all the data (Teipel et al.,
2017). In the current study this was not much of an issue, possibly
because we automatically removed noise components with ICA-AROMA
(Pruim et al., 2015), and it has been shown that removing ICA based
noise components from rs-fMRI data reduces scan site differences sub-
stantially (Feis et al, 2015). In contrast to the functional connectivity
model, the ALFF model showed very poor generalisation performance.
Although the classification performance was good within the training
data, this model could not differentiate between any of the three groups
within the memory clinic data. This result corresponds to the results of

another multicenter study, in which ALFF showed poor classification
performance to classify SMC subjects, amnestic MCI patients and AD
patients (Teipel et al., 2018).

Combining the MRI features improved the accuracy within the
training data, which is a replication of other studies that improved AD
classification by combining different MRI measures from the same
imaging modality (de Vos et al., 2016, 2018; Westman et al., 2013), or
combining multiple imaging modalities (Dai et al., 2012; Schouten
et al., 2016). More importantly, however, this improvement did not
translate to the memory clinic data. Some features contributed largely
to the combined models, because they had a beneficial effect on AD
classification within the training data, but they worsened the results of
the combined model on the memory clinic data, because those features
did not generalise to the memory clinic data. For example, the com-
bined rs-fMRI model included both functional connectivity and ALFF.
Within the training data, this combination increased accuracy com-
pared to both of these features alone. However, within the memory
clinic data, this combination decreased accuracy compared to using
only functional connectivity. Probably, this is caused by the poor gen-
eralisation performance of ALFF.

The classification accuracies within the memory clinic data were
substantially lower than those within the training data for all MRI
models. These differences can be caused by multiple factors, and we
cannot explicitly attribute these differences to any of these different
factors. A factor that has likely been important is the difference in
clinical populations. It is easier to distinguish AD patients from healthy
elderly controls, as in the training data, than to distinguish AD patients
from MCI patients and SMC subjects, as in the memory clinic data. In
addition, the AD patients in the training data had lower average MMSE
scores than the AD patients in the test memory clinic data. The AD
patients in the training data were thus clinically more progressed than
the AD patients in the memory clinic data. Other factors that might
have caused a drop in accuracy from training to test set are scan site
differences, differences caused by confounding variables (e.g. age, sex
or education) and overfitting on the training data.

We have focused on MRI scans for the AD classification models,
although MRI-visible structural and volumetric brain abnormalities
occur relatively late in AD (Jack et al., 2010). Amyloid and tau pa-
thology are observable in AD patients well before any pathological
change is detectable on a structural MRI scan (Jack et al., 2010). For
clinical studies however, structural MRI scans are advantageous, be-
cause they are non-invasive and often available. In addition, there is
evidence that functional changes as can be seen on a rs-fMRI scan might
already occur in an earlier phase of the disease (Buckner et al., 2005;
Sperling, 2011). Therefore, rs-fMRI might be sensitive for early detec-
tion of AD.

We have only studied AD classification, while memory clinics are
confronted with non AD types of dementia as well. In future efforts, to
create clinically valuable classification models for more dementia types,
it is important to also include non-AD types of dementia.

In conclusion, we studied the generalisation performance of single
center MRI-based AD classification models to a multicenter memory
clinic data set. The anatomical MRI models generalised best to the
memory clinic data, and grey matter density was the best performing
anatomical MRI measure. The diffusion MRI models did not generalise
well, possibly due to large scan site effects on the diffusion MRI mea-
sures, or because white matter alterations mostly occur in progressed
AD (Clerx et al, 2012). The functional connectivity model showed
reasonable performance for identifying prodromal AD stages, but it was
still inferior to the grey matter density model. Moreover, the multi-
modal MRI model did not improve upon the anatomical MRI model.
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