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Chapter 5

Fair Tree Classifier

When learning classification models from biased data, the resulting classifiers
tend to exacerbate the biases present [Richardson, 2022]. With respect to the
Inspectorate, a case in point is confirmation bias.

Consider the following example. In international cargo ship risk assess-
ment, a prevailing trait towards selecting a ship for inspection is the colour
of the flag of the ship. A reputable country is assigned a white flag. However,
the flag may be either white, grey, or black, and reflects the detention rate of
ships for that country. Indeed, inspectors may be disproportionately influenced
by the colour of a flag, causing more frequent and stringent inspections of ships
with non-white flags, leading to confirmation bias in data.

To learn a classifier from such biased data, the standard classification prob-
lem becomes three-fold: (1) it is necessary to learn a model with high classifica-
tion performance; (2) the impact of the biases on the model must be suppressed
(i.e., model fairness); and (3) the performance-fairness trade-off must be tunable
such that the requirements by the relevant stakeholders can be easily met.

In this chapter, we propose SCAFF: a solution to the problem at hand in the
form of a compound splitting criterion which combines (a) AUC, (b) strong de-
mographic parity, and (c) a performance-fairness trade-off tunability parameter.
In our experimental results, we show via performance-fairness trade-off curves
how SCAFF generates effective models with competitive performance and high
fairness. This result answers RQ3: how can we, from biased data, learn a model
tunable with respect to the performance-fairness trade-off such that the selec-
tion of the trade-off point is made intuitive for the relevant stakeholders?

The current chapter corresponds to the following publication:
Pereira Barata, A., Takes, F. W., van den Herik, H. J., and Veenman, C. J. (2022).
Fair tree classifier using strong demographic parity. Machine Learning (under
review)
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5.1 Algorithmic Fairness

The application of machine learning algorithms for classification has become
ubiquitous within an abundance of domains [Brink et al., 2016, Sarker, 2021,
Azar and El-Metwally, 2013,Pereira Barata et al., 2021,Dressel and Farid, 2018].
Great dependency on automated decision-making, however, gives rise to con-
cerns over model bias; e.g., bias was reported by Amazon’s automatic recruit-
ment tool in which women unfairly scored lower. It turns out that models were
trained on resumes submitted mostly by men, thus disadvantaging women a
priori [Dastian, 2018]. To prevent the modelling of historical biases, it is of the
utmost importance to develop fairness-aware methods [European Commission,
2019c].

A fair classification model has three goals: (1) to make adequate class predic-
tions from unseen observations; (2) to ensure that the bias in data is suppressed
from those predictions [Cho et al., 2020]; and (3) to allow for the tunability of the
inherent trade-off between the aforementioned two goals —the performance-
fairness trade-off [Kleinberg et al., 2016]— such that the ethical, legal, and so-
cietal needs of the end user (i.e., domain expert) are met. Here we remark that
the third goal is of greatest importance, as achieving it provides a manner by
which trade-off points can be made selectable by the relevant stakeholders.

To quantify model fairness (i.e., the extent to which the biases in data have
been suppressed) different fairness measures have been proposed (see Defini-
tions 1.5, 1.6, and 1.7). Traditionally, fairness measures such as demographic
parity [Dwork et al., 2012], equal opportunity [Corbett-Davies and Goel, 2018],
or equalised odds [Hardt et al., 2016] are used. These fairness measures are
all threshold-dependent. A threshold-dependent fairness measure is defined as
follows.

Definition 5.1 – Threshold-dependent fairness measure

A threshold-dependent fairness measure is a quantification of algorith-
mic bias with respect to some sensitive group, measured as a function of
the class predictions induced by applying a threshold to the (continuous)
model output.

Considering a classification model with continuous output, a decision
threshold must be set to produce class predictions, upon which those measures
are reliant. In other words, fairness would only be ensured with respect to that
particular threshold. To counter this limitation, a threshold-independent fairness
measure can be used instead. A threshold-independent fairness measure is de-
fined as follows.
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Definition 5.2 – Threshold-independent fairness measure

A threshold-independent fairness measure is a quantification of algorith-
mic bias with respect to some sensitive group, measured as a function of
the (continuous) model output, rather than the class predictions.

One such measure is the strong demographic parity. The strong demographic
parity extends the aforementioned demographic parity by considering fairness
throughout the entire range of possible decision thresholds. Although having
been proposed in [Jiang et al., 2020], the authors provided an implementation
of strong demographic parity merely towards the linear classifier case.

Tree-based algorithms are regarded as a state-of-the-art solution for the clas-
sification problem [Zabihi et al., 2017, Dogru and Subasi, 2018, Angenent et al.,
2020]. Their prevalence in the literature is mostly due to (1) model interpretabil-
ity, (2) their tendency to not overfit when used as ensembles, (3) requiring little
data pre-processing, and (4) handling mixed data types and missingness [Do-
gru and Subasi, 2018]. Past work on tree splitting criteria has shown positive re-
sults with respect to threshold-dependent fairness [Kamiran et al., 2010]. There
is a desire to extend it towards the threshold-independent case.

In this work, we propose SCAFF: the Splitting Criterion AUC For Fair-
ness. SCAFF allows for fair tree classifier learning by directly optimising for the
threshold-independent fairness measure of strong demographic parity. In par-
ticular, we propose a fair tree classifier learning algorithm which simultaneously
(1) optimises for threshold-independent classification performance (i.e., AUC);
(2) suppresses the impact of bias directly in terms of strong demographic par-
ity; and (3) is tunable with respect to the performance-fairness trade-off during
learning. In addition, our method handles various multicategorical sensitive at-
tributes simultaneously, and easily extends to bagging (i.e., random forest) and
(gradient) boosting frameworks.

The structure of the chapter follows: Section 5.2 expresses our problem de-
scription formally; Section 5.3 discusses related work; Section 5.4 elaborates our
SCAFF method; Section 5.5 describes our experiments; Section 5.6 refers to our
results; and Section 5.7 concludes and recommends research directions.

5.2 Problem Description

We consider the scenario in which a labelled dataset is intrinsically biased with
respect to one or more sensitive attributes of which the values may be either
binary or multicategorical. Our task is to learn a fair predictive model from
the biased data, such that future predictions are independent from the sensitive
attribute(s).
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We require that the measures of model performance and fairness do not de-
pend on a decision threshold set upon the output. Since there is no unique solu-
tion in the trade-off between performance and fairness, the fair model must also
be readily tunable in this regard, as to meet the requirements of the application
domain.

Formally, consider a dataset D with n samples, m features, and two classes.
Without loss of generality, assume the case in which a single binary sensitive
attribute exists. Let X , Y , and S be the underlying variable distributions rep-
resenting the feature space, classes, and sensitive attribute, respectively, from
which the n samples were drawn. Accordingly, each sample may be repre-
sented as (xi, yi, si), for i = 1, 2, . . . , n.

The goal of the learning algorithm is to learn the distribution for which the
conditional P (Y |X) ≈ P (Y |X,S). In practice, this amounts to learning from
the data a mapping function f : x ∈ X → z ∈ Z where Z represents the model
output (i.e., classification score) upon which a threshold t induces a class pre-
diction, and under which the condition of strong demographic parity must be
met, ∀t ∈ Z : P (Z ≥ t|S+) = P (Z ≥ t|S−), while maximising for the threshold-
independent classification performance P [(Z|Y+) ≥ (Z|Y−)]. The compromise
between strong demographic parity and the corresponding maximal predictive
performance must also be tunable.

5.3 Related Work

In this section, we discuss the concepts from the literature related to our work:
the measures of fairness (Section 5.3.1), and the fair tree splitting criteria used
towards fair tree classification learning (Section 5.3.2).

5.3.1 Measures of Fairness

Fairness measures in the literature may be categorised as being either (a)
threshold-dependent or (b) threshold-independent. With respect to threshold-
dependent measures, the three most prevalent are: (1) demographic par-
ity [Dwork et al., 2012]; (2) equal opportunity [Corbett-Davies and Goel, 2018];
and (3) equalised odds [Hardt et al., 2016].

First, demographic parity (see Definition 1.6) is the condition under which
each sensitive group (e.g. male/female) should be granted a positive outcome,
at equal rates. It is the absolute difference between the proportion of posi-
tive class predictions Ŷ+ in samples with a positive sensitive attribute value
S+ and samples with a negative sensitive attribute value S−, and is computed
as |P (Ŷ+|S+)− P (Ŷ+|S−)|.
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Second, the measure of equal opportunity is defined as follows.
Definition 5.3 – Equal opportunity

Equal opportunity is the fairness measure which considers the absolute
difference between the conditional TPR of each sensitive group

Equal opportunity is the fairness measure which accounts for the predictive
reliability within each sensitive group and is computed as the absolute differ-
ence |P (Ŷ+|S+, Y+)− P (Ŷ+|S−, Y+)|.

Third, the definition of equalised odds follows.
Definition 5.4 – Equalised odds

Equalised odds is the fairness measure which considers the absolute dif-
ference between the conditional TPR of each sensitive group, as well as
the difference between the conditional FPR of each sensitive group.

Equalised odds extends from the measure of equal opportunity by also in-
corporating the unreliability of predictions in the sensitive groups. It is com-
puted as ||P (Ŷ+|S+, Y+)− P (Ŷ+|S−, Y+)| − |P (Ŷ+|S+, Y−)− P (Ŷ+|S−, Y−)||.

Albeit computationally different, the three measures share at least one com-
mon aspect: the output of the classification model must be binary; i.e., a deci-
sion threshold must be placed upon the continuous output which induces the
class prediction. As a result, a problem arises when applying these measures to-
wards learning a fair classifier. These measures of fairness are limited to being
exclusively reliable for the specific threshold which produces the class predic-
tion: there is no guarantee that fairness holds for different threshold values.

In practice, when learning several fair classifiers for real-world applications,
(i.e., hyperparameter optimisation), the final classification model should not
be dependent on any arbitrary threshold, as fairness should be maintained
throughout. Rather, the decision threshold should only be placed a posteri-
ori, according to the performance requirements of the end user (e.g., precision
vs recall) whilst incurring minimal impact over fairness.

With respect to threshold-independent fairness measures, the notion of de-
mographic parity has been extended into strong demographic parity (see Defi-
nition 1.7). Strong demographic parity takes into account the continuous output
of the model, such that the ordering of the output should be independent of the
sensitive groups. It is computed as the absolute difference between the proba-
bilities |P [(Z|S+) ≥ (Z|S−)]− P [(Z|S+) < (Z|S−)]|.

Although strong demographic parity was proposed with a working fair
learning framework in [Jiang et al., 2020], their implementation only considers
the linear classifier case. We focus on extending the implementation towards
non-linear models, specifically towards tree-based architectures.
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5.3.2 Fair Tree Splitting Criteria

The practice of learning a tree classifier from biased data is directly linked to the
splitting criterion used to construct the tree structure. Within the fairness litera-
ture with respect to tree-based algorithms, we recommend the works by [Kami-
ran et al., 2010] and [Zhang and Ntoutsi, 2019], in which different approaches
are used to measure classification performance and fairness. The measures are
then jointly used as splitting criteria during training to select the best split.

In the work by [Kamiran et al., 2010], the authors propose to address the fair
splitting criterion problem, by accounting for the impact of bias in the model
during learning. They do so by extending the concept of information gain in
traditional classification towards the sensitive attribute. Given data D, a split is
evaluated as the information gain with respect to the class label:

IGY = HY (D)−
k∑
i=1

|Di|
|D|
·HY (Di), (5.1)

and the information gain with respect to the sensitive attribute:

IGS = HS(D)−
k∑
i=1

|Di|
|D|
·HS(Di), (5.2)

where HY and HS denote the entropy with respect to the class label and the
sensitive attribute, respectively, and Di, i = 1, . . . , k denotes the partitions of D
induced by the split under evaluation.

Both information gains are then merged to produce two distinct compound
splitting criteria by either: (1) subtracting IGY by IGS , hereinafter termed
KamiranSub, or (2) dividing IGY by IGS , hereinafter denoted as KamiranDiv.
Although this work was fundamental in establishing fair tree-learning frame-
works, it is limited in scope since fairness is only considered as the threshold-
dependent demographic parity.

In the work of [Zhang and Ntoutsi, 2019], a fairness-aware Hoeffding
tree (FAHT) is introduced. Although the method was developed with on-
line streaming classification as its focus, the splitting criterion developed may
be generally applicable to the fair learning problem. The FAHT approach re-
lies, as with the previous work, on a compound criterion composed of a class
label part and a sensitive attribute part and addresses demographic parity.
Both works use the same class label information gain IGY . However, the fair-
ness component is computed differently between them. For FAHT, the fairness
gain FG of a split is given as a function of Disc(D) of a set of data:

FG = Disc(D)−
k∑
i=1

|Di|
|D|
·Disc(Di). (5.3)
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The bias term is defined as the observed demographic parity of the system
|P (Y+|S+)− P (Y+|S−)|. The splitting criterion of FAHT evaluates as follows:

{
IGY , if FG = 0

IGY · FG , otherwise
. (5.4)

The two proposed splitting criteria present some limitations, three of which
deserve to be named in particular: (1) the construction processes were devel-
oped with only threshold-dependent fairness in mind; (2) both implementa-
tions only address a single binary sensitive attribute; and (3) there exists no
performance-fairness trade-off tuning parameter built into the splitting criteria.
In the following section, we propose our method which lifts these limitations.

5.4 The SCAFF Method

In this section we propose our SCAFF method. It is a probabilistic learning
framework which (1) optimises for threshold-independent classification perfor-
mance (i.e., AUC); (2) addresses fairness in terms of strong demographic parity;
and (3) is tunable with respect to the performance-fairness trade-off. In addi-
tion, SCAFF leverages multiple sensitive attributes simultaneously and easily
extends to bagging and boosting frameworks.

We begin by addressing the implementation of the classification perfor-
mance in Section 5.4.1, followed by the implementation of the fairness measure
of strong demographic parity in Section 5.4.2. In Section 5.4.3, we provide our
compound splitting criterion which incorporates a tunable parameter towards
the trade-off between classification performance and fairness. In Section 5.4.4,
we describe the tree construction process, reporting on how our method lever-
ages multiple sensitive attributes simultaneously and extends to bagging and
boosting frameworks. A working Python implementation of our algorithm can
be found in [Pereira Barata, 2021].

5.4.1 AUC Computation

In machine learning, the AUC is a measure which expresses the quality of a
sample ordering with respect to a binary label {Y−, Y+}. It computes the prob-
ability P [(Z|Y+) ≥ (Z|Y−)]. Here, a random order results in AUC = 0.5 and a
perfect order results in AUC = 1; conversely AUC = 0 if all labels are flipped
and still perfectly ordered.
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Traditionally, computing the AUC has a time complexity O(n · log(n)):

AUC(Z, Y ) =

∑y+
i=1

∑y−
j=1 σ(Zi, Zj)

y+ · y−
, (5.5)

where

σ(Zi, Zj) =


1, if Zi > Zj
1
2 , if Zi = Zj

0, otherwise

. (5.6)

Here, y+ and y− are the number of all instances Y+ and Y− respectively, and Zi
and Zj represent the Z output scores of each corresponding instance.

Yet, for the scenario in which a parent node is split into two child nodes
—towards candidate split evaluation—the time complexity of computing the
AUC may be reduced. From [Lee, 2019], the AUC of a split may be re-written as
a function of the TPR and the FPR induced by the split. The AUC then becomes:

AUC =
1 + TPR− FPR

2
. (5.7)

For each candidate split, the child node with highest P (Y+) is assigned as
the positive prediction node such that all samples contained in it are labelled
Ŷ+. The other child node induces Ŷ−. This strategy is equivalent to computing
the AUC traditionally; i.e., assigning samples in each node with Z scores equal
to the proportion of ground truth positive labels P (Y+) of their corresponding
node. Hereinafter, we denote AUCY as the AUC with respect to the class label.

5.4.2 Strong Demographic Parity

The strong demographic parity condition aims to minimise the difference in
candidates from the sensitive groups among the selected candidates, regardless
of any arbitrary decision threshold t. The goal is to minimise the expression
|P [(Z|S+) ≥ (Z|S−)] − P [(Z|S+) < (Z|S−)]| from Section 5.3.1. The condition
is reached by learning the target function f which randomly orders the samples
towards the sensitive groups; i.e., the AUC towards the sensitive attribute.

We find the fair classifier f by optimising for an AUC value of 0.5 on the
sensitive attribute. In order to solve the optimisation problem, we aim at min-
imising the AUC with S+ as the positive class, which we denote as AUCS+ .
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Since AUCS+ = 0 is as maximally unfair as AUCS− = 1, we define sensitive
AUC (AUCS) —fS from Section 5.2— as the following:

AUCS = max[1−AUC(Z, S),AUC(Z, S)], (5.8)

such that the max operator bounds the range of possible AUCS values to [0.5, 1].

Definition 5.5 – Sensitive AUC

Sensitive AUC is the AUC towards a sensitive attribute, bounded to val-
ues [0.5, 1] and is proportional to the strong demographic parity. AUCS

can be computed as a function of the strong demographic parity:

AUCS =
strong demographic parity + 1

2

AUCS of 1 indicates that the model is completely biased, while 0.5 indi-
cates that the model is complete fair.

Now that both classification performance AUCY and fairness measure
AUCS have been described, the splitting criterion may be constructed.

5.4.3 Splitting Criterion AUC For Fairness

Towards tunability of the performance-fairness trade-off, we define the orthog-
onality parameter Θ as follows.

Definition 5.6 – Orthogonality parameter Θ

The orthogonality parameter Θ ∈ [0, 1] is the parameter of SCAFF which
regulates the performance-fairness trade-off of the learned model: Θ = 0

results in a completely biased but most performing model, whereas Θ = 1

results in a completely fair but nonperforming model.

The objective is then to find a split which, for a given Θ, maximises AUCY

(towards AUCY = 1), while minimising AUCS (towards AUCS = 0.5). Accord-
ingly, for the fair classification problem given instance scores Z, class label Y ,
and sensitive attribute S, we define SCAFF:

SCAFF(Z, Y, S,Θ) = (1−Θ) ·AUCY −Θ ·AUCS. (5.9)

The purpose of Θ is to change the direction of the splitting criterion score to-
wards either classification or fairness. To illustrate this effect, consider Fig. 5.1.
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Each heatmap represents, for varying values of Θ, the split evaluation scores
for all possible values of AUCY (vertical axis) and AUCS (horizontal axis), ac-
cording to Eq. 5.9. The direction of the optimal score, from darkest to brightest
tones, is additionally represented as an arrow. From left to right, the optimal
score direction rotates along Θ. We call it the orthogonality parameter since it
rotates the direction of the optimal scores, making Θ = 0 and Θ = 1 orthogonal
score directions.

5.4.4 Tree Construction

As with any typical tree architecture, learning is done by selecting, at each step
(i.e., depth), the split which optimises the splitting criterion score. A split at
some feature value partitions a node into two child nodes and is evaluated ac-
cording to the Z scores of the parent node and the new Z ′ scores of the child
nodes induced by that split. The optimal split is the one which, across all possi-
ble feature value split points, maximises the splitting criterion score.

Given (a) the parent node scores Z and (b) the child scores Z ′ induced by a
split, the SCAFF gain SG associated with that split is defined as:

SG = SCAFF(Z ′, Y, S,Θ)− SCAFF(Z, Y, S,Θ). (5.10)

The split with maximal SG across all evaluated splits is selected if and only if
its corresponding SG ≥ 0. Otherwise, no splitting occurs.

SCAFF is not only able to handle binary sensitive attributes but also extends
to the multivariate and multicategorical scenarios, including intersectional fac-
tors (i.e., the combination of sensitive attributes) [Buolamwini and Gebru, 2018]
via a one-versus-rest (OvR) approach [Tax and Duin, 2002]. The AUCS used in
SCAFF is the maximum OvR, since no sensitive attribute should have priority
over fairness.

An example of SCAFF evaluation can be viewed in Fig. 5.2, in which the
OvR AUCS = max(0.6, 0.917) = 0.917. In the aforementioned example, we
mention that Z scores are given as P (Y+) in a node. We remark that our meth-
ods extends trivially to the bagging (i.e., random forest) case by considering
the final score of a sample as the average score across all trees. Yet, other Z
score definitions are viable; e.g., (gradient) boosting techniques compute Z by
iteratively updating existing sample scores [Hastie et al., 2009]. In that sense,
samples within the same child node may have distinct Z scores.

Our method extends to such boosting cases since SG relies on Z, regardless
of its computation. In contrast, traditional tree learning algorithms do not ex-
tend to boosting, since no Z scores are incorporated into the splitting criteria.
We remark that, for samples in the same node which have distinct Z scores, the
computation of the AUC must follow the traditional approach (Eq. 5.5).



96 Chapter 5. Fair Tree Classifier

-

-

-

+

+

+

+ +

+-

- +

--

- -
-

+

+ +

+

+

P( ) = 1-5
4P( ) = -5

-

-

-

+

+ +-

- +

+

AUCY ( )= 0.8

-

-

-

+

+ +-

- +

+

AUCS ( )= 0.6

Gender

-

-

-

+

+ +-

- +

+

AUCS ( )≈ 0.917

Race

Figure 5.2: Computing AUC values for SCAFF. AUCY and AUCS in a system
with 10 samples, a class label, and two sensitive attributes (gender and race).

5.5 Experiments

For the description of our experiments, we begin by mentioning the datasets
and how we used them (Section 5.5.1); we then characterise the experimen-
tal setup deployed to (1) gather the performance and fairness values and (2)
report on the relationship between the threshold-independent and threshold-
dependent demographic parities (Section 5.5.2). We compared SCAFF against
other fair splitting criteria by using benchmark fairness datasets. Since the
methods against which we compare our approach are neither suited for mul-
tivariate nor multicategorical sensitive attributes, we focus on the single binary
sensitive attribute case first. We additionally experimented on a single dataset
to explore how SCAFF handles multiple sensitive attributes simultaneously as
well as multicategorical values. Lastly, we tested the quantitative relationship
of the strong demographic parity yielded by our method with the correspond-
ing demographic parity at different decision-thresholds. For reproducibility,
our experiments are made available in [Pereira Barata, 2021].

5.5.1 Datasets

Three binary classification datasets were used. These are benchmark datasets
used for fairness methods [Quy et al., 2021]. Each of them has at least one
sensitive attribute. Specifically, we employed the following: (a) Bank (45, 211

instances, 50 features) in which the sensitive attribute is the binary condition of
age ≥ 65 (b) Adult (45, 222 instances, 97 features), where the sensitive attribute
may be either (i) race ∈ {white,non-white} or (ii) gender ∈ {male, female}; and
(c) Recidivism (6150 instances, 8 features) of which the sensitive attributes may
be either (i) race ∈ {white,non-white} or (ii) gender ∈ {male, female}.



5.5. Experiments 97

For the binary sensitive attribute case, we considered each dataset-sensitive
attribute configuration, making for a total of five different dataset configura-
tions. Two scenarios were further set in which the Adult dataset was considered:
(i) the multiple sensitive attribute scenario such that both sensitive attributes
(race and gender) were handled simultaneously; and (ii) the multicategorical
sensitive attribute scenario in which the intersectional attributes {non-white fe-
male (NWF), non-white male (NWM), white female (WF), white male (WM)}
were concurrently considered.

5.5.2 Experimental Setup

To provide an adequate comparison between our splitting criterion and the
state-of-the-art, we considered previous works in fair splitting criteria; specif-
ically, the works proposed by [Kamiran et al., 2010] and [Zhang and Ntoutsi,
2019]. For each dataset configuration, and for all methods, the same 10-fold CV
was applied.

To measure classification performance and algorithm fairness, AUCY (the
accepted standard measure for classifier performance) and AUCS were used,
respectively. The performance and fairness measures across test folds were av-
eraged to produce a single value pair for each dataset, per method, and in our
case for each value of orthogonality Θ. For all methods, the classification output
scores Z of samples were computed as the P (Y+) of the terminal leaf node of a
single tree, as previously shown in Fig. 5.2.

To be able to achieve state-of-the-art performance, each method was de-
ployed as a random forest (i.e., bagging) [Breiman, 2001]. As such, the final
classification score of a sample is the average Z model output of all terminal
nodes across the different trees generated. Throughout all methods, the same
set of hyperparameters was used, such as the number of trees (500), the maxi-
mum depth of each tree (4), and the random seed initialisation.

Bootstrapping, random feature selection, and continuous-feature discretisa-
tion were also applied, given their prevalence in real-world implementations of
tree-based algorithms, such as [Chen and Guestrin, 2016]. For our method, a
range of 11 values for Θ was used between 0 and 1. For details of the imple-
mentation, see [Pereira Barata, 2021].

To relate the threshold-dependent and threshold-independent demographic
parities, decision thresholds were applied to the classifier outputs of our
method across different values of Θ for the different datasets. The thresholds
were considered as 9 quantiles values between 0.1 and 0.9 of each test set out-
put and, consequently, demographic parity —defined in Section 5.3.1— was
averaged over folds.
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We measured, at each decision threshold —along Θ values— the Pearson
correlation coefficient [Kirch, 2008], and the respective null hypothesis p-values,
between strong demographic parity (as AUCS) and demographic parity. The
purpose is to check whether the behaviour of strong demographic parity across
Θ transfers to that of the induced demographic parity.

5.6 Results

In this section, we present the results of our experiments. We report on the
classification performance, fairness, and tunability of the performance-fairness
trade-off achieved by our method via orthogonality Θ. We do so for the afore-
mentioned sensitive attribute configurations: binary (Section 5.6.1), and non-
binary (Section 5.6.2). Specifically for the binary configuration, we compare
our method to the competing approaches. Finally, we show how the strong
demographic parity (measured in AUCS) yielded by our method translates to
the induced demographic parity across different (a) decision thresholds and (b)
values of orthogonality Θ (Section 5.6.3).

5.6.1 Binary Sensitive Attribute

To regard the performance and fairness of all methods per dataset configura-
tion, see Fig. 5.3. For our method, each point corresponds to a value of Θ ∈ [0, 1].
An orthogonality value Θ = 0 is equivalent to a traditional classifier and corre-
sponds to the right-most point. Conversely, Θ = 1 corresponds to the left-most
point. In the horizontal axis, AUCS represents (un)fairness. The vertical axis
depicts AUCY as classification performance.

Unlike the other methods which output a single performance-fairness value
(represented as a point), our SCAFF method produces a performance-fairness
trade-off curve along Θ. This is advantageous as it provides a way for practi-
tioners to make informed decisions. The impact of Θ on the tunability of the
performance-fairness trade-off for each dataset-sensitive attribute pair is con-
sistent: as increasingly greater values of Θ are used, the greater the fairness and
lesser the classification performance.

Noticeably, in Bank (Age), SCAFF was able to reduce AUCS by 0.2 at a loss in
performance of only 0.02. Overall, our method consistently performs better in
the combination of classification performance and fairness, allowing for a suit-
able target point. It is a convincing result of (1) the use of AUC in the splitting
criterion and (2) the flexibility of the orthogonality parameter Θ.
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5.6.2 Multiple and Multicategorical Cases

We present in Fig. 5.4 the outcomes of the dataset configurations for multiple
sensitive attributes —Adult (Multiple) in the left panel — and multicategorical
sensitive attribute values, considered as the intersectional values: Adult (Inter-
sectional) in the right panel.

For both panels, across different values of orthogonality Θ (horizontal axis),
the classification performance AUCY is shown in blue and the different AUCS

are provided (vertical axis). To the left, the AUCS for race and gender can be
regarded; to the right, the AUCS for each of the different intersectional sensitive
attribute values are displayed: NWF, NWM, WF, and WM.

Focusing on the Adult (Multiple) configuration, it is witnessable that the be-
haviour of the fairness measures along Θ match those of the Adult (Race) and
Adult (Gender) previously shown in Fig. 5.3: greater values of orthogonality
translate to greater values of fairness (decreasing AUCS) and lesser classifica-
tion performance AUCY. This is expected, since the performance-fairness trade-
off phenomenon is known.

SCAFF was able to reduce the bias towards both sensitive attributes simul-
taneously whilst maintaining adequate classification performance; in particular
at Θ = 0.7, both race and gender AUCS = 0.55 (a remarkably low bias value),
and AUCY is above 0.8 indicating model adequacy. Similarly for Adult (Inter-
sectional) at the same value of the orthogonality parameter Θ = 0.7, our method
was able to converge the bias of all sensitive attribute values to sensible values
concurrently whilst maintaining proper classification performance.

These results show our proposed method is able to produce adequate clas-
sification models with regards to multiple and multicategorical sensitive at-
tributes which maximise performance with the least decrease in fairness. To
put it differently, our method is able to exploit the performance-fairness trade-
off even for multiple and multicategorical sensitive attributes.

We remark, however, one limitation of our OvR approach. Since the OvR
AUCS along multiple attributes or values is evaluated as its maximum (as de-
scribed in Section 5.4.3), there is no guarantee that all attributes will have their
biases decreased along Θ: regard the slight increase in NWM bias.

Yet, this characteristic of our approach inherently bounds the highest pos-
sible value of bias. In other words, along Θ, the maximum value of AUCS is
strictly monotonically decreasing. The remark is further corroborated by the
NWF, WF, and WM intersectional sensitive attributes, of which the curves be-
have in a nearly-identical manner along the different values of Θ. Under the
assumption that none of the sensitive attributes is of greater importance than
any other, the maximally-valued sensitive attribute should always be consid-
ered as the attribute by which fairness is measured.
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5.6.3 Relationship with Demographic Parity

Below, we describe the results of applying our method to the five dataset config-
urations for different values of Θ, and measuring the corresponding (threshold-
dependent) demographic parity at different decision thresholds. The purpose
is to determine if (1) threshold-independence extends across arbitrary decision
thresholds, and (2) if changes in Θ induce an equivalent behaviour between
demographic parity and strong demographic parity.

In Fig. 5.5, it is shown how for different decision thresholds (horizontal axis),
the mean demographic parity (vertical axis) —across all test folds— behaves
with different values of Θ (differently-coloured lines), for the five binary sensi-
tive attribute dataset configurations. An additional panel is provided (bottom-
right), where for each value of Θ (horizontal axis), the variation of demographic
parity across decision thresholds for each dataset is present.

Across all dataset configurations, and particularly noticeable in those with
high demographic parity —concretely Bank (Age) and Adult (Gender)— the ef-
fect of the orthogonality parameter Θ is generally the same: as orthogonality
values increase, values for demographic parity decrease, regardless of the deci-
sion threshold selected.

The spread of demographic parity (measured as standard deviation) also
decreases along Θ, for different decision thresholds. To put it differently, higher
values of Θ translate to greater threshold-independence. This is sensical since,
by definition, SCAFF directly optimises for threshold-independent measures.

To grasp the relationship between strong and threshold-dependent demo-
graphic parities, regard Table 5.1. Each row depicts a decision threshold at
which demographic parity was computed; a column indicates a dataset con-
figuration. A cell depicts the Pearson correlation coefficient between the two
measures of fairness along the parameter Θ, for the decision threshold. The
coefficients represent how similar the behaviour between threshold-dependent
and - independent demographic parities is, induced by shifts in Θ.

Noteworthily, bolded entries indicate a statistical significance of α = 0.05

towards the null hypothesis of no correlation. Safe for a single outlying en-
try —threshold 0.9 in the Adult (Race) configuration, in which the value of de-
mographic parity is negligible— all table entries are consistently high and of
statistical significance. This shows that the effect of shifting the orthogonality
parameter Θ is, in practice, identical for both types of demographic parity re-
gardless of the decision threshold selected, validating our method with respect
to threshold independence.
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Table 5.1: Pearson correlation coefficients between strong demographic parity
(measured as AUCS) and demographic parity, along Θ, for different decision
thresholds in the five dataset configurations; bolded entries indicate a null hy-
pothesis p-value ≤ 0.05.

Dataset

Th Bank (A) Adult (R) Adult (G) Recid. (R) Recid. (G)

0.1 0.983 0.963 0.994 0.937 0.839

0.2 0.984 0.965 0.997 0.995 0.895

0.3 0.993 0.971 0.994 0.987 0.968

0.4 0.988 0.992 0.991 0.995 0.949

0.5 0.997 0.988 0.995 0.990 0.973

0.6 0.993 0.994 0.995 0.998 0.975

0.7 0.984 0.979 0.984 0.991 0.992

0.8 0.975 0.871 0.919 0.983 0.984

0.9 0.941 0.267 0.947 0.944 0.922

5.7 Chapter Conclusion

In the present work, we introduced SCAFF. By doing so, we proposed a learn-
ing algorithm which simultaneously (1) optimises for threshold-independent
performance —AUC— and fairness —strong demographic parity— (2) is able
to handle various multicategorical sensitive attributes simultaneously, (3) is
tunable with respect to the performance-fairness trade-off via an orthogonal-
ity parameter Θ, and (4) easily extends to bagging and (gradient) boosting.

Moreover, we empirically validated our method through experimentation
on benchmark datasets traditionally used in the fairness literature. Then we val-
idated our experiments with real datasets. Here, we showed that our approach
outperformed the competing state-of-the-art criteria methods, by its predictive
performance and model fairness, as well as by its capability of handling multi-
ple sensitive attributes simultaneously, of which the values may be valued mul-
ticategorically. Moreover, we demonstrated how the behaviour of strong de-
mographic parity induced by our method extends to the threshold-dependent
demographic parity.

As future work, we recommend to extend the current framework from
learning classification problems towards other learning paradigms. Ultimately,
the development and deployment of fair machine learning approaches within
sensitive domains is the goal in this field of research.


