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Chapter 1

Introduction

Modern society is increasingly reliant on information and communication tech-
nologies. This includes machine learning methods and their employment in
artificial intelligence (AI) systems which are rapidly becoming indispensable
components of the status quo. As these technologies evolve, their societal inte-
gration shapes the manner in which aspects of education, health, economy, and
government are conducted [Ahirwar, 2020].

Given their broad range in application and inherent automated nature, the
implementation of these technologies comes with associated risks; e.g., on de-
mocracy, the rule of law, and distributive justice, or on the human mind itself in
the form on opinion manipulation. To prevent and minimise such risks, there is
currently a focus on the foundations, realisation, and assessment of trustworthy
AI in the European Union (EU), under which the definition of AI systems is as
follows [European Commission, 2019a].

Definition 1.1 – AI systems

AI systems are software (and possibly also hardware) systems designed
by humans that, given a complex goal, act in the physical or digital di-
mension by perceiving their environment through data acquisition, in-
terpreting the collected structured or unstructured data, reasoning on the
knowledge, or processing the information, derived from data and decid-
ing the best action(s) to take to achieve the given goal.

Some AI systems can adapt their behaviour after analysing how the envi-
ronment is affected by their previous actions. The task of achieving trustworthy
AI and applying it to our society has been set in motion, as official framework
guidelines are nowadays arising. In accordance with the High-Level Expert
Group on AI [European Commission, 2019b], the definition of trustworthy AI
follows.
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Definition 1.2 – Trustworthy AI

Trustworthy AI is, on a foundational level, an AI system which abides to
the four ethical principles of trustworthiness: (1) respect for human auton-
omy; (2) prevention of harm; (3) fairness; and (4) explainability.

Yet, these principles are meant as broad ideological statements, rather than
objective instructions. As such, towards their realisation, technical and non-
technical methods must be employed. On the one hand, technical methods relate
to concepts such as model development and model testing. On the other hand,
non-technical methods entail codes of conduct at an organisational level of enti-
ties [CLAIRE, 2021].

Depending on the related risks, AI systems have more or less stringent obli-
gations which must be followed. Specifically, AI systems of which the deploy-
ment may put the life and health of citizens at risk are termed high-risk [Euro-
pean Commission, 2021]. Towards their utilisation, high-risk AI systems will be
subject to stringent obligations, such as the minimisation of discriminatory out-
comes, adequate assessment of the performance of the system, whilst having
appropriate human oversight.

The present thesis focuses on the technical methods towards trustworthy AI
in Europe, specifically for high-risk AI systems in light of the risk assessment
activities enacted by the Human Environment and Transport Inspectorate of
the Netherlands: Inspectie Leefomgeving en Transport (hereinafter Inspectorate or
ILT). Below, in Section 1.1, we provide a brief introduction to the Inspectorate
and the risk assessment activities therein acted, with focus on the issues associ-
ated with the shift towards a data-driven paradigm. Concretely, we will narrow
down these issues from a machine learning perspective and address them with
respect to: reliability, in the form of the quality of data; and fairness in the form of
bias in data. We will do so prior to defining the problem statement and research
questions, as to provide the necessary context to the reader.

Section 1.2 provides the preliminaries of machine learning. In Section 1.3,
we describe the problems related to the quality of real-world data, viz. missing-
ness and noise. Section 1.4 discusses the concerns of learning from biased data
(i.e., fairness) in machine learning. The 3 aforementioned Sections present both
formal definitions and examples of practical applications in the Inspectorate of
those definitions, as a way to make explicit the points which are relevant to-
wards formulating, in Section 1.5, the problem statement (PS) and the research
questions (RQs). It is remarked that each RQ has its own research methodol-
ogy which is explained when the RQ is addressed. In Section 1.6, we list our
research goals. Lastly, the outline of the remainder of this thesis is given in
Section 1.7.
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1.1 The Inspectorate

In the Netherlands, the ILT is the legal supervising entity responsible for im-
proving safety, confidence, and sustainability in regard to transport, infras-
tructure, environment and housing. Practical limitations make it impossible
to check the compliance of every single aspect of these broad domains.

Consider, for example, the inspection of ships in the port of Rotterdam, ar-
guably the largest and busiest port in Europe. Every year, over 120, 000 vessels
transit the port from around the globe —sea-going vessels— and within the
Netherlands —inland vessels— amounting to circa 450, 000, 000 metric tons of
goods [Port of Rotterdam Authority, 2021]. The ILT must decide how to mo-
bilise their resources, promoting efficacy, efficiency, and feasibility of compli-
ance ensurance.

To ensure compliance, the entities of interest to the ILT (such as companies)
are requested to report about their activities to the Inspectorate. This process
generates data, often in tabular form. The data are gathered so that domain
experts (i.e., inspectors working at the ILT) may analyse them and prioritise
their risk assessment activities accordingly.

Given the volume of data gathered by the ILT, it is not possible for the in-
spectors to consider these data adequately with their current tool set, which is
largely comprised of labour-intensive manual analysis of tabular data. If data
are not adequately considered —as is the case now— then the proficiency of the
risk assessment and inspection activities have high potential for improvement.
The opportunity for improving upon these activities in a data-driven manner by
utilising machine learning methods provides the motivation for this thesis.

Risk Assessment

According to [Rausand, 2013], risk assessment is defined as follows.

Definition 1.3 – Risk assessment

Risk assessment is the joint effort of: (1) recognising and analysing pos-
sible future occurrences that could harm people, property, or the envi-
ronment (i.e., hazard analysis); and (2) judging the acceptability of risk
based on analysis and taking influencing factors into account (i.e., risk
evaluation).

High risk is often associated with the activities performed by the ILT, such
as evaluating infrastructure integrity which may jeopardise the life and health
of citizens, as failure to comply may result in dire negative health, safety, and
environmental impacts. AI systems which are used in such activities clearly fall
under the category of high-risk AI [European Commission, 2021].



4 Chapter 1. Introduction

In risk assessment, adequately selecting a non-compliant entity for inspec-
tion is termed targeting. Failure to perform targeting is termed mistargeting and
comes in two forms: (1) a non-compliant entity is not selected; and (2) an entity
which is compliant is wrongfully targeted. Although the nature of the noncom-
pliance may be diverse (e.g., ship emissions, waste transportation, and infras-
tructure integrity), mistargeting has dire environmental, health, and safety con-
sequences (type 1 mistargetting) and negatively impacts resources while need-
lessly disturbing the inspected party (type 2 mistargetting). To mitigate these
concerns, minimising mistargeting is paramount (see Section 1.3). To improve
on risk assessment in a data-driven manner, data are required.

The quality of data presents difficult challenges towards implementing data-
driven solutions, concretely in the form of missingness and noise in data. Miss-
ingness and noise are known to deteriorate the performance of learned mod-
els [Sidi et al., 2012]. On the one hand, high quality data are seldom assured in
real world applications, since no data generation method is impervious to flaws
(e.g., human entry errors or faulty automated sensors). On the other hand, is-
sues related to low quality data are, in themselves, of particular interest in risk
assessment: what might be perceived as low quality data may in actuality be
noncompliant behaviour. For example, since different costs are associated with
the transport of specific waste materials, companies have financial incentive to
purposefully manipulate their transport reports.

In their daily activities, inspectors consider a plethora of factors, together
with their domain knowledge, leading to risk assessment decisions. However,
not all factors contribute equally to the decision-making process. The prioriti-
sation of ships for inspection via country flag is a case in point.

Traditionally, the country flag of a ship is considered as a proxy for inspec-
tion priority: ships sailing under specific country flags are more prone to in-
spection than other ships with other country flags according to a colour coding
—white, grey, or black— based on the detention ratio of ships for that coun-
try [Paris MoU, 2020]. The flag is a problem for at least two reasons. First, ships
may easily change flags, which allows companies to circumvent risk assessment
protocols and elude inspection [Cariou and Wolff, 2011]. Second, the colour of
the flag might disproportionally influence the inspection process, which may
lead to confirmation bias.

Data represents the administrative reality of its encapsulating domain. In
other words, they do not necessarily represent the actual reality: following from
the ship inspection example, most inspectors prioritise high-risk country flags,
which will generate data biased with respect to that selection. Should a data-
driven tool (or model) be generated from a biased representation of the world, the
tool itself may also be biased. Techniques must therefore be employed which
reduce bias in models learned from biased data (i.e., learning fair models).
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1.2 Machine Learning Preliminaries

The term machine learning was first introduced in the work by [Samuel, 1959],
in which a computer was programmed to learn to play the game of checkers. A
general definition would later be proposed by [Mitchell, 1997] as follows.

Definition 1.4 – Machine learning

Machine learning is the study of computer algorithms that improve auto-
matically through experience. A program is said to learn from experience
E with respect to task T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E.

Although immense progress has been made since the introduction of the
term machine learning —from a game of checkers to speech recognition, com-
puter vision, and fraud detection, to name a few— the general definition still
holds.

The responsibility of learning a task is delegated to, what is commonly re-
ferred to as, a learning algorithm or learner: a set of instructions, under which
a loss —conversely, gain— function is either minimised or maximised, respec-
tively. The learning process should culminate in finding the target function (i.e.,
model) which translates to the task being solved, herein defined.

Definition 1.5 – Target function (model)

The target function (or model) is the learned function which, provided an
input, returns an output which solves the task for which it was learned.

For distinct tasks, specific learners and loss functions may be used. Consider
the case in which inspectors must select which ships to inspect from a myriad
of vessels. The problem may then be posed as:

Given the characteristics of a vessel, should it be inspected?

In this case, the task is to predict whether or not there is a motive to inspect the
ship. The goal is to learn the target function f (or model), of which the input x is
some vector representation of a vessel and the output y is a class label indicating
the decision to either inspect (+) or not-inspect (−). Formally, the target func-
tion may be given as f : x ∈ X → y ∈ Y ⊆ {+,−}, and finding such a function
is generally referred to as the classification problem [James et al., 2013]. Under a
supervised learning scenario, learning occurs from a set of observations of which
the class labels are known, such that new observations may be classified.

Yet, f may not immediately output a class label {+,−}. Instead, the output
may be given as a classification score proportional to the posterior class probability
f(x) ∝ P (y|x). By applying a threshold t to f(x), a class prediction ŷ is induced.
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The class is predicted as either positive ”+” if f(x) ≥ t, or negative ”−” if
f(x) < t. For simplicity, ŷ+ and ŷ = + are equivalent; the same holds for (a) ŷ−
and ŷ = −, (b) y+ and y = +, and (c) y− and y = −.

An example of supervised classifier learning as a solution to the classifica-
tion problem is illustrated in Fig. 1.1. Here we see the combination of a class
label and a feature vector. The class label of each sample is represented by
colour: red indicating a positive class label y+, and blue indicating a negative
class label y−. The feature vector of a sample is, in this case, of length 2 and is
represented as a point of which the coordinates are the values of each feature:
Feature 1 is the horizontal axis and Feature 2 is the vertical axis.

A solution to this classification problem example is given in the form of
the learned target function f(x), of which the output is represented as a colour
gradient in the feature space (i.e., graph) and colour bar: a solid red colour indi-
cates a high classification score, a white colour indicates a classification score of
0, and a solid blue colour indicates a low classification score. Class predictions
can then be induced for unseen observations by considering the threshold t = 0,
marked as a dotted line: if f(x) ≥ 0, then the class label is predicted as positive
(ŷ+); otherwise negative (ŷ−).

Figure 1.1: Supervised classifier learning. The colour gradient represents the
classification score f(x) of a classifier learned on the observations shown. The
dotted line indicates the threshold t = 0 which induces a class label prediction
for unseen observations: positive if f(x) ≥ 0, and negative otherwise.
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The performance of a model is estimated on data which was not used for
learning, simulating the new (unobserved) real-world observations. These dis-
joint sets are typically denoted as the train (or learning) set and the test set. Mul-
tiple train-test splits (also known as folds) may be used such that the average
performance across test sets is computed. This is termed cross-validation (CV)
and is commonly applied to compute the expected performance of the final de-
ployed model [Stone, 1974].

In the literature, the Area Under the receiver operating characteristic Curve
(AUC) [Hanley and McNeil, 1982] is the standard used to measure the perfor-
mance of a classification model [Flach, 2016]. It is defined as follows.

Definition 1.6 – AUC

AUC is a measure of classification performance which considers the rank-
ing of the output of a model. It quantifies the class separability of a
learned model and is given as the probability that, provided a test set, a
test sample y+ selected at random will have a greater classification score
than that of a test sample y− also selected at random.

The curve it plotted in a graph by considering at each threshold t, the true
positive rate (TPR) and the false positive rate (FPR): the vertical axis represents
the TPR, and the horizontal axis represents the FPR. The greater the AUC —
between 0.5 (random ordering) and 1 (perfect ordering)— the greater the per-
formance. To note, other methods exist to compute the AUC which we address
in Chapter 5.

It is known that there is no single learning algorithm best suited for all po-
tential classification problems, referred to as the no free lunch theorem [Wolpert
and Macready, 1997]. Yet, we note that for tabular data —the type of data han-
dled by inspectors— decision tree learning algorithms [Breiman et al., 1984]
are known to produce well-performing models —even when learning from low
quality data— when applied under bagging (i.e., random forests) or (gradient)
boosting strategies [Dogru and Subasi, 2018]. Taking these notions into consid-
eration, the thesis focuses on decision tree learning algorithms.

1.3 Data Quality

The quality of the data used to learn a model often impacts the performance of
the downstream (or ulterior) task of the model (e.g., targeting noncompliance in
risk assessment). As per [Fürber, 2016], data quality is defined as follows.
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Definition 1.7 – Data quality

Data quality is the degree to which data fulfil requirements. The require-
ments can thereby be defined by (1) quality requirements of several dif-
ferent individuals of groups of individuals, (2) standards, (3) laws and
other regulatory requirements, (4) business policies, or (5) expectations
of data processing applications.

Following the definition, the fifth requirement is our main data quality pro-
vision. Broadly speaking, data are typically considered of either of high quality
or low quality if they are well-suited or ill-suited, respectively, for the intended
downstream task. The latter case being often anecdotally referred to as garbage
in, garbage out [Rose and Fischer, 2011].

Poor data quality may manifest itself differently. For example, learning from
data with insufficient sample size leads to a poor-performing model and, hence,
a low performance of the downstream task. Specifically in this work, the focus
on data quality is in terms of missingness and noise, given their prevalence in
the domain of the ILT. While missingness is the absence of values in data, noise
relates to data values which are inconsistent or erroneous [Sidi et al., 2012]. The
names of these types of data quality issues are preceded by an M (missingness),
or an N (noise), see below. Towards building reliable models, these issues must
be considered.

1.3.1 Missingness

When dealing with real-world data, the absence of feature values in samples is
bound to occur. This occurrence is termed missingness in data and is defined
as follows [Beale and Little, 1975].

Definition 1.8 – Missingness

Missingness in data is the occurrence of absence (i.e., missing values) in
one or more features of one or more samples.

Missingness is characterised according to the relationship between the miss-
ing entries, the observed data, and the values which are missing; these rela-
tionships are categorised into three mechanisms: (1) missingness completely at
random (MCAR); (2) missingness at random (MAR); and (3) missingness not
at random (MNAR). We define each of the three mechanisms below, follow-
ing [Little and Rubin, 2019].
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Definition 1.9 – MCAR

MCAR is the mechanism of missingness which assumes that the proba-
bility that a data value is missing is the same for all samples and features.

Under this mechanism, there is neither a relationship between the missing
values and the remainder of the observed (non-missing) entries nor a relation-
ship with the missing value itself. This means the distribution of missingness
is independent of the data. An example of this mechanism is a sulphur sensor
which runs out of power: some of the data will be missing due to a random
event. Nevertheless, MCAR is generally atypical when dealing with real-world
data.

Definition 1.10 – MAR

MAR is the mechanism of missingness which assumes that the events that
lead to missingness are dependent of the feature values in the observed
(i.e., non-missing) data.

The MAR mechanism assumes that missing entries have some form of de-
pendency with respect to the observed entries. For instance, if certain ports do
not have sulphur sensors, then vessels travelling through those ports will not
generate data regarding those sulphur measures.

Definition 1.11 – MNAR

MNAR is the mechanism of missingness which assumes that the missing-
ness is dependent on actual value that is missing as well as the observed
values.

The MNAR mechanism occurs when the absence of entries is dependent on
both (a) the unseen values and (b) the observed data. For example, when com-
panies which fail to report on their emissions are the most likely to have sys-
tematically higher emission levels.

Traditionally, learning algorithms are incapable of handling data with miss-
ing values [Garcı́a-Laencina et al., 2010]. The data must first be artificially made
complete, i.e., without missing values, via missing data-handling techniques. In the
missingness literature, two prominent categories of missing data-handling tech-
niques are considered [Enders, 2010]: (1) imputation; and (2) missing-indicator.
These are defined below. To note, several imputation methods exist in the liter-
ature [Enders, 2010]. We elaborate further on this topic in Chapter 2.

Definition 1.12 – Imputation

Imputation is the process of filling in missing values based on the avail-
able data.
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Definition 1.13 – Missing-indicator

Missing-indicator is the method by which missingness is encoded, by gen-
erating an additional binary feature representing the presence or absence
of values, and by assigning the same value to all missing values of the
feature of concern.

It is known that (a) the mechanism of missingness, (b) the choice of miss-
ing data-handling technique, and (c) the learning algorithm jointly play a cru-
cial role in the final model performance [Garciarena and Santana, 2017]. For
instance, under non-MCAR, the missing-indicator method is a viable solution
towards classifier learning [Lipton et al., 2016].

Discerning which missing mechanism is present is a challenging task. While
it is impossible to distinguish between MAR and MNAR —as the necessary
information for the distinction is itself missing— a test for MCAR vs not-MCAR
has been proposed [Little, 1988]. Yet, the outcome of the test is not entirely
reliable, as false positives and false negatives may still occur.

Real-world data are seldom MCAR [Van Buuren, 2018]. However, testing
for MCAR does not provide a guaranteed result. Even though the assumption
of non-MCAR data is generally correct in risk assessment, the MCAR mecha-
nism is still possible and not necessarily detectable. Putting it differently, the
issue is to find a solution to missingness which mitigate the detriment to the
performance of the downstream task in cases where the assumption of non-
MCAR is false. We will focus on this issue in Chapter 2.

1.3.2 Noise

In classification, noise in data is defined as follows [Angluin and Laird, 1988].

Definition 1.14 – Noise

Noise in data is the presence of elements in (a) the feature(s) and/or (b)
the class label which obscures their relationship and complicates model
learning.

The major consequence of noise is the performance degradation of the final
learned model when it is ignored [Wilson and Martinez, 2000]. It negatively
impacts the performance of the learned model by obscuring the relationship
between features and class label. Noise is denominated as either (a) feature noise
or (b) (class) label noise, depending on the elements affected [Sáez et al., 2014];
these denominations are defined below.
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Definition 1.15 – Feature noise

Feature noise is the presence of elements in the feature values of samples
which obscures the relationship between the features and the class label.

Definition 1.16 – Label noise

Label noise is the presence of erroneous class labels in samples (i.e., mis-
labels).

Depending on the type of noise (feature or label), the compromise in per-
formance of the downstream classification task varies. In general, we may no-
tice that feature noise tends to be less detrimental than label noise [Zhu and
Wu, 2004]. Here we note that in cases where both feature and label noises are
present, the noise is denoted as a special case of label noise [Frénay and Verley-
sen, 2013]. As such, hereinafter, the terms noise and label noise are synonymous,
and are both denoted as N.

Label noise is described according to the relationship between the mislabels
and data characteristics. Three label noise mechanisms are used to categorise these
relationships [Frénay and Verleysen, 2013]: (1) label noise completely at random
(NCAR); (2) label noise at random (NAR); and (3) label noise not at random
(NNAR). We define each of the mechanisms below.

Definition 1.17 – NCAR

NCAR is the label noise mechanism which assumes that the probability
that a sample is mislabelled is the same for all samples.

NCAR occurs when the proportion of mislabels is the same across classes. It
is associated with random errors in the data generation process; e.g., automated
sensor errors.

Definition 1.18 – NAR

NAR is the label noise mechanism which assumes that the probability
that a sample is mislabelled be dependent on the class label of the sample.

NAR entails different proportions of mislabels across the different classes.
In other words, samples of one class are more prone to being mislabels than
samples from another class. This might result from ill-calibrated tests to de-
termine the outcome of risk assessment; e.g., targeting protocols which are too
stringent or too relaxed.
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Definition 1.19 – NNAR

NNAR is the label noise mechanism which assumes that the probability
that a sample is mislabelled is dependent on the class label and/or the
features values.

In NNAR, mislabels may be associate with specific regions of the feature
space, and their proportion may or may not be the same across classes. This
mechanism is particularly interesting as it relates to the report-manipulation
example from Section 1.1.

Since label noise may correlate to noncompliance within the context of risk
assessment, especially in conjunction with feature noise, we focus on the NNAR
scenario. Addressing label noise towards model learning often involves a pre-
requisite in the form of a sample detection step. Generally, label noise detection
approaches leverage supervised learning methods into producing mislabelling
detection scores. Detection scores are used to identify samples such that higher
detection scores indicate higher likelihood of mislabel, and can be generated by
exploiting classification scores f(x): the lower the classification score of a sam-
ple towards its class label, the higher the detection score for being a noisy label.
Given that these scores quantify the amount of label noise in samples [Jeatrakul
et al., 2010], they may be used to better learn a classification model trained on
label-noisy data [Liu and Tao, 2015].

Under the current risk assessment scenario, it would be advantageous to
exploit these scores two-fold. First, when label noise mechanisms may trans-
late to non-compliance, detection scores can directly be used as risk assessment
scores. Second, detection scores may be incorporated into model learning such
that the performance of the final learned classifier is the least compromised by
noise, promoting better-performing risk assessment models. The work in this
thesis addresses these two topics in Chapter 3 and Chapter 4, respectively.

1.4 Fairness

Machine learning algorithms model all sorts of relations between features
and outcomes in historical training data, including potential societal bi-
ases [Richardson, 2022]. Within the Inspectorate, confirmation bias in historical
inspection data is a case in point (we expand on it in Chapter 5).

The problem is to learn a mostly unbiased model from biased data. We men-
tion mostly since, as detailed further, a completely unbiased model has a com-
pletely random classification output, rendering it useless. Learning with biased
data is a problem traditionally termed fairness [Barocas et al., 2017] and is de-
fined as follows.
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Definition 1.20 – Fairness

Fairness in machine learning is the study and tentative correction of al-
gorithmic bias which results from learning with biased data.

A model is deemed more or less fair if its output has lesser or greater de-
pendency (i.e., bias), respectively, towards some sensitive characteristic, such as
nationality, age, or gender; i.e., a model is deemed less fair if it favours certain
groups or individuals over others. To note, although the term bias may have dif-
ferent meanings in other fields (e.g., the bias-variance trade-off [Kohavi et al.,
1996, Meertens et al., 2021]), in this context it is used antithetically to the term
fairness.

Without loss of generality, the sensitive attribute of a sample is denoted
s ∈ S ⊆ {−,+} and represents sensitive group information, such as gender;
the male and female groups are represented as S+ and S− or vice-versa, and
samples pertaining to each group are respectively s+ and s−. Measures of fair-
ness attempt to quantify the disparity of the model output between the groups
conditioned on the sensitive attributes. The model output considered may be
either (a) the class label prediction ŷ induced by a set threshold t or (b) the clas-
sification score f(x) [Venkatasubramanian, 2019]. Below we define two preva-
lent measures of fairness as described in the literature. They consider each of
these outputs and are called: (1) demographic parity [Feldman et al., 2015] and (2)
strong demographic parity [Jiang et al., 2020].

The definition of demographic parity follows.

Definition 1.21 – Demographic parity

Demographic parity is the fairness measure which considers the differ-
ence in the proportion of positive outcomes (i.e., positive class label pre-
dictions) between two sensitive groups S+ and S−.

An example of demographic parity is the difference in the proportion of men
who are hired vs the proportion of women who are hired. By extending the
definition of demographic parity to account for the classification score (instead
of the induced class prediction), the measure of strong demographic parity can
be defined as follows.

Definition 1.22 – Strong demographic parity

Strong demographic parity is the fairness measure which quantifies the
fairness of a learned model by considering the difference in the ranking
of classification scores across sensitive groups S+ and S−.

The computational definitions of demographic parity and strong demo-
graphic parity are given in Chapter 5.
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To note, other fairness measures exist which consider different relations be-
tween model output and sensitive information; for example, the TPR and/or
FPR conditioned on the sensitive groups (i.e., equal opportunity and equalised
odds) [Pessach and Shmueli, 2022]. Yet, in the thesis we focus on the aforemen-
tioned (strong) demographic parities, given their link between class prediction
and classification score. For both demographic parity measures, values closer
to 0 indicate model fairness, whereas values closer to 1 indicate model bias More-
over, we remark that the strong demographic parity is conceptually similar to
the AUC performance measure, but it is conditioned on the sensitive attribute
values. We make use of this observation in Chapter 5.

1.4.1 Performance-Fairness Trade-Off

There exists a phenomenon under which the following holds. As model fair-
ness increases, the more likely it is that the predictive performance decreases.
This is known as the performance-fairness trade-off [Zafar et al., 2017]. It is a re-
sult of the decorrelation between the features and sensitive attribute, under the
assumption of bias in data [Kleinberg et al., 2016].

Nevertheless, the performance-fairness trade-off is not necessarily balanced:
greatly improving model fairness does not require a large decrease in model
performance. Depending on the dataset, the corresponding correlation between
sensitive attributes, and the target variable, it is possible to ensure adequate
model fairness with limited decrease in predictive performance. In other words,
the trade-off can be leveraged to find the optimal performance-fairness pair of
a specific scenario.

The tunability of the performance-fairness trade-off in a model should, there-
fore, be considered. Towards its adequate implementation, we decompose the
requirements of the tunability process into the two following: (1) granularity,
and (2) intuitiveness.

First, the granularity of the tunability must be implemented such that an
optimal performance-fairness pair may be found. If the granularity is insuffi-
cient, then the optimal trade-off between performance and fairness may not be
reached. To put it differently, by incorporating fine-tuning into the trade-off, it
is assured that the sweet spot of the performance-fairness is attainable.

Second, the tunability should be incorporated in an intuitive manner to-
wards model usability. Alongside their domain knowledge, relevant stake-
holders (in conjunction with the aid of the machine learning expert) should be
able to decide which performance-fairness trade-off point is the optimal solu-
tion given a specific problem. By making the tunability process accessible, this
task-dependent optimality can be assured. We explore the two aforementioned
requirements in Chapter 5.
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1.4.2 Addressing Fairness in Machine Learning

Taxonomically, three distinct mechanisms have been proposed to address fair-
ness in machine learning [Pessach and Shmueli, 2020]. Each mechanism ad-
dresses fairness at different stages of the model learning process: (1) pre-
processing; (2) post-processing; and (3) in-processing.

First, pre-processing relates to changes made within the training set prior to
learning a model; e.g., by manipulating the training set specifically towards the
homogenisation of the distributions across the different sensitive groups, mak-
ing it more difficult for the final learned classifier to distinguish between the
sensitive groups [Feldman et al., 2015]. This mechanism is sub-optimal because
sample manipulation neglects the dependency over the classification task; i.e.,
the bias in data may still be exploited [Goldfarb-Tarrant et al., 2020].

Second, post-processing relates to changes made to the output of the final
trained model, correcting decisions over sensitive groups [Hajian et al., 2015];
for instance, by having different decision thresholds t for each group [Corbett-
Davies et al., 2017]. However, using sensitive information as input to determine
a final outcome —e.g., hire if male and not-hire if female, for the same model
score— is often not viable and potentially illegal under the General Data Pro-
tection Regulation in EU law [Goddard, 2017].

Third, in-processing encompasses the development and/or modification of
classification algorithms. In this manner, models account for both predictive
performance and fairness during learning by exploiting the relation between
the features and sensitive attributes [Bechavod and Ligett, 2017].

Across the three bias-addressing mechanisms, in-processing is the most
prevalent in the current literature, with overall superior classification per-
formance and fairness, and the possibility to adequately tune the trade-
off [Kamishima et al., 2012, Goh et al., 2016, Woodworth et al., 2017].

The applicability of the mechanisms relates to the degree of freedom of the
developer. With pre-processing, there is only access to the data and not the
model or its output; i.e., it is most useful for third party model development.
In post-processing, only the output of a model is accessible; e.g., closed source
algorithms. In-processing implies full developmental privileges (data, model,
and output), allowing the relevant requirements to be combined.

Towards accomplishing the work presented in this thesis, we were allowed
access by the ILT to their data. Moreover, full model development privileges
were provided, including model output. Since, as stated, we are in full control
of the algorithmic development, and given the prevalence and overall superi-
ority of in-processing in the current literature, model fairness is addressed in an
in-processing fashion in this thesis.
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1.5 Problem Statement and Research Questions

In this thesis we are motivated by the real-world operations of the inspectors of
the ILT towards risk assessment, which benefit from data-driven (i.e., machine
learning) methodologies.

1.5.1 Problem Statement

The shift towards a data-driven paradigm in the operations of the risk assess-
ment experts harbours considerable concerns given the high-risk profile of their
endeavours. Based on this observation, we formulate the following PS.

PS: How can machine learning methods advance data-driven risk assessment
by the Inspectorate in a reliable and fair manner?

To address the PS, we will decompose it into three tractable RQs.

1.5.2 Research Questions

Missingness is a data-quality issue that impacts the performance of a down-
stream task on a model learned from a dataset. This impact must be considered,
as to minimise the performance decrease during operational deployment. The
performance of the downstream task of a model learned on data with missing-
ness may vary depending on the joint selection of (a) the missing data-handling
technique —imputation, missing-indicator, complete-case analysis, to name a
few— (b) the choice of learning algorithm, and (c) the underlying missing mech-
anism.

Albeit real-world data —such as the one generated by the ILT— is seldom
MCAR, it is still a possibility and testing for it does not provide a guaranteed
result. Having made these observations, the first RQ is formulated as follows.

RQ1: Given data with missing values, which (a) missing data-handling tech-
nique and (b) learning algorithm should be jointly selected such that, regardless
of the missing mechanism, the detriment to the downstream task performance
is minimal when compared to the non-missing (unavailable) case?

Data permeated with noise is detrimental to model learning. Moreover, the
detection of these noisy samples is a prerequisite for model learning with noisy
data. While noise in classification is strictly any disruption of the relationship
between features distribution and labels, we tackle label noise as mislabels in
the data under specific feature distribution conditions (i.e., with additional fea-
ture noise). Our reasoning for this is two-fold: (1) this noise may be indicative
of noncompliant behaviour in risk assessment; and (2) label noise is more detri-
mental to model learning than feature noise alone.
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It is advantageous to produce noisy-sample detection scores usable for both
(a) noncompliance targeting, and (b) model learning. Accordingly, the second
RQ is a compound one —decomposable into RQ2(a) and RQ2(b)— and follows.

RQ2: Given data with label noise, how can noisy-samples be (a) adequately
detected, and (b) used to learn a well-performing model?

Fairness in machine learning is paramount to handle biased data. Not only
must the learned model exhibit adequate predictive performance, it must also
ensure that the predictions are the least impacted by the data bias.

To measure the impact of biased data in the learned model, different fair-
ness measures exist which have an analogous (i.e., corresponding) performance
measure. Moreover, the performance-fairness trade-off is a well-known phe-
nomenon and may be exploited to achieve the most fairness increase at the cost
of the least performance decrease. To exploit the performance-fairness trade-
off, model learning must allow for its tunability. An in-processing approach to
fairness enables this. Merging these remarks, we arrive at our third RQ.

RQ3: How can we, from biased data, learn a model tunable with respect to the
performance-fairness trade-off such that the selection of the trade-off point is
made intuitive for the relevant stakeholders?

1.5.3 Research Methodology

To provide an answer to the PS, the work in this thesis follows the
well-established CRoss Industry Standard Process for Data Mining (CRISP-
DM) [Martı́nez-Plumed et al., 2019], defined as follows and depicted in Fig 1.2.

Definition 1.23 – CRISP-DM

CRISP-DM is a process model which decomposes a data science pro-
cess into six phases: (1) business understanding; (2) data understanding;
(3) data preparation; (4) modelling; (5) evaluation; and (6) deployment.

Here, we explicitly denote that, despite the subject of this thesis not be-
ing data mining, CRISP-DM still offers a valuable approach which helps guide
our research. To begin our work, communication between the domain experts,
stakeholders, and us researchers was fulcral; jointly, efforts were had to pro-
mote the first two phases to be best of our capacity. In this thesis, however, the
focus is not in detailing the communication processes, but rather to describe the
technical methods developed and their performance; i.e., data preparation (3),
modelling (4), and evaluation (5). We further denote that the deployment phase
is outside of the scope of this thesis, as it depends not solely on the adequacy of
the technical methods, but also on changes at the organisational level.
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Figure 1.2: CRISP-DM. Process model comprised of six sequential phases.

The technical methods used to address RQ1 are detailed in Chapter 2,
RQ2(a) in Chapter 3, RQ2(b) in Chapter 4, and RQ3 in Chapter 5.

1.6 Research Contributions

Below, we list the four main contributions of our research.

• Contribution 1. We show that towards supervised classifier learning with real-
world missing data, a combination of (a) the missing-indicator method and
(b) a decision tree learning algorithm —namely, gradient boosting— should
be used to minimise the detriment in classification performance.

According to the literature, non-MCAR scenarios can benefit from the
missing-indicator method, measured as the downstream task performance.
In the scenario of a non-MCAR assumption being falsely made, we com-
pare several imputation methods to the missing-indicator method, quantify-
ing their differences measured as the downstream classification performance.
We empirically demonstrate that across different learning algorithms, (gradi-
ent) boosting architectures which incorporate feature selection processes are
the least susceptible —if at all— to the sub-optimal decision of applying the
missing-indicator method when dealing with data generated under MCAR.
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• Contribution 2. We propose an approach to targeting and accounting noisy
observations which, subsequently, allows for better learning with noisy data,
which outperforms the competing literature methods.

The scenario in which both label and feature noise permeate data is con-
sidered. By leveraging an already existing robust decision tree learning al-
gorithm via gradient boosting, noisy-sample detection scores are computed
in a CV manner, generating a model with well-calibrated output. Empiri-
cally, we performed extensive experimentation to compare our approach to
other methods from both outlier and mislabel detection publications. Our
novel method —termed EXPOSE— exhibited an overall improved perfor-
mance over the methods against which it was compared.

• Contribution 3. We develop a strategy towards classifier learning for data
with label noise through sample weighing which exhibits competitive per-
formance when compared to the current literature, particularly adequate for
datasets with large proportions of mislabels.

Based on the aforementioned contribution in noisy-sample detection, the de-
tection scores are leveraged to compute individual observation weights. The
weights are applied within the learning process as coefficients in the logistic
loss function. We empirically show that via well-calibrated posterior prob-
ability estimations, the log-odds of an observation may be leveraged in learn-
ing. Through an exhaustive experimental design, comprised of different pro-
portions of both label and feature noise, we validate our proposed method
—DENOISE— by comparing it to the state-of-the-art in learning from noisy
data under the NNAR scenario. On average, our method achieves superior
performance compared to the state-of-the-art.

• Contribution 4. We design a fair tree classifier which is independent of thresh-
old in the performance loss as well as the fairness criterion loss. The classifier
can be easily adjusted to assess performance-fairness trade-off points.

The threshold-independent fairness measure of strong demographic parity is
used and, by drawing from its analogy to the classification performance mea-
sure AUC, we arrive at the Splitting Criterion AUC For Fairness, or SCAFF.
Incorporated in SCAFF, the orthogonality parameter Θ which regulates the
performance-fairness trade-off. Our learning algorithm considers multiple
sensitive attributes simultaneously of which the values may be multicategor-
ical. When compared to other fair tree learning splitting criteria, our experi-
ments with real-world data show our method is able to achieve classification
performance and fairness which are on par at worst and superior at best,
against those of the competing approaches in the fairness literature.
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1.7 Thesis Overview

In Chapter 1, we introduced the current movement towards trustworthy AI in
Europe. Then, we narrowed our scope towards the particular domain of risk
assessment, with distinct concern for data-driven solutions within the Inspec-
torate of the Netherlands. We further established the required foundations to
achieve these solutions. We formulated our PS, and decomposed it into the
three RQs of the thesis. Next, we proposed our four contributions. The remain-
der of the thesis is given below.

• Chapter 2 answers RQ1, resulting in Contribution 1. The content of the chap-
ter is identical to that of the work by
Pereira Barata, A., Takes, F. W., van den Herik, H. J., and Veenman, C. J.
(2019). Imputation methods outperform missing-indicator for data missing
completely at random. In 2019 International Conference on Data Mining Work-
shops (ICDMW), pages 407–414. IEEE

• Chapter 3 answers RQ2(a). The result of the chapter is Contribution 2. The
content of the chapter is identical to that of the work by
Pereira Barata, A., Takes, F. W., van den Herik, H. J., and Veenman, C. J.
(2021). The eXPose approach to crosslier detection. In 2020 25th International
Conference on Pattern Recognition (ICPR), pages 2312–2319. IEEE

• Chapter 4 provides an answer to RQ2(b). The result corresponds to Contri-
bution 3. The content of the chapter is identical to that of the work by
Pereira Barata, A., Takes, F. W., van den Herik, H. J., and Veenman, C. J.
(2022). Noise-resilient classifier learning. Pattern Recognition (under review)

• Chapter 5 answers RQ3, culminating in Contribution 4. The content of the
chapter is identical to that of the work by
Pereira Barata, A., Takes, F. W., van den Herik, H. J., and Veenman, C. J.
(2022). Fair tree classifier using strong demographic parity. Machine Learning
(under review)

• Chapter 6 entails the conclusions of the present thesis, in three distinct sec-
tions. We (1) answer the three research questions, (2) provide an answer to
the problem statement, and (3) discuss future work directions.

The papers presented in this thesis were produced as a joint collaboration
between the supervisors and the PhD candidate. Discussions on research top-
ics and how to tackle the problems described were addressed as a team. The
writing was performed by the candidate, incorporating the commentary pro-
vided by the supervisors. The implementation of the experimental designs and
gathering of the results were performed by the candidate.


