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Chapter 4

Noise-Resilient Classifier

Noise in data is a pervasive concern, with causes ranging from human entry
errors to flawed automated detection tools. When used to learn a classifier,
noisy samples —where class labels and feature values may be corrupted— can
seriously deteriorate the resulting classifier performance. In this chapter we
propose DENOISE, a unified method to perform classifier learning from noisy
samples that leverages noise detection and sample weighting techniques.

The proposed approach consists of learning a noise-resilient classifier
through a log-odds sample weighting strategy, in which the weights are de-
rived from the noisy instances in a label noise detection step, as described in
Chapter 3. We report on the performance of our method in a controlled sce-
nario where noise was artificially injected into a diverse set of datasets.

Different parameterised configurations of label noise and feature noise pro-
portions were extensively tested against current state-of-the-art methods from
the fields of classifier learning under noisy conditions and label noise detection.
Results over ten datasets show that overall our method outperforms the state-
of-the-art with respect to both learning from noisy data and noise detection,
further validating the approach set out in Chapter 3 (which answered RQ2(a)),
and most importantly providing an answer to RQ2(b): given data with label
noise, how can noisy-samples be used to learn a well-performing model?

The current chapter corresponds to the following publication:
Pereira Barata, A., Takes, F. W., van den Herik, H. J., and Veenman, C. J. (2022).
Noise-resilient classifier learning. Pattern Recognition (under review)
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4.1 Noise and Performance Degradation

Noisy data are a prevalent issue in many data-reliant domains. Random input
errors, or even malicious intent, cause problematic hurdles for any data descrip-
tive or predictive task. In this chapter, we consider a supervised classification
scenario in which we distinguish between feature noise (see Definition 1.16)
and label noise (see Definition 1.17).

Samples within a classification dataset may have noise in either (1) the fea-
ture values; (2) the class labels; or (3) a combination of both [Wu, 1995]. A
major problem of noisy data towards classifier learning is the severe perfor-
mance degradation of the learned classifier [Heskes, 1994,Wilson and Martinez,
2000, Zhu and Wu, 2004]. A second issue may come from the complexity of the
trained model. The impact of the complexity can be assessed by the extent to
which a classifier is explainable [Brodley and Friedl, 1999, Segata et al., 2010].
The two problems may present serious consequences such as leading to inac-
curate medical diagnoses [Zhang et al., 2006, Holzinger et al., 2017]. targeting
the noisy samples is an endeavour in itself. Yet, an adequate detection of such
samples can be used to improve classifier learning with noisy data [Gamberger
et al., 1999]. In the case where feature noise is assumed, three different ap-
proaches have been proposed. First, if feature noise comes in the form of miss-
ing values, imputation and missing-indicator methods can be deployed. They
allow for adequate learning [Pereira Barata et al., 2019]. Second, if noise relates
to the existing values, a viable solution is to apply standard outlier detection
methods. As such, samples with outlying values are targeted and consequently
discarded prior to learning a classifier [Li et al., 2015]. Third, the usage of learn-
ers which are robust to samples with noisy features has been investigated with
positive results [Sáez et al., 2014].

Most literature focuses on label noise [Frénay and Verleysen, 2013], as it is
typically more detrimental to classifier learning than feature noise. Two reasons
are: (1) there is a greater number of features than the single category label, and
(2) not all features are equally important towards learning a classifier, whereas
the class label of a sample is always of paramount importance [Sáez et al., 2014].
In [Frénay and Verleysen, 2013], the authors categorise label noise into three
types or mechanisms:

1. NCAR, the proportion of mislabelled samples is the same per class, and
thus independent of features and class;

2. NAR, the proportion of mislabelling is dependent on class, and indepen-
dent of features;

3. NNAR, the proportion of mislabelled samples may or may not be the
same per class and is dependent upon the features.
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Joint class and feature noise (i.e., the NNAR case) is often attributed to
class overlap. Samples of different classes which are similarly feature-valued
increase class-separability issues [Beigman Klebanov and Beigman, 2009].
From a different perspective, a NNAR mechanism might be a result of mali-
cious data manipulation [Pereira Barata et al., 2018b]. As an example, let us
consider the practical scenario of international transportation of waste. Transit
of wasteful materials is highly regulated through a system of permits. Waste
transportation costs vary considerably depending on the waste category of a
permit (i.e., class). Therefore, companies have a financial incentive to allege
transporting waste with erroneous categorisation (i.e., mislabelling). To further
mask the manipulated label, other permit values (i.e., features) might be altered
to resemble those of the false class label. In other words, the manipulated fea-
ture values may contrast the unobserved true label. This complex NNAR sce-
nario is the focus of our research. To address the issue of learning with label
noise, at least three strategies have been proposed in the literature. We mention
the first two strategies —baseline and preprocessing— and discuss to some extent
the third strategy: sample weighting

The first strategy is a baseline strategy. It involves using robust noise-tolerant
learning architectures [Abellán and Masegosa, 2010] by deploying regularisa-
tion and feature selection protocols [Wang et al., 2019, Ghosh et al., 2017]. Its
main advantage is the fact that it does not require any data pre-processing.
However, using this strategy alone is not sufficient as the information contained
in the noisy samples is not considered.

The second strategy is a preprocessing strategy in which noisy samples are
targeted for either removal from the dataset or for label swapping —data clean-
ing or cleansing [Miranda et al., 2009]. The action to remove or relabel a sample
depends on chosen decision threshold. In practice, this is a difficult choice. It
often leads to the case where too many or too few instances are targeted, hence
compromising the performance of the classifier [Koplowitz and Brown, 1981].

The third strategy involves using sample weighting (i.e., coefficients) in the
loss function during learning [Liu and Tao, 2015]. Optimally, sample weights
reflect the (un)certainty of the recorded feature values and class labels. How-
ever, current weighting approaches present three main hurdles, which we dis-
cuss below.

First, a sample weighting strategy may require a separate non-noisy (i.e.,
curated) sample to compute the weights which is often not available [Ren et al.,
2018]. Second, current literature tends to focus on non-negative weights. This
may impact the learned model by not taking advantage of the certainty that a
sample is probably a mislabel. Third, to assign adequate weights to samples
based on their observed feature values and class label, an adequate measure of
sample belongingness is required which is not easily tractable.
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From the literature, belongingness is defined as follows [Kylberg and Sin-
torn, 2013].

Definition 4.1 – Belongingness

Belongingness is a broad term representing the extent to which a class-
labelled sample belongs to the class indicated by its label.

The computation of belongingness is generally addressed by exploiting the
aforementioned baseline approach: a robust learner is trained on a dataset —or
on a portion of it in a CV manner— and the prediction scores of the learned
classifier are used as a measure of sample belongingness [Gamberger et al.,
1999, Jeatrakul et al., 2010].

However, overfitting may occur when the entire dataset is used for train-
ing which frequently results in poor detection performance. Moreover, even if
scores are computed with CV to avoid overfitting, the scores are not comparable
across folds since the training sets are not the same.

Our Novel Approach

Given the lacunae in the literature, to improve classifier learning with noisy
samples, we propose (1) a novel sample weighting strategy and (2) a new de-
tection method. Since sample weighting is reliant on an appropriate measure
of belongingness, a new method to label noise detection is really required. By
using of a robust surrogate learner, we propose DENOISE, a sample weighting
strategy for learning which leverages the belongingness of samples. As a result,
we arrive at the following two contributions.

1. Learning a classifier that is resilient to the type of noise in such a way that
performance loss is minimal compared to the non-noisy case;

2. Detecting samples of which the label is corrupted, in which feature values
may be disharmonious with respect to the true (unknown) label.

Obviously, but quite important, the two contributions are related. Classifier
learning with noisy data depends on the initial step of detecting samples with
label noise.

The structure of the chapter is as follows. Section 4.2 states the terminol-
ogy and the problem description precisely. Section 4.3 refers to the literature
related to our work and reveals the open issues which lead us to our contribu-
tions. Section 4.4 describes our methods for classifier learning and the detection
of samples with label noise. Section 4.5 describes our experimental setup. Sec-
tion 4.6 presents the results of our experiments. Finally, Section 4.7 concludes
this chapter and provides direction for future research.
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4.2 Problem Description

Given a class-labelled dataset, we consider the scenario in which the feature
values and target labels have been compromised. Moreover, we focus on the
case where feature and class label noise distributions share dependencies; i.e.,
the NNAR scenario. Under this scenario, a noisy sample is defined as follows.

Definition 4.2 – Noisy sample

A noisy sample under the NNAR scenario is a sample of which the class
label and some of its feature values are untrue.

4.2.1 Noise Interpretation

Given a sample with an incorrect class label, we consider inappropriate fea-
ture values to be values which explicitly correlate more to the observed in-
correct class than to the true unobserved one. The true (unobserved) label
is thus further masked. This translates at least to two real-world phenom-
ena: (1) disease-mapping given genetic admixture in populations [Schrider
and Kern, 2018, Chen et al., 2014], and (2) data-tampering activities relevant to
the risk assessment and fraud-detection domains [Diekmann and Jann, 2010].
Here we remark that this translation is a generalisation of the label noise case
as studied in [Müller and Markert, 2019] with the addition of feature noise.

4.2.2 Formal Problem Description

In formal terminology, let D represent a distribution of a pair of random vari-
ables (X,Y ) ∈ X × {+,−}, where X ∈ Rm. Let also (X1, Y1), . . . , (Xn, Yn)

be an independent and identically distributed (i.i.d.) sample of D, with
(X̃1, Ỹ1), . . . , (X̃n, Ỹn) as a sample of the corresponding noisy distribution D̃.

For a given independently distributed label noise rate ρy = P (Y 6= Ỹ ), we
denote the feature noise rate ρx as the proportion of m dimensions of which the
variable (feature) values are sampled from the distribution conditioned with re-
spect to the noisy label Ỹ . Under the described NNAR mechanism, the problem
description is:

1. can we predict the label Y for an observation X , given noisy training ob-
servations (X̃i, Ỹi)? and

2. can we detect the noisy samples (X̃i, Ỹi) where Ỹi 6= Yi?
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4.3 Related Work

There is ample literature in both classifier learning in the presence of noisy sam-
ples and label noise detection. Here, we report on relevant work related to
supervised learning approaches (Section 4.3.1) and detection techniques (Sec-
tion 4.3.2) when label noise occurs.

4.3.1 Classifier Learning

Throughout the literature, different approaches have been proposed towards
the task of learning with noisy data [Pechenizkiy et al., 2006,Manwani and Sas-
try, 2013, Teng, 2000, Yin and Dong, 2011, Teng, 2001]. At a broad level, these
approaches can be partitioned into three not mutually exclusive categories: (1)
robust learners; (2) classification filtering; and (3) sample weighting.

Robust Learners

From the theory [Bartlett et al., 2006] we know that commonly used loss func-
tions in machine learning are not robust to label noise. Yet, some learning archi-
tectures and regularisation techniques have been empirically shown to present
better results than others in mitigating noisy samples. A breakthrough in this
area was [Dietterich, 2000]. There, it was shown that ensemble methods based
on bagging achieved superior classification performance when compared to
boosting. The reasoning behind is two-fold. First, boosting assigns large scores
to mislabelled instances and focuses on those samples to produce the follow-
ing additive decision boundaries. This leads to poor generalisations. Second,
bagging uses different sampling subsets during learning improves on the dis-
similarity between the base models making the final classifier more robust.

Still, more recent (gradient) boosting techniques such as LogitBoost and XG-
Boost have been shown also to be robust to label noise [Gómez-Rı́os et al.,
2017]. When compared to standard boosting approaches, gradient boosting
techniques allow for the misclassification of the training samples rather than
over-focusing on them during learning, mitigating overfitting. This factor, in
connection with regularisation and feature selection protocols, makes up for
greater efficacy when dealing with label noise [Abellán and Moral, 2003]. In
summary, it is a challenging research area.

Classification Filtering

Filtering approaches are characterised by either (a) removing or (b) relabelling
samples based on a threshold set upon the respective belongingness values.
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From empirical experimentation published, the literature has shown that
removing samples tends to be more efficient towards learning than rela-
belling [Cuendet et al., 2007]. However, too many samples might be targeted
for removal and that negatively impacts the learning process. Conversely, if
too many mislabelled instances are kept, the performance of the learned model
is also heavily compromised [Koplowitz and Brown, 1981].

Sample Weighting

A more sophisticated approach to classifier learning with label noise involves
using sample weights during learning; this approach is termed sample weighting.

Definition 4.3 – Sample weighting

Sample weighting is an approach by which, under a classifier learning
scenario, training samples are assigned weights according to some specific
weighting strategy such that the weights reflect the contribution of each
sample towards learning the final classification model.

These weights are applied as coefficients in the loss or error function dur-
ing risk minimisation. As such, samples have either greater or lesser impact
towards learning the final model.

Conceptually, instances with a higher belongingness score (see Section 4.3.2)
will have higher weights, and vice-versa. The work presented in [Ren et al.,
2018] shows how to estimate sample weights as a minimisation objective by
having access to a proportion of non-noisy —curated— samples with ground
truth labels. Having access to these data is not always possible, therefore limit-
ing the applicability of this particular sample weighting strategy.

In [Liu and Tao, 2015], the authors demonstrate how any surrogate loss
function designed towards a standard classification task can take advantage
of sample weighting strategies when noisy labels are present. They propose
a weighting strategy based on the ratio of distributions, often used in domain
adaptation [Gretton et al., 2009], by assigning a sample weight Wi to the ith

instance based on the following ratio of posterior probabilities:

Wi =
PD̃(Ỹi|X̃i)− ρ−y

(1− ρ+ − ρ−) · PD̃(Ỹi|X̃i)
, (4.1)

ρ−y = min
X̃∈X̃

PD̃(Ỹ |X̃). (4.2)

The drawback of this approach relates to the range of values of the weights.
Since all weights are non-negative by definition [Scott, 2015], samples with
a high probability of being noisy have a low contribution towards learning.
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This characteristic is undesirable since the valuable information contained
in those instances is lost. To some extent, it may be detrimental to classification
performance, analogous to the removal of samples in the filtering methods.

4.3.2 Label Noise Detection

Most label noise detection methods are based on supervised learning ap-
proaches [Frénay and Verleysen, 2013]. Their purpose is two-fold: (1) to target
samples which may indicate real-world noncompliance within the inspection
domains [Pereira Barata et al., 2018b]; and (2) to perform data preprocessing
towards classifier learning [Gamberger et al., 1996].

The task of detecting label-noisy samples is most commonly undertaken by
analysing measures of belongingness of a sample towards its observed class la-
bel. In this sense, belongingness may be represented as either a score function
or the class-conditional posterior probability P (Y |X), both usually tractable
by classifier learning [Jeatrakul et al., 2010, Thongkam et al., 2008, Brodley and
Friedl, 1996]. Instances with a low score or posterior probability with respect
to the class label may be flagged as mislabels [Sun et al., 2007]. Throughout
the label noise detection literature, a recurring theme is the usage of supervised
classification techniques to infer sample belongingness [Frénay and Verleysen,
2013]. Accordingly, belongingness may be computed according to one of the
following three strategies.

The first strategy is to learn a classifier on the entire dataset and to deploy
the trained model on the same dataset; in recent work [Müller and Markert,
2019], a robust learner was applied with the purpose of detecting mislabelled
entries and presented them to human experts for further evaluation. Even
though robust learners may be used, however, overfitting may still occur. Thus,
mislabelled instances might be evaluated inappropriately, resulting in unreli-
able belongingness values.

The second strategy involves learning multiple classifiers on training sub-
sets in a CV manner and deploying each trained model on the corresponding
validation set [Gamberger et al., 1999]. While this strategy helps mitigate over-
fitting, classifier outputs are not comparable across folds since difference train-
ing sets were used to yield the scores [Bennett, 2000].

The third strategy is ensemble voting (e.g., majority or consensus by differ-
ent learners). It can be applied to the generate votes by following either strategy
previously mentioned [Miranda et al., 2009,John, 1995]. Since this strategy is de-
pendent on the aforementioned strategies, all mentioned issues apply. A further
disadvantage of these approaches is their focus on the removal or relabelling of
samples: a poor decision described in Section 4.3.1.
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Literature in both classifier learning with noisy samples and label noise de-
tection tasks is extensive. With respect to classifier learning, simply using a ro-
bust learner is a too generic approach and does not actively leverage the noisy
samples. Removing or relabelling samples is also not suitable since the choice
of hard thresholds is difficult to justify.

Sample weighting can mitigate the threshold issue, but current strategies ei-
ther require access to curated samples, which are hard to obtain, or they do not
exploit the information of probable mislabels during training. That is, weight
values asymmetrically take belongingness and non-belongingness into account.
In terms of label noise detection, there is currently no solution to computing be-
longingness which provides both minimal overfitting and calibrated (i.e., com-
parable) output. Ultimately, a new sample weighting strategy is required, as
well as a novel sample belongingness computation approach. In the following
Section 4.4, we describe our method.

4.4 The DENOISE Method

Below now provide the details of our method: DENOISE. It is data-driven
method which provides noise-resilient classification by effectively identifying
noisy samples, jointly dealing with the problems of label prediction with noisy
samples and label noise detection. Succinctly, it learns a surrogate classifier
from noisy data which is robust to both label noise and feature noise collec-
tively by means of a log-odds sample weighting strategy. The sample weights
are retrieved when addressing the label noise detection problem.

For each instance we retrieve the calibrated belongingness values and use
them to compute the respective sample weights. In turn, the belongingness
values are yielded by several robust surrogate learners deployed in a CV fash-
ion with the addition of a calibration protocol. The label noise detection is then
solved by applying a sensible threshold to the calibrated output. In Section 4.4.1
we detail our classifier learning setup. In Section 4.4.2 we describe the label
noise detection process.

4.4.1 Learning with Sample Weights

The main concept behind our method is directly linked to the strategy by which
sample weights are computed. Given noisy samples (X̃1, Ỹ1) . . . , (X̃n, Ỹn) of D̃,
a loss L, and weights W1, . . .Wn, the task of the learner is to find a function
f ∈ F :

arg min
f∈F

1

n
·
n∑
i=1

Wi · L(f(X̃i), Ỹi), where (4.3)
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Wi = ln

(
PD̃(Ỹi|X̃i)

1− PD̃(Ỹi|X̃i)

)
. (4.4)

We propose the sample weight of the ith instance to be the log-odds of the event,
i.e., the posterior probability; sample weights can therefore take zero, positive,
or negative values.

Zero

Sample weights of zero only occur for samples with a posterior probability of
0.5. It entails no contribution to the learning of the final learner. This is sensible,
since a posterior of 0.5 towards one class is the same towards the other.

Positive

Weights greater than zero translate to the learner having the information that
the observed label is probably not noisy. The larger the weight associated with
a specific instance, the more a learner is impacted by it, while trusting its label.

Negative

Weights lesser than zero follow the same logic as positive weights except that
the observed label is assumed to be incorrect during learning. A negative
weight inverts the output of the loss function: the learner is rewarded for in-
correctly learning the observed label. The more negative a sample weight is,
the larger the impact of that sample towards learning its opposite label.

Posterior Estimation

Albeit intuitive and conceptually simple, our method requires the estimation of
posterior probabilities to compute the sample weights; see Eq. 4.4. To be able to
compute these posterior probability estimates, and hence the sample weights,
we use sample belongingness as a starting point towards acquiring the posteri-
ors. Since belongingness has a myriad of caveats as detailed in Section 4.3.2, in
the following Section 4.4.2 we show how to generate it appropriately, address-
ing the pitfalls mentioned in the literature.

4.4.2 Posterior Estimation and Detection

Our approach to label noise detection is data-driven in the sense that it uses
a set of learning functions to compute the belongingness of samples. The be-
longingness will translate to the posterior probabilities required to compute the
sample weights, required for classifier learning (mentioned in Section 4.4.1).
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Learning Functions

We follow a supervised learning approach, where the belongingness of a sam-
ple is determined by a set of learned classifiers. The learners should be robust to
noise and incorporate (1) regularisation, (2) feature selection, or (3) both proto-
cols [Sharma et al., 2017]. The choice of architecture should be sensibly chosen
given the type of data being handled; e.g., tabular data may be handled with
gradient boosted approaches [Pafka, 2019], and image datasets by dropout con-
volutional neural network [Park and Kwak, 2016]. To minimise overfitting, be-
longingness is computed per class on a left out part, rather than on the training
set. Consequently, we need to optimise several classifiers in a CV setup.

Since, each CV fold has a specific training set with which a learned classi-
fier is yielded, the output of each classification model is not necessarily com-
parable. As a result, all classifiers must be calibrated such that their output is
comparable. To note, all hyperparameters can be optimised through standard
CV [Claesen and De Moor, 2015, Bergstra and Bengio, 2012].

Calibration

To calibrate the output of the learner functions, Platt scaling [Platt et al., 1999] is
used. This is a widely accepted method in supervised learning literature which
converts classifier output into well-calibrated posterior probabilities [Böken,
2021, Niculescu-Mizil and Caruana, 2005, Guo et al., 2017]. Here, multiple
learner functions are learned and calibrated; calibration sets are used such that
the output of a learner function is, itself, used as input towards re-learning the
observed class label by sigmoid functions (i.e., LR modelling).

The original output of a learned model then becomes the estimated posterior
probability through nested CV. For an outer K-fold CV setup, each K-training
fold is further split using L-fold CV. The K-training folds serve to calibrate
the learner functions. Probabilities are gathered by deploying the calibrated
learners onto the respective K-test folds. The estimated posterior probabilities
of all samples become the union of all the folds:

PD̃(Ỹ |X̃) =
K⋃
k=1

PD̃(Ỹk|X̃k). (4.5)

PD̃(Ỹk|X̃k) represents the posterior probabilities of samples from the kth test
fold, given by the learners calibrated on the respective kth training fold.
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Detection

To solve the noisy sample detection problem, we propose using the afore-
mentioned estimated posterior probabilities as detection scores in which the
lower the probability of a sample, the more likely that sample is to be flagged
as noisy. A detection threshold may be applied to the sample probabilities,
such that posterior values lesser than 0.5 flag samples as having label noise.
Conversely, a monotonic transformation could be applied such that higher
transformed probabilities equate to higher detection scores; e.g., the − log2(x)

function transforms probabilities into their information content, in which sam-
ples with a value higher than 1 are considered label noise.

4.5 Experiments

In this section we describe the experimental setup by which we evaluate our
methods. The setup for classifier learning and label noise detection share three
similarities:

1. ten noise-free classification datasets were gathered to allow for a con-
trolled scenario, in which ground truth labels are known (Section 4.5.1);

2. to simulate a NNAR mechanism, a proportion of the class labels was
flipped and a proportion of feature values were replaced, replicated for
several random seeds (Section 4.5.2);

3. baseline state-of-the-art methods were used to gauge the comparative per-
formance of our approaches (Section 4.5.3).

To measure the performance of classifier learning, classifiers were learned
on noise-injected training sets, deployed on non-manipulated test sets, and the
AUC [Narkhede, 2018] was computed (Section 4.5.3). For label noise detec-
tion, the detection targets were considered as the manipulated samples, and
AP [Robertson, 2008, Naseer et al., 2018] was used as the performance measure
of the detection task (Section 4.5.3).

For the choice of learner, a gradient boosted framework (XGBoost [Chen
and Guestrin, 2016]) was selected for its robustness. The surrogate loss func-
tion applied was the logistic loss [Painsky and Wornell, 2018]. For reproducibil-
ity purposes, our setup is made available online with the all necessary code to
download the datasets, manipulate them, perform the learning and detection
tasks, and output the yielded results1.

1https://github.com/pereirabarataap/denoise

https://github.com/pereirabarataap/denoise
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4.5.1 Data

Since we are interested in measuring the performance of classifier learning and
label noise detection, we gathered datasets with known class labels. Ten bench-
mark [Asuncion and Newman, 2007] classification datasets were retrieved from
openML [Vanschoren et al., 2014]: an open, organised, and community-driven
online ecosystem for machine learning. These datasets were selected for their
heterogeneity regarding sample size, dimensionality (i.e., number of features),
and feature type (e.g., number of numerical or categorical features).

Table 4.1 summarises each dataset with respect to aforementioned charac-
teristics. Regarding it, #samples indicates sample size, and #features represents
the number of features of which #numeric are numerical and #category are cate-
gorical. The datasets were then manipulated to simulate a NNAR mechanism.

Table 4.1: Datasets retrieved for noise simulations

ID #samples #features #numeric #category

1495 250 6 0 6
53 270 13 13 0

40710 303 13 5 8
40690 512 9 0 9

335 554 6 0 6
1510 569 30 30 0

40705 959 44 42 2
1462 1372 4 4 0
1504 1941 33 33 0

41143 2984 144 8 136

4.5.2 Synthetic Noise

Noise was synthetically generated by replacing class labels and feature values.
Different combinations of label noise ρy and feature manipulation ρx were con-
sidered. Specifically for the learning task, datasets were first split into train-
ing (90%) and testing (10%) sets; only the training sets were injected with
noise. Noise was generated ten times with different initialisation seeds per pair
(ρx, ρy) to account for randomness.
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Label Noise

Several proportions of label noise were considered. For each dataset, ρy ∈
{.05, .1, .15, .2, .25, .3, .35, .4} label noise proportions were introduced follow-
ing a uniformly-distributed sample selection. This range of values was chosen
since ρy < 0.05 would have negligible impact on robust learners and ρy > 0.4

would prove too corrupt for any meaningful experimental results.

Feature Manipulation

To recreate the scenario in which feature values are manipulated, samples
which were label-swapped had a proportion of their feature values replaced.
The proportions ρx ∈ {0, .05, .1, .15, .2, .25, .3, .35, .4} of randomly-selected fea-
tures were selected per sample. Manipulated features had their values replaced
per label-swapped sample as described previously. Replacement values were
drawn from univariate feature distributions with parameters estimated condi-
tionally from the category being mimicked.

The distributions used to sample the replacement values were modelled as
either: (a) the normal distribution N (µ, σ) for numeric features, with µ and σ

as the estimated mean and standard deviation; or (b) the multinomial distribu-
tion with estimated event probabilities {p1, p2, . . . , pπ}, π being the number of
unique feature values.

4.5.3 Evaluation

We compared DENOISE to current methods of classifier learning with sample
weighting and label noise detection. For all tasks, a learning framework was
required which was robust to label noise.

Since the datasets in our experiments data are tabular and have heteroge-
neous characteristics, a gradient boosted framework with a surrogate logistic
loss function was selected and applied equally to all scenarios being tested. For
the classifier learning task, the sample weighting method in [Liu and Tao, 2015]
(LT15) —detailed in Section 4.3.1, Eqs. 4.1 and 4.2— was used as benchmark.
For the label noise detection task, the solution presented in [Müller and Mark-
ert, 2019] (MM19) —described in Section 4.3.2— was selected as our benchmark.

Learning Performance

Our method DENOISE and LT15 were evaluated using 10-fold crossvalidation.
For each fold, the training set (90%) was comprised of noisy samples and the
test set (10%) was comprised of non-manipulated samples. To note, only the
weighting strategies of each method were evaluated during the learning task.
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Both methods had access to the same posterior probability values per sample,
which were yielded by DENOISE.

Classification performance was measured as AUC on the non-manipulated
tests set for each fold. Accordingly, the true class label is our target prediction.
AUC values were averaged across all folds per dataset, across different random
seed initialisations, for each noise configuration pair (ρx, ρy). Each learning
strategy being evaluated yielded one mean AUC score per dataset, per noise
configuration pair.

Detection Performance

To compare DENOISE to MM19, the detection targets were considered to be the
synthetically manipulated instances described previously. The measure of be-
longingness yielded by each specific method was used as the detection score.
Accordingly, detection performance was measured in terms of AP, a common
measure used in anomaly detection [Frery et al., 2017].

AP values were averaged across the different random initialisations, for
each noise configuration pair (ρx, ρy). Each detection strategy being evaluated
yielded one mean AP score per dataset, per noise configuration pair.

4.6 Results

Here, we present the results of our experiments. We present them in two man-
ners for both tasks, classifier learning (Section 4.6.1), and label noise detection
(Section 4.6.2). An aggregated presentation —Fig. 4.1 and Fig. 4.2— is comprised
of averages across all performance measures yielded for all datasets and noise
configurations. We present these results as heatmaps in which each cell corre-
sponds to a noise pair (ρx, ρy): lighter cell tones indicate higher performance
values. Numbers indicate the mean performance score yielded for that specific
noise configuration, across all datasets and random initialisations, for each spe-
cific task and method used to solve that task.

A performance difference heatmap is also provided, showing comparative
changes in performance between the methods being gauged. Similarly to the
previous heatmaps, each cell represents the average performance gain of our
method for a particular noise configuration, comparatively to the literature
baseline usedc. Should we present all datasets and all noise configurations
discriminably, a total of 720 performance values would need to be provided
which would not be practical. A presentation per dataset —Table 4.2 and Ta-
ble 4.3— relays the performance means and standard deviations yielded by all
our experiments for a subset of datasets (IDs 1510, 10705, and 41143) and noise
configurations (0, .05), (0, .4), (.2, .2), (.4, .05), and (.4, .4).
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Table 4.2: Learning performances with noisy data (per dataset)

Dataset ID (ρx, ρy) LT15 DENOISE

1510

(0, .05) 0.988 ± 0.002 0.987 ± 0.002
(0, .4) 0.727 ± 0.014 0.860 ± 0.047
(.2, .2) 0.984 ± 0.003 0.988 ± 0.002
(.4, .05) 0.991 ± 0.001 0.988 ± 0.001
(.4, .4) 0.987 ± 0.003 0.990 ± 0.002

40705

(0, .05) 0.968 ± 0.003 0.976 ± 0.002
(0, .4) 0.710 ± 0.016 0.827 ± 0.072
(.2, .2) 0.966 ± 0.003 0.967 ± 0.004
(.4, .05) 0.978 ± 0.001 0.976 ± 0.001
(.4, .4) 0.969 ± 0.004 0.962 ± 0.008

41143

(0, .05) 0.858 ± 0.003 0.865 ± 0.002
(0, .4) 0.653 ± 0.012 0.753 ± 0.014
(.2, .2) 0.854 ± 0.002 0.857 ± 0.002
(.4, .05) 0.864 ± 0.002 0.867 ± 0.002
(.4, .4) 0.847 ± 0.005 0.849 ± 0.006

These datasets and noise configurations were selected to provide a repre-
sentative sample of the entire set of experiments. The datasets have mostly
disparate characteristics (see Table 4.1), and the noise configurations values are
the most spread. Bolded values indicate a mean performance gain of at least
0.01 of the corresponding method versus the other.

4.6.1 Classifier Learning Task

We present the aggregated average AUC performance scores yielded for the
learning task in Fig. 4.1. The three heatmaps represent LT15 (left), DENOISE

(center), and the performance difference between the two methods (right). For
every configuration of label swapping (vertical axis) and feature manipulation
(horizontal axis), DENOISE shows superior performance. The difference in AUC
performance varies significantly across different noise configurations (ρx, ρy).

The minimum performance change is ≈ .01, seen in, for example, cell
(.4, .05). The maximum performance difference is ≈ .1 in configuration (0, .35).
On average, the difference in performance tends to increase as the noise label
proportion increases; i.e., the more label noise is present, the better our method
fares. The performance difference also tends to increase as the feature manipu-
lation proportion decreases.
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Table 4.3: Detection performances of noisy samples (per dataset)

Dataset ID (ρx, ρy) MM19 DENOISE

1510

(0, .05) 0.858 ± 0.037 0.860 ± 0.037
(0, .4) 0.576 ± 0.014 0.621 ± 0.034
(.2, .2) 0.719 ± 0.030 0.837 ± 0.020
(.4, .05) 0.476 ± 0.072 0.536 ± 0.052
(.4, .4) 0.763 ± 0.018 0.825 ± 0.018

40705

(0, .05) 0.734 ± 0.033 0.721 ± 0.032
(0, .4) 0.569 ± 0.018 0.627 ± 0.042
(.2, .2) 0.458 ± 0.029 0.616 ± 0.025
(.4, .05) 0.196 ± 0.009 0.322 ± 0.020
(.4, .4) 0.494 ± 0.016 0.609 ± 0.022

41143

(0, .05) 0.224 ± 0.033 0.464 ± 0.019
(0, .4) 0.491 ± 0.011 0.533 ± 0.027
(.2, .2) 0.260 ± 0.006 0.436 ± 0.011
(.4, .05) 0.062 ± 0.003 0.180 ± 0.014
(.4, .4) 0.364 ± 0.007 0.503 ± 0.010

In Table 4.2 we show the per dataset average AUC performance scores for
the selected datasets and noise configurations, as well as the respective stan-
dard deviations along the ten different random initialisations. Bolded entries
translate to an increase in mean performance of at least 0.01. The differences
in performance are most apparent in noise configuration (0, .4) in all datasets,
where our method DENOISE vastly outperforms LT15. In those cases, the per-
formance gain is consistently ≥ 0.1.

Regarding the standard deviations, most noise pair configurations present
similar values. However, two outliers stand out in the DENOISE entries. Notice-
ably, datasets with IDs 1510 and 40705, since the same noise configuration (0, .4)

shows larger standard deviations than the LT15 method. However, it is also for
those two datasets and the particular noise configuration that LT15 also has an
increased spread of the mean performance comparatively to all other datasets
and noise pairs.

4.6.2 Label Noise Detection Task

We display the aggregated average AP performance yielded for the detection
task in Fig. 4.2. The three heatmaps represent MM19 (left), our DENOISE

method (center), and the performance difference between the two methods
(right).
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For every noise configuration, our method shows superior performance
overall. The difference in AP performance varies significantly across different
noise configurations (ρx, ρy). The minimum performance change is ≈ .01, seen
in, for example, cell (0, .4). The maximum performance difference is ≈ .13 in
configuration (.1, .2). Comparatively, the performance difference steadily de-
creases from its maximum, regardless of the direction taken in the horizontal or
vertical axes.

Table 4.3 represents the per dataset AP performance scores for the selection
of datasets and noise configurations and standard deviations across the ten ran-
dom initialisations. With the exception of two entries, our approach yielded
a mean performance gain overall. The differences in performance vary across
datasets as well as along the noise pairs. For the majority of entries, our method
shows higher standard deviation values. Yet, the differences are small. The
largest difference in spread between the two methods is 0.024 for the entry with
ID 40705 and noise pair (0, .4).

4.7 Chapter Conclusion

In this chapter we proposed DENOISE, a method for noise-resilient classifier
learning which leverages label noise detection via log-odds sample weighting.
We compared our method to the state-of-the-art in learning with noise and label
noise detection, under a NNAR mechanism in which label noise and feature
noise may share dependencies.

In summary, with regard to the problem description, we may conclude that
in the NNAR scenario DENOISE achieves overall (1) better class label predic-
tions with noisy training data, and (2) better detections of those noisy samples
than current literature methods.

We designed an experimental setup in which ten datasets with hetero-
geneous characteristics were used, representing different domains. For each
dataset, different parameterised combinations of label noise and feature noise
were extensively explored. Experimental setups were repeated ten times with
different random initialisations.

Within the NNAR setting we considered the two tasks of: (1) learning a
classifier that is resilient to this type of noise such that performance loss is min-
imal compared to the non-noisy case, and (2) detecting samples of which the
label is corrupted, while the feature values may be disharmonious with respect
to the true (unobserved) label. The results demonstrate that DENOISE overall
outperforms the state-of-the-art overall in both learning and detection tasks.

Synthesising the NNAR mechanism is a complex task. On the one hand, cor-
rupting class labels in a binary classification setting is rather straightforward.
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On the other hand, the addition of feature manipulation involves applying de-
pendency assumptions. While we chose a random feature selection strategy, a
different approach could have been chosen; e.g., features could have been se-
lected per class instead of per sample. A different approach to feature selection
would be to follow a non-random selection strategy based on feature impor-
tance. Similarly, different robust classifiers could have been used, alongside
different types of data, as well we different loss functions instead of the ap-
plied logistic loss. As such, our results are bound to our experimental setup
and further work may be performed to other experimental setups. Yet, we have
laid out a framework upon which experimental design choices can be made to
generate specific noise scenarios.

Ultimately, handling noisy data remains a difficult task, even though noise
mechanisms can be formally defined. For a NNAR case, as discussed in this
chapter, the properties of the underlying distributions of the observed noisy
data are often varied and not fully tractable. Future work could improve upon
these simulations by using different assumptions over the noise in the data, e.g.,
by stipulating (1) different types of distributions for feature manipulation, and
(2) varying correlations with the well-defined class labels.


