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Chapter 3

Crosslier Detection

Finding anomalous entries is a difficult task with real-world consequences.
Consider the following example. Transit of wasteful materials within the EU
is highly regulated through a system of permits. Waste processing costs vary
greatly depending on the waste category of a permit. Therefore, companies
may have a financial incentive to allege transporting waste with erroneous cat-
egorisation (i.e., label-noisy samples). Our goal is to assist inspectors of the ILT
in selecting potentially manipulated permits for further investigation. For this
purpose, we introduce the concept of crosslier, of which the definition follows.

Definition 3.1 – Crosslier

A crosslier is a sample of which (a) the category label is swapped and (b)
a proportion of its features is more similarly valued to the features of the
samples of the newly-swapped category.

To detect crossliers, we propose the EXPOSE method. Moreover, to facilitate
the targeting of crossliers by inspector, we define the crosslier diagram.

Definition 3.2 – Crosslier diagram

A crosslier diagram is a visualisation tool specifically designed for do-
main experts to easily assess crossliers.

We compare EXPOSE against traditional detection methods in various
benchmark datasets. By evidencing the superior performance of our method
in targeting these instances of interest, we provide an answer to RQ2(a): given
data with label noise, how can noisy-samples be adequately detected?

The current chapter corresponds to the following publication:
Pereira Barata, A., Takes, F. W., van den Herik, H. J., and Veenman, C. J. (2021).
The eXPose approach to crosslier detection. In 2020 25th International Conference
on Pattern Recognition (ICPR), pages 2312–2319. IEEE
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3.1 Crossliers and Miscategorisation

Within the EU, economic proliferation and globalisation have resulted in a in-
crease of transnational waste transportation. The nowadays established List of
Waste provides EU member-states with waste categorisation, which promotes
appropriate waste handling, particularly relevant for hazardous waste [Euro-
pean Commission, 2018a]. Since transportation of waste poses serious health
and environmental risks, all movement of waste must be priorly noticed
through a system of permits [European Commission, 2018b]. In the Nether-
lands, the entity responsible for permit compliance is the ILT. Inspectors must
evaluate and determine whether a permit (a) is likely to be compliant and re-
quires no further inspection, or (b) raises concern and requires investigation.

Since different waste categories are encompassed by specific regulations
with dissimilar processing costs, companies may have an economic incentive
to purposefully miscategorise their waste. Hence, targeting such cases is of ut-
most importance to the inspectors of the ILT. Given high volume and velocity
of data, however, inspectors cannot adequately assess all permits. Therefore,
automatic methods are required.

Under the current problem scenario, the usually most-effective supervised
learning approaches to instance targeting [Choudhary and Gianey, 2017] are
not applicable since no historical labels for misconduct are available. Unsuper-
vised learning techniques are also not suited, given the unspecificity of the re-
trieved instances. Here we note that for anomaly detection methods, outlying-
ness alone does not translate to the desired targets, and we further mention the
difficulty of detecting samples in high-dimensional data [Venkatesh and Anu-
radha, 2019].

With respect to data-quality assurance techniques, we remark that they
mostly depend on variable distribution assumptions and concentrate on ran-
dom errors [Liu et al., 2016]. We focus on instances in which the category label
and category-correlated feature values have been altered. In other words, our
goal is to pinpoint samples with non-random changes in feature values which
mask the true underlying category label.

To address the current problem of manipulation, we propose the following
three contributions:

1. the concept of a crosslier: a deviating instance resulting from potentially
intentional category manipulation;

2. the EXPOSE method for crosslier detection, by computing the crosslier
score of a sample given its category;

3. the crosslier diagram: a visualisation tool which allows easy assessment of
crossliers.
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Albeit motivated by a waste transportation problem, our proposed contribu-
tions are intrinsically domain-agnostic and therefore applicable to other fields.
Within a dataset with category labels, a crosslier is an instance of which the
combination of (1) its set of feature values and (2) the category label are dishar-
monious.

We consider a crosslier to be a special case of an outlier defined as follows.

Definition 3.3 – Outlier

An outlier is a sample of which the feature values differ significantly from
those of the other samples.

By special case, we mean that crossliers are outlying instances with specific
characteristics. More precisely, a crosslier is a specific outlier with some con-
nection regarding a category label; that is, it is a sample of a category which lies
across other categories.

For completion, here we remark that the terms (a) crosslier and (b) outlier
are both a form of (c) anomaly, which is defined as follows.

Definition 3.4 – Anomaly

An anomaly is a sample which, given its features, class label, domain
knowledge, or any combination of the three, is significantly different
from the remainder of the samples. It is used to broadly refer to a data
point which stands out from the dataset.

The relationship between the three terms is depicted in Fig. 3.1. As shown,
all crossliers are outliers and all outliers are anomalies, but not all anomalies are
outliers and not all outliers are crossliers.

Anomaly

Outlier

Crosslier

Figure 3.1: Anomaly, outlier, and crosslier. Diagram depicting the relationship
between the three terms.
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The chapter structure follows: Section 3.2 states our problem formally; Sec-
tion 3.3 discusses past work related to ours; Section 3.4 elaborates our approach
in detail; Section 3.5 describes ours experimental setup; Section 3.6 refers to our
results; Section 3.7 discusses our method; and Section 3.8 concludes this work
and suggests future research directions.

3.2 Problem Description

Given a category-labelled dataset, we defined (in Definition 3.1) a crosslier as
a sample of which (a) the category label is swapped and (b) a proportion of
its features is more similarly valued to the features of samples of the newly-
swapped category. To put it simply, we assume that feature values might have
been manipulated to mask the true category label.

To detect crossliers, we propose crosslyingness as a rankable property ex-
pressed as a function, in which the instance with the highest crosslyingness
with respect to a category is the most likely crosslier.

Definition 3.5 – Crosslyingness

Crosslyingness is a rankable property indicative of the degree to which a
sample is considered a crosslier.

Accordingly, either (1) crossliers fall within the cluster of some other cate-
gory, or (2) crossliers lie across other categories. To illustrate, we present Fig. 3.2;
four different categories A, B, C, and D are denoted, with crossliers as A∗, B∗,
C∗, and D∗.

Figure 3.2: Crosslier detection. Samples with features X1 and X2, pertaining to
either category A, B, C, or D (left). Crossliers are marked as crosses (right).
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Formally, letD be a distribution of random variables (X,Z) ∈ X ×Z , where
X ⊆ Rm, Z = {z1, z2, . . . , zq}, and z ∈ Z is one of the q different category
labels. Let also (x1, z1), . . . , (xn, zn) represent the samples drawn from D. Our
goal is to find, for each unique category z ∈ Z , a function fz(x) which scores
the crosslyingness of xi ∈ X with zi = z.

3.3 Related Work

In this section, we provide a brief overview of three techniques typically used
to address anomaly detection problems. In this sense, we consider a crosslier to
be a particular type of data anomaly, with specific characteristics as described
in the previous sections.

We report on previous work which applied supervised and semi-supervised
learning techniques (Section 3.3.1), unsupervised learning methods (Sec-
tion 3.3.2), and data quality assurance techniques (Section 3.3.3). We further
disclose their non-applicability to our scenario.

3.3.1 Supervised and Semi-supervised Learning

In the presence of labels indicative of previously-recognised noncompliance,
the problem can be approached as a supervised learning task. Three examples
are: (1) detecting insurance fraud [Subudhi and Panigrahi, 2020]; (2) exposing
deceitful telecommunication users [Li et al., 2018]; and (3) identifying irregular
heart beat patterns [Vollmer et al., 2017]. The choice of algorithm is rather di-
verse. We mention three of them: (1) SVMC [George and Vidyapeetham, 2012];
(2) multilayer perceptron [Mulongo et al., 2020]; and (3) random forest [Alaz-
zam et al., 2019].

For the case where both labelled and unlabelled instances are available,
a semi-supervised learning approach is suitable [Chapelle et al., 2006]. This
framework can, as an example, make use of clustering algorithms assuming
that data points within the same cluster probably share the same label [Xiang
and Min, 2010]. Another approach to improve on the selection of inspection
targets is to consider the unlabelled instances as pertaining to the negative class
(i.e., the class which is not of interest) [Jacobusse and Veenman, 2016]. Here,
the assumption is that the incidence of inspection targets within the unlabelled
data is small enough as to be made negligible towards learning. Yet, our data
does not possess target labels, making these techniques inapplicable.
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3.3.2 Unsupervised Learning

A straightforward alternative is to find deviating cases through anomaly detec-
tion techniques using unsupervised methods. The assumption is that the most
probable samples to target are the ones that differ in an extreme way from all
others in their category (i.e., outliers). Such techniques have been applied to sys-
tem intrusion detection [Zanero and Savaresi, 2004], maritime traffic anomaly
flagging [Vespe et al., 2012], and image curation [Liu et al., 2014], amongst oth-
ers. Four examples of the successful algorithms used are: (1) isolation forest
(IF) [Liu et al., 2012]; (2) local outlier factor (LOF) [Breunig et al., 2000]; (3)
nearest-neighbour [Amer and Goldstein, 2012]; and (4) k-means clustering [Mu-
niyandi et al., 2012].

There are at least three intrinsic obstacles with unsupervised methods. The
first obstacle is their dependency on distance metrics (Minkowski measures) to
define outlyingness, which makes them sensitive to feature scaling. The sec-
ond obstacle arises when dealing with high-dimensional data [Liu et al., 2017],
particularly when attempting to estimate densities empirically [Santos et al.,
2019a]. The third obstacle is that, through manipulation of only a proportion
of features — as per the problem description (see Section 3.2)— target samples
(crossliers) may not stand out. To illustrate, we present Fig. 3.3.

Figure 3.3: Distinction between outlier and crosslier. Four-category example
from Fig. 3.2. Crossliers are marked as crosses and outliers are denoted as cir-
cles. Transparency values for data clusters have been raised for visualisation.
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Fig. 3.3 builds on the example in Fig. 3.2 by applying the IF algorithm as
per [Liu et al., 2008]. Here we see how data points flagged as outliers do not
represent the target crossliers; hence, we should consider the distribution of
categories when marking instances as crosslying. The issue with using tradi-
tional anomaly detection methods towards finding crossliers is evidently illus-
trated: most flagged instances are arguably not outlying with respect to their
clusters. The insensitivity shown makes anomaly detection methods precari-
ous to address our problem. Ultimately, not all outliers are crossliers since not
all of them possess the specific category-related characteristics we seek.

3.3.3 Data Quality Assurance

By considering an outlier to be anomalous, and therefore an inspection candi-
date, one could argue that the abnormal values by which outlyingness is at-
tributed can be caused by erroneous data entries on the permit category. Here,
data quality assurance techniques can be used for detection [Bonner et al.,
2015]. Typical methods involve, for example, assumptions over feature dis-
tributions [Mariet et al., 2016] and cross-referencing datasets for dependency-
matching or constraint-mining [Rekatsinas et al., 2017, Chu et al., 2013]. Our
scenario does not allow for reliable cross-dataset linkage due to the lack of en-
tity identifiers. Furthermore, despite the existence and usage of both univariate
and multivariate constraints, the constraints are not generated with respect to
an ulterior task. In other words, the assumptions over feature distributions
need not hold for the category distributions we are interested in.

In summary, the current literature is ill-equipped to adequately address our
issue of discriminating towards crosslying instances, which translate to permits
of interest to inspectors.

3.4 The EXPOSE Method

Here, we detail the proposed EXPOSE for the detection of crossliers. As defined
in Section 3.2, the aim is to find a function fz(x) that determines the crosslier
score of sample x ∈ X with category label z. The EXPOSE method is data-driven
in the sense that it uses a learning function to obtain the scores for a dataset with
category labels. Since the whole dataset is category-labelled by definition, all
samples can obtain a crosslier score. We follow a supervised learning approach,
where the crosslying score is determined per category on a left out part in order
to obtain an independent score. As a result, we need to optimise several learners
as in a CV setup. Therefore, these learned functions must be calibrated to make
the scores comparable among each other.
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Below, we first describe the setup to obtain the learners in a supervised way.
We then elaborate on the model selection and model calibration steps per data
subset based on CV. The learners collectively yield the overall crosslier score
function. We finalise the method section with the crosslier diagram, a tool to
visualise crosslier scores and pinpoint suspect samples.

3.4.1 Classification Setup

Consider the distribution D defined in Section 3.2. For a fixed category z,
(x1, y1), . . . , (xn, yn) are samples of D in which

yi =

{
1, if zi = z

0, otherwise
(3.1)

Given D and a loss function L, the task of the learner is to find a function f ∈ F
through empirical risk minimisation [Vapnik, 2013]:

arg min
f∈F

R̂D,L,f (3.2)

where

R̂D,L,f =
1

n
·
n∑
i=1

L(f(xi), yi) (3.3)

Depending on the chosen learner, the curse of dimensionality is addressed
by incorporating either regularisation, feature selection, or both protocols in
the learning task [Sharma et al., 2017]. These protocols also alleviate overfit-
ting and promote classifier robustness by reducing the complexity of the final
model [Gupta et al., 2016].

All regularisation parameters given prior to the learning task can be opti-
mally retrieved through hyperparameter optimisation [Claesen and De Moor,
2015, Bergstra and Bengio, 2012]. The learners to be applied within a specific
problem can also be optimally selected.

3.4.2 Model Selection

A model is selected based on classification performance. For each candidate
learner that is applicable to a problem and their respective hyperparameters,
the estimated classification performance is measured in terms of AUC through
CV [Flach, 2016]. The choice of CV strategy is dependent onD, as the appropri-
ate number of folds and splitting strategy relate to Z and the respective P (y),
as well as sample size n. Model calibration is also subject to the CV strategy,
detailed further.
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Formally, consider the dataset D, with distribution D. For a given k ∈
{1, 2, . . . ,K}, K > 1, let test set Dts

k and training set Dtr
k be independent and

identically distributed subsets of D such that

K⋂
k=1

Dts
k = ∅,

K⋃
k=1

Dts
k = D, and Dtr

k = D \Dts
k (3.4)

Fixing on k, we define test and training sets Dts
` and Dtr

` , respectively, as in-
dependent and identically distributed subsets of Dtr

k , for ` ∈ {1, 2, . . . , L} and
L > 1, such that

L⋂
`=1

Dts
` = ∅,

L⋃
`=1

Dts
` = Dtr

k , and Dtr
` = Dtr

k \Dts
` (3.5)

Given D and sets of learners {Ψ1,Ψ2, . . . ,Ψr} with hyperparameters {φ1, φ2,

. . . , φp}, the final model is selected by maximising the estimated AUC
with K and L folds, comprised of learner ∗Ψ and hyperparameters φk ∈
{φ1, φ2, . . . , φK}. AUC is directly linked to crosslyingness, as detailed ahead.

Learner ∗Ψ and hyperparameters φk are used to generate the crosslier scores.
Since EXPOSE generates crosslier scores from a collection of models learned on
independent data subsets to avoid overfitting, the output of each model is not
comparable across models. We enforce model comparability through model
calibration.

3.4.3 Crosslier Score

To transform the output of uncalibrated models into a calibrated output, Platt
scaling [Platt et al., 1999] is used. The original output ŷ of a learned model given
input x thus becomes the estimated posterior probability P̂ (y|x). Given z, the
crosslier score function fz is defined as the information content [Jones, 1979] of
a sample x from category z:

fz(x) = − log2 P̂ (y|x) (3.6)

The choice of− log2 translates to: (1) the score difference between samples with
low and high posterior probabilities are augmented; and (2) scores are easily
interpretable, in which a posterior 1 returns a score 0, and a posterior 0.5 re-
turns 1. Heuristically, samples with crosslier score greater than 1 can be consid-
ered crossliers and are rankable by crosslyingness according to their respective
crosslier scores. The estimated AUC model performance relates to the crosslier
scores. By definition, poor-performing models output calibrated posterior prob-
abilities close to 0.5. Therefore, the crosslier scores will lie close to 1 for all sam-
ples. With high AUC models, the range of crosslier scores is allowed to widen.
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Formally, let xk and yk represent the variable values of samples (x, y) ∈ Dts
k

for a given k. The estimated posterior is then given as

P̂ (y|x) =

K⋃
k=1

P̂ (yk|xk) (3.7)

in which,

P̂ (yk|xk) =
1

L
·
L∑
`=1

[fk` (∗φΨtr
k (xk))] (3.8)

where ∗φΨtr
k (xk) is the output of ∗Ψ learned on (x, y) ∈ Dtr

k with hyperparame-
ters φk, given input xk, and fk` is the sigmoid function with parameters α∗ and
β∗

fk` (u) =
1

1 + e−(α∗+β∗·u)
(3.9)

in which

α∗, β∗ = arg min
α,β

−
∑

(x,y)∈Dts`

[µ · log(p) + (1− µ) · log(1− p)] (3.10)

where

µ =


(
∑

y∈Dts`
y) + 1

(
∑

y∈Dts`
y) + 2

, if y = 1

(|Dts
` | − (

∑
y∈Dts`

y) + 2)−1, otherwise
(3.11)

and
p =

1

1 + e−(α+β·∗φΨtr` (x))
(3.12)

In Eq. 3.12, ∗φΨtr
` (x) is the output of ∗Ψ learned on (x, y) ∈ Dtr

` with hyperpa-
rameters φk, given input x ∈ Dts

` .

3.4.4 Crosslier Diagram

At the basis of the crosslier diagram (see Definition 3.2) lies an interactive tool
which discriminates individual samples based on their crosslier score. Existing
tools such as box, swarm, and violin plots were not suited since: (1) box plots do
not present all samples that might be relevant crossliers; (2) swarm plots do not
function well for a large number of samples; and (3) violin plots do not exhibit
any samples in their output.

The diagram is a mapping of the output of fz(x) onto a horizontal axis
where x are samples of category z. To each plotted sample we add a Gaussian-
generated vertical value so that even if two or more samples have the same
crosslier score they do not entirely overlap.
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Finally, the crosslier diagram can display related domain-specific informa-
tion of a sample by hovering over it. In the context of real-world transportation
data, we present the crosslier diagram (Fig. 3.4) in the upcoming Section 3.6 as
part of our experimental results.

3.5 Experiments

In this section, we describe our experiments. Two setups are considered, viz.
(a) waste transportation setup and (b) benchmark setup. Within the first setup,
EXPOSE is applied to the waste permit dataset (Section 3.5.1). In the second
setup, we compare our method to anomaly detection methods in a controlled
environment (Section 3.5.2). The resources described in this section are made
available online [Pereira Barata, 2020].

3.5.1 Waste Transportation Setup

In this section, we discuss: (1) data; (2) learners; and (3) selection and calibration
of the best model.

Data

The dataset was generated and provided by the ILT. It represents solicitations of
waste transportation events across Europe (2009–2015), encompassing a total of
876, 311 waste transportations. Each row represents an individual transporta-
tion event. Several rows are linked by a permit identifier, where permits are the
units of interest to inspectors of the ILT. We followed an aggregation strategy
with respect to permit identifiers. The aggregation process produced 11, 740 in-
stances, each with a waste category (out of 20 total different waste categories)
and 49 variables which were a mixture of numerical and nominal features.

Learners

We experimented with (a) linear and (b) non-linear learners to find the best per-
forming model for each waste category. First, an elastic net-regularised logistic
regression (LR) learner was deployed, with hyperparameters λ and ε referring
to the regularisation coefficient, and the ratio of L1 to L2-regularisation, re-
spectively. Besides its broad usage and proven efficacy [Rosario, 2004, Wang,
2005,Mok et al., 2010], advantages of this learner are, for example: its calibrated
output probabilities (hence, not requiring any further calibration); and its re-
silience to overfitting given low complexity and regularisation [Kleinbaum and
Klein, 2010].
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Second, a non-linear gradient boosted tree framework (XGBC) was consid-
ered [Friedman, 2001], with 100 additive trees. Each tree was allowed a maxi-
mum depth of 3 with regularisation parameter λ = 1. This learner is widely
accepted as a state-of-the-art solution to supervised problems [Pafka, 2019]
in terms of scalability, robustness to noisy samples, and classification perfor-
mance.

Selection and calibration

To select and calibrate the best model, we applied nested-CV in a stratified man-
ner [Stone, 1974] with K = 10, L = 10 as described in Section 3.4. Stratification
is selected to ensure that each category is represented in each fold with the same
relative frequency as in the full dataset. A grid-search [Chan and Treleaven,
2015] was applied to find the optimal set of LR regularisation parameters λ and
ε. Each parameter was set to one of 21 distinct values, in ranges [10−3, 103] log-
arithmic and [0, 1] linear, respectively, for a total of 441 sets of candidate hyper-
parameters. Since XGBC is relatively insensitive to hyperparameter changes, as
shown in the experimental results of [Xia et al., 2017], we did not perform hy-
perparameter optimisation for this classifier. The best model for each category
was used to generate the crosslier scores and crosslier diagrams (Section 3.6).

3.5.2 Benchmark Setup

In this section, we discuss: (1) data; (2) preprocessing; (3) crosslier synthesis;
and (4) evaluation.

Data

Twenty binary classification datasets were retrieved from openML: an open, or-
ganised, and online ecosystem for machine learning [Vanschoren et al., 2014].
They are real-world datasets from different domains. Target classes were
treated as the categories Z . Table 3.1 summarises each dataset with identifier
ID, n instances, and m features of which u are numeric. The datasets were cho-
sen such that n, m, and u are heterogeneous across datasets.

Preprocessing

Numeric features values were scaled to a [0, 1] range to accommodate fea-
ture scale-sensitive methods. Non-numeric features were {0, 1}-binarised per
unique value.
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Table 3.1: Datasets retrieved for crosslier simulations.

ID n m u ID n m u

446 200 7 6 40705 959 44 42
40 208 60 60 31 1000 20 7
1495 250 6 0 1494 1055 41 41
53 270 13 13 40706 1124 10 0
40710 302 14 5 1462 1372 4 4
59 351 34 34 1504 1941 33 33
40690 512 9 0 1487 2534 72 72
1063 522 21 21 1485 2600 500 500
335 554 6 0 41143 2984 144 8
1510 569 30 30 41144 3140 259 259

Crosslier synthesis

To simulate a real-world scenario, crossliers were synthesised by replacing
category labels and feature values. Different proportions of both label and
feature manipulation were considered extensively. The proportion of label-
swapped samples for each category per dataset was ρy ∈ {.01, .05, .1, .15, .2,

.25, .3, .35, .4}. To recreate the scenario in which feature values are manipulated
to simulate another category, samples which were label-swapped had a pro-
portion of their feature values replaced. The proportion of randomly-selected
features to have their values replaced was ρx ∈ {0, .05, .1, .15, .2, .25, .3, .35, .4}.

Replacement values were drawn from univariate distributions with param-
eters estimated from the features of the category being mimicked, modelled as
either: (a) the normal distribution N (µ̂, σ̂) for numeric features, where µ̂ is the
estimated mean and σ̂ is the estimated standard deviation; or (b) the multi-
nomial distribution with estimated event probabilities {p̂1, p̂2, . . . , p̂π} where π
is the number of unique feature values, otherwise. Crossliers were generated
10 times with different random initialisation seeds for all datasets per config-
uration (ρx, ρy) to account for randomness. Both categories per dataset were
corrupted with crossliers before any method was applied.

Methods

The EXPOSE method was compared to two well-established anomaly detection
methods: LOF and IF, mentioned in Section 3.3.2. The previously-established
methods were not designed to detect crossliers.
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To promote a reasonable comparison, EXPOSE was applied with a single
set of learner and hyperparameters and no optimised model selection was per-
formed. The model selected was a tree-based gradient boost learner and de-
fault hyperparameters of 100 trees of maximum depth 3 with regularisation
λ = 1 [Chen and Guestrin, 2016]; calibration values K and L were set to 10.
LOF neighbourhood size was set to 20 and IF number of trees was set to 100.

Evaluation

The crosslier scores of EXPOSE were generated as in Section 3.4; the anomaly
scores of the anomaly detection methods were generated category-wise. For
each category, crosslier detection performance was measured in AP [Liu and
Özsu, 2009], a common measure in anomaly detection assessment [Xu et al.,
2018]. Accordingly, the targets are the crossliers in each category. The perfor-
mance of both categories in each configuration (ρx, ρy) were jointly averaged
per dataset, and across initialisation seeds.

3.6 Results

Here, we present findings relative to both experimental setups: (a) EXPOSE ap-
plied to the real-world scenario of waste transportation in the inspection do-
main; and (b) EXPOSE compared to other anomaly detection methods in a con-
trolled environment with benchmark datasets.

3.6.1 Waste Transportation

When applied to the waste transportation data, we show firstly the estimated
AUC performances yielded by both candidate models LR and XGBC. The next
step was presenting the crosslier diagrams of waste categories to the inspectors
for assessment. Waste category 4 (waste from textile industries) was not shown
due to insufficient number of instances.

Model performance and selection

Table 3.2 shows the estimated AUC performances and measured standard devi-
ations yielded during the model selection step of EXPOSE, which were used to
select the best model per category for crosslier detection. Values in bold indicate
the highest performance per category of which the model was chosen.
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Table 3.2: Model performances per waste category.

Category LR XGBC

1 0.983± 0.008 0.985± 0.010

2 0.868± 0.044 0.919± 0.037

3 0.868± 0.020 0.908± 0.027

— — —
5 0.672± 0.092 0.755± 0.082

6 0.740± 0.038 0.794± 0.037

7 0.776± 0.016 0.821± 0.015

8 0.798± 0.026 0.856± 0.025

9 0.867± 0.047 0.915± 0.047

10 0.737± 0.032 0.788± 0.035

11 0.815± 0.021 0.896± 0.016

12 0.860± 0.032 0.897± 0.031

13 0.609± 0.063 0.720± 0.062

14 0.776± 0.034 0.817± 0.024

15 0.841± 0.019 0.883± 0.016

16 0.695± 0.016 0.753± 0.019

17 0.845± 0.023 0.889± 0.022

18 0.894± 0.015 0.921± 0.015

19 0.806± 0.014 0.851± 0.013

20 0.719± 0.024 0.779± 0.027

XGBC provided the best performance for all categories and was selected to
generate the crosslier diagrams. For clarity, AUC does not measure the per-
formance of crosslier detection since no crosslier labels exist in this real-world
problem.

Crosslier diagrams

In Fig. 3.4 the crosslier diagrams with scores generated by the selected model
XGBC are shown. For demonstration purposes, we show crosslier diagrams
of four waste categories: (1) exploration and treatment of minerals; (2) agricul-
ture, food preparation, and processing; (9) waste from photography industry;
and (18) human or animal healthcare. In addition, the interactive aspect of the
diagram is represented for a sample of waste category 9, in which its permit
identifier (ID 4358) and crosslier score (1.41) are shown.
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Figure 3.4: Crosslier diagrams of four waste categories. Hovering over an
instance highlights its identifier (4358) and crosslier score (1.41).

Inspection domain

The inspectors of ILT were provided with the crosslier diagrams. They analysed
the permit cases across waste categories according to the given crosslier scores.
Their assessment was that the authenticity of most of the high-scoring permits
was sufficiently doubtful and that further investigation was necessary to es-
tablish compliance. All in all, the crosslier diagram was considered a valuable
expansion of their tool set, especially when compared to spreadsheet analysis.

3.6.2 Benchmark

The outcome of our experiments with respect to controlled crosslier detection
is to be seen in Fig. 3.5. We present the results for the three methods: EXPOSE,
LOF, and IF. Fig. 3.5 shows the mean (AP) across 20 datasets, for 81 configura-
tions of (ρx, ρy), each with 10 random initialisations of crosslier synthesis.

Lighter (darker) cell tones indicate higher (lower) values of performance.
Each number indicates the yielded AP performance for each (ρx, ρy) configu-
ration with which we experimented. For every possible setting (i.e., heatmap
cell), EXPOSE yielded a higher mean performance than any of the other meth-
ods. The differences in performance diminish as both ρx and ρy increase.
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Note that to perform a correct comparison, EXPOSE was not subject to any
optimisation: the model selection step was reduced to a single learner with a
single set of default hyperparameters. When deployed onto a real-world sce-
nario, model selection should be applied to select the best possible learner and
hyperparameter configuration, as described in Section 3.4.

3.7 Discussion

The EXPOSE method is evidently better at detecting crossliers through the ex-
ploitation of category models, when compared to standard anomaly detection
methods. This was expected, as crossliers are defined based on their feature val-
ues in a category-wise manner. High dimensionality and feature dependence
are also better dealt with through the appropriate selection of learner with ade-
quate feature selection and regularisation protocols.

The implementation of the EXPOSE method is to be seen as a wrapper over
different components: at its core, it is a data-driven category-modelling method
using learner functions. Score calibration is applied and, even though a selected
model might have a low AUC, the crosslier scores are —we argue— reliable.

For low AUC values, the crosslier scores will tend to cluster at 1 (corre-
sponding to the posterior 0.5). In this sense, EXPOSE will not expose a sample
unless its respective category is well modelled (high AUC). This property en-
sures adequate precision of the sample exposed and is of particular relevance
when dealing with sensitive Inspectorate domains where wrongly-targeting in-
stances has negative outcomes. Assuming sensible feature values and category
labels, a high AUC depends only on the learner and hyperparameters selected.

3.8 Chapter Conclusion

In the present work, we (1) defined a specific type of data anomaly, which we
term crosslier, (2) introduced the EXPOSE method to crosslier detection, and (3)
designed the crosslier diagram, a visualisation tool to represent crossliers evi-
dently. We showed that conventional anomaly detection methods (LOF and IF)
are ill-suited for crosslier detection when compared to eXPose.

Although domain-insensitive, EXPOSE produced valuable domain-specific
insights into the problem scenario of targeting potentially fraudulent permits
of waste transportation across European countries. We defined crosslier as an
instance which is more similar to other categories than its own; in other words,
it is a sample which likely carries company misconduct.
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Extensive preprocessing and optimisation steps were performed which cul-
minated in well-performing (high AUC) models of waste categories. Accord-
ingly, the feature values collected in the waste permits allow for suitable dif-
ferentiation. This finding shows that administrative data allow for compliance
checking. After presenting the crosslier diagrams to the inspectors, their as-
sessment was on par with the expected workings of our EXPOSE method: (1)
detected crossliers were considered suspicious, and (2) were marked for further
inspection. We remark that these cases had gone undetected in standard permit
review operations. So, the crosslier diagram was considered by the inspectors a
beneficial extension to current methods.

One clear limitation of our experimental setup is, however, that no direct
link can be made between (a) hyperparameter optimisation towards AUC per-
formance and (b) crosslier detection performance. While, by definition, it holds
that higher classification performance enables more extreme crosslier scores
than lower classification performance, the nature of the relationship between
the 2 aforementioned points (a) and (b) should be empirically assessed. To this
end, the work by [Van Rijn and Hutter, 2018] would prove invaluable towards
efficiently selecting the set of hyperparameters over which the optimisation
search should be performed.

As a different future research direction, we recommend close cooperation
with the inspectors for the following three reasons: (1) by receiving their feed-
back on the inspected crosslying permits, our method is further validated; (2)
we can use the inspected crosslying cases as labelled instances in a supervised
learning scenario towards compliance/non-compliance modelling; and (3) EX-
POSE is applicable to other problems within the Inspectorate, which further aids
the inspectors.


