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Abstract

Objectives: Sodium-glucose cotransporter 2 inhibitors (SGLT2i) modulate lipid metabolism and improve cardiovascular 
morbidity and mortality in patients with type 2 diabetes mellitus (T2DM). The exact cardioprotective mechanism of 
SGLT2i is unclear. We evaluated the effects of SGLT2i on postprandial lipids, lipoprotein concentrations, glucose and 
fatty acids.
Design: A placebo-controlled randomized, proof-of-concept study.
Methods: Fourteen male patients with T2DM on intensive insulin regimen were randomly and double-blind allocated 
to 12 weeks dapagliflozin (10 mg) or placebo. Postprandial effects were assessed with an 8-h standardized oral fat 
loading test.
Results: Mean glycated A1c did not change by dapagliflozin, but the mean daily insulin dose was significantly reduced. 
Although dapagliflozin did not affect fasting or postprandial levels of glucose and insulin, it increased the postprandial 
levels of glucagon. While fasting levels of free fatty acids and beta-hydroxybutyrate (bHBA) were unchanged, 
dapagliflozin significantly increased the postprandial bHBA response. This was seen in the context of increased 
postprandial glucagon levels by dapagliflozin, without influencing postprandial insulin or glucose levels. Dapagliflozin 
did not affect fasting or postprandial plasma cholesterol and triglycerides nor postprandial inflammatory markers. 
Fasting apolipoprotein B48 was decreased without affecting the postprandial response. Markers of inflammation and 
vascular function did not change.
Conclusion: Treatment with dapagliflozin of patients with T2DM led to a reduction of fasting chylomicron remnants 
and increased postprandial ketone bodies compared to placebo suggesting enhanced hepatic fatty acid oxidation. The 
latter may have been caused by decreasing the insulin–glucagon ratio. The beneficial clinical effects seen in the trials 
using dapagliflozin most likely are not due to effects on postprandial inflammation nor postprandial lipemia.
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Introduction

Type 2 diabetes mellitus (T2DM) is one of the most 
prevalent diseases in the general population, leading to 
an increased risk of cardiovascular disease (1, 2, 3). While 
increased glucose levels have been associated with this 
increased cardiovascular disease risk (4), many other 
cardiovascular risk factors associated with T2DM, like 
atherogenic dyslipidemia and systemic inflammation, 
play an important role (5). This atherogenic dyslipidemia 
in T2DM includes the presence of small dense LDL-C, low 
HDL-C and postprandial dyslipidemia in which insulin 
resistance leads to an increased postprandial chylomicron 
production and reduced remnant clearance resulting in the 
accumulation of atherogenic chylomicron remnants (6).

Until recently, most studies aiming to improve 
blood glucose levels had not shown clinically significant 
reductions in cardiovascular mortality (6, 7). Sodium-glucose 
cotransporter 2 inhibitors (SGLT2i) have been identified 
as a new class of glucose-lowering drugs with beneficial 
cardiovascular effects. Due to enhanced urinary glucose 
secretion, SGLT2i lead to an insulin-independent decrease of 
blood glucose (8), reduction of postprandial insulin levels and 
elevation of postprandial glucagon levels (9). Cardiovascular 
outcome trials have shown that SGLT2i reduce cardiovascular 
mortality in high-risk patients with T2DM (10, 11, 12), 
although the most relevant clinical effects have been shown 
in patients with established cardiovascular disease (13). 
In those large clinical trials, the reduction of glycated A1c 
(HbA1c) was limited as predefined in the study designs. 
Therefore, SGLT2i likely modulate other cardiovascular 
disease risk factors, contributing to the observed 
reduced cardiovascular morbidity and mortality. Several 
underlying mechanisms have been proposed, including  
increased natriuresis leading to reduced myocardial stress, 
reduced blood pressure, renal hemodynamic effects, 
increased ketone bodies that act as a myocardial energy 
source and metabolic and anti-inflammatory effects (14).

In this proof-of-concept study, we aimed to evaluate the 
effects of the SGLT2i dapagliflozin on fasting and postprandial 
lipid and lipoprotein metabolism, glycemic factors and 
metabolic markers in addition to postprandial inflammatory 
markers and vascular function in patients with T2DM.

Methods

Study design and subjects

This study was designed as a single-center, randomized, 
double-blind, placebo-controlled, proof-of-concept 

study aimed at comparing dapagliflozin vs placebo on 
postprandial lipemia, inflammation and metabolic 
changes. All patients provided their written informed 
consent prior to any study-specific procedure. The 
study was approved by the Institutional Review Board 
of the Franciscus Gasthuis & Vlietland, Rotterdam, the 
Netherlands, the regional independent medical research 
ethics committee TWOR, Rotterdam and by the national 
competent authority. The study was registered at www.
trialregister.nl under clinical trial no. NTR6709 and was 
conducted in accordance with the declaration of Helsinki.

Patients were recruited between September 2017 and 
September 2018 from the Diabetes and Vascular Center 
of the Franciscus Gasthuis & Vlietland. All consecutive 
patients with the required characteristics were screened 
for eligibility. Inclusion criteria were male sex, age >18 
years old, established T2DM on intensive insulin therapy 
(daily one-time long-acting insulin and three times 
short-acting insulin, with a stable dosage or 10 weeks) 
and stable glucose regulation in the previous 6 months 
(HbA1c between 6.5 and 9.0%). Exclusion criteria were 
current smoking, decreased kidney function (estimated 
glomerular filtration rate <60 mL/min/1.73 m2), a 
cardiovascular or hypoglycemic event in the previous 
6 months and the use of an SGLT2i in the previous  
6 months.

Data collection

All subjects visited the hospital after a 10-h overnight 
fast. Anthropomorphic characteristics (height, weight, 
BMI and waist circumference) and blood pressure were 
measured. The medical and family history were recorded. 
A fasting venous blood sample was obtained and baseline 
arterial vascular function was measured after 5 min of rest. 
Subjects received an oral fat load consisting of fresh cream 
(Albert Heijn, Zaandam, the Netherlands) in a dose of 50 
g of fat/m2 body surface. During the oral fat loading test, 
participants were not allowed to eat or to drink except 
water and they were asked to refrain from physical activity. 
Venous blood sampling and arterial vascular function 
measurements were repeated every 2 h until 8 h after 
ingestion of the cream.

Outcome measures

The primary endpoint of this study was the change 
from baseline of postprandial apolipoprotein (apo) B48 
after treatment with dapagliflozin compared to placebo. 
Secondary endpoints were the changes from baseline of 
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postprandial triglycerides, glucose, insulin and glucagon. 
Additional endpoints were fasting and postprandial levels 
of free fatty acids (FFA), glucagon, beta-hydroxybutyrate 
(bHBA), leukocyte activation markers and vascular 
function.

Randomization, blinding and treatment

After the first oral fat loading test, patients were randomized 
1:1 to receive dapagliflozin 10 mg or matching placebo once 
daily for 12 weeks (both kindly provided by AstraZeneca). 
Randomization was based on computer-generated block 
randomization. Both physicians and subjects were blinded 
to the allocated treatment.

Patients were instructed to take dapagliflozin or 
placebo daily in the morning on top of their previous 
standard glucose-lowering regimen. Patients were allowed 
to down titrate their insulin dosage to avoid hypoglycemia. 
After 12 weeks of treatment, the participants visited 
the outpatient clinic for the second oral fat loading 
test. Compliance to study medication was evaluated by 
counting pills remaining in the dispenser. Information on 
the occurrence and type of side effects was also recorded.

Vascular function

Carotid to femoral pulse wave velocity (PWV) and 
augmentation index (Aix) were measured and calculated 
with the SphygmoCor Electronics Module MM3 and 
SphygmoCor CvMS Software Suite version 8.0 (AtCor 
Medical, West Ryde, Australia). The PWV, which increases 
at higher aortic stiffness, was measured using a noninvasive 
tonometry at the carotid and femoral artery. The distance 
between the carotid and femoral artery was measured with 
a measuring tape. The Aix, adjusted to a heart rate of 75 
b.p.m., represents both macrovascular and microvascular 
functions. The radial artery was used to measure the Aix. 
Both, the PWV and Aix were measured in duplicate at each 
time interval and the mean value is reported.

Laboratory measurements

All clinical chemistry and hematology measurements 
were carried out on freshly drawn blood at the department 
of Clinical Chemistry, Franciscus Gasthuis & Vlietland 
according to standard procedures, unless otherwise stated. 
Renal and liver function as well as C-reactive protein, 
glucose, total plasma cholesterol, HDL-C and triglycerides 

were measured in plasma using an Architect c8000 (Abbott). 
Plasma LDL-C values were calculated using the Friedewald 
formula for TG below 4.0 mmol/L. For TG values >4.0 
mmol/L, no LDL-C levels could be calculated and therefore 
no postprandial LDL-C levels are reported. ApoA-I and 
apoB were determined in serum by nephelometry using 
an IMMAGE instrument with commercially available 
kits (Beckman Coulter, Miami, USA). Blood cell counts 
were determined in plasma samples using a DxH analyzer 
(Beckman Coulter). HbA1c was measured in plasma samples 
with a G8 analyzer (Tosoh, San Francisco, CA, USA).

ApoB48 serum levels, the marker for intestinal 
chylomicron particles, were quantified using a 
commercially available enzyme immune assay (ELISA) 
(Shibayagi Co., Ltd. Japan), according to the manufacturer’s 
instructions (15). Since no commercial quality controls are 
available for apoB48, a local internal quality control was 
pooled according to WHO recommendations, stored at 
−80°C, and assessed in duplicate on each plate in parallel 
to samples. Paired samples were measured in the same run.

Serum FFA were measured by an enzymatic colorimetric 
assay (WAKO kit, Fujifilm WAKO Diagnostics) and plasma 
glucagon was measured by a RIA (Merck) at the division of 
Endocrinology, Leiden University Medical Center, Leiden, 
the Netherlands. Serum bHBA levels were measured by 
photometrical analyses using a Cobas analyzer (Roche) 
at the Department of Internal Medicine, Division of 
Pharmacology, Vascular and Metabolic Diseases, Erasmus 
University Medical Center, Rotterdam, the Netherlands. 
Serum insulin was measured by an immune radiometric 
assay at the department of Clinical Chemistry, IJsselland 
Ziekenhuis, Cappelle a/d IJssel, the Netherlands.

Leukocyte activation markers were measured in 
plasma as described in detail previously (16, 17). Briefly, 
the staining procedure was started within 30 min after 
venipuncture. All measurements were carried out in 
triplicate and mean values are reported. Whole blood was 
added to a combination of fluorescein isothiocyanate 
(FITC)-conjugated CD66b, phycoerythrin cyanin (PC5)-
conjugated CD11b, phycoerythrin (PE)-conjugated CD35 
and phycoerythrin-Texas Red-X (ECD)-conjugated CD45. 
In parallel, blood was added to a combination of FITC, 
PC5- and PE-conjugated mouse IgG1 as isotype controls to 
correct for non-specific binding. All antibodies were from 
Beckman Coulter, except for CD35-PE (BD Bioscience). 
After incubation for 15 min in the dark at room 
temperature, erythrocytes were lysed by adding isotonic 
erythrocyte lysing solution (0.19 M ammonium chloride, 
0.01 M potassium hydrogen carbonate, 0.12 M EDTA, pH 
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7.2) for 15 min. An FC500 flow cytometer and Kaluza 1.5a 
software (Beckman Coulter) were used for measurement 
and analysis. Lymphocytes, monocytes and neutrophil 
granulocytes were identified based on their side scatter 
and the level of CD45 on their surface. The fluorescent 
intensity of each cell population was expressed as the 
mean fluorescent intensity.

Statistical analysis

Data are given as mean ± s.d. for normally distributed 
variables, median (interquartile range) for variables with 
skewed distribution, and number (%) for categorical 
variables. In all figures, data are presented as mean ± s.e.m.

The main treatment effect (p-model) of dapagliflozin 
vs placebo on outcome values between pre- and post-
treatment levels was tested with ANCOVA with the post-
treatment levels as dependent variable, pretreatment 
levels and diabetes duration as covariates and treatment 
group as a fixed effect. Skewed data were logarithmically 
transformed; however, unchanged data are presented. 
Data are presented as a change in percentage of outcome 
compared to baseline by dapagliflozin vs placebo.

Differences within groups before and after treatment 
(for both the fasting and postprandial levels) were 
determined by the paired Student’s t-test. Differences 
between groups were determined by the independent 
Student’s t-test or Mann–Whitney U test, where 
appropriate. All postprandial responses were calculated 
using the total area under the curve by the trapezoidal rule 
using Graphpad Prism version 5.0.

Statistical analysis was carried out with PASW statistics 
version 25.0 (IBM SPSS Statistics). P-values <0.05 (two-
tailed) were considered statistically significant.

Results

Baseline patient characteristics

Fourteen eligible patients were included and randomized 
to either dapagliflozin (n = 8) or placebo (n = 6). All patients 
were on insulin regimen four times daily, with an average 
dose of 70.8 ± 29.3 units per day. All patients were using 
metformin; no other antidiabetic agents were used. All 
patients were treated with statins, which were unaltered 
during the study, but no other hypolipidemic agents were 
used. Additional characteristics are shown in Table 1 for the 
total cohort and per treatment group. During the study, no 
serious adverse events were recorded for either group.

Effects on fasting parameters

Table 2 shows the effect of treatment with dapagliflozin 
on fasting levels of all analyzed parameters. Twelve weeks 
of treatment with dapagliflozin resulted in a significantly 
decreased daily dose of insulin (median change 
−14.8%; p-model = 0.03), fasting apoB48 (−39.8%; 
p-model = 0.01), and systolic blood pressure (−1.9%; 
p-model = 0.04) compared to treatment with placebo. 
Dapagliflozin did not significantly affect glycated A1c 
(+1.7%; p-model = 0.77) or fasting glucose levels (−9.8%; 
p-model = 0.39), fasting plasma triglycerides (+9.4%; 

Table 1 Baseline characteristics of study participants (n = 14). Data as mean ± s.d., or median (interquartile range).

Total (n = 14) Dapagliflozin (n = 8) Placebo (n = 6)

Age (years) 64.6 ± 8.6 64.9 ± 8.0 64.2 ± 10.2
Body mass index (kg/m2) 29.4 ± 3.9 29.4 ± 2.9 29.4 ± 5.2
Waist circumference (cm) 104.9 ± 6.0 104.9 ± 6.2 104.8 ± 6.3
Systolic blood pressure (mmHg) 140.1 ± 16.4 134.0 ± 9.9 148.2 ± 20.6
Fasting glucose (mmol/L) 9.7 ± 3.1 9.6 ± 3.0 9.8 ± 3.4
Glycated A1c (mmol/mol) 66.0 ± 12.1 66.6 ± 10.7 65.2 ± 14.9
Total cholesterol (mmol/L) 3.8 ± 0.7 3.9 ± 0.7 3.6 ± 0.7
HDL-cholesterol (mmol/L) 1.0 ± 0.2 1.0 ± 0.2 1.1 ± 0.2
LDL-cholesterol (mmol/L) 2.2 ± 0.6 2.5 ± 0.6 1.9 ± 0.6
Triglycerides (mmol/L) 1.22 (0.87–1.57) 1.13 (0.84–1.42) 1.33 (0.75–1.91)
ApoAI (g/L) 1.36 ± 0.60 1.27 ± 0.18 1.30 ± 0.23
ApoB (g/L) 0.78 ± 0.23 0.81 ± 0.15 0.72 ± 0.17
ApoB48 (mg/L) 10.2 (5.5–14.9) 11.8 (8.6–14.9) 9.3 (3.6–14.9)
Lipoprotein(a) (mg/L) 130.5 (0.0–386.5) 138.5 (0.0–498.5) 117.6 (0.0–314.5)
Diabetes duration (years) 17.6 ± 8.6 13.5 ± 7.4 23.2 ± 7.3*
Insulin (total units/day) 70.8 ± 29.3 72.5 ± 25.5 68.5 ± 36.2
Insulin (mE/L) 27.4 ± 12.5 43.4 ± 25.2 19.4 ± 7.9

Apo, apolipoprotein.*P<0.05 vs dapagliflozin.
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p-model = 0.06), and plasma apoB (+4.9%; p-model = 0.94) 
compared to placebo. Treatment with dapagliflozin did 
not result in significant changes in vascular function or 
inflammatory parameters (see Supplementary Table 1, see 
section on supplementary materials given at the end of 
this article).

Postprandial effects

Treatment with dapagliflozin resulted in a significant 
increase in the postprandial response of glucagon (median 
change +13.7%; p-model = 0.03) and bHBA (+43.8%; 
p-model = 0.02) (Fig. 1 and Table 3). No significant 
postprandial effects of dapagliflozin on total plasma 
triglycerides, apo B48, glucose, insulin, vascular response 
(Supplementary Fig. 1 and Supplementary Table 2) and 
inflammatory parameters (Supplementary Fig. 3 and 
Supplementary Table 2) were observed.

Discussion

In this proof-of-concept study, we investigated the 
effects of dapagliflozin on postprandial inflammatory 
and cardiometabolic parameters in patients with 
T2DM in order to get more insight into the dynamic 
changes during the postprandial period and to identify 

possible cardioprotective mechanisms of dapagliflozin 
in the postprandial situation. Surprisingly, 12 weeks of 
treatment with dapagliflozin resulted in lower fasting 
levels of apoB48 reflecting lower levels of postabsorptive 
chylomicron remnants, without affecting the acute 
postprandial response. Furthermore, a significant increase 
in the postprandial response of glucagon and bHBA in our 
study population was found by dapagliflozin compared to 
placebo.

The observed decrease in postabsorptive apoB48-
containing remnants in T2DM has not been reported 
before after treatment with an SGLT2i. This could suggest 
that dapagliflozin does not influence the production 
or postprandial catabolism of intestinally derived 
lipoproteins, but that it may enhance the clearance of 
these particles. An explanation is not readily available at 
this moment, since SGLT2i are not known to upregulate 
any of the receptors involved in remnant clearance. In 
theory, improved insulin sensitivity by dapagliflozin may 
have improved remnant clearance (18, 19). Our data do 
not show an effect during the early postprandial period, 
since apoB48 levels decreased more rapidly in the late 
postprandial phase by dapagliflozin. This may have resulted 
in lower fasting levels. The logical explanation would 
be increased (receptor mediated) clearance in the late 
postprandial and postabsorptive phases. One study in mice 
treated with canagliflozin showed an increased activity of 

Table 2 Changes in fasting measurements before and after treatment. Data as mean ± s.d. or median (interquartile range). 
P-model by ANCOVA with post-treatment levels and diabetes duration as dependent variables and pre-treatment levels as 
covariate and treatment group as fixed effect.

Dapagliflozin (n = 8) Placebo (n = 6) Between group difference

Baseline Week 12 Baseline Week 12

% median 
change from 

baseline p-model

HbA1c (mmol/mol) 66.6 ± 10.7 64.6 ± 13.1 65.2 ± 14.9 61.0 ± 15.0 +1.7 0.77
Glucose (mmol/L) 9.6 ± 3.0 8.7 ± 2.7 9.8 ± 3.4 9.9 ± 2.3 −9.8 0.39
Insulin (mE/L) 43.3 ± 25.2 46.8 ± 23.6 19.4 ± 7.9 21.8 ± 6.0 +9.8 0.12
Insulin (units/day) 72.5 ± 25.5 65.0 ± 28.8* 68.5 ± 36.2 70.0 ± 35.4 −14.8 0.03
Glucagon (pg/mL) 83.1 ± 13.8 95.5 ± 12.2* 110.8 ± 35.8 107.3 ± 18.8 +7.8 0.41
Systolic blood pressure (mmHg) 134.0 ± 9.9 130.5 ± 6.4* 148.2 ± 20.6 146.7 ± 7.1 −1.9 0.04
Weight (kg) 95.8 ± 9.3 94.3 ± 9.5 96.0 ± 12.4 97.7 ± 13.8 −1.2 0.79
Total cholesterol (mmol/L) 3.9 ± 0.7 3.7 ± 0.6 3.6 ± 0.7 3.9 ± 0.7 −14.7 0.45
HDL-cholesterol (mmol/L) 1.0 ± 0.2 1.0 ± 0.3 1.1 ± 0.2 1.0 ± 0.2 +2.9 0.15
LDL-cholesterol (mmol/L) 2.5 ± 0.6 2.0 ± 0.4* 1.9 ± 0.6 1.9 ± 0.2 −25.4 0.48
Triglycerides (mmol/L) 1.13 (0.84–1.42) 1.34 (0.90–1.78) 1.33 (0.75–1.91) 1.45 (0.04–2.86) +9.4 0.06
Apolipoprotein AI (g/L) 1.27 ± 0.18 1.24 ± 0.18 1.30 ± 0.23 1.23 ± 0.17 +2.1 0.64
Apolipoprotein B (g/L) 0.81 ± 0.15 0.79 ± 0.17 0.72 ± 0.17 0.74 ± 0.19 +4.9 0.94
Apolipoprotein B48 (mg/L) 11.8 (8.6–14.9) 7.4 (3.8–11.0) 9.3 (3.7–14.9) 9.1 (0.6–17.6) −39.8 0.01
Free fatty acids (mmol/L) 0.51 ± 0.17 0.54 ± 0.15 0.52 ± 0.15 0.55 ± 0.28 +3.9 0.29
Beta-hydroxybutyrate (mmol/L) 0.10 (0.09–0.11) 0.10 (0.08–0.12) 0.10 (0.08–0.13) 0.10 (0.05–0.15) +1.2 0.67

*P < 0.05 vs baseline
HbA1c, hemoglobin A1c; MFI, mean fluorescence index.
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lipoprotein lipase (LPL) (20). That study showed that when 
SGLT2 was inhibited via antisense oligonucleotides, a 
reduced RNA-expression of LDLR was observed, although 
there was no effect on LDLR activity by SGLT2-inhibition 
via canagliflozin. Unfortunately, to our knowledge, no 

data on the activity of LPL in humans by SGLT2-inhibition 
is available. In our study, the postprandial TG levels did 
not change making a significant effect on LPL less likely. 
Alternatively, it has been shown that lipoprotein clearance 
can be stimulated by SGLT2i by higher heparan sulfate 

Figure 1
Postprandial response of glucose, insulin, 
glucagon, triglycerides, apolipoprotein 
B48, free fatty acids and beta-
hydroxybutyrate concentrations after an 
oral fat load test. Mean (s.e.m.) of glucose 
(A), insulin (B), glucagon (C), triglycerides 
(D), ApoB48 (E), free fatty acids (F) and 
beta-hydroxybutyrate (G) at baseline 
(open square) and after treatment (closed 
square) with dapagliflozin and at baseline 
(open circle) and after treatment (closed 
circle) with placebo during an oral fat load 
test. P-model by ANCOVA with post-
treatment levels as dependent variable 
and pre-treatment levels and diabetes 
duration as covariates and treatment 
group as a fixed effect.

Table 3 Postprandial (area under the curve0-8h) measurements before and after treatment. Data as mean ± s.d. or median 
(interquartile range). P-model by ANCOVA with post-treatment levels and diabetes duration as dependent variables and pre-
treatment levels as covariate and treatment group as fixed effect. There were no significant differences between groups for 
baseline and week 12 levels.

Dapagliflozin (n = 8) Placebo (n = 6)
Between group 

difference

Baseline Week 12 Baseline Week 12

% median 
change from 

baseline p-model

Glucose (mmol/L × 8 h) 71.3 ± 21.2 65.9 ± 19.6 72.7 ± 23.0 68.9 ± 21.5 −6.9 0.46
Insulin (mE/L × 8 h) 185.6 (120.0–251.2) 193.0 (96.1–289.9) 348.8 (205.4–492.2) 353.8 (226.1–481.5) +11.6 0.54
Glucagon (pg/mL × 8 h) 465.4 ± 25.4 504.7 ± 18.6* 568.2 ± 26.9 540.2 ± 18.6 +13.7 0.03
Total cholesterol 

(mmol/L × 8 h)
32.2 ± 5.9 30.4 ± 5.4 30.0 ± 5.9 31.7 ± 5.3 −2.0 0.83

HDL-cholesterol 
(mmol/L × 8 h)

8.1 ± 1.8 8.3 ± 1.9 8.6 ± 1.7 8.4 ± 1.6 +6.7 0.44

Triglycerides  
(mmol/L × 8 h)

17.0 ± 5.9 18.9 ± 5.0 17.9 ± 7.1 19.1 ± 9.5 +4.3 0.47

Apolipoprotein B48 
(mg/L × 8 h)

116.9 (86.2–147.6) 84.0 (52.0–116.0) 125.7 (47.4–204.0) 114.4 (83.0–197.4) −6.6 0.10

Free fatty acids 
(mmol/L × 8 h)

5.3 ± 0.8 6.3 ± 1.3 5.5 ± 1.3 6.3 ± 1.6 +1.7 0.71

Beta-hydroxybutyrate 
(mmol/L × 8 h)

1.57 (0.60–2.54) 2.34 (1.30–3.38)* 1.15 (0.69–1.61) 0.91 (0.57–1.57) +43.8 0.02

MFI, mean fluorescence index.*P < 0.05 vs baseline
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proteoglycans HSPG-dependent pathways. In animal 
models, these pathways could be activated by SGLT2i 
resulting in reduced atherosclerosis (21). In that same 
study, a role of the LDLR, the low-density lipoprotein 
receptor-related protein 1, and the scavenger receptor class 
B were excluded. Our data in patients with T2DM support 
these observations. In T2DM, insulin resistance increases 
the postprandial production of chylomicrons and 
reduces chylomicron remnant clearance, leading to the 
accumulation of chylomicron remnants in the circulation 
(22, 23, 24). It has been established that postprandial 
hyperlipidemia and remnants are associated with an 
increased risk for cardiovascular disease (25, 26) and this 
has also been demonstrated in patients with T2DM (27). 
Altogether, lower apoB48 levels may reflect a novel anti-
atherosclerotic effect of dapagliflozin which in part may 
explain the observed beneficial cardiovascular effects seen 
in the different trials. Additional studies with tracers could 
provide more insight is these mechanisms.

Our study also shows that there is no effect of SGLT2i 
on postprandial inflammatory markers. This may not be 
surprising since postprandial inflammation is closely linked 
to the postprandial chylomicron (remnant) response (28), 
and postprandial apoB48 levels were unaffected. Therefore, 
decreased postprandial inflammation does not seem to 
be one of the mechanisms involved in cardiovascular 
protection by dapagliflozin.

There is limited evidence that treatment with SGLT2i 
results in an increase in ketone body formation (mainly 
bHBA) (9, 29, 30). In our study, we did not find a significant 
change in fasting levels of bHBA after treatment with 
dapagliflozin. Nevertheless, we did observe a significant 
higher postprandial response of bHBA. It might be that 
increased hepatic FFA catabolism, reflected by higher 
ketone bodies, becomes more evident in the postprandial 
situation (31). This increase in postprandial bHBA levels 
could be explained by either an increased hepatic influx of 
chylomicron-derived or adipose tissue-derived FFA and/or 
upregulation of the hepatic beta-oxidation machinery. In 
theory, lower insulin use by the participants may have led 
to less inhibition of adipose tissue lipolysis and the higher 
postprandial glucagon levels may have induced increased 
adipose tissue lipolysis (32). The consequence may have 
been an increased postprandial fatty acid flux from the 
adipose tissue to the liver. Therefore, we cannot clearly 
identify in which tissue the most prominent effects of 
dapagliflozin were found.

It has been suggested that increased ketone bodies may 
improve cardiac function and that this may in part explain 
the rapid improvement in cardiovascular outcomes in the 

SGLT2i trials. Especially, the beneficial effects on heart 
failure hospitalization in these trials have been linked 
to higher ketone bodies (29, 30). Our study suggests that 
this increased ketogenesis may especially occur in the 
postprandial period.

Previous studies have explored the effect of SGLT2i on 
glucagon levels and found higher fasting or postprandial 
glucagon levels (9, 33). These results were confirmed in the 
present study. Whether the increased glucagon response 
after dapagliflozin treatment is linked to the decreased 
apoB48 levels remains to be elucidated. It has been shown 
that hyperglucagonemia in healthy volunteers has no 
effect on intestinal lipoprotein metabolism (34), but 
whether this is also the case in T2DM is unknown.

One major limitation of our study is the small 
number of subjects included. We aimed to include 20 
patients in total; unfortunately, due to problems with 
recruitment and deadlines we had to stop the study after 
14 included patients. However, the detailed metabolic 
information obtained is robust and increases our 
knowledge on the effects of SGLT2i on lipid metabolism. 
Another limitation of our study is the fact that we did 
not directly quantitate both fatty acid oxidation, adipose 
tissue lipolysis and lipoprotein turnover. As such, we 
did not demonstrate whether the dapagliflozin-induced 
decrease in fasting apoB48 levels is a consequence of lower 
intestinal production or higher catabolism, although the 
postprandial curves suggest a lack of effect on the acute 
postprandial production. Furthermore, our patients were 
treated with intensive insulin therapy representing not 
only insulin resistance but also some degree of beta-cell 
dysfunction. Finally, despite randomization, a significant 
difference in diabetes duration between treatment groups 
was observed. In order to address this issue, diabetes 
duration was added as a covariate in the main analyses.

In conclusion, we showed that 12 weeks of treatment 
with dapagliflozin decreased the postabsorptive levels 
of atherogenic chylomicron remnants and increased 
the postprandial response of bHBA compared to placebo 
against a background of higher glucagon levels and lower 
insulin doses. Lower levels of postabsorptive chylomicron 
remnants and increased postprandial levels of bHBA may 
explain in part the cardiovascular protection seen in large 
clinical trials with this type of drugs. However, this needs 
to be confirmed in larger trials including these parameters.

Supplementary materials
This is linked to the online version of the paper at https://doi.org/10.1530/
EJE-21-1270.
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