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Chapter 2

Imputation versus
Missing-Indicator

Missingness is a ubiquitous problem inherent to real-world data. When learn-
ing a classifier, missing data is detrimental to the classification performance of
the final model. Approaches to deal with missingness can be partitioned into
methods that either (a) impute or (b) encode missingness.

Depending on the missing mechanism, some missing data-handling tech-
niques are best suited than others in combination with different learners. Un-
der a non-MCAR mechanism —typical of real-world data— a straightforward
approach is to apply the missing-indicator method. However, a non-MCAR
missing mechanism is not always guaranteed and testing for it does not en-
sure a reliable result. In this chapter, we experimentally demonstrate that —
under MCAR— the negative impact in downstream classification performance
derived from the inadequate application of the missing-indicator can be made
identical to that of the application of imputation, particularly by deploying a
decision tree-based learning algorithm via gradient boosting.

Therefore, a solution to the problem of missing data is to deploy the missing-
indicator method in conjunction with a decision tree-based learner, particu-
larly via gradient boosting, therewith addressing RQ1: given data with missing
values, which (a) missing data-handling technique and (b) learning algorithm
should be jointly selected such that, regardless of the missing mechanism, the
detriment to the downstream task performance is minimal when compared to
the non-missing (unavailable) case?
The current chapter corresponds to the following publication:
Pereira Barata, A., Takes, F. W., van den Herik, H. J., and Veenman, C. J. (2019).
Imputation methods outperform missing-indicator for data missing completely
at random. In 2019 International Conference on Data Mining Workshops (ICDMW),
pages 407–414. IEEE
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2.1 Minimising the Impact of Missing Data

Big data analytics encompasses a multitude of challenges in relation to differ-
ent data aspects or characteristics. Other than volume, variety, and velocity,
the concept of veracity (i.e., data quality) plays a key role when addressing
real-world problems. As discussed in [Olson, 2003], the quality of data is in-
trinsically related to the intended use of the data itself. Moreover, to satisfy this
notion of usability, data must be trusted and timely, as well as both accurate
and complete. In this work we shall be focusing on the latter mentioned aspect
of data (completeness), or rather its conceptual counterpart: data missingness.

The phenomenon of missing data is defined as the absence of observational
values within a dataset. It is a widespread obstacle which presents itself in
many fields of research where data are analysed, such as econometrics [Dard-
anoni et al., 2011], psychology [Schlomer et al., 2010], and epidemiology [Ped-
ersen et al., 2017]. Regardless of the underlying reasons for the occurrence of
missingness throughout different domains, missing data presents a challenge
towards the completion of any data-related task.

The task to be performed after imputation of the dataset is referred to as the
downstream task (e.g., regression or classification). Choosing how to handle
this issue will influence the outcome of the downstream task. In other words,
poor application of missing data-handling techniques leads to underwhelming
performance and biased results [Choi et al., 2019]. Thus, depending on the
problem to be addressed, it is important to carefully select the most appropriate
strategy to overcome missingness and minimise the impact of incomplete data
on the final outcome of the downstream task [Little et al., 2014]. Also, the type
of data that is missing influences the selection of imputation approaches [Feng
et al., 2011].

We know from [Garciarena and Santana, 2017] that the effectiveness of an
imputation method in classification is tightly associated to the family of clas-
sifiers to be used and the missing mechanism affecting the data. In this con-
text, by family we mean a set of classification algorithms of which the decision
functions are conceptually similar; i.e., algorithms of which the mappings of
the input space into a specific category are alike. For example, a tree-based
algorithm recursively splits the original input space into segments through a
set of relation operator-based rules, whereas a k-nearest neighbours approach
checks the mode of the closest k objects according to some distance metric (of-
ten euclidean): we consider the two methods to pertain to different families.
By missing mechanism, we are referring to the distribution of missing values
in the data. It is common practice to categorise these mechanisms as MCAR,
MAR, and MNAR. In the real world, it is only possible to distinguish between
MCAR and not-MCAR mechanisms.
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Generally, imputation methods rely on statistical concepts (e.g., mean and
median) or machine learning approaches (i.e., predictions over missing values).
Another commonly used approach to data imputation is the missing-indicator
method [Huberman and Langholz, 1999], where a new placeholder value or
attribute for missingness is generated to indicate the missing value. Although
past studies have been conducted to illustrate how these methods affect the bias
of results [Knol et al., 2010], there exist several gaps in the literature, of which
we mention three.

First, often the missingness characteristics are not fully reported [Malla
et al., 2018]. Second, results can be related to one specific domain rather than
to a more general level [Garcı́a-Laencina et al., 2015]: this leads to conclusions
that are either ambiguous or not generalisable with respect to the distinct field
task of the reported work. Third, authors tend to disagree on which metrics are
best at quantifying imputation effects [Van Buuren, 2018].

Stating that one method of imputation outperforms another method is de-
pendant on the type of performance analysis conducted and the missingness
assumptions of mechanisms at play [Santos et al., 2019b]. In general, the pur-
pose of imputation is not making a dataset complete, but rather make it possible
to handle data for a specific task. Regardless, research in imputation usually re-
ports performance as a function of error between the artificially removed values
and the predicted imputation [Amiri and Jensen, 2016]. This is not a viable met-
ric to compare different imputation methods and the missing-indicator method.

A more realistic approach to measuring the impact of imputation methods
is to assess the performance on the post-imputation (downstream) task. Little
research has been done in measuring how of the missing-indicator approach to
handling missing data performs in classification problems compared to impu-
tation methods [Ding and Simonoff, 2010].

In this work, we compare several imputation methods and the missing-
indicator method, and measure their differences on the most relevant measure:
classification performance. We establish whether the missing-indicator should
or should not be used given the specific case of classification problems with
numerical data, under the MCAR mechanism of missingness.

The structure of this chapter is as follows: Section 2.2 will deal with the basic
concepts which distinguish different types of missingness and how to syntheti-
cally generate missing data. In Section 2.3, we briefly describe the added value
of the presented research with respect to past work. Section 2.4 consists of the
description of the materials and methods used, while in Section 2.5 we refer to
our experimental setup and results. Finally in Section 2.6 our conclusions are
given and future research directions are suggested.
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2.2 Missing Data

Here we introduce the overall concept of missingness. We illustrate and define
each missing mechanism in Section 2.2.1. In Section 2.2.2, we further present
how to generate missing values under the specific MCAR assumption.

2.2.1 Mechanisms of Missingness

In research on imputation, missing mechanisms are commonly defined accord-
ing to the distribution of missing values [Little and Rubin, 2019]. In this man-
ner, data can be missing under three different assumptions: MCAR, MAR, and
MNAR. Under MCAR, the probability that a data value is missing is the same
for all data points. MAR occurs when the events that lead to missingness are
completely at random but only within a subset of some other observed variable
within that dataset. Lastly, when neither of the previous two missing mech-
anisms are at play, but rather the missingness is directly related to the actual
value that is missing and/or some other variable value, then the missing mech-
anism is referred to as MNAR. Table 2.1 illustrates the aforementioned mecha-
nisms. In this example, each row represents an instance in a dataset.

The first column (Class) represents some class label, and the remaining
columns represent the same feature under different missing mechanisms: Com-
plete signifies the observations without any missing values, whereas the three
remaining columns illustrate how the different missing mechanisms would af-
fect the set of observations. Each number denotes an observed value.

Following the notation of previous literature [Little and Rubin, 2019], we
formally define the different missing mechanisms as follows. Let X be an n

by p matrix serving as some dataset with i = 1, ..., n instances and j = 1, ..., p

features where xi,j is an individual element of X . Each element xi,j may repre-
sent either an observation or a missing value, depending on the characteristics
of thee dataset. We can divide X into two disjoint objects, X = (Xobs, Xmiss),
where Xobs and Xmiss represent the observed and missing values of X . Let M
be a matrix of the same shape as X with mi,j ∈ M where mi,j = 0 and mi,j = 1

indicate the presence or absence of observation xi,j ∈ X , respectively. Then, the
missing mechanism is MCAR if:

Pr(M = 1|Xobs, Xmiss) = Pr(M = 1); (2.1)

MAR if:
Pr(M = 1|Xobs, Xmiss) = Pr(M = 1|Xobs); (2.2)

and MNAR if:

Pr(M = 1|Xobs, Xmiss) = Pr(M = 1|Xobs, Xmiss). (2.3)
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Table 2.1: Three different missing mechanisms

Class
Feature

Complete MCAR MAR MNAR
0 18.91 – – –
0 13.42 13.42 – –
0 4.05 – 4.05 4.05
0 4.06 4.06 4.06 4.06
0 18.24 18.24 – –
0 3.01 – – 3.01
0 11.37 11.37 11.37 –
0 14.25 – 14.25 –
0 2.74 2.74 2.74 2.74
0 5.24 5.24 – 5.24
0 10.21 – – –
1 11.02 11.02 11.02 –
1 7.06 – 7.06 7.06
1 14.29 14.29 14.29 –
1 2.16 – 2.16 2.16
1 5.26 5.26 5.26 5.26
1 0.37 – 0.37 0.37
1 8.24 8.24 8.24 8.24
1 10.36 – 10.36 –
1 6.43 6.43 6.43 6.43
1 1.31 – 1.31 1.31

While it is possible to define these concepts, accurately determining which
of these assumptions permeates a dataset is no easy task: the information re-
quired to discriminate between MAR and MNAR is, rather unsurprisingly,
missing itself. However, such is not the case for MCAR that can be tested for
statistically [Little, 1988] albeit false positives and false negatives may still oc-
cur.

We know from [Van Buuren, 2018] that specific imputation methods that
perform well under some condition might not be applicable under another con-
dition. As such, it is not only important to determine what mechanism shapes
the missingness within the data that will be used to address a particular prob-
lem, but it is also imperative to report it.
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2.2.2 Synthesising Missing Values

Imputation studies rely heavily on generating synthetic missingness [Bertsimas
et al., 2017]. The removal of observations can be labelled as either univariate
or multivariate, depending on the number of features selected to have their
observations deleted by some percentage. The synthesis of missingness varies
depending on the target missing mechanism to be implemented, as different
conditions have to be met to satisfy specific occurrences of missing values.

Under MCAR univariate missingness generation, selecting the feature of
which values will be removed can be performed either randomly [Rieger et al.,
2010] or under some other condition imposed by the researcher [Twala, 2009].
In the multivariate case, past work mainly distinguishes between a local vs
global [Garciarena and Santana, 2017] approach to value removal; the former
ensures that every feature has the same proportion of missing values, while the
latter considers the entire dataset for value deletion which does not ensure such
a stratified missingness condition. The generation of synthetic missing data will
be further described in the context of our methods.

2.3 Related Work

The concept of missing data in literature is addressed from different perspec-
tives depending on the purpose of the research itself. While some studies ap-
proach missingness as a preprocessing step in their actual endeavour, other
work focuses solely on the techniques used to do so. This dichotomy high-
lights different view points, depending whether or not missingness of data is
the object of interest in a study. We specifically elaborate on past work that
relates to how missingness is reported and handled when solving real-world
problems; i.e., the application of the missing-indicator method in the context of
specific domains. Moreover, we highlight the performance measurement meth-
ods applied in the context of missing data-handling techniques according to the
current literature.

Following the first topic of interest, authors in [Malla et al., 2018] conducted
an overview study of how missingness is addressed in the context of propensity
score estimation; 167 articles were analysed in their research. Nearly 68% of
these articles based their findings on assumptions that would only hold if data
were MCAR. However, only one of these studies presented evidence for such a
strong assumption. The remainder offered no explanation towards the reason
data was missing nor which missing mechanism was at play. This observation
led to biased results and skewed reported conclusions which posed a serious
issue, especially given that the contexts of these studies were medical trials.
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In other medicine-related domains scrutinised by us, contradicting evidence
is reported with respect to the application of the missing-indicator method.
Specifically, while authors in [Groenwold et al., 2012] state that ”the missing-
indicator method is a valid method to handle missing baseline covariate data, irrespec-
tive of the mechanism of missingness”, the work presented in [Van der Heijden
et al., 2006] concluded that ”in multivariable diagnostic research complete case anal-
ysis and the use of the missing-indicator method should be avoided, even when data are
MCAR”. This discrepancy in the current literature is indicative of a real substan-
tial problem that can only be addressed through further exposition of missing
data as a subject of interest, by generating research that aims to offer general
guidelines that practitioners may follow on how to handle missing data. In this
sense, our contribution addresses whether a particularly common method of
handling missing data – the missing-indicator method – should be used under
the testable MCAR mechanism scenario.

Focusing on a different scope, studies such as [Amiri and Jensen, 2016] re-
port on imputation techniques and their performance. In this work, the au-
thors developed a novel imputation method to be applied on missing numerical
data. They compared their method against frequently used imputation meth-
ods and reported the comparative performances yielded. The performance was
measured as a function of the error between the imputed values and the orig-
inal values. Despite being an intuitive approach, using this error as a perfor-
mance measure for imputation is not adequate. This is thoroughly elaborated
in [Van Buuren, 2018], where the distinction between predictive methods and
imputation is established. The author ultimately asserts that imputation is not
prediction and states that ”we cannot evaluate imputation methods by their ability to
re-create the true data”. In short, using regression error to measure performance
leads to biased conclusions.

Studies such as [Garciarena and Santana, 2017] address this imputation per-
formance issue by using classifier performance (downstream task) as a proxy
for imputation adequacy. In such a study, different imputation techniques (both
single and multiple) were used, in association with several classification algo-
rithms across distinct datasets. However, the missing-indicator method was not
encompassed within the experimental setup provided.

Taking these facts into consideration, we propose to comprehensively mea-
sure the impact of the missing-indicator method. We do so by using a down-
stream task as a viable proxy for missing data-handling performance under
MCAR. Since MCAR is the only missing mechanism that can be tested against
in real-world problems, we specify it as the base for our work; in this man-
ner we ensure that the conditions under which our controlled experiments are
performed can be statistically diagnosed in real-world scenarios.
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2.4 Method

Here we provide the resources and methodology used. We begin with Sec-
tion 2.4.1 by describing the application of the missing-indicator in the context
of our work. In Section 2.4.2, we summarise the datasets we use in our ex-
periments. Section 2.4.3 reports how missing data was synthesised. Lastly in
Section 2.4.4, imputation and classifier methods are denoted.

2.4.1 Missing-Indicator

The missing-indicator method should not be regarded as an imputation method
in itself. Rather, it can and should be viewed as an addition to any imputa-
tion being performed. In other words, regardless of what approach is used
to fill in missing values – mean, median, regression-based imputations, etc.
– the missing-indicator will always be applicable. The underlying concept of
the missing-indicator method focuses on the encoding of missingness itself. In
practice, this encoding can be regarded as the addition of a binary indicator
variable. Concretely, our implementation of the missing-indicator method is as
follows: every missing value is replaced with a placeholder value; then a sec-
ond column is created for every feature with missing values. This new column
holds values of either 0 or 1 representing the absence or presence of a missing
value in the original feature, respectively (Fig. 2.1). This approach is derived
from past literature, where every value xi, j ∈ X is replaced by the product of
itself multiplied by (1−mi, j ∈M ) [Bennett, 2001]. Our choice of a placeholder
value of zero reflects also the consensus in methodological approaches applied
by practitioners [Zhang, 2016].

Feature 1 Feature 2 Indicator 1 Indicator 2

18.91 14.25 0 0

13.42 0 0 1

0 2.5 1 0

4.06 0 0 1

Feature 1 Feature 2

18.91 14.25

13.42 —

— 2.5

4.06 —

Figure 2.1: Imputation through missing-indicator. The table to the left repre-
sents a 4-rows slice of some dataset with missing values in feature column 1
and feature column 2. The table to the right represents the yielded version of
the previous table using the missing-indicator method.

2.4.2 Data

A total of 22 datasets were collected from an open-source dataset repository [Al-
calá-Fdez et al., 2009], all of which were associated with a classification task.
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Every dataset is comprised of a set of numerical features and a class column.
These datasets are complete (i.e., no missing values) and vary significantly in
sample size, dimensionality, and class balance. The definition of class balance
follows.

Definition 2.1 – Class balance

Class balance is the quantification of the difference between the number
of samples pertaining to the positive and negative classes in a dataset.

A summary of the datasets can be seen in Table 2.2. The column Class Bal-
ance represents the ratio between the frequency of the minority class and the
majority class: a value close to 0 indicates large class imbalance, while a value
of 1 means perfect class balance.

Table 2.2: Summary of dataset characteristics

Dataset #Rows #Features Class Balance
Appendicitis 106 7 0.25
Australian 690 14 0.80
Bands 365 19 0.59
Bupa 345 6 0.73
Coil2000 9822 85 0.06
Haberman 306 3 0.36
Heart 270 13 0.80
Hepatitis 80 19 0.19
Ionosphere 351 33 0.56
Magic 19020 10 0.54
Mammographic 830 5 0.94
Monk-2 432 6 0.90
Phoneme 5404 5 0.42
Pima 768 8 0.54
Ring 7400 20 0.98
Sonar 208 60 0.87
Spambase 4597 57 0.65
Spectfheart 267 44 0.26
Titanic 2201 3 0.48
Twonorm 7400 20 1.00
Wdbc 569 30 0.59
Wisconsin 683 9 0.54
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We specify class balance as it plays a role when selecting the appropriate
performance metric to measure classifier performance. Past literature states that
given an imbalanced classification problem, the area under the precision-recall
curve is more informative than the AUC [Saito and Rehmsmeier, 2015], which is
equivalent to the average precision measure (AP). Thus, we usedAP to measure
classifier performance, as well as specifying the minority class as the class to be
modelled for every dataset. Given our aim at producing a comparative study,
we address data and its characteristics in this segment rather than as part of our
experimental setup.

2.4.3 Value Removal

To compare different imputation methods and their impacts on classifier per-
formance for various missingness rates, artificially removal of values from the
complete datasets was required. Following common use in literature, we re-
moved 10%, 20%, 30%, 40%, and 50% of observations to measure how differ-
ent percentages of missing values affect the impact of particular missing data-
handling methods. We cap the missing proportions at 50% since higher values
might damage the original dataset too much to extract meaningful results.

We used a multivariate local approach to generate missing values. In this
manner, every feature had the same percentage of missing values for a given
proportion of missingness. The removal followed a uniform distribution so that
every value within a feature vector had the same probability of being removed.
In practice, given some dataset subset with n observations, and p features, for a
fixed missing proportion q ∈ [0, 1], each feature vector had dq× ne observations
removed. For clarification, we remark that a class label is not a feature.

We specify the notion subset because we did not apply missingness to the
entire dataset at once. Rather, we first split the dataset into 10 equal segments
and removed observations in each segment. These segments were used later
on to compute classifier performances; i.e., they comprised our train-test splits.
Should we have created our train-test splits a posteriori, then segments of the
dataset could have had fallen under a non-homogeneous MCAR assumption,
given the randomness of the splitting process. Thus, we ensured that all train
and test segments used were under the same missing proportion conditions.

2.4.4 Imputers and Classifiers

Four simple and commonly used imputation methods were selected and im-
plemented to serve as comparison against missing-indicator: mean (Mean), me-
dian (Median), linear regression (Linear), and extreme gradient boosting regres-
sion (XGBR). These methods were selected for their differing frameworks.
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One important factor to take into consideration is which imputation frame-
work to use: single or multiple imputation. We chose to implement the single
imputation variant of each algorithm for our comparisons, rather than perform-
ing a multiple imputation implementation. The rational behind our decision is
given below.

In multiple imputation [Carpenter and Kenward, 2012], several distinct im-
puted versions of the original missing dataset are generated. In practice, this
framework makes use of any single imputation method (such as linear regres-
sion imputation) and adds to it a component of randomness (by bootstrapping,
for example). This generates different complete variations of the same original
missing-valued dataset. The resulting analysis output of each complete dataset
is then combined (i.e., pooled). We chose single over multiple imputation be-
cause all compared imputation methods could be wrapped within a multiple
imputation framework; we are only interested in comparing the imputation
methods themselves, not the outcome of single vs multiple imputation.

While for mean and median imputations the missing values depend on the
available values in the same column, for the regression-based imputers the val-
ues in a column are assumed to depend on the values of the same sample in
other columns. Consequently, for a regression-based imputer, to impute values
for column j, all other columns should be complete. This observation is based
on the ones used in the literature [Bertsimas et al., 2017, Van Buuren, 2018]. In
the first case, random values are generated to populate the initial incomplete
dataset, whereas the latter uses mean imputation to do so. We refer to these
initial imputation states as warm starts hereinafter. A warm start is defined as
follows [Van Buuren, 2018].

Definition 2.2 – Warm start

A warm start in prediction-based imputation is the initial step in which
the dataset is made complete so as to enable learning of a model towards
predicting the imputation values for the feature of interest.

In our case, these warm starts are the complete version of a missing-valued
dataset, generated through mean imputation. They serve as a starting point for
regression-based imputation, allowing for regressors to be trained by using a
provisional complete matrix. After a regression model is fit, imputation can be
performed, and classification models can be learned from the complete data.

The classification algorithms implemented were a k-nearest neighbours
classifier (KNNC), a support vector machine classifier (SVMC) with a radial
basis function kernel, and an extreme gradient boosting classifier (XGBC). We
chose these algorithms as they cover the spectrum of the current state-of-the-art
and their documented application in several domains.



34 Chapter 2. Imputation versus Missing-Indicator

2.5 Experiments

In this segment we address our experimentation. In Section 2.5.1 we describe
how the methods mentioned previously were implemented. In Section 2.5.2,
we present the resulting outputs. Lastly, we discuss our results in Section 2.5.3.

2.5.1 Experimental Setup

Our implementation was performed in Python using peer-reviewed li-
braries [Pedregosa et al., 2011, Chen and Guestrin, 2016, Oliphant, 2007], which
are open-source. All programming objects were initialised using the default set
of parameters supplied by each object’s corresponding package, safe for ran-
dom state parameters. For reproducibility purposes, a random seed value of
42 was set where appropriate (i.e., tree-based algorithms and sample selection
during train-test splitting). We describe and illustrate how the aforementioned
methods were applied within our experimental setup.

For each dataset, we split the entire dataset into 10 segments (folds) in a
stratified manner as to ensure class balance across all folds as in the entire
dataset. Through 10-fold CV we computed benchmark AP values per classi-
fier. These benchmark values are derived from the original complete datasets
and will serve to illustrate the differences across imputation methods.

In each fold, features had their values deleted according to our previously
defined value-removal approach. In this manner, five distinct instances of the
same fold were generated where each instance has a specific percentage of miss-
ing values. Within a dataset, for each missing proportion, we created 10 train-
test sets. Each of these train-test sets was comprised of one distinct fold that
served as the testing subset, and the joint set of the other remaining folds that
served as the training subset. This setup of train-test splits was used to both
apply the aforementioned imputations methods, as well as compute classifier
performances.

Every configuration of splits per dataset for a specific missing proportion
contained the same index instances. In other words, every imputation and
classification procedure was always applied to the same subsets of the origi-
nal dataset across the different algorithms to be compared. After structuring
and creating all splits per dataset according to different missing proportions,
we began the imputation processes.

For the missing-indicator, imputations required no distinction between train
and test subsets: for every subset, missing values are converted to 0 while
adding an extra dimension per feature, valued either 0 or 1 as previously de-
scribed. While this method was applied without differentiating train or test
instances, such was not the case for the remaining imputers.
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Both regression-based imputation methods Linear and XGBR required
warm starts to be initialised and applied. Since warm starts are yielded by
Mean and given that Mean and Median applied similarly (although computing
different statistics), we proceed to describe the imputation setup of both these
methods.

Given a train-test split within our experimental setup, let Xtrain and Xtest

be the sets corresponding to the train and test portions of the split, respectively.
Let Xobs

train ∈ Xtrain and Xmiss
train ∈ Xtrain be disjoint sets representing observed

and missing values, correspondingly, of the train portion of the train-test split.
Conversely, let Xobs

test ∈ Xtest and Xmiss
test ∈ Xtest be disjoint sets representing

observed and missing values, respectively, of the test portion of the train-test
split. For each feature indexed at j ∈ {1, ..., p}, mean and median statistics were
computed from the set of observations x:,j ∈ Xobs

train, for a total of p mean values
and p median values per train-test split. We then replaced the missing values in
both Xmiss

train and Xmiss
test with the mean or median of the respective feature.

The setup used to deploy both Linear and XGBR was the same. We started
by considering any arbitrary train-test split and retrieving the corresponding
imputed train-test set produced through Mean. These imputed train and test
subsets served as the warm starts required to generate imputations through
both regression-based methods. Each of these methods generated imputations
based on the regression methods associated to them. For each train-test split, a
total of p regression models were learned per method, and per feature.

Let Rj be an object representing the regression model to be used to impute
over feature j ∈ {1, ..., p}. Rj had to be passed an initial set of values from
which to learn. The values were a subset of the training warm start. This subset
had the same width as the original corresponding dataset, but only contained
the instances for which feature j has observations. Rj would then be trained
on the subset in question to learn to model feature j from all other remaining
features. Past the regression-training step, imputation was performed by Rj on
both test and train segments of the train-test split.

After all imputation methods were applied to all train-test splits derived
from each dataset for all missing proportions, classifier performance was com-
puted. AP values were generated through 10-fold CV using the aforementioned
train-test splits. The values were then averaged so that each classifier yields one
value of AP per dataset per imputation method per missing proportion.

2.5.2 Results

We computed the mean performance over the 22 datasets, fixed on missing pro-
portion, per imputer, for each classifier. Figs. 2.2, 2.3, and 2.4 illustrate the per-
formance per imputers KNNC, SVMC, and XGBC, respectively.
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Wilcoxon signed-rank tests [Wilcoxon, 1992] were applied to measure the
statistical significance of the differences between missing-indicator and the re-
maining methods. The resulting p-values associated with KNNC, SVMC, and
XGBC are shown in Table 2.3, Table 2.4, and Table 2.5, respectively.
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Figure 2.2: KNNC mean performances across missing proportions. Mean per-
formances (vertical axis) across different proportions of missingness (horizon-
tal axis) per five missing data-handling methods. Indicator refers to missing-
indicator (purple).

Table 2.3: KNNC Wilcoxon p-values

Mean Median Linear XGBR
10% 0.030853 0.001549 0.020271 0.005506
20% 0.000779 0.006082 0.000136 0.001731
30% 0.002401 0.001549 0.002401 0.004981
40% 0.001932 0.001103 0.000259 0.000069
50% 0.094528 0.223429 0.015577 0.001549
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Figure 2.3: SVMC mean performances across missing proportions. Mean per-
formances (vertical axis) across different proportions of missingness (horizon-
tal axis) per five missing data-handling methods. Indicator refers to missing-
indicator (purple).

Table 2.4: SVMC Wilcoxon p-values

Mean Median Linear XGBR
10% 0.026155 0.014239 0.004063 0.001237
20% 0.033462 0.030853 0.000136 0.000155
30% 0.001731 0.001932 0.000334 0.000615
40% 0.039249 0.013005 0.000483 0.002673
50% 0.014239 0.088298 0.000483 0.001237

Within each classifier setup fixed at missing proportion, the 22 average AP
values computed using missing-indicator were compared against the remain-
ing methods in a pairwise fashion. One p-value was yielded for each compar-
ison of missing-indicator vs per imputation method fixed at a given missing
proportion.
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Figure 2.4: XGBC mean performances across missing proportions. Mean per-
formances (vertical axis) across different proportions of missingness (horizon-
tal axis) per five missing data-handling methods. Indicator refers to missing-
indicator (purple).

Table 2.5: XGBC Wilcoxon p-values

Mean Median Linear XGBR
10% 0.807624 0.883846 0.987049 0.066608
20% 0.236019 0.445498 0.236019 0.082403
30% 0.445498 0.858282 0.020271 0.188557
40% 0.101106 0.426376 0.407742 0.139625
50% 0.262686 0.987049 0.066608 0.003302

2.5.3 Discussion

By definition —Eq. 2.1— the distribution of missing values under MCAR in a
dataset is completely independent of any aspect of the dataset itself. By using
the missing-indicator method, a new variable is introduced per missing-valued
feature. The usage of the missing-indicator method generates a binary vari-
able of which the distribution is also independent of any aspect of the data.



2.6. Chapter Conclusion 39

In other words, under the MCAR scenario this missing data-handling approach
is adding a noise variable to the data which will make the classification task
more difficult to solve.

Classifiers such as XGBC, which incorporate feature selection mechanisms,
are less prone to be influenced by the added noise through the incorpora-
tion of missing-indicator variables (Fig. 2.4). However, should a classifica-
tion algorithm be not so robust as assumed, then the overall classification
performance is expected to drop. This is illustrated in Fig. 2.2 (KNNC) and
Fig. 2.3 (SVMC), where an accentuated difference in average performance with
missing-indicator vs all other imputers can be seen. The distinction is further
denoted statistically by analysing Tables 2.3, 2.4, and 2.5. In the first two tables,
nearly all p-values are under 0.01 (i.e., significant difference between missing-
indicator and imputation methods). Table 2.5 suggests little disparity in perfor-
mance between imputation and missing-indicator methods.

2.6 Chapter Conclusion

Handling missing data is a general problem encountered in most machine
learning tasks. Different methods exist in the literature to address this prob-
lem, of which imputation and missing-indicator are the most predominant. De-
pending on underlying missing mechanism, the learner used, and the choice of
missing data-handling method, the downstream task performance may vary.

When dealing with real-world data, a non-MCAR scenario is traditionally
assumed and a viable option is to use the missing-indicator method. However,
even with a negative MCAR test output, a false negative may still be possible
which may jeopardise the performance of the downstream task. Accounting for
this liability, it is necessary to attenuate the performance decrease derived from
using the missing-indicator method under MCAR.

In this work, we have extensively assessed the performance of the missing-
indicator approach under the testable MCAR missing mechanism towards a
downstream classification task. We compared it to common imputation meth-
ods based on both statistical and machine-learning approaches. We computed
classifier performances from three distinct algorithms applied to 22 datasets,
each instanced with different proportions of missing values.

The comparative impact on classifier performance of each imputer was il-
lustrated, and statistical significance tests were applied to further validate our
findings. We observed that, as expected, the missing-indicator method system-
atically underperforms relative to all imputation methods. Yet, the negative
impact of the missing-indicator method (compared to imputation methods) can
be made negligible via adequate learner selection.
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In conclusion, our research shows that the missing-indicator method is a vi-
able option when handling real-world data, even if the missing mechanism is
not correctly assessed, so long as a decision tree-base learner is used,concretely
via gradient boosting. As a closing remark for upcoming research, we state that
using real missing-valued datasets rather than ones with synthetically gener-
ated missingness might provide more realistic and robust results.


