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Chapter 1

Introduction

Modern society is increasingly reliant on information and communication tech-
nologies. This includes machine learning methods and their employment in
artificial intelligence (AI) systems which are rapidly becoming indispensable
components of the status quo. As these technologies evolve, their societal inte-
gration shapes the manner in which aspects of education, health, economy, and
government are conducted [Ahirwar, 2020].

Given their broad range in application and inherent automated nature, the
implementation of these technologies comes with associated risks; e.g., on de-
mocracy, the rule of law, and distributive justice, or on the human mind itself in
the form on opinion manipulation. To prevent and minimise such risks, there is
currently a focus on the foundations, realisation, and assessment of trustworthy
AI in the European Union (EU), under which the definition of AI systems is as
follows [European Commission, 2019a].

Definition 1.1 – AI systems

AI systems are software (and possibly also hardware) systems designed
by humans that, given a complex goal, act in the physical or digital di-
mension by perceiving their environment through data acquisition, in-
terpreting the collected structured or unstructured data, reasoning on the
knowledge, or processing the information, derived from data and decid-
ing the best action(s) to take to achieve the given goal.

Some AI systems can adapt their behaviour after analysing how the envi-
ronment is affected by their previous actions. The task of achieving trustworthy
AI and applying it to our society has been set in motion, as official framework
guidelines are nowadays arising. In accordance with the High-Level Expert
Group on AI [European Commission, 2019b], the definition of trustworthy AI
follows.
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Definition 1.2 – Trustworthy AI

Trustworthy AI is, on a foundational level, an AI system which abides to
the four ethical principles of trustworthiness: (1) respect for human auton-
omy; (2) prevention of harm; (3) fairness; and (4) explainability.

Yet, these principles are meant as broad ideological statements, rather than
objective instructions. As such, towards their realisation, technical and non-
technical methods must be employed. On the one hand, technical methods relate
to concepts such as model development and model testing. On the other hand,
non-technical methods entail codes of conduct at an organisational level of enti-
ties [CLAIRE, 2021].

Depending on the related risks, AI systems have more or less stringent obli-
gations which must be followed. Specifically, AI systems of which the deploy-
ment may put the life and health of citizens at risk are termed high-risk [Euro-
pean Commission, 2021]. Towards their utilisation, high-risk AI systems will be
subject to stringent obligations, such as the minimisation of discriminatory out-
comes, adequate assessment of the performance of the system, whilst having
appropriate human oversight.

The present thesis focuses on the technical methods towards trustworthy AI
in Europe, specifically for high-risk AI systems in light of the risk assessment
activities enacted by the Human Environment and Transport Inspectorate of
the Netherlands: Inspectie Leefomgeving en Transport (hereinafter Inspectorate or
ILT). Below, in Section 1.1, we provide a brief introduction to the Inspectorate
and the risk assessment activities therein acted, with focus on the issues associ-
ated with the shift towards a data-driven paradigm. Concretely, we will narrow
down these issues from a machine learning perspective and address them with
respect to: reliability, in the form of the quality of data; and fairness in the form of
bias in data. We will do so prior to defining the problem statement and research
questions, as to provide the necessary context to the reader.

Section 1.2 provides the preliminaries of machine learning. In Section 1.3,
we describe the problems related to the quality of real-world data, viz. missing-
ness and noise. Section 1.4 discusses the concerns of learning from biased data
(i.e., fairness) in machine learning. The 3 aforementioned Sections present both
formal definitions and examples of practical applications in the Inspectorate of
those definitions, as a way to make explicit the points which are relevant to-
wards formulating, in Section 1.5, the problem statement (PS) and the research
questions (RQs). It is remarked that each RQ has its own research methodol-
ogy which is explained when the RQ is addressed. In Section 1.6, we list our
research goals. Lastly, the outline of the remainder of this thesis is given in
Section 1.7.
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1.1 The Inspectorate

In the Netherlands, the ILT is the legal supervising entity responsible for im-
proving safety, confidence, and sustainability in regard to transport, infras-
tructure, environment and housing. Practical limitations make it impossible
to check the compliance of every single aspect of these broad domains.

Consider, for example, the inspection of ships in the port of Rotterdam, ar-
guably the largest and busiest port in Europe. Every year, over 120, 000 vessels
transit the port from around the globe —sea-going vessels— and within the
Netherlands —inland vessels— amounting to circa 450, 000, 000 metric tons of
goods [Port of Rotterdam Authority, 2021]. The ILT must decide how to mo-
bilise their resources, promoting efficacy, efficiency, and feasibility of compli-
ance ensurance.

To ensure compliance, the entities of interest to the ILT (such as companies)
are requested to report about their activities to the Inspectorate. This process
generates data, often in tabular form. The data are gathered so that domain
experts (i.e., inspectors working at the ILT) may analyse them and prioritise
their risk assessment activities accordingly.

Given the volume of data gathered by the ILT, it is not possible for the in-
spectors to consider these data adequately with their current tool set, which is
largely comprised of labour-intensive manual analysis of tabular data. If data
are not adequately considered —as is the case now— then the proficiency of the
risk assessment and inspection activities have high potential for improvement.
The opportunity for improving upon these activities in a data-driven manner by
utilising machine learning methods provides the motivation for this thesis.

Risk Assessment

According to [Rausand, 2013], risk assessment is defined as follows.

Definition 1.3 – Risk assessment

Risk assessment is the joint effort of: (1) recognising and analysing pos-
sible future occurrences that could harm people, property, or the envi-
ronment (i.e., hazard analysis); and (2) judging the acceptability of risk
based on analysis and taking influencing factors into account (i.e., risk
evaluation).

High risk is often associated with the activities performed by the ILT, such
as evaluating infrastructure integrity which may jeopardise the life and health
of citizens, as failure to comply may result in dire negative health, safety, and
environmental impacts. AI systems which are used in such activities clearly fall
under the category of high-risk AI [European Commission, 2021].
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In risk assessment, adequately selecting a non-compliant entity for inspec-
tion is termed targeting. Failure to perform targeting is termed mistargeting and
comes in two forms: (1) a non-compliant entity is not selected; and (2) an entity
which is compliant is wrongfully targeted. Although the nature of the noncom-
pliance may be diverse (e.g., ship emissions, waste transportation, and infras-
tructure integrity), mistargeting has dire environmental, health, and safety con-
sequences (type 1 mistargetting) and negatively impacts resources while need-
lessly disturbing the inspected party (type 2 mistargetting). To mitigate these
concerns, minimising mistargeting is paramount (see Section 1.3). To improve
on risk assessment in a data-driven manner, data are required.

The quality of data presents difficult challenges towards implementing data-
driven solutions, concretely in the form of missingness and noise in data. Miss-
ingness and noise are known to deteriorate the performance of learned mod-
els [Sidi et al., 2012]. On the one hand, high quality data are seldom assured in
real world applications, since no data generation method is impervious to flaws
(e.g., human entry errors or faulty automated sensors). On the other hand, is-
sues related to low quality data are, in themselves, of particular interest in risk
assessment: what might be perceived as low quality data may in actuality be
noncompliant behaviour. For example, since different costs are associated with
the transport of specific waste materials, companies have financial incentive to
purposefully manipulate their transport reports.

In their daily activities, inspectors consider a plethora of factors, together
with their domain knowledge, leading to risk assessment decisions. However,
not all factors contribute equally to the decision-making process. The prioriti-
sation of ships for inspection via country flag is a case in point.

Traditionally, the country flag of a ship is considered as a proxy for inspec-
tion priority: ships sailing under specific country flags are more prone to in-
spection than other ships with other country flags according to a colour coding
—white, grey, or black— based on the detention ratio of ships for that coun-
try [Paris MoU, 2020]. The flag is a problem for at least two reasons. First, ships
may easily change flags, which allows companies to circumvent risk assessment
protocols and elude inspection [Cariou and Wolff, 2011]. Second, the colour of
the flag might disproportionally influence the inspection process, which may
lead to confirmation bias.

Data represents the administrative reality of its encapsulating domain. In
other words, they do not necessarily represent the actual reality: following from
the ship inspection example, most inspectors prioritise high-risk country flags,
which will generate data biased with respect to that selection. Should a data-
driven tool (or model) be generated from a biased representation of the world, the
tool itself may also be biased. Techniques must therefore be employed which
reduce bias in models learned from biased data (i.e., learning fair models).
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1.2 Machine Learning Preliminaries

The term machine learning was first introduced in the work by [Samuel, 1959],
in which a computer was programmed to learn to play the game of checkers. A
general definition would later be proposed by [Mitchell, 1997] as follows.

Definition 1.4 – Machine learning

Machine learning is the study of computer algorithms that improve auto-
matically through experience. A program is said to learn from experience
E with respect to task T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E.

Although immense progress has been made since the introduction of the
term machine learning —from a game of checkers to speech recognition, com-
puter vision, and fraud detection, to name a few— the general definition still
holds.

The responsibility of learning a task is delegated to, what is commonly re-
ferred to as, a learning algorithm or learner: a set of instructions, under which
a loss —conversely, gain— function is either minimised or maximised, respec-
tively. The learning process should culminate in finding the target function (i.e.,
model) which translates to the task being solved, herein defined.

Definition 1.5 – Target function (model)

The target function (or model) is the learned function which, provided an
input, returns an output which solves the task for which it was learned.

For distinct tasks, specific learners and loss functions may be used. Consider
the case in which inspectors must select which ships to inspect from a myriad
of vessels. The problem may then be posed as:

Given the characteristics of a vessel, should it be inspected?

In this case, the task is to predict whether or not there is a motive to inspect the
ship. The goal is to learn the target function f (or model), of which the input x is
some vector representation of a vessel and the output y is a class label indicating
the decision to either inspect (+) or not-inspect (−). Formally, the target func-
tion may be given as f : x ∈ X → y ∈ Y ⊆ {+,−}, and finding such a function
is generally referred to as the classification problem [James et al., 2013]. Under a
supervised learning scenario, learning occurs from a set of observations of which
the class labels are known, such that new observations may be classified.

Yet, f may not immediately output a class label {+,−}. Instead, the output
may be given as a classification score proportional to the posterior class probability
f(x) ∝ P (y|x). By applying a threshold t to f(x), a class prediction ŷ is induced.
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The class is predicted as either positive ”+” if f(x) ≥ t, or negative ”−” if
f(x) < t. For simplicity, ŷ+ and ŷ = + are equivalent; the same holds for (a) ŷ−
and ŷ = −, (b) y+ and y = +, and (c) y− and y = −.

An example of supervised classifier learning as a solution to the classifica-
tion problem is illustrated in Fig. 1.1. Here we see the combination of a class
label and a feature vector. The class label of each sample is represented by
colour: red indicating a positive class label y+, and blue indicating a negative
class label y−. The feature vector of a sample is, in this case, of length 2 and is
represented as a point of which the coordinates are the values of each feature:
Feature 1 is the horizontal axis and Feature 2 is the vertical axis.

A solution to this classification problem example is given in the form of
the learned target function f(x), of which the output is represented as a colour
gradient in the feature space (i.e., graph) and colour bar: a solid red colour indi-
cates a high classification score, a white colour indicates a classification score of
0, and a solid blue colour indicates a low classification score. Class predictions
can then be induced for unseen observations by considering the threshold t = 0,
marked as a dotted line: if f(x) ≥ 0, then the class label is predicted as positive
(ŷ+); otherwise negative (ŷ−).

Figure 1.1: Supervised classifier learning. The colour gradient represents the
classification score f(x) of a classifier learned on the observations shown. The
dotted line indicates the threshold t = 0 which induces a class label prediction
for unseen observations: positive if f(x) ≥ 0, and negative otherwise.
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The performance of a model is estimated on data which was not used for
learning, simulating the new (unobserved) real-world observations. These dis-
joint sets are typically denoted as the train (or learning) set and the test set. Mul-
tiple train-test splits (also known as folds) may be used such that the average
performance across test sets is computed. This is termed cross-validation (CV)
and is commonly applied to compute the expected performance of the final de-
ployed model [Stone, 1974].

In the literature, the Area Under the receiver operating characteristic Curve
(AUC) [Hanley and McNeil, 1982] is the standard used to measure the perfor-
mance of a classification model [Flach, 2016]. It is defined as follows.

Definition 1.6 – AUC

AUC is a measure of classification performance which considers the rank-
ing of the output of a model. It quantifies the class separability of a
learned model and is given as the probability that, provided a test set, a
test sample y+ selected at random will have a greater classification score
than that of a test sample y− also selected at random.

The curve it plotted in a graph by considering at each threshold t, the true
positive rate (TPR) and the false positive rate (FPR): the vertical axis represents
the TPR, and the horizontal axis represents the FPR. The greater the AUC —
between 0.5 (random ordering) and 1 (perfect ordering)— the greater the per-
formance. To note, other methods exist to compute the AUC which we address
in Chapter 5.

It is known that there is no single learning algorithm best suited for all po-
tential classification problems, referred to as the no free lunch theorem [Wolpert
and Macready, 1997]. Yet, we note that for tabular data —the type of data han-
dled by inspectors— decision tree learning algorithms [Breiman et al., 1984]
are known to produce well-performing models —even when learning from low
quality data— when applied under bagging (i.e., random forests) or (gradient)
boosting strategies [Dogru and Subasi, 2018]. Taking these notions into consid-
eration, the thesis focuses on decision tree learning algorithms.

1.3 Data Quality

The quality of the data used to learn a model often impacts the performance of
the downstream (or ulterior) task of the model (e.g., targeting noncompliance in
risk assessment). As per [Fürber, 2016], data quality is defined as follows.
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Definition 1.7 – Data quality

Data quality is the degree to which data fulfil requirements. The require-
ments can thereby be defined by (1) quality requirements of several dif-
ferent individuals of groups of individuals, (2) standards, (3) laws and
other regulatory requirements, (4) business policies, or (5) expectations
of data processing applications.

Following the definition, the fifth requirement is our main data quality pro-
vision. Broadly speaking, data are typically considered of either of high quality
or low quality if they are well-suited or ill-suited, respectively, for the intended
downstream task. The latter case being often anecdotally referred to as garbage
in, garbage out [Rose and Fischer, 2011].

Poor data quality may manifest itself differently. For example, learning from
data with insufficient sample size leads to a poor-performing model and, hence,
a low performance of the downstream task. Specifically in this work, the focus
on data quality is in terms of missingness and noise, given their prevalence in
the domain of the ILT. While missingness is the absence of values in data, noise
relates to data values which are inconsistent or erroneous [Sidi et al., 2012]. The
names of these types of data quality issues are preceded by an M (missingness),
or an N (noise), see below. Towards building reliable models, these issues must
be considered.

1.3.1 Missingness

When dealing with real-world data, the absence of feature values in samples is
bound to occur. This occurrence is termed missingness in data and is defined
as follows [Beale and Little, 1975].

Definition 1.8 – Missingness

Missingness in data is the occurrence of absence (i.e., missing values) in
one or more features of one or more samples.

Missingness is characterised according to the relationship between the miss-
ing entries, the observed data, and the values which are missing; these rela-
tionships are categorised into three mechanisms: (1) missingness completely at
random (MCAR); (2) missingness at random (MAR); and (3) missingness not
at random (MNAR). We define each of the three mechanisms below, follow-
ing [Little and Rubin, 2019].
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Definition 1.9 – MCAR

MCAR is the mechanism of missingness which assumes that the proba-
bility that a data value is missing is the same for all samples and features.

Under this mechanism, there is neither a relationship between the missing
values and the remainder of the observed (non-missing) entries nor a relation-
ship with the missing value itself. This means the distribution of missingness
is independent of the data. An example of this mechanism is a sulphur sensor
which runs out of power: some of the data will be missing due to a random
event. Nevertheless, MCAR is generally atypical when dealing with real-world
data.

Definition 1.10 – MAR

MAR is the mechanism of missingness which assumes that the events that
lead to missingness are dependent of the feature values in the observed
(i.e., non-missing) data.

The MAR mechanism assumes that missing entries have some form of de-
pendency with respect to the observed entries. For instance, if certain ports do
not have sulphur sensors, then vessels travelling through those ports will not
generate data regarding those sulphur measures.

Definition 1.11 – MNAR

MNAR is the mechanism of missingness which assumes that the missing-
ness is dependent on actual value that is missing as well as the observed
values.

The MNAR mechanism occurs when the absence of entries is dependent on
both (a) the unseen values and (b) the observed data. For example, when com-
panies which fail to report on their emissions are the most likely to have sys-
tematically higher emission levels.

Traditionally, learning algorithms are incapable of handling data with miss-
ing values [Garcı́a-Laencina et al., 2010]. The data must first be artificially made
complete, i.e., without missing values, via missing data-handling techniques. In the
missingness literature, two prominent categories of missing data-handling tech-
niques are considered [Enders, 2010]: (1) imputation; and (2) missing-indicator.
These are defined below. To note, several imputation methods exist in the liter-
ature [Enders, 2010]. We elaborate further on this topic in Chapter 2.

Definition 1.12 – Imputation

Imputation is the process of filling in missing values based on the avail-
able data.
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Definition 1.13 – Missing-indicator

Missing-indicator is the method by which missingness is encoded, by gen-
erating an additional binary feature representing the presence or absence
of values, and by assigning the same value to all missing values of the
feature of concern.

It is known that (a) the mechanism of missingness, (b) the choice of miss-
ing data-handling technique, and (c) the learning algorithm jointly play a cru-
cial role in the final model performance [Garciarena and Santana, 2017]. For
instance, under non-MCAR, the missing-indicator method is a viable solution
towards classifier learning [Lipton et al., 2016].

Discerning which missing mechanism is present is a challenging task. While
it is impossible to distinguish between MAR and MNAR —as the necessary
information for the distinction is itself missing— a test for MCAR vs not-MCAR
has been proposed [Little, 1988]. Yet, the outcome of the test is not entirely
reliable, as false positives and false negatives may still occur.

Real-world data are seldom MCAR [Van Buuren, 2018]. However, testing
for MCAR does not provide a guaranteed result. Even though the assumption
of non-MCAR data is generally correct in risk assessment, the MCAR mecha-
nism is still possible and not necessarily detectable. Putting it differently, the
issue is to find a solution to missingness which mitigate the detriment to the
performance of the downstream task in cases where the assumption of non-
MCAR is false. We will focus on this issue in Chapter 2.

1.3.2 Noise

In classification, noise in data is defined as follows [Angluin and Laird, 1988].

Definition 1.14 – Noise

Noise in data is the presence of elements in (a) the feature(s) and/or (b)
the class label which obscures their relationship and complicates model
learning.

The major consequence of noise is the performance degradation of the final
learned model when it is ignored [Wilson and Martinez, 2000]. It negatively
impacts the performance of the learned model by obscuring the relationship
between features and class label. Noise is denominated as either (a) feature noise
or (b) (class) label noise, depending on the elements affected [Sáez et al., 2014];
these denominations are defined below.
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Definition 1.15 – Feature noise

Feature noise is the presence of elements in the feature values of samples
which obscures the relationship between the features and the class label.

Definition 1.16 – Label noise

Label noise is the presence of erroneous class labels in samples (i.e., mis-
labels).

Depending on the type of noise (feature or label), the compromise in per-
formance of the downstream classification task varies. In general, we may no-
tice that feature noise tends to be less detrimental than label noise [Zhu and
Wu, 2004]. Here we note that in cases where both feature and label noises are
present, the noise is denoted as a special case of label noise [Frénay and Verley-
sen, 2013]. As such, hereinafter, the terms noise and label noise are synonymous,
and are both denoted as N.

Label noise is described according to the relationship between the mislabels
and data characteristics. Three label noise mechanisms are used to categorise these
relationships [Frénay and Verleysen, 2013]: (1) label noise completely at random
(NCAR); (2) label noise at random (NAR); and (3) label noise not at random
(NNAR). We define each of the mechanisms below.

Definition 1.17 – NCAR

NCAR is the label noise mechanism which assumes that the probability
that a sample is mislabelled is the same for all samples.

NCAR occurs when the proportion of mislabels is the same across classes. It
is associated with random errors in the data generation process; e.g., automated
sensor errors.

Definition 1.18 – NAR

NAR is the label noise mechanism which assumes that the probability
that a sample is mislabelled be dependent on the class label of the sample.

NAR entails different proportions of mislabels across the different classes.
In other words, samples of one class are more prone to being mislabels than
samples from another class. This might result from ill-calibrated tests to de-
termine the outcome of risk assessment; e.g., targeting protocols which are too
stringent or too relaxed.
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Definition 1.19 – NNAR

NNAR is the label noise mechanism which assumes that the probability
that a sample is mislabelled is dependent on the class label and/or the
features values.

In NNAR, mislabels may be associate with specific regions of the feature
space, and their proportion may or may not be the same across classes. This
mechanism is particularly interesting as it relates to the report-manipulation
example from Section 1.1.

Since label noise may correlate to noncompliance within the context of risk
assessment, especially in conjunction with feature noise, we focus on the NNAR
scenario. Addressing label noise towards model learning often involves a pre-
requisite in the form of a sample detection step. Generally, label noise detection
approaches leverage supervised learning methods into producing mislabelling
detection scores. Detection scores are used to identify samples such that higher
detection scores indicate higher likelihood of mislabel, and can be generated by
exploiting classification scores f(x): the lower the classification score of a sam-
ple towards its class label, the higher the detection score for being a noisy label.
Given that these scores quantify the amount of label noise in samples [Jeatrakul
et al., 2010], they may be used to better learn a classification model trained on
label-noisy data [Liu and Tao, 2015].

Under the current risk assessment scenario, it would be advantageous to
exploit these scores two-fold. First, when label noise mechanisms may trans-
late to non-compliance, detection scores can directly be used as risk assessment
scores. Second, detection scores may be incorporated into model learning such
that the performance of the final learned classifier is the least compromised by
noise, promoting better-performing risk assessment models. The work in this
thesis addresses these two topics in Chapter 3 and Chapter 4, respectively.

1.4 Fairness

Machine learning algorithms model all sorts of relations between features
and outcomes in historical training data, including potential societal bi-
ases [Richardson, 2022]. Within the Inspectorate, confirmation bias in historical
inspection data is a case in point (we expand on it in Chapter 5).

The problem is to learn a mostly unbiased model from biased data. We men-
tion mostly since, as detailed further, a completely unbiased model has a com-
pletely random classification output, rendering it useless. Learning with biased
data is a problem traditionally termed fairness [Barocas et al., 2017] and is de-
fined as follows.
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Definition 1.20 – Fairness

Fairness in machine learning is the study and tentative correction of al-
gorithmic bias which results from learning with biased data.

A model is deemed more or less fair if its output has lesser or greater de-
pendency (i.e., bias), respectively, towards some sensitive characteristic, such as
nationality, age, or gender; i.e., a model is deemed less fair if it favours certain
groups or individuals over others. To note, although the term bias may have dif-
ferent meanings in other fields (e.g., the bias-variance trade-off [Kohavi et al.,
1996, Meertens et al., 2021]), in this context it is used antithetically to the term
fairness.

Without loss of generality, the sensitive attribute of a sample is denoted
s ∈ S ⊆ {−,+} and represents sensitive group information, such as gender;
the male and female groups are represented as S+ and S− or vice-versa, and
samples pertaining to each group are respectively s+ and s−. Measures of fair-
ness attempt to quantify the disparity of the model output between the groups
conditioned on the sensitive attributes. The model output considered may be
either (a) the class label prediction ŷ induced by a set threshold t or (b) the clas-
sification score f(x) [Venkatasubramanian, 2019]. Below we define two preva-
lent measures of fairness as described in the literature. They consider each of
these outputs and are called: (1) demographic parity [Feldman et al., 2015] and (2)
strong demographic parity [Jiang et al., 2020].

The definition of demographic parity follows.

Definition 1.21 – Demographic parity

Demographic parity is the fairness measure which considers the differ-
ence in the proportion of positive outcomes (i.e., positive class label pre-
dictions) between two sensitive groups S+ and S−.

An example of demographic parity is the difference in the proportion of men
who are hired vs the proportion of women who are hired. By extending the
definition of demographic parity to account for the classification score (instead
of the induced class prediction), the measure of strong demographic parity can
be defined as follows.

Definition 1.22 – Strong demographic parity

Strong demographic parity is the fairness measure which quantifies the
fairness of a learned model by considering the difference in the ranking
of classification scores across sensitive groups S+ and S−.

The computational definitions of demographic parity and strong demo-
graphic parity are given in Chapter 5.



14 Chapter 1. Introduction

To note, other fairness measures exist which consider different relations be-
tween model output and sensitive information; for example, the TPR and/or
FPR conditioned on the sensitive groups (i.e., equal opportunity and equalised
odds) [Pessach and Shmueli, 2022]. Yet, in the thesis we focus on the aforemen-
tioned (strong) demographic parities, given their link between class prediction
and classification score. For both demographic parity measures, values closer
to 0 indicate model fairness, whereas values closer to 1 indicate model bias More-
over, we remark that the strong demographic parity is conceptually similar to
the AUC performance measure, but it is conditioned on the sensitive attribute
values. We make use of this observation in Chapter 5.

1.4.1 Performance-Fairness Trade-Off

There exists a phenomenon under which the following holds. As model fair-
ness increases, the more likely it is that the predictive performance decreases.
This is known as the performance-fairness trade-off [Zafar et al., 2017]. It is a re-
sult of the decorrelation between the features and sensitive attribute, under the
assumption of bias in data [Kleinberg et al., 2016].

Nevertheless, the performance-fairness trade-off is not necessarily balanced:
greatly improving model fairness does not require a large decrease in model
performance. Depending on the dataset, the corresponding correlation between
sensitive attributes, and the target variable, it is possible to ensure adequate
model fairness with limited decrease in predictive performance. In other words,
the trade-off can be leveraged to find the optimal performance-fairness pair of
a specific scenario.

The tunability of the performance-fairness trade-off in a model should, there-
fore, be considered. Towards its adequate implementation, we decompose the
requirements of the tunability process into the two following: (1) granularity,
and (2) intuitiveness.

First, the granularity of the tunability must be implemented such that an
optimal performance-fairness pair may be found. If the granularity is insuffi-
cient, then the optimal trade-off between performance and fairness may not be
reached. To put it differently, by incorporating fine-tuning into the trade-off, it
is assured that the sweet spot of the performance-fairness is attainable.

Second, the tunability should be incorporated in an intuitive manner to-
wards model usability. Alongside their domain knowledge, relevant stake-
holders (in conjunction with the aid of the machine learning expert) should be
able to decide which performance-fairness trade-off point is the optimal solu-
tion given a specific problem. By making the tunability process accessible, this
task-dependent optimality can be assured. We explore the two aforementioned
requirements in Chapter 5.
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1.4.2 Addressing Fairness in Machine Learning

Taxonomically, three distinct mechanisms have been proposed to address fair-
ness in machine learning [Pessach and Shmueli, 2020]. Each mechanism ad-
dresses fairness at different stages of the model learning process: (1) pre-
processing; (2) post-processing; and (3) in-processing.

First, pre-processing relates to changes made within the training set prior to
learning a model; e.g., by manipulating the training set specifically towards the
homogenisation of the distributions across the different sensitive groups, mak-
ing it more difficult for the final learned classifier to distinguish between the
sensitive groups [Feldman et al., 2015]. This mechanism is sub-optimal because
sample manipulation neglects the dependency over the classification task; i.e.,
the bias in data may still be exploited [Goldfarb-Tarrant et al., 2020].

Second, post-processing relates to changes made to the output of the final
trained model, correcting decisions over sensitive groups [Hajian et al., 2015];
for instance, by having different decision thresholds t for each group [Corbett-
Davies et al., 2017]. However, using sensitive information as input to determine
a final outcome —e.g., hire if male and not-hire if female, for the same model
score— is often not viable and potentially illegal under the General Data Pro-
tection Regulation in EU law [Goddard, 2017].

Third, in-processing encompasses the development and/or modification of
classification algorithms. In this manner, models account for both predictive
performance and fairness during learning by exploiting the relation between
the features and sensitive attributes [Bechavod and Ligett, 2017].

Across the three bias-addressing mechanisms, in-processing is the most
prevalent in the current literature, with overall superior classification per-
formance and fairness, and the possibility to adequately tune the trade-
off [Kamishima et al., 2012, Goh et al., 2016, Woodworth et al., 2017].

The applicability of the mechanisms relates to the degree of freedom of the
developer. With pre-processing, there is only access to the data and not the
model or its output; i.e., it is most useful for third party model development.
In post-processing, only the output of a model is accessible; e.g., closed source
algorithms. In-processing implies full developmental privileges (data, model,
and output), allowing the relevant requirements to be combined.

Towards accomplishing the work presented in this thesis, we were allowed
access by the ILT to their data. Moreover, full model development privileges
were provided, including model output. Since, as stated, we are in full control
of the algorithmic development, and given the prevalence and overall superi-
ority of in-processing in the current literature, model fairness is addressed in an
in-processing fashion in this thesis.
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1.5 Problem Statement and Research Questions

In this thesis we are motivated by the real-world operations of the inspectors of
the ILT towards risk assessment, which benefit from data-driven (i.e., machine
learning) methodologies.

1.5.1 Problem Statement

The shift towards a data-driven paradigm in the operations of the risk assess-
ment experts harbours considerable concerns given the high-risk profile of their
endeavours. Based on this observation, we formulate the following PS.

PS: How can machine learning methods advance data-driven risk assessment
by the Inspectorate in a reliable and fair manner?

To address the PS, we will decompose it into three tractable RQs.

1.5.2 Research Questions

Missingness is a data-quality issue that impacts the performance of a down-
stream task on a model learned from a dataset. This impact must be considered,
as to minimise the performance decrease during operational deployment. The
performance of the downstream task of a model learned on data with missing-
ness may vary depending on the joint selection of (a) the missing data-handling
technique —imputation, missing-indicator, complete-case analysis, to name a
few— (b) the choice of learning algorithm, and (c) the underlying missing mech-
anism.

Albeit real-world data —such as the one generated by the ILT— is seldom
MCAR, it is still a possibility and testing for it does not provide a guaranteed
result. Having made these observations, the first RQ is formulated as follows.

RQ1: Given data with missing values, which (a) missing data-handling tech-
nique and (b) learning algorithm should be jointly selected such that, regardless
of the missing mechanism, the detriment to the downstream task performance
is minimal when compared to the non-missing (unavailable) case?

Data permeated with noise is detrimental to model learning. Moreover, the
detection of these noisy samples is a prerequisite for model learning with noisy
data. While noise in classification is strictly any disruption of the relationship
between features distribution and labels, we tackle label noise as mislabels in
the data under specific feature distribution conditions (i.e., with additional fea-
ture noise). Our reasoning for this is two-fold: (1) this noise may be indicative
of noncompliant behaviour in risk assessment; and (2) label noise is more detri-
mental to model learning than feature noise alone.
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It is advantageous to produce noisy-sample detection scores usable for both
(a) noncompliance targeting, and (b) model learning. Accordingly, the second
RQ is a compound one —decomposable into RQ2(a) and RQ2(b)— and follows.

RQ2: Given data with label noise, how can noisy-samples be (a) adequately
detected, and (b) used to learn a well-performing model?

Fairness in machine learning is paramount to handle biased data. Not only
must the learned model exhibit adequate predictive performance, it must also
ensure that the predictions are the least impacted by the data bias.

To measure the impact of biased data in the learned model, different fair-
ness measures exist which have an analogous (i.e., corresponding) performance
measure. Moreover, the performance-fairness trade-off is a well-known phe-
nomenon and may be exploited to achieve the most fairness increase at the cost
of the least performance decrease. To exploit the performance-fairness trade-
off, model learning must allow for its tunability. An in-processing approach to
fairness enables this. Merging these remarks, we arrive at our third RQ.

RQ3: How can we, from biased data, learn a model tunable with respect to the
performance-fairness trade-off such that the selection of the trade-off point is
made intuitive for the relevant stakeholders?

1.5.3 Research Methodology

To provide an answer to the PS, the work in this thesis follows the
well-established CRoss Industry Standard Process for Data Mining (CRISP-
DM) [Martı́nez-Plumed et al., 2019], defined as follows and depicted in Fig 1.2.

Definition 1.23 – CRISP-DM

CRISP-DM is a process model which decomposes a data science pro-
cess into six phases: (1) business understanding; (2) data understanding;
(3) data preparation; (4) modelling; (5) evaluation; and (6) deployment.

Here, we explicitly denote that, despite the subject of this thesis not be-
ing data mining, CRISP-DM still offers a valuable approach which helps guide
our research. To begin our work, communication between the domain experts,
stakeholders, and us researchers was fulcral; jointly, efforts were had to pro-
mote the first two phases to be best of our capacity. In this thesis, however, the
focus is not in detailing the communication processes, but rather to describe the
technical methods developed and their performance; i.e., data preparation (3),
modelling (4), and evaluation (5). We further denote that the deployment phase
is outside of the scope of this thesis, as it depends not solely on the adequacy of
the technical methods, but also on changes at the organisational level.
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Data
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Figure 1.2: CRISP-DM. Process model comprised of six sequential phases.

The technical methods used to address RQ1 are detailed in Chapter 2,
RQ2(a) in Chapter 3, RQ2(b) in Chapter 4, and RQ3 in Chapter 5.

1.6 Research Contributions

Below, we list the four main contributions of our research.

• Contribution 1. We show that towards supervised classifier learning with real-
world missing data, a combination of (a) the missing-indicator method and
(b) a decision tree learning algorithm —namely, gradient boosting— should
be used to minimise the detriment in classification performance.

According to the literature, non-MCAR scenarios can benefit from the
missing-indicator method, measured as the downstream task performance.
In the scenario of a non-MCAR assumption being falsely made, we com-
pare several imputation methods to the missing-indicator method, quantify-
ing their differences measured as the downstream classification performance.
We empirically demonstrate that across different learning algorithms, (gradi-
ent) boosting architectures which incorporate feature selection processes are
the least susceptible —if at all— to the sub-optimal decision of applying the
missing-indicator method when dealing with data generated under MCAR.
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• Contribution 2. We propose an approach to targeting and accounting noisy
observations which, subsequently, allows for better learning with noisy data,
which outperforms the competing literature methods.

The scenario in which both label and feature noise permeate data is con-
sidered. By leveraging an already existing robust decision tree learning al-
gorithm via gradient boosting, noisy-sample detection scores are computed
in a CV manner, generating a model with well-calibrated output. Empiri-
cally, we performed extensive experimentation to compare our approach to
other methods from both outlier and mislabel detection publications. Our
novel method —termed EXPOSE— exhibited an overall improved perfor-
mance over the methods against which it was compared.

• Contribution 3. We develop a strategy towards classifier learning for data
with label noise through sample weighing which exhibits competitive per-
formance when compared to the current literature, particularly adequate for
datasets with large proportions of mislabels.

Based on the aforementioned contribution in noisy-sample detection, the de-
tection scores are leveraged to compute individual observation weights. The
weights are applied within the learning process as coefficients in the logistic
loss function. We empirically show that via well-calibrated posterior prob-
ability estimations, the log-odds of an observation may be leveraged in learn-
ing. Through an exhaustive experimental design, comprised of different pro-
portions of both label and feature noise, we validate our proposed method
—DENOISE— by comparing it to the state-of-the-art in learning from noisy
data under the NNAR scenario. On average, our method achieves superior
performance compared to the state-of-the-art.

• Contribution 4. We design a fair tree classifier which is independent of thresh-
old in the performance loss as well as the fairness criterion loss. The classifier
can be easily adjusted to assess performance-fairness trade-off points.

The threshold-independent fairness measure of strong demographic parity is
used and, by drawing from its analogy to the classification performance mea-
sure AUC, we arrive at the Splitting Criterion AUC For Fairness, or SCAFF.
Incorporated in SCAFF, the orthogonality parameter Θ which regulates the
performance-fairness trade-off. Our learning algorithm considers multiple
sensitive attributes simultaneously of which the values may be multicategor-
ical. When compared to other fair tree learning splitting criteria, our experi-
ments with real-world data show our method is able to achieve classification
performance and fairness which are on par at worst and superior at best,
against those of the competing approaches in the fairness literature.
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1.7 Thesis Overview

In Chapter 1, we introduced the current movement towards trustworthy AI in
Europe. Then, we narrowed our scope towards the particular domain of risk
assessment, with distinct concern for data-driven solutions within the Inspec-
torate of the Netherlands. We further established the required foundations to
achieve these solutions. We formulated our PS, and decomposed it into the
three RQs of the thesis. Next, we proposed our four contributions. The remain-
der of the thesis is given below.

• Chapter 2 answers RQ1, resulting in Contribution 1. The content of the chap-
ter is identical to that of the work by
Pereira Barata, A., Takes, F. W., van den Herik, H. J., and Veenman, C. J.
(2019). Imputation methods outperform missing-indicator for data missing
completely at random. In 2019 International Conference on Data Mining Work-
shops (ICDMW), pages 407–414. IEEE

• Chapter 3 answers RQ2(a). The result of the chapter is Contribution 2. The
content of the chapter is identical to that of the work by
Pereira Barata, A., Takes, F. W., van den Herik, H. J., and Veenman, C. J.
(2021). The eXPose approach to crosslier detection. In 2020 25th International
Conference on Pattern Recognition (ICPR), pages 2312–2319. IEEE

• Chapter 4 provides an answer to RQ2(b). The result corresponds to Contri-
bution 3. The content of the chapter is identical to that of the work by
Pereira Barata, A., Takes, F. W., van den Herik, H. J., and Veenman, C. J.
(2022). Noise-resilient classifier learning. Pattern Recognition (under review)

• Chapter 5 answers RQ3, culminating in Contribution 4. The content of the
chapter is identical to that of the work by
Pereira Barata, A., Takes, F. W., van den Herik, H. J., and Veenman, C. J.
(2022). Fair tree classifier using strong demographic parity. Machine Learning
(under review)

• Chapter 6 entails the conclusions of the present thesis, in three distinct sec-
tions. We (1) answer the three research questions, (2) provide an answer to
the problem statement, and (3) discuss future work directions.

The papers presented in this thesis were produced as a joint collaboration
between the supervisors and the PhD candidate. Discussions on research top-
ics and how to tackle the problems described were addressed as a team. The
writing was performed by the candidate, incorporating the commentary pro-
vided by the supervisors. The implementation of the experimental designs and
gathering of the results were performed by the candidate.
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Chapter 2

Imputation versus
Missing-Indicator

Missingness is a ubiquitous problem inherent to real-world data. When learn-
ing a classifier, missing data is detrimental to the classification performance of
the final model. Approaches to deal with missingness can be partitioned into
methods that either (a) impute or (b) encode missingness.

Depending on the missing mechanism, some missing data-handling tech-
niques are best suited than others in combination with different learners. Un-
der a non-MCAR mechanism —typical of real-world data— a straightforward
approach is to apply the missing-indicator method. However, a non-MCAR
missing mechanism is not always guaranteed and testing for it does not en-
sure a reliable result. In this chapter, we experimentally demonstrate that —
under MCAR— the negative impact in downstream classification performance
derived from the inadequate application of the missing-indicator can be made
identical to that of the application of imputation, particularly by deploying a
decision tree-based learning algorithm via gradient boosting.

Therefore, a solution to the problem of missing data is to deploy the missing-
indicator method in conjunction with a decision tree-based learner, particu-
larly via gradient boosting, therewith addressing RQ1: given data with missing
values, which (a) missing data-handling technique and (b) learning algorithm
should be jointly selected such that, regardless of the missing mechanism, the
detriment to the downstream task performance is minimal when compared to
the non-missing (unavailable) case?
The current chapter corresponds to the following publication:
Pereira Barata, A., Takes, F. W., van den Herik, H. J., and Veenman, C. J. (2019).
Imputation methods outperform missing-indicator for data missing completely
at random. In 2019 International Conference on Data Mining Workshops (ICDMW),
pages 407–414. IEEE
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2.1 Minimising the Impact of Missing Data

Big data analytics encompasses a multitude of challenges in relation to differ-
ent data aspects or characteristics. Other than volume, variety, and velocity,
the concept of veracity (i.e., data quality) plays a key role when addressing
real-world problems. As discussed in [Olson, 2003], the quality of data is in-
trinsically related to the intended use of the data itself. Moreover, to satisfy this
notion of usability, data must be trusted and timely, as well as both accurate
and complete. In this work we shall be focusing on the latter mentioned aspect
of data (completeness), or rather its conceptual counterpart: data missingness.

The phenomenon of missing data is defined as the absence of observational
values within a dataset. It is a widespread obstacle which presents itself in
many fields of research where data are analysed, such as econometrics [Dard-
anoni et al., 2011], psychology [Schlomer et al., 2010], and epidemiology [Ped-
ersen et al., 2017]. Regardless of the underlying reasons for the occurrence of
missingness throughout different domains, missing data presents a challenge
towards the completion of any data-related task.

The task to be performed after imputation of the dataset is referred to as the
downstream task (e.g., regression or classification). Choosing how to handle
this issue will influence the outcome of the downstream task. In other words,
poor application of missing data-handling techniques leads to underwhelming
performance and biased results [Choi et al., 2019]. Thus, depending on the
problem to be addressed, it is important to carefully select the most appropriate
strategy to overcome missingness and minimise the impact of incomplete data
on the final outcome of the downstream task [Little et al., 2014]. Also, the type
of data that is missing influences the selection of imputation approaches [Feng
et al., 2011].

We know from [Garciarena and Santana, 2017] that the effectiveness of an
imputation method in classification is tightly associated to the family of clas-
sifiers to be used and the missing mechanism affecting the data. In this con-
text, by family we mean a set of classification algorithms of which the decision
functions are conceptually similar; i.e., algorithms of which the mappings of
the input space into a specific category are alike. For example, a tree-based
algorithm recursively splits the original input space into segments through a
set of relation operator-based rules, whereas a k-nearest neighbours approach
checks the mode of the closest k objects according to some distance metric (of-
ten euclidean): we consider the two methods to pertain to different families.
By missing mechanism, we are referring to the distribution of missing values
in the data. It is common practice to categorise these mechanisms as MCAR,
MAR, and MNAR. In the real world, it is only possible to distinguish between
MCAR and not-MCAR mechanisms.



2.1. Minimising the Impact of Missing Data 25

Generally, imputation methods rely on statistical concepts (e.g., mean and
median) or machine learning approaches (i.e., predictions over missing values).
Another commonly used approach to data imputation is the missing-indicator
method [Huberman and Langholz, 1999], where a new placeholder value or
attribute for missingness is generated to indicate the missing value. Although
past studies have been conducted to illustrate how these methods affect the bias
of results [Knol et al., 2010], there exist several gaps in the literature, of which
we mention three.

First, often the missingness characteristics are not fully reported [Malla
et al., 2018]. Second, results can be related to one specific domain rather than
to a more general level [Garcı́a-Laencina et al., 2015]: this leads to conclusions
that are either ambiguous or not generalisable with respect to the distinct field
task of the reported work. Third, authors tend to disagree on which metrics are
best at quantifying imputation effects [Van Buuren, 2018].

Stating that one method of imputation outperforms another method is de-
pendant on the type of performance analysis conducted and the missingness
assumptions of mechanisms at play [Santos et al., 2019b]. In general, the pur-
pose of imputation is not making a dataset complete, but rather make it possible
to handle data for a specific task. Regardless, research in imputation usually re-
ports performance as a function of error between the artificially removed values
and the predicted imputation [Amiri and Jensen, 2016]. This is not a viable met-
ric to compare different imputation methods and the missing-indicator method.

A more realistic approach to measuring the impact of imputation methods
is to assess the performance on the post-imputation (downstream) task. Little
research has been done in measuring how of the missing-indicator approach to
handling missing data performs in classification problems compared to impu-
tation methods [Ding and Simonoff, 2010].

In this work, we compare several imputation methods and the missing-
indicator method, and measure their differences on the most relevant measure:
classification performance. We establish whether the missing-indicator should
or should not be used given the specific case of classification problems with
numerical data, under the MCAR mechanism of missingness.

The structure of this chapter is as follows: Section 2.2 will deal with the basic
concepts which distinguish different types of missingness and how to syntheti-
cally generate missing data. In Section 2.3, we briefly describe the added value
of the presented research with respect to past work. Section 2.4 consists of the
description of the materials and methods used, while in Section 2.5 we refer to
our experimental setup and results. Finally in Section 2.6 our conclusions are
given and future research directions are suggested.
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2.2 Missing Data

Here we introduce the overall concept of missingness. We illustrate and define
each missing mechanism in Section 2.2.1. In Section 2.2.2, we further present
how to generate missing values under the specific MCAR assumption.

2.2.1 Mechanisms of Missingness

In research on imputation, missing mechanisms are commonly defined accord-
ing to the distribution of missing values [Little and Rubin, 2019]. In this man-
ner, data can be missing under three different assumptions: MCAR, MAR, and
MNAR. Under MCAR, the probability that a data value is missing is the same
for all data points. MAR occurs when the events that lead to missingness are
completely at random but only within a subset of some other observed variable
within that dataset. Lastly, when neither of the previous two missing mech-
anisms are at play, but rather the missingness is directly related to the actual
value that is missing and/or some other variable value, then the missing mech-
anism is referred to as MNAR. Table 2.1 illustrates the aforementioned mecha-
nisms. In this example, each row represents an instance in a dataset.

The first column (Class) represents some class label, and the remaining
columns represent the same feature under different missing mechanisms: Com-
plete signifies the observations without any missing values, whereas the three
remaining columns illustrate how the different missing mechanisms would af-
fect the set of observations. Each number denotes an observed value.

Following the notation of previous literature [Little and Rubin, 2019], we
formally define the different missing mechanisms as follows. Let X be an n

by p matrix serving as some dataset with i = 1, ..., n instances and j = 1, ..., p

features where xi,j is an individual element of X . Each element xi,j may repre-
sent either an observation or a missing value, depending on the characteristics
of thee dataset. We can divide X into two disjoint objects, X = (Xobs, Xmiss),
where Xobs and Xmiss represent the observed and missing values of X . Let M
be a matrix of the same shape as X with mi,j ∈ M where mi,j = 0 and mi,j = 1

indicate the presence or absence of observation xi,j ∈ X , respectively. Then, the
missing mechanism is MCAR if:

Pr(M = 1|Xobs, Xmiss) = Pr(M = 1); (2.1)

MAR if:
Pr(M = 1|Xobs, Xmiss) = Pr(M = 1|Xobs); (2.2)

and MNAR if:

Pr(M = 1|Xobs, Xmiss) = Pr(M = 1|Xobs, Xmiss). (2.3)



2.2. Missing Data 27

Table 2.1: Three different missing mechanisms

Class
Feature

Complete MCAR MAR MNAR
0 18.91 – – –
0 13.42 13.42 – –
0 4.05 – 4.05 4.05
0 4.06 4.06 4.06 4.06
0 18.24 18.24 – –
0 3.01 – – 3.01
0 11.37 11.37 11.37 –
0 14.25 – 14.25 –
0 2.74 2.74 2.74 2.74
0 5.24 5.24 – 5.24
0 10.21 – – –
1 11.02 11.02 11.02 –
1 7.06 – 7.06 7.06
1 14.29 14.29 14.29 –
1 2.16 – 2.16 2.16
1 5.26 5.26 5.26 5.26
1 0.37 – 0.37 0.37
1 8.24 8.24 8.24 8.24
1 10.36 – 10.36 –
1 6.43 6.43 6.43 6.43
1 1.31 – 1.31 1.31

While it is possible to define these concepts, accurately determining which
of these assumptions permeates a dataset is no easy task: the information re-
quired to discriminate between MAR and MNAR is, rather unsurprisingly,
missing itself. However, such is not the case for MCAR that can be tested for
statistically [Little, 1988] albeit false positives and false negatives may still oc-
cur.

We know from [Van Buuren, 2018] that specific imputation methods that
perform well under some condition might not be applicable under another con-
dition. As such, it is not only important to determine what mechanism shapes
the missingness within the data that will be used to address a particular prob-
lem, but it is also imperative to report it.
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2.2.2 Synthesising Missing Values

Imputation studies rely heavily on generating synthetic missingness [Bertsimas
et al., 2017]. The removal of observations can be labelled as either univariate
or multivariate, depending on the number of features selected to have their
observations deleted by some percentage. The synthesis of missingness varies
depending on the target missing mechanism to be implemented, as different
conditions have to be met to satisfy specific occurrences of missing values.

Under MCAR univariate missingness generation, selecting the feature of
which values will be removed can be performed either randomly [Rieger et al.,
2010] or under some other condition imposed by the researcher [Twala, 2009].
In the multivariate case, past work mainly distinguishes between a local vs
global [Garciarena and Santana, 2017] approach to value removal; the former
ensures that every feature has the same proportion of missing values, while the
latter considers the entire dataset for value deletion which does not ensure such
a stratified missingness condition. The generation of synthetic missing data will
be further described in the context of our methods.

2.3 Related Work

The concept of missing data in literature is addressed from different perspec-
tives depending on the purpose of the research itself. While some studies ap-
proach missingness as a preprocessing step in their actual endeavour, other
work focuses solely on the techniques used to do so. This dichotomy high-
lights different view points, depending whether or not missingness of data is
the object of interest in a study. We specifically elaborate on past work that
relates to how missingness is reported and handled when solving real-world
problems; i.e., the application of the missing-indicator method in the context of
specific domains. Moreover, we highlight the performance measurement meth-
ods applied in the context of missing data-handling techniques according to the
current literature.

Following the first topic of interest, authors in [Malla et al., 2018] conducted
an overview study of how missingness is addressed in the context of propensity
score estimation; 167 articles were analysed in their research. Nearly 68% of
these articles based their findings on assumptions that would only hold if data
were MCAR. However, only one of these studies presented evidence for such a
strong assumption. The remainder offered no explanation towards the reason
data was missing nor which missing mechanism was at play. This observation
led to biased results and skewed reported conclusions which posed a serious
issue, especially given that the contexts of these studies were medical trials.
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In other medicine-related domains scrutinised by us, contradicting evidence
is reported with respect to the application of the missing-indicator method.
Specifically, while authors in [Groenwold et al., 2012] state that ”the missing-
indicator method is a valid method to handle missing baseline covariate data, irrespec-
tive of the mechanism of missingness”, the work presented in [Van der Heijden
et al., 2006] concluded that ”in multivariable diagnostic research complete case anal-
ysis and the use of the missing-indicator method should be avoided, even when data are
MCAR”. This discrepancy in the current literature is indicative of a real substan-
tial problem that can only be addressed through further exposition of missing
data as a subject of interest, by generating research that aims to offer general
guidelines that practitioners may follow on how to handle missing data. In this
sense, our contribution addresses whether a particularly common method of
handling missing data – the missing-indicator method – should be used under
the testable MCAR mechanism scenario.

Focusing on a different scope, studies such as [Amiri and Jensen, 2016] re-
port on imputation techniques and their performance. In this work, the au-
thors developed a novel imputation method to be applied on missing numerical
data. They compared their method against frequently used imputation meth-
ods and reported the comparative performances yielded. The performance was
measured as a function of the error between the imputed values and the orig-
inal values. Despite being an intuitive approach, using this error as a perfor-
mance measure for imputation is not adequate. This is thoroughly elaborated
in [Van Buuren, 2018], where the distinction between predictive methods and
imputation is established. The author ultimately asserts that imputation is not
prediction and states that ”we cannot evaluate imputation methods by their ability to
re-create the true data”. In short, using regression error to measure performance
leads to biased conclusions.

Studies such as [Garciarena and Santana, 2017] address this imputation per-
formance issue by using classifier performance (downstream task) as a proxy
for imputation adequacy. In such a study, different imputation techniques (both
single and multiple) were used, in association with several classification algo-
rithms across distinct datasets. However, the missing-indicator method was not
encompassed within the experimental setup provided.

Taking these facts into consideration, we propose to comprehensively mea-
sure the impact of the missing-indicator method. We do so by using a down-
stream task as a viable proxy for missing data-handling performance under
MCAR. Since MCAR is the only missing mechanism that can be tested against
in real-world problems, we specify it as the base for our work; in this man-
ner we ensure that the conditions under which our controlled experiments are
performed can be statistically diagnosed in real-world scenarios.
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2.4 Method

Here we provide the resources and methodology used. We begin with Sec-
tion 2.4.1 by describing the application of the missing-indicator in the context
of our work. In Section 2.4.2, we summarise the datasets we use in our ex-
periments. Section 2.4.3 reports how missing data was synthesised. Lastly in
Section 2.4.4, imputation and classifier methods are denoted.

2.4.1 Missing-Indicator

The missing-indicator method should not be regarded as an imputation method
in itself. Rather, it can and should be viewed as an addition to any imputa-
tion being performed. In other words, regardless of what approach is used
to fill in missing values – mean, median, regression-based imputations, etc.
– the missing-indicator will always be applicable. The underlying concept of
the missing-indicator method focuses on the encoding of missingness itself. In
practice, this encoding can be regarded as the addition of a binary indicator
variable. Concretely, our implementation of the missing-indicator method is as
follows: every missing value is replaced with a placeholder value; then a sec-
ond column is created for every feature with missing values. This new column
holds values of either 0 or 1 representing the absence or presence of a missing
value in the original feature, respectively (Fig. 2.1). This approach is derived
from past literature, where every value xi, j ∈ X is replaced by the product of
itself multiplied by (1−mi, j ∈M ) [Bennett, 2001]. Our choice of a placeholder
value of zero reflects also the consensus in methodological approaches applied
by practitioners [Zhang, 2016].

Feature 1 Feature 2 Indicator 1 Indicator 2

18.91 14.25 0 0

13.42 0 0 1

0 2.5 1 0

4.06 0 0 1

Feature 1 Feature 2

18.91 14.25

13.42 —

— 2.5

4.06 —

Figure 2.1: Imputation through missing-indicator. The table to the left repre-
sents a 4-rows slice of some dataset with missing values in feature column 1
and feature column 2. The table to the right represents the yielded version of
the previous table using the missing-indicator method.

2.4.2 Data

A total of 22 datasets were collected from an open-source dataset repository [Al-
calá-Fdez et al., 2009], all of which were associated with a classification task.
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Every dataset is comprised of a set of numerical features and a class column.
These datasets are complete (i.e., no missing values) and vary significantly in
sample size, dimensionality, and class balance. The definition of class balance
follows.

Definition 2.1 – Class balance

Class balance is the quantification of the difference between the number
of samples pertaining to the positive and negative classes in a dataset.

A summary of the datasets can be seen in Table 2.2. The column Class Bal-
ance represents the ratio between the frequency of the minority class and the
majority class: a value close to 0 indicates large class imbalance, while a value
of 1 means perfect class balance.

Table 2.2: Summary of dataset characteristics

Dataset #Rows #Features Class Balance
Appendicitis 106 7 0.25
Australian 690 14 0.80
Bands 365 19 0.59
Bupa 345 6 0.73
Coil2000 9822 85 0.06
Haberman 306 3 0.36
Heart 270 13 0.80
Hepatitis 80 19 0.19
Ionosphere 351 33 0.56
Magic 19020 10 0.54
Mammographic 830 5 0.94
Monk-2 432 6 0.90
Phoneme 5404 5 0.42
Pima 768 8 0.54
Ring 7400 20 0.98
Sonar 208 60 0.87
Spambase 4597 57 0.65
Spectfheart 267 44 0.26
Titanic 2201 3 0.48
Twonorm 7400 20 1.00
Wdbc 569 30 0.59
Wisconsin 683 9 0.54
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We specify class balance as it plays a role when selecting the appropriate
performance metric to measure classifier performance. Past literature states that
given an imbalanced classification problem, the area under the precision-recall
curve is more informative than the AUC [Saito and Rehmsmeier, 2015], which is
equivalent to the average precision measure (AP). Thus, we usedAP to measure
classifier performance, as well as specifying the minority class as the class to be
modelled for every dataset. Given our aim at producing a comparative study,
we address data and its characteristics in this segment rather than as part of our
experimental setup.

2.4.3 Value Removal

To compare different imputation methods and their impacts on classifier per-
formance for various missingness rates, artificially removal of values from the
complete datasets was required. Following common use in literature, we re-
moved 10%, 20%, 30%, 40%, and 50% of observations to measure how differ-
ent percentages of missing values affect the impact of particular missing data-
handling methods. We cap the missing proportions at 50% since higher values
might damage the original dataset too much to extract meaningful results.

We used a multivariate local approach to generate missing values. In this
manner, every feature had the same percentage of missing values for a given
proportion of missingness. The removal followed a uniform distribution so that
every value within a feature vector had the same probability of being removed.
In practice, given some dataset subset with n observations, and p features, for a
fixed missing proportion q ∈ [0, 1], each feature vector had dq× ne observations
removed. For clarification, we remark that a class label is not a feature.

We specify the notion subset because we did not apply missingness to the
entire dataset at once. Rather, we first split the dataset into 10 equal segments
and removed observations in each segment. These segments were used later
on to compute classifier performances; i.e., they comprised our train-test splits.
Should we have created our train-test splits a posteriori, then segments of the
dataset could have had fallen under a non-homogeneous MCAR assumption,
given the randomness of the splitting process. Thus, we ensured that all train
and test segments used were under the same missing proportion conditions.

2.4.4 Imputers and Classifiers

Four simple and commonly used imputation methods were selected and im-
plemented to serve as comparison against missing-indicator: mean (Mean), me-
dian (Median), linear regression (Linear), and extreme gradient boosting regres-
sion (XGBR). These methods were selected for their differing frameworks.



2.4. Method 33

One important factor to take into consideration is which imputation frame-
work to use: single or multiple imputation. We chose to implement the single
imputation variant of each algorithm for our comparisons, rather than perform-
ing a multiple imputation implementation. The rational behind our decision is
given below.

In multiple imputation [Carpenter and Kenward, 2012], several distinct im-
puted versions of the original missing dataset are generated. In practice, this
framework makes use of any single imputation method (such as linear regres-
sion imputation) and adds to it a component of randomness (by bootstrapping,
for example). This generates different complete variations of the same original
missing-valued dataset. The resulting analysis output of each complete dataset
is then combined (i.e., pooled). We chose single over multiple imputation be-
cause all compared imputation methods could be wrapped within a multiple
imputation framework; we are only interested in comparing the imputation
methods themselves, not the outcome of single vs multiple imputation.

While for mean and median imputations the missing values depend on the
available values in the same column, for the regression-based imputers the val-
ues in a column are assumed to depend on the values of the same sample in
other columns. Consequently, for a regression-based imputer, to impute values
for column j, all other columns should be complete. This observation is based
on the ones used in the literature [Bertsimas et al., 2017, Van Buuren, 2018]. In
the first case, random values are generated to populate the initial incomplete
dataset, whereas the latter uses mean imputation to do so. We refer to these
initial imputation states as warm starts hereinafter. A warm start is defined as
follows [Van Buuren, 2018].

Definition 2.2 – Warm start

A warm start in prediction-based imputation is the initial step in which
the dataset is made complete so as to enable learning of a model towards
predicting the imputation values for the feature of interest.

In our case, these warm starts are the complete version of a missing-valued
dataset, generated through mean imputation. They serve as a starting point for
regression-based imputation, allowing for regressors to be trained by using a
provisional complete matrix. After a regression model is fit, imputation can be
performed, and classification models can be learned from the complete data.

The classification algorithms implemented were a k-nearest neighbours
classifier (KNNC), a support vector machine classifier (SVMC) with a radial
basis function kernel, and an extreme gradient boosting classifier (XGBC). We
chose these algorithms as they cover the spectrum of the current state-of-the-art
and their documented application in several domains.
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2.5 Experiments

In this segment we address our experimentation. In Section 2.5.1 we describe
how the methods mentioned previously were implemented. In Section 2.5.2,
we present the resulting outputs. Lastly, we discuss our results in Section 2.5.3.

2.5.1 Experimental Setup

Our implementation was performed in Python using peer-reviewed li-
braries [Pedregosa et al., 2011, Chen and Guestrin, 2016, Oliphant, 2007], which
are open-source. All programming objects were initialised using the default set
of parameters supplied by each object’s corresponding package, safe for ran-
dom state parameters. For reproducibility purposes, a random seed value of
42 was set where appropriate (i.e., tree-based algorithms and sample selection
during train-test splitting). We describe and illustrate how the aforementioned
methods were applied within our experimental setup.

For each dataset, we split the entire dataset into 10 segments (folds) in a
stratified manner as to ensure class balance across all folds as in the entire
dataset. Through 10-fold CV we computed benchmark AP values per classi-
fier. These benchmark values are derived from the original complete datasets
and will serve to illustrate the differences across imputation methods.

In each fold, features had their values deleted according to our previously
defined value-removal approach. In this manner, five distinct instances of the
same fold were generated where each instance has a specific percentage of miss-
ing values. Within a dataset, for each missing proportion, we created 10 train-
test sets. Each of these train-test sets was comprised of one distinct fold that
served as the testing subset, and the joint set of the other remaining folds that
served as the training subset. This setup of train-test splits was used to both
apply the aforementioned imputations methods, as well as compute classifier
performances.

Every configuration of splits per dataset for a specific missing proportion
contained the same index instances. In other words, every imputation and
classification procedure was always applied to the same subsets of the origi-
nal dataset across the different algorithms to be compared. After structuring
and creating all splits per dataset according to different missing proportions,
we began the imputation processes.

For the missing-indicator, imputations required no distinction between train
and test subsets: for every subset, missing values are converted to 0 while
adding an extra dimension per feature, valued either 0 or 1 as previously de-
scribed. While this method was applied without differentiating train or test
instances, such was not the case for the remaining imputers.
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Both regression-based imputation methods Linear and XGBR required
warm starts to be initialised and applied. Since warm starts are yielded by
Mean and given that Mean and Median applied similarly (although computing
different statistics), we proceed to describe the imputation setup of both these
methods.

Given a train-test split within our experimental setup, let Xtrain and Xtest

be the sets corresponding to the train and test portions of the split, respectively.
Let Xobs

train ∈ Xtrain and Xmiss
train ∈ Xtrain be disjoint sets representing observed

and missing values, correspondingly, of the train portion of the train-test split.
Conversely, let Xobs

test ∈ Xtest and Xmiss
test ∈ Xtest be disjoint sets representing

observed and missing values, respectively, of the test portion of the train-test
split. For each feature indexed at j ∈ {1, ..., p}, mean and median statistics were
computed from the set of observations x:,j ∈ Xobs

train, for a total of p mean values
and p median values per train-test split. We then replaced the missing values in
both Xmiss

train and Xmiss
test with the mean or median of the respective feature.

The setup used to deploy both Linear and XGBR was the same. We started
by considering any arbitrary train-test split and retrieving the corresponding
imputed train-test set produced through Mean. These imputed train and test
subsets served as the warm starts required to generate imputations through
both regression-based methods. Each of these methods generated imputations
based on the regression methods associated to them. For each train-test split, a
total of p regression models were learned per method, and per feature.

Let Rj be an object representing the regression model to be used to impute
over feature j ∈ {1, ..., p}. Rj had to be passed an initial set of values from
which to learn. The values were a subset of the training warm start. This subset
had the same width as the original corresponding dataset, but only contained
the instances for which feature j has observations. Rj would then be trained
on the subset in question to learn to model feature j from all other remaining
features. Past the regression-training step, imputation was performed by Rj on
both test and train segments of the train-test split.

After all imputation methods were applied to all train-test splits derived
from each dataset for all missing proportions, classifier performance was com-
puted. AP values were generated through 10-fold CV using the aforementioned
train-test splits. The values were then averaged so that each classifier yields one
value of AP per dataset per imputation method per missing proportion.

2.5.2 Results

We computed the mean performance over the 22 datasets, fixed on missing pro-
portion, per imputer, for each classifier. Figs. 2.2, 2.3, and 2.4 illustrate the per-
formance per imputers KNNC, SVMC, and XGBC, respectively.
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Wilcoxon signed-rank tests [Wilcoxon, 1992] were applied to measure the
statistical significance of the differences between missing-indicator and the re-
maining methods. The resulting p-values associated with KNNC, SVMC, and
XGBC are shown in Table 2.3, Table 2.4, and Table 2.5, respectively.
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Figure 2.2: KNNC mean performances across missing proportions. Mean per-
formances (vertical axis) across different proportions of missingness (horizon-
tal axis) per five missing data-handling methods. Indicator refers to missing-
indicator (purple).

Table 2.3: KNNC Wilcoxon p-values

Mean Median Linear XGBR
10% 0.030853 0.001549 0.020271 0.005506
20% 0.000779 0.006082 0.000136 0.001731
30% 0.002401 0.001549 0.002401 0.004981
40% 0.001932 0.001103 0.000259 0.000069
50% 0.094528 0.223429 0.015577 0.001549
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Figure 2.3: SVMC mean performances across missing proportions. Mean per-
formances (vertical axis) across different proportions of missingness (horizon-
tal axis) per five missing data-handling methods. Indicator refers to missing-
indicator (purple).

Table 2.4: SVMC Wilcoxon p-values

Mean Median Linear XGBR
10% 0.026155 0.014239 0.004063 0.001237
20% 0.033462 0.030853 0.000136 0.000155
30% 0.001731 0.001932 0.000334 0.000615
40% 0.039249 0.013005 0.000483 0.002673
50% 0.014239 0.088298 0.000483 0.001237

Within each classifier setup fixed at missing proportion, the 22 average AP
values computed using missing-indicator were compared against the remain-
ing methods in a pairwise fashion. One p-value was yielded for each compar-
ison of missing-indicator vs per imputation method fixed at a given missing
proportion.
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Figure 2.4: XGBC mean performances across missing proportions. Mean per-
formances (vertical axis) across different proportions of missingness (horizon-
tal axis) per five missing data-handling methods. Indicator refers to missing-
indicator (purple).

Table 2.5: XGBC Wilcoxon p-values

Mean Median Linear XGBR
10% 0.807624 0.883846 0.987049 0.066608
20% 0.236019 0.445498 0.236019 0.082403
30% 0.445498 0.858282 0.020271 0.188557
40% 0.101106 0.426376 0.407742 0.139625
50% 0.262686 0.987049 0.066608 0.003302

2.5.3 Discussion

By definition —Eq. 2.1— the distribution of missing values under MCAR in a
dataset is completely independent of any aspect of the dataset itself. By using
the missing-indicator method, a new variable is introduced per missing-valued
feature. The usage of the missing-indicator method generates a binary vari-
able of which the distribution is also independent of any aspect of the data.
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In other words, under the MCAR scenario this missing data-handling approach
is adding a noise variable to the data which will make the classification task
more difficult to solve.

Classifiers such as XGBC, which incorporate feature selection mechanisms,
are less prone to be influenced by the added noise through the incorpora-
tion of missing-indicator variables (Fig. 2.4). However, should a classifica-
tion algorithm be not so robust as assumed, then the overall classification
performance is expected to drop. This is illustrated in Fig. 2.2 (KNNC) and
Fig. 2.3 (SVMC), where an accentuated difference in average performance with
missing-indicator vs all other imputers can be seen. The distinction is further
denoted statistically by analysing Tables 2.3, 2.4, and 2.5. In the first two tables,
nearly all p-values are under 0.01 (i.e., significant difference between missing-
indicator and imputation methods). Table 2.5 suggests little disparity in perfor-
mance between imputation and missing-indicator methods.

2.6 Chapter Conclusion

Handling missing data is a general problem encountered in most machine
learning tasks. Different methods exist in the literature to address this prob-
lem, of which imputation and missing-indicator are the most predominant. De-
pending on underlying missing mechanism, the learner used, and the choice of
missing data-handling method, the downstream task performance may vary.

When dealing with real-world data, a non-MCAR scenario is traditionally
assumed and a viable option is to use the missing-indicator method. However,
even with a negative MCAR test output, a false negative may still be possible
which may jeopardise the performance of the downstream task. Accounting for
this liability, it is necessary to attenuate the performance decrease derived from
using the missing-indicator method under MCAR.

In this work, we have extensively assessed the performance of the missing-
indicator approach under the testable MCAR missing mechanism towards a
downstream classification task. We compared it to common imputation meth-
ods based on both statistical and machine-learning approaches. We computed
classifier performances from three distinct algorithms applied to 22 datasets,
each instanced with different proportions of missing values.

The comparative impact on classifier performance of each imputer was il-
lustrated, and statistical significance tests were applied to further validate our
findings. We observed that, as expected, the missing-indicator method system-
atically underperforms relative to all imputation methods. Yet, the negative
impact of the missing-indicator method (compared to imputation methods) can
be made negligible via adequate learner selection.
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In conclusion, our research shows that the missing-indicator method is a vi-
able option when handling real-world data, even if the missing mechanism is
not correctly assessed, so long as a decision tree-base learner is used,concretely
via gradient boosting. As a closing remark for upcoming research, we state that
using real missing-valued datasets rather than ones with synthetically gener-
ated missingness might provide more realistic and robust results.
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Chapter 3

Crosslier Detection

Finding anomalous entries is a difficult task with real-world consequences.
Consider the following example. Transit of wasteful materials within the EU
is highly regulated through a system of permits. Waste processing costs vary
greatly depending on the waste category of a permit. Therefore, companies
may have a financial incentive to allege transporting waste with erroneous cat-
egorisation (i.e., label-noisy samples). Our goal is to assist inspectors of the ILT
in selecting potentially manipulated permits for further investigation. For this
purpose, we introduce the concept of crosslier, of which the definition follows.

Definition 3.1 – Crosslier

A crosslier is a sample of which (a) the category label is swapped and (b)
a proportion of its features is more similarly valued to the features of the
samples of the newly-swapped category.

To detect crossliers, we propose the EXPOSE method. Moreover, to facilitate
the targeting of crossliers by inspector, we define the crosslier diagram.

Definition 3.2 – Crosslier diagram

A crosslier diagram is a visualisation tool specifically designed for do-
main experts to easily assess crossliers.

We compare EXPOSE against traditional detection methods in various
benchmark datasets. By evidencing the superior performance of our method
in targeting these instances of interest, we provide an answer to RQ2(a): given
data with label noise, how can noisy-samples be adequately detected?

The current chapter corresponds to the following publication:
Pereira Barata, A., Takes, F. W., van den Herik, H. J., and Veenman, C. J. (2021).
The eXPose approach to crosslier detection. In 2020 25th International Conference
on Pattern Recognition (ICPR), pages 2312–2319. IEEE
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3.1 Crossliers and Miscategorisation

Within the EU, economic proliferation and globalisation have resulted in a in-
crease of transnational waste transportation. The nowadays established List of
Waste provides EU member-states with waste categorisation, which promotes
appropriate waste handling, particularly relevant for hazardous waste [Euro-
pean Commission, 2018a]. Since transportation of waste poses serious health
and environmental risks, all movement of waste must be priorly noticed
through a system of permits [European Commission, 2018b]. In the Nether-
lands, the entity responsible for permit compliance is the ILT. Inspectors must
evaluate and determine whether a permit (a) is likely to be compliant and re-
quires no further inspection, or (b) raises concern and requires investigation.

Since different waste categories are encompassed by specific regulations
with dissimilar processing costs, companies may have an economic incentive
to purposefully miscategorise their waste. Hence, targeting such cases is of ut-
most importance to the inspectors of the ILT. Given high volume and velocity
of data, however, inspectors cannot adequately assess all permits. Therefore,
automatic methods are required.

Under the current problem scenario, the usually most-effective supervised
learning approaches to instance targeting [Choudhary and Gianey, 2017] are
not applicable since no historical labels for misconduct are available. Unsuper-
vised learning techniques are also not suited, given the unspecificity of the re-
trieved instances. Here we note that for anomaly detection methods, outlying-
ness alone does not translate to the desired targets, and we further mention the
difficulty of detecting samples in high-dimensional data [Venkatesh and Anu-
radha, 2019].

With respect to data-quality assurance techniques, we remark that they
mostly depend on variable distribution assumptions and concentrate on ran-
dom errors [Liu et al., 2016]. We focus on instances in which the category label
and category-correlated feature values have been altered. In other words, our
goal is to pinpoint samples with non-random changes in feature values which
mask the true underlying category label.

To address the current problem of manipulation, we propose the following
three contributions:

1. the concept of a crosslier: a deviating instance resulting from potentially
intentional category manipulation;

2. the EXPOSE method for crosslier detection, by computing the crosslier
score of a sample given its category;

3. the crosslier diagram: a visualisation tool which allows easy assessment of
crossliers.
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Albeit motivated by a waste transportation problem, our proposed contribu-
tions are intrinsically domain-agnostic and therefore applicable to other fields.
Within a dataset with category labels, a crosslier is an instance of which the
combination of (1) its set of feature values and (2) the category label are dishar-
monious.

We consider a crosslier to be a special case of an outlier defined as follows.

Definition 3.3 – Outlier

An outlier is a sample of which the feature values differ significantly from
those of the other samples.

By special case, we mean that crossliers are outlying instances with specific
characteristics. More precisely, a crosslier is a specific outlier with some con-
nection regarding a category label; that is, it is a sample of a category which lies
across other categories.

For completion, here we remark that the terms (a) crosslier and (b) outlier
are both a form of (c) anomaly, which is defined as follows.

Definition 3.4 – Anomaly

An anomaly is a sample which, given its features, class label, domain
knowledge, or any combination of the three, is significantly different
from the remainder of the samples. It is used to broadly refer to a data
point which stands out from the dataset.

The relationship between the three terms is depicted in Fig. 3.1. As shown,
all crossliers are outliers and all outliers are anomalies, but not all anomalies are
outliers and not all outliers are crossliers.

Anomaly

Outlier

Crosslier

Figure 3.1: Anomaly, outlier, and crosslier. Diagram depicting the relationship
between the three terms.
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The chapter structure follows: Section 3.2 states our problem formally; Sec-
tion 3.3 discusses past work related to ours; Section 3.4 elaborates our approach
in detail; Section 3.5 describes ours experimental setup; Section 3.6 refers to our
results; Section 3.7 discusses our method; and Section 3.8 concludes this work
and suggests future research directions.

3.2 Problem Description

Given a category-labelled dataset, we defined (in Definition 3.1) a crosslier as
a sample of which (a) the category label is swapped and (b) a proportion of
its features is more similarly valued to the features of samples of the newly-
swapped category. To put it simply, we assume that feature values might have
been manipulated to mask the true category label.

To detect crossliers, we propose crosslyingness as a rankable property ex-
pressed as a function, in which the instance with the highest crosslyingness
with respect to a category is the most likely crosslier.

Definition 3.5 – Crosslyingness

Crosslyingness is a rankable property indicative of the degree to which a
sample is considered a crosslier.

Accordingly, either (1) crossliers fall within the cluster of some other cate-
gory, or (2) crossliers lie across other categories. To illustrate, we present Fig. 3.2;
four different categories A, B, C, and D are denoted, with crossliers as A∗, B∗,
C∗, and D∗.

Figure 3.2: Crosslier detection. Samples with features X1 and X2, pertaining to
either category A, B, C, or D (left). Crossliers are marked as crosses (right).
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Formally, letD be a distribution of random variables (X,Z) ∈ X ×Z , where
X ⊆ Rm, Z = {z1, z2, . . . , zq}, and z ∈ Z is one of the q different category
labels. Let also (x1, z1), . . . , (xn, zn) represent the samples drawn from D. Our
goal is to find, for each unique category z ∈ Z , a function fz(x) which scores
the crosslyingness of xi ∈ X with zi = z.

3.3 Related Work

In this section, we provide a brief overview of three techniques typically used
to address anomaly detection problems. In this sense, we consider a crosslier to
be a particular type of data anomaly, with specific characteristics as described
in the previous sections.

We report on previous work which applied supervised and semi-supervised
learning techniques (Section 3.3.1), unsupervised learning methods (Sec-
tion 3.3.2), and data quality assurance techniques (Section 3.3.3). We further
disclose their non-applicability to our scenario.

3.3.1 Supervised and Semi-supervised Learning

In the presence of labels indicative of previously-recognised noncompliance,
the problem can be approached as a supervised learning task. Three examples
are: (1) detecting insurance fraud [Subudhi and Panigrahi, 2020]; (2) exposing
deceitful telecommunication users [Li et al., 2018]; and (3) identifying irregular
heart beat patterns [Vollmer et al., 2017]. The choice of algorithm is rather di-
verse. We mention three of them: (1) SVMC [George and Vidyapeetham, 2012];
(2) multilayer perceptron [Mulongo et al., 2020]; and (3) random forest [Alaz-
zam et al., 2019].

For the case where both labelled and unlabelled instances are available,
a semi-supervised learning approach is suitable [Chapelle et al., 2006]. This
framework can, as an example, make use of clustering algorithms assuming
that data points within the same cluster probably share the same label [Xiang
and Min, 2010]. Another approach to improve on the selection of inspection
targets is to consider the unlabelled instances as pertaining to the negative class
(i.e., the class which is not of interest) [Jacobusse and Veenman, 2016]. Here,
the assumption is that the incidence of inspection targets within the unlabelled
data is small enough as to be made negligible towards learning. Yet, our data
does not possess target labels, making these techniques inapplicable.
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3.3.2 Unsupervised Learning

A straightforward alternative is to find deviating cases through anomaly detec-
tion techniques using unsupervised methods. The assumption is that the most
probable samples to target are the ones that differ in an extreme way from all
others in their category (i.e., outliers). Such techniques have been applied to sys-
tem intrusion detection [Zanero and Savaresi, 2004], maritime traffic anomaly
flagging [Vespe et al., 2012], and image curation [Liu et al., 2014], amongst oth-
ers. Four examples of the successful algorithms used are: (1) isolation forest
(IF) [Liu et al., 2012]; (2) local outlier factor (LOF) [Breunig et al., 2000]; (3)
nearest-neighbour [Amer and Goldstein, 2012]; and (4) k-means clustering [Mu-
niyandi et al., 2012].

There are at least three intrinsic obstacles with unsupervised methods. The
first obstacle is their dependency on distance metrics (Minkowski measures) to
define outlyingness, which makes them sensitive to feature scaling. The sec-
ond obstacle arises when dealing with high-dimensional data [Liu et al., 2017],
particularly when attempting to estimate densities empirically [Santos et al.,
2019a]. The third obstacle is that, through manipulation of only a proportion
of features — as per the problem description (see Section 3.2)— target samples
(crossliers) may not stand out. To illustrate, we present Fig. 3.3.

Figure 3.3: Distinction between outlier and crosslier. Four-category example
from Fig. 3.2. Crossliers are marked as crosses and outliers are denoted as cir-
cles. Transparency values for data clusters have been raised for visualisation.
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Fig. 3.3 builds on the example in Fig. 3.2 by applying the IF algorithm as
per [Liu et al., 2008]. Here we see how data points flagged as outliers do not
represent the target crossliers; hence, we should consider the distribution of
categories when marking instances as crosslying. The issue with using tradi-
tional anomaly detection methods towards finding crossliers is evidently illus-
trated: most flagged instances are arguably not outlying with respect to their
clusters. The insensitivity shown makes anomaly detection methods precari-
ous to address our problem. Ultimately, not all outliers are crossliers since not
all of them possess the specific category-related characteristics we seek.

3.3.3 Data Quality Assurance

By considering an outlier to be anomalous, and therefore an inspection candi-
date, one could argue that the abnormal values by which outlyingness is at-
tributed can be caused by erroneous data entries on the permit category. Here,
data quality assurance techniques can be used for detection [Bonner et al.,
2015]. Typical methods involve, for example, assumptions over feature dis-
tributions [Mariet et al., 2016] and cross-referencing datasets for dependency-
matching or constraint-mining [Rekatsinas et al., 2017, Chu et al., 2013]. Our
scenario does not allow for reliable cross-dataset linkage due to the lack of en-
tity identifiers. Furthermore, despite the existence and usage of both univariate
and multivariate constraints, the constraints are not generated with respect to
an ulterior task. In other words, the assumptions over feature distributions
need not hold for the category distributions we are interested in.

In summary, the current literature is ill-equipped to adequately address our
issue of discriminating towards crosslying instances, which translate to permits
of interest to inspectors.

3.4 The EXPOSE Method

Here, we detail the proposed EXPOSE for the detection of crossliers. As defined
in Section 3.2, the aim is to find a function fz(x) that determines the crosslier
score of sample x ∈ X with category label z. The EXPOSE method is data-driven
in the sense that it uses a learning function to obtain the scores for a dataset with
category labels. Since the whole dataset is category-labelled by definition, all
samples can obtain a crosslier score. We follow a supervised learning approach,
where the crosslying score is determined per category on a left out part in order
to obtain an independent score. As a result, we need to optimise several learners
as in a CV setup. Therefore, these learned functions must be calibrated to make
the scores comparable among each other.
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Below, we first describe the setup to obtain the learners in a supervised way.
We then elaborate on the model selection and model calibration steps per data
subset based on CV. The learners collectively yield the overall crosslier score
function. We finalise the method section with the crosslier diagram, a tool to
visualise crosslier scores and pinpoint suspect samples.

3.4.1 Classification Setup

Consider the distribution D defined in Section 3.2. For a fixed category z,
(x1, y1), . . . , (xn, yn) are samples of D in which

yi =

{
1, if zi = z

0, otherwise
(3.1)

Given D and a loss function L, the task of the learner is to find a function f ∈ F
through empirical risk minimisation [Vapnik, 2013]:

arg min
f∈F

R̂D,L,f (3.2)

where

R̂D,L,f =
1

n
·
n∑
i=1

L(f(xi), yi) (3.3)

Depending on the chosen learner, the curse of dimensionality is addressed
by incorporating either regularisation, feature selection, or both protocols in
the learning task [Sharma et al., 2017]. These protocols also alleviate overfit-
ting and promote classifier robustness by reducing the complexity of the final
model [Gupta et al., 2016].

All regularisation parameters given prior to the learning task can be opti-
mally retrieved through hyperparameter optimisation [Claesen and De Moor,
2015, Bergstra and Bengio, 2012]. The learners to be applied within a specific
problem can also be optimally selected.

3.4.2 Model Selection

A model is selected based on classification performance. For each candidate
learner that is applicable to a problem and their respective hyperparameters,
the estimated classification performance is measured in terms of AUC through
CV [Flach, 2016]. The choice of CV strategy is dependent onD, as the appropri-
ate number of folds and splitting strategy relate to Z and the respective P (y),
as well as sample size n. Model calibration is also subject to the CV strategy,
detailed further.
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Formally, consider the dataset D, with distribution D. For a given k ∈
{1, 2, . . . ,K}, K > 1, let test set Dts

k and training set Dtr
k be independent and

identically distributed subsets of D such that

K⋂
k=1

Dts
k = ∅,

K⋃
k=1

Dts
k = D, and Dtr

k = D \Dts
k (3.4)

Fixing on k, we define test and training sets Dts
` and Dtr

` , respectively, as in-
dependent and identically distributed subsets of Dtr

k , for ` ∈ {1, 2, . . . , L} and
L > 1, such that

L⋂
`=1

Dts
` = ∅,

L⋃
`=1

Dts
` = Dtr

k , and Dtr
` = Dtr

k \Dts
` (3.5)

Given D and sets of learners {Ψ1,Ψ2, . . . ,Ψr} with hyperparameters {φ1, φ2,

. . . , φp}, the final model is selected by maximising the estimated AUC
with K and L folds, comprised of learner ∗Ψ and hyperparameters φk ∈
{φ1, φ2, . . . , φK}. AUC is directly linked to crosslyingness, as detailed ahead.

Learner ∗Ψ and hyperparameters φk are used to generate the crosslier scores.
Since EXPOSE generates crosslier scores from a collection of models learned on
independent data subsets to avoid overfitting, the output of each model is not
comparable across models. We enforce model comparability through model
calibration.

3.4.3 Crosslier Score

To transform the output of uncalibrated models into a calibrated output, Platt
scaling [Platt et al., 1999] is used. The original output ŷ of a learned model given
input x thus becomes the estimated posterior probability P̂ (y|x). Given z, the
crosslier score function fz is defined as the information content [Jones, 1979] of
a sample x from category z:

fz(x) = − log2 P̂ (y|x) (3.6)

The choice of− log2 translates to: (1) the score difference between samples with
low and high posterior probabilities are augmented; and (2) scores are easily
interpretable, in which a posterior 1 returns a score 0, and a posterior 0.5 re-
turns 1. Heuristically, samples with crosslier score greater than 1 can be consid-
ered crossliers and are rankable by crosslyingness according to their respective
crosslier scores. The estimated AUC model performance relates to the crosslier
scores. By definition, poor-performing models output calibrated posterior prob-
abilities close to 0.5. Therefore, the crosslier scores will lie close to 1 for all sam-
ples. With high AUC models, the range of crosslier scores is allowed to widen.
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Formally, let xk and yk represent the variable values of samples (x, y) ∈ Dts
k

for a given k. The estimated posterior is then given as

P̂ (y|x) =

K⋃
k=1

P̂ (yk|xk) (3.7)

in which,

P̂ (yk|xk) =
1

L
·
L∑
`=1

[fk` (∗φΨtr
k (xk))] (3.8)

where ∗φΨtr
k (xk) is the output of ∗Ψ learned on (x, y) ∈ Dtr

k with hyperparame-
ters φk, given input xk, and fk` is the sigmoid function with parameters α∗ and
β∗

fk` (u) =
1

1 + e−(α∗+β∗·u)
(3.9)

in which

α∗, β∗ = arg min
α,β

−
∑

(x,y)∈Dts`

[µ · log(p) + (1− µ) · log(1− p)] (3.10)

where

µ =


(
∑

y∈Dts`
y) + 1

(
∑

y∈Dts`
y) + 2

, if y = 1

(|Dts
` | − (

∑
y∈Dts`

y) + 2)−1, otherwise
(3.11)

and
p =

1

1 + e−(α+β·∗φΨtr` (x))
(3.12)

In Eq. 3.12, ∗φΨtr
` (x) is the output of ∗Ψ learned on (x, y) ∈ Dtr

` with hyperpa-
rameters φk, given input x ∈ Dts

` .

3.4.4 Crosslier Diagram

At the basis of the crosslier diagram (see Definition 3.2) lies an interactive tool
which discriminates individual samples based on their crosslier score. Existing
tools such as box, swarm, and violin plots were not suited since: (1) box plots do
not present all samples that might be relevant crossliers; (2) swarm plots do not
function well for a large number of samples; and (3) violin plots do not exhibit
any samples in their output.

The diagram is a mapping of the output of fz(x) onto a horizontal axis
where x are samples of category z. To each plotted sample we add a Gaussian-
generated vertical value so that even if two or more samples have the same
crosslier score they do not entirely overlap.
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Finally, the crosslier diagram can display related domain-specific informa-
tion of a sample by hovering over it. In the context of real-world transportation
data, we present the crosslier diagram (Fig. 3.4) in the upcoming Section 3.6 as
part of our experimental results.

3.5 Experiments

In this section, we describe our experiments. Two setups are considered, viz.
(a) waste transportation setup and (b) benchmark setup. Within the first setup,
EXPOSE is applied to the waste permit dataset (Section 3.5.1). In the second
setup, we compare our method to anomaly detection methods in a controlled
environment (Section 3.5.2). The resources described in this section are made
available online [Pereira Barata, 2020].

3.5.1 Waste Transportation Setup

In this section, we discuss: (1) data; (2) learners; and (3) selection and calibration
of the best model.

Data

The dataset was generated and provided by the ILT. It represents solicitations of
waste transportation events across Europe (2009–2015), encompassing a total of
876, 311 waste transportations. Each row represents an individual transporta-
tion event. Several rows are linked by a permit identifier, where permits are the
units of interest to inspectors of the ILT. We followed an aggregation strategy
with respect to permit identifiers. The aggregation process produced 11, 740 in-
stances, each with a waste category (out of 20 total different waste categories)
and 49 variables which were a mixture of numerical and nominal features.

Learners

We experimented with (a) linear and (b) non-linear learners to find the best per-
forming model for each waste category. First, an elastic net-regularised logistic
regression (LR) learner was deployed, with hyperparameters λ and ε referring
to the regularisation coefficient, and the ratio of L1 to L2-regularisation, re-
spectively. Besides its broad usage and proven efficacy [Rosario, 2004, Wang,
2005,Mok et al., 2010], advantages of this learner are, for example: its calibrated
output probabilities (hence, not requiring any further calibration); and its re-
silience to overfitting given low complexity and regularisation [Kleinbaum and
Klein, 2010].
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Second, a non-linear gradient boosted tree framework (XGBC) was consid-
ered [Friedman, 2001], with 100 additive trees. Each tree was allowed a maxi-
mum depth of 3 with regularisation parameter λ = 1. This learner is widely
accepted as a state-of-the-art solution to supervised problems [Pafka, 2019]
in terms of scalability, robustness to noisy samples, and classification perfor-
mance.

Selection and calibration

To select and calibrate the best model, we applied nested-CV in a stratified man-
ner [Stone, 1974] with K = 10, L = 10 as described in Section 3.4. Stratification
is selected to ensure that each category is represented in each fold with the same
relative frequency as in the full dataset. A grid-search [Chan and Treleaven,
2015] was applied to find the optimal set of LR regularisation parameters λ and
ε. Each parameter was set to one of 21 distinct values, in ranges [10−3, 103] log-
arithmic and [0, 1] linear, respectively, for a total of 441 sets of candidate hyper-
parameters. Since XGBC is relatively insensitive to hyperparameter changes, as
shown in the experimental results of [Xia et al., 2017], we did not perform hy-
perparameter optimisation for this classifier. The best model for each category
was used to generate the crosslier scores and crosslier diagrams (Section 3.6).

3.5.2 Benchmark Setup

In this section, we discuss: (1) data; (2) preprocessing; (3) crosslier synthesis;
and (4) evaluation.

Data

Twenty binary classification datasets were retrieved from openML: an open, or-
ganised, and online ecosystem for machine learning [Vanschoren et al., 2014].
They are real-world datasets from different domains. Target classes were
treated as the categories Z . Table 3.1 summarises each dataset with identifier
ID, n instances, and m features of which u are numeric. The datasets were cho-
sen such that n, m, and u are heterogeneous across datasets.

Preprocessing

Numeric features values were scaled to a [0, 1] range to accommodate fea-
ture scale-sensitive methods. Non-numeric features were {0, 1}-binarised per
unique value.
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Table 3.1: Datasets retrieved for crosslier simulations.

ID n m u ID n m u

446 200 7 6 40705 959 44 42
40 208 60 60 31 1000 20 7
1495 250 6 0 1494 1055 41 41
53 270 13 13 40706 1124 10 0
40710 302 14 5 1462 1372 4 4
59 351 34 34 1504 1941 33 33
40690 512 9 0 1487 2534 72 72
1063 522 21 21 1485 2600 500 500
335 554 6 0 41143 2984 144 8
1510 569 30 30 41144 3140 259 259

Crosslier synthesis

To simulate a real-world scenario, crossliers were synthesised by replacing
category labels and feature values. Different proportions of both label and
feature manipulation were considered extensively. The proportion of label-
swapped samples for each category per dataset was ρy ∈ {.01, .05, .1, .15, .2,

.25, .3, .35, .4}. To recreate the scenario in which feature values are manipulated
to simulate another category, samples which were label-swapped had a pro-
portion of their feature values replaced. The proportion of randomly-selected
features to have their values replaced was ρx ∈ {0, .05, .1, .15, .2, .25, .3, .35, .4}.

Replacement values were drawn from univariate distributions with param-
eters estimated from the features of the category being mimicked, modelled as
either: (a) the normal distribution N (µ̂, σ̂) for numeric features, where µ̂ is the
estimated mean and σ̂ is the estimated standard deviation; or (b) the multi-
nomial distribution with estimated event probabilities {p̂1, p̂2, . . . , p̂π} where π
is the number of unique feature values, otherwise. Crossliers were generated
10 times with different random initialisation seeds for all datasets per config-
uration (ρx, ρy) to account for randomness. Both categories per dataset were
corrupted with crossliers before any method was applied.

Methods

The EXPOSE method was compared to two well-established anomaly detection
methods: LOF and IF, mentioned in Section 3.3.2. The previously-established
methods were not designed to detect crossliers.
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To promote a reasonable comparison, EXPOSE was applied with a single
set of learner and hyperparameters and no optimised model selection was per-
formed. The model selected was a tree-based gradient boost learner and de-
fault hyperparameters of 100 trees of maximum depth 3 with regularisation
λ = 1 [Chen and Guestrin, 2016]; calibration values K and L were set to 10.
LOF neighbourhood size was set to 20 and IF number of trees was set to 100.

Evaluation

The crosslier scores of EXPOSE were generated as in Section 3.4; the anomaly
scores of the anomaly detection methods were generated category-wise. For
each category, crosslier detection performance was measured in AP [Liu and
Özsu, 2009], a common measure in anomaly detection assessment [Xu et al.,
2018]. Accordingly, the targets are the crossliers in each category. The perfor-
mance of both categories in each configuration (ρx, ρy) were jointly averaged
per dataset, and across initialisation seeds.

3.6 Results

Here, we present findings relative to both experimental setups: (a) EXPOSE ap-
plied to the real-world scenario of waste transportation in the inspection do-
main; and (b) EXPOSE compared to other anomaly detection methods in a con-
trolled environment with benchmark datasets.

3.6.1 Waste Transportation

When applied to the waste transportation data, we show firstly the estimated
AUC performances yielded by both candidate models LR and XGBC. The next
step was presenting the crosslier diagrams of waste categories to the inspectors
for assessment. Waste category 4 (waste from textile industries) was not shown
due to insufficient number of instances.

Model performance and selection

Table 3.2 shows the estimated AUC performances and measured standard devi-
ations yielded during the model selection step of EXPOSE, which were used to
select the best model per category for crosslier detection. Values in bold indicate
the highest performance per category of which the model was chosen.
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Table 3.2: Model performances per waste category.

Category LR XGBC

1 0.983± 0.008 0.985± 0.010

2 0.868± 0.044 0.919± 0.037

3 0.868± 0.020 0.908± 0.027

— — —
5 0.672± 0.092 0.755± 0.082

6 0.740± 0.038 0.794± 0.037

7 0.776± 0.016 0.821± 0.015

8 0.798± 0.026 0.856± 0.025

9 0.867± 0.047 0.915± 0.047

10 0.737± 0.032 0.788± 0.035

11 0.815± 0.021 0.896± 0.016

12 0.860± 0.032 0.897± 0.031

13 0.609± 0.063 0.720± 0.062

14 0.776± 0.034 0.817± 0.024

15 0.841± 0.019 0.883± 0.016

16 0.695± 0.016 0.753± 0.019

17 0.845± 0.023 0.889± 0.022

18 0.894± 0.015 0.921± 0.015

19 0.806± 0.014 0.851± 0.013

20 0.719± 0.024 0.779± 0.027

XGBC provided the best performance for all categories and was selected to
generate the crosslier diagrams. For clarity, AUC does not measure the per-
formance of crosslier detection since no crosslier labels exist in this real-world
problem.

Crosslier diagrams

In Fig. 3.4 the crosslier diagrams with scores generated by the selected model
XGBC are shown. For demonstration purposes, we show crosslier diagrams
of four waste categories: (1) exploration and treatment of minerals; (2) agricul-
ture, food preparation, and processing; (9) waste from photography industry;
and (18) human or animal healthcare. In addition, the interactive aspect of the
diagram is represented for a sample of waste category 9, in which its permit
identifier (ID 4358) and crosslier score (1.41) are shown.
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Figure 3.4: Crosslier diagrams of four waste categories. Hovering over an
instance highlights its identifier (4358) and crosslier score (1.41).

Inspection domain

The inspectors of ILT were provided with the crosslier diagrams. They analysed
the permit cases across waste categories according to the given crosslier scores.
Their assessment was that the authenticity of most of the high-scoring permits
was sufficiently doubtful and that further investigation was necessary to es-
tablish compliance. All in all, the crosslier diagram was considered a valuable
expansion of their tool set, especially when compared to spreadsheet analysis.

3.6.2 Benchmark

The outcome of our experiments with respect to controlled crosslier detection
is to be seen in Fig. 3.5. We present the results for the three methods: EXPOSE,
LOF, and IF. Fig. 3.5 shows the mean (AP) across 20 datasets, for 81 configura-
tions of (ρx, ρy), each with 10 random initialisations of crosslier synthesis.

Lighter (darker) cell tones indicate higher (lower) values of performance.
Each number indicates the yielded AP performance for each (ρx, ρy) configu-
ration with which we experimented. For every possible setting (i.e., heatmap
cell), EXPOSE yielded a higher mean performance than any of the other meth-
ods. The differences in performance diminish as both ρx and ρy increase.
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Note that to perform a correct comparison, EXPOSE was not subject to any
optimisation: the model selection step was reduced to a single learner with a
single set of default hyperparameters. When deployed onto a real-world sce-
nario, model selection should be applied to select the best possible learner and
hyperparameter configuration, as described in Section 3.4.

3.7 Discussion

The EXPOSE method is evidently better at detecting crossliers through the ex-
ploitation of category models, when compared to standard anomaly detection
methods. This was expected, as crossliers are defined based on their feature val-
ues in a category-wise manner. High dimensionality and feature dependence
are also better dealt with through the appropriate selection of learner with ade-
quate feature selection and regularisation protocols.

The implementation of the EXPOSE method is to be seen as a wrapper over
different components: at its core, it is a data-driven category-modelling method
using learner functions. Score calibration is applied and, even though a selected
model might have a low AUC, the crosslier scores are —we argue— reliable.

For low AUC values, the crosslier scores will tend to cluster at 1 (corre-
sponding to the posterior 0.5). In this sense, EXPOSE will not expose a sample
unless its respective category is well modelled (high AUC). This property en-
sures adequate precision of the sample exposed and is of particular relevance
when dealing with sensitive Inspectorate domains where wrongly-targeting in-
stances has negative outcomes. Assuming sensible feature values and category
labels, a high AUC depends only on the learner and hyperparameters selected.

3.8 Chapter Conclusion

In the present work, we (1) defined a specific type of data anomaly, which we
term crosslier, (2) introduced the EXPOSE method to crosslier detection, and (3)
designed the crosslier diagram, a visualisation tool to represent crossliers evi-
dently. We showed that conventional anomaly detection methods (LOF and IF)
are ill-suited for crosslier detection when compared to eXPose.

Although domain-insensitive, EXPOSE produced valuable domain-specific
insights into the problem scenario of targeting potentially fraudulent permits
of waste transportation across European countries. We defined crosslier as an
instance which is more similar to other categories than its own; in other words,
it is a sample which likely carries company misconduct.
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Extensive preprocessing and optimisation steps were performed which cul-
minated in well-performing (high AUC) models of waste categories. Accord-
ingly, the feature values collected in the waste permits allow for suitable dif-
ferentiation. This finding shows that administrative data allow for compliance
checking. After presenting the crosslier diagrams to the inspectors, their as-
sessment was on par with the expected workings of our EXPOSE method: (1)
detected crossliers were considered suspicious, and (2) were marked for further
inspection. We remark that these cases had gone undetected in standard permit
review operations. So, the crosslier diagram was considered by the inspectors a
beneficial extension to current methods.

One clear limitation of our experimental setup is, however, that no direct
link can be made between (a) hyperparameter optimisation towards AUC per-
formance and (b) crosslier detection performance. While, by definition, it holds
that higher classification performance enables more extreme crosslier scores
than lower classification performance, the nature of the relationship between
the 2 aforementioned points (a) and (b) should be empirically assessed. To this
end, the work by [Van Rijn and Hutter, 2018] would prove invaluable towards
efficiently selecting the set of hyperparameters over which the optimisation
search should be performed.

As a different future research direction, we recommend close cooperation
with the inspectors for the following three reasons: (1) by receiving their feed-
back on the inspected crosslying permits, our method is further validated; (2)
we can use the inspected crosslying cases as labelled instances in a supervised
learning scenario towards compliance/non-compliance modelling; and (3) EX-
POSE is applicable to other problems within the Inspectorate, which further aids
the inspectors.
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Chapter 4

Noise-Resilient Classifier

Noise in data is a pervasive concern, with causes ranging from human entry
errors to flawed automated detection tools. When used to learn a classifier,
noisy samples —where class labels and feature values may be corrupted— can
seriously deteriorate the resulting classifier performance. In this chapter we
propose DENOISE, a unified method to perform classifier learning from noisy
samples that leverages noise detection and sample weighting techniques.

The proposed approach consists of learning a noise-resilient classifier
through a log-odds sample weighting strategy, in which the weights are de-
rived from the noisy instances in a label noise detection step, as described in
Chapter 3. We report on the performance of our method in a controlled sce-
nario where noise was artificially injected into a diverse set of datasets.

Different parameterised configurations of label noise and feature noise pro-
portions were extensively tested against current state-of-the-art methods from
the fields of classifier learning under noisy conditions and label noise detection.
Results over ten datasets show that overall our method outperforms the state-
of-the-art with respect to both learning from noisy data and noise detection,
further validating the approach set out in Chapter 3 (which answered RQ2(a)),
and most importantly providing an answer to RQ2(b): given data with label
noise, how can noisy-samples be used to learn a well-performing model?

The current chapter corresponds to the following publication:
Pereira Barata, A., Takes, F. W., van den Herik, H. J., and Veenman, C. J. (2022).
Noise-resilient classifier learning. Pattern Recognition (under review)



64 Chapter 4. Noise-Resilient Classifier

4.1 Noise and Performance Degradation

Noisy data are a prevalent issue in many data-reliant domains. Random input
errors, or even malicious intent, cause problematic hurdles for any data descrip-
tive or predictive task. In this chapter, we consider a supervised classification
scenario in which we distinguish between feature noise (see Definition 1.16)
and label noise (see Definition 1.17).

Samples within a classification dataset may have noise in either (1) the fea-
ture values; (2) the class labels; or (3) a combination of both [Wu, 1995]. A
major problem of noisy data towards classifier learning is the severe perfor-
mance degradation of the learned classifier [Heskes, 1994,Wilson and Martinez,
2000, Zhu and Wu, 2004]. A second issue may come from the complexity of the
trained model. The impact of the complexity can be assessed by the extent to
which a classifier is explainable [Brodley and Friedl, 1999, Segata et al., 2010].
The two problems may present serious consequences such as leading to inac-
curate medical diagnoses [Zhang et al., 2006, Holzinger et al., 2017]. targeting
the noisy samples is an endeavour in itself. Yet, an adequate detection of such
samples can be used to improve classifier learning with noisy data [Gamberger
et al., 1999]. In the case where feature noise is assumed, three different ap-
proaches have been proposed. First, if feature noise comes in the form of miss-
ing values, imputation and missing-indicator methods can be deployed. They
allow for adequate learning [Pereira Barata et al., 2019]. Second, if noise relates
to the existing values, a viable solution is to apply standard outlier detection
methods. As such, samples with outlying values are targeted and consequently
discarded prior to learning a classifier [Li et al., 2015]. Third, the usage of learn-
ers which are robust to samples with noisy features has been investigated with
positive results [Sáez et al., 2014].

Most literature focuses on label noise [Frénay and Verleysen, 2013], as it is
typically more detrimental to classifier learning than feature noise. Two reasons
are: (1) there is a greater number of features than the single category label, and
(2) not all features are equally important towards learning a classifier, whereas
the class label of a sample is always of paramount importance [Sáez et al., 2014].
In [Frénay and Verleysen, 2013], the authors categorise label noise into three
types or mechanisms:

1. NCAR, the proportion of mislabelled samples is the same per class, and
thus independent of features and class;

2. NAR, the proportion of mislabelling is dependent on class, and indepen-
dent of features;

3. NNAR, the proportion of mislabelled samples may or may not be the
same per class and is dependent upon the features.
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Joint class and feature noise (i.e., the NNAR case) is often attributed to
class overlap. Samples of different classes which are similarly feature-valued
increase class-separability issues [Beigman Klebanov and Beigman, 2009].
From a different perspective, a NNAR mechanism might be a result of mali-
cious data manipulation [Pereira Barata et al., 2018b]. As an example, let us
consider the practical scenario of international transportation of waste. Transit
of wasteful materials is highly regulated through a system of permits. Waste
transportation costs vary considerably depending on the waste category of a
permit (i.e., class). Therefore, companies have a financial incentive to allege
transporting waste with erroneous categorisation (i.e., mislabelling). To further
mask the manipulated label, other permit values (i.e., features) might be altered
to resemble those of the false class label. In other words, the manipulated fea-
ture values may contrast the unobserved true label. This complex NNAR sce-
nario is the focus of our research. To address the issue of learning with label
noise, at least three strategies have been proposed in the literature. We mention
the first two strategies —baseline and preprocessing— and discuss to some extent
the third strategy: sample weighting

The first strategy is a baseline strategy. It involves using robust noise-tolerant
learning architectures [Abellán and Masegosa, 2010] by deploying regularisa-
tion and feature selection protocols [Wang et al., 2019, Ghosh et al., 2017]. Its
main advantage is the fact that it does not require any data pre-processing.
However, using this strategy alone is not sufficient as the information contained
in the noisy samples is not considered.

The second strategy is a preprocessing strategy in which noisy samples are
targeted for either removal from the dataset or for label swapping —data clean-
ing or cleansing [Miranda et al., 2009]. The action to remove or relabel a sample
depends on chosen decision threshold. In practice, this is a difficult choice. It
often leads to the case where too many or too few instances are targeted, hence
compromising the performance of the classifier [Koplowitz and Brown, 1981].

The third strategy involves using sample weighting (i.e., coefficients) in the
loss function during learning [Liu and Tao, 2015]. Optimally, sample weights
reflect the (un)certainty of the recorded feature values and class labels. How-
ever, current weighting approaches present three main hurdles, which we dis-
cuss below.

First, a sample weighting strategy may require a separate non-noisy (i.e.,
curated) sample to compute the weights which is often not available [Ren et al.,
2018]. Second, current literature tends to focus on non-negative weights. This
may impact the learned model by not taking advantage of the certainty that a
sample is probably a mislabel. Third, to assign adequate weights to samples
based on their observed feature values and class label, an adequate measure of
sample belongingness is required which is not easily tractable.
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From the literature, belongingness is defined as follows [Kylberg and Sin-
torn, 2013].

Definition 4.1 – Belongingness

Belongingness is a broad term representing the extent to which a class-
labelled sample belongs to the class indicated by its label.

The computation of belongingness is generally addressed by exploiting the
aforementioned baseline approach: a robust learner is trained on a dataset —or
on a portion of it in a CV manner— and the prediction scores of the learned
classifier are used as a measure of sample belongingness [Gamberger et al.,
1999, Jeatrakul et al., 2010].

However, overfitting may occur when the entire dataset is used for train-
ing which frequently results in poor detection performance. Moreover, even if
scores are computed with CV to avoid overfitting, the scores are not comparable
across folds since the training sets are not the same.

Our Novel Approach

Given the lacunae in the literature, to improve classifier learning with noisy
samples, we propose (1) a novel sample weighting strategy and (2) a new de-
tection method. Since sample weighting is reliant on an appropriate measure
of belongingness, a new method to label noise detection is really required. By
using of a robust surrogate learner, we propose DENOISE, a sample weighting
strategy for learning which leverages the belongingness of samples. As a result,
we arrive at the following two contributions.

1. Learning a classifier that is resilient to the type of noise in such a way that
performance loss is minimal compared to the non-noisy case;

2. Detecting samples of which the label is corrupted, in which feature values
may be disharmonious with respect to the true (unknown) label.

Obviously, but quite important, the two contributions are related. Classifier
learning with noisy data depends on the initial step of detecting samples with
label noise.

The structure of the chapter is as follows. Section 4.2 states the terminol-
ogy and the problem description precisely. Section 4.3 refers to the literature
related to our work and reveals the open issues which lead us to our contribu-
tions. Section 4.4 describes our methods for classifier learning and the detection
of samples with label noise. Section 4.5 describes our experimental setup. Sec-
tion 4.6 presents the results of our experiments. Finally, Section 4.7 concludes
this chapter and provides direction for future research.
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4.2 Problem Description

Given a class-labelled dataset, we consider the scenario in which the feature
values and target labels have been compromised. Moreover, we focus on the
case where feature and class label noise distributions share dependencies; i.e.,
the NNAR scenario. Under this scenario, a noisy sample is defined as follows.

Definition 4.2 – Noisy sample

A noisy sample under the NNAR scenario is a sample of which the class
label and some of its feature values are untrue.

4.2.1 Noise Interpretation

Given a sample with an incorrect class label, we consider inappropriate fea-
ture values to be values which explicitly correlate more to the observed in-
correct class than to the true unobserved one. The true (unobserved) label
is thus further masked. This translates at least to two real-world phenom-
ena: (1) disease-mapping given genetic admixture in populations [Schrider
and Kern, 2018, Chen et al., 2014], and (2) data-tampering activities relevant to
the risk assessment and fraud-detection domains [Diekmann and Jann, 2010].
Here we remark that this translation is a generalisation of the label noise case
as studied in [Müller and Markert, 2019] with the addition of feature noise.

4.2.2 Formal Problem Description

In formal terminology, let D represent a distribution of a pair of random vari-
ables (X,Y ) ∈ X × {+,−}, where X ∈ Rm. Let also (X1, Y1), . . . , (Xn, Yn)

be an independent and identically distributed (i.i.d.) sample of D, with
(X̃1, Ỹ1), . . . , (X̃n, Ỹn) as a sample of the corresponding noisy distribution D̃.

For a given independently distributed label noise rate ρy = P (Y 6= Ỹ ), we
denote the feature noise rate ρx as the proportion of m dimensions of which the
variable (feature) values are sampled from the distribution conditioned with re-
spect to the noisy label Ỹ . Under the described NNAR mechanism, the problem
description is:

1. can we predict the label Y for an observation X , given noisy training ob-
servations (X̃i, Ỹi)? and

2. can we detect the noisy samples (X̃i, Ỹi) where Ỹi 6= Yi?
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4.3 Related Work

There is ample literature in both classifier learning in the presence of noisy sam-
ples and label noise detection. Here, we report on relevant work related to
supervised learning approaches (Section 4.3.1) and detection techniques (Sec-
tion 4.3.2) when label noise occurs.

4.3.1 Classifier Learning

Throughout the literature, different approaches have been proposed towards
the task of learning with noisy data [Pechenizkiy et al., 2006,Manwani and Sas-
try, 2013, Teng, 2000, Yin and Dong, 2011, Teng, 2001]. At a broad level, these
approaches can be partitioned into three not mutually exclusive categories: (1)
robust learners; (2) classification filtering; and (3) sample weighting.

Robust Learners

From the theory [Bartlett et al., 2006] we know that commonly used loss func-
tions in machine learning are not robust to label noise. Yet, some learning archi-
tectures and regularisation techniques have been empirically shown to present
better results than others in mitigating noisy samples. A breakthrough in this
area was [Dietterich, 2000]. There, it was shown that ensemble methods based
on bagging achieved superior classification performance when compared to
boosting. The reasoning behind is two-fold. First, boosting assigns large scores
to mislabelled instances and focuses on those samples to produce the follow-
ing additive decision boundaries. This leads to poor generalisations. Second,
bagging uses different sampling subsets during learning improves on the dis-
similarity between the base models making the final classifier more robust.

Still, more recent (gradient) boosting techniques such as LogitBoost and XG-
Boost have been shown also to be robust to label noise [Gómez-Rı́os et al.,
2017]. When compared to standard boosting approaches, gradient boosting
techniques allow for the misclassification of the training samples rather than
over-focusing on them during learning, mitigating overfitting. This factor, in
connection with regularisation and feature selection protocols, makes up for
greater efficacy when dealing with label noise [Abellán and Moral, 2003]. In
summary, it is a challenging research area.

Classification Filtering

Filtering approaches are characterised by either (a) removing or (b) relabelling
samples based on a threshold set upon the respective belongingness values.
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From empirical experimentation published, the literature has shown that
removing samples tends to be more efficient towards learning than rela-
belling [Cuendet et al., 2007]. However, too many samples might be targeted
for removal and that negatively impacts the learning process. Conversely, if
too many mislabelled instances are kept, the performance of the learned model
is also heavily compromised [Koplowitz and Brown, 1981].

Sample Weighting

A more sophisticated approach to classifier learning with label noise involves
using sample weights during learning; this approach is termed sample weighting.

Definition 4.3 – Sample weighting

Sample weighting is an approach by which, under a classifier learning
scenario, training samples are assigned weights according to some specific
weighting strategy such that the weights reflect the contribution of each
sample towards learning the final classification model.

These weights are applied as coefficients in the loss or error function dur-
ing risk minimisation. As such, samples have either greater or lesser impact
towards learning the final model.

Conceptually, instances with a higher belongingness score (see Section 4.3.2)
will have higher weights, and vice-versa. The work presented in [Ren et al.,
2018] shows how to estimate sample weights as a minimisation objective by
having access to a proportion of non-noisy —curated— samples with ground
truth labels. Having access to these data is not always possible, therefore limit-
ing the applicability of this particular sample weighting strategy.

In [Liu and Tao, 2015], the authors demonstrate how any surrogate loss
function designed towards a standard classification task can take advantage
of sample weighting strategies when noisy labels are present. They propose
a weighting strategy based on the ratio of distributions, often used in domain
adaptation [Gretton et al., 2009], by assigning a sample weight Wi to the ith

instance based on the following ratio of posterior probabilities:

Wi =
PD̃(Ỹi|X̃i)− ρ−y

(1− ρ+ − ρ−) · PD̃(Ỹi|X̃i)
, (4.1)

ρ−y = min
X̃∈X̃

PD̃(Ỹ |X̃). (4.2)

The drawback of this approach relates to the range of values of the weights.
Since all weights are non-negative by definition [Scott, 2015], samples with
a high probability of being noisy have a low contribution towards learning.
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This characteristic is undesirable since the valuable information contained
in those instances is lost. To some extent, it may be detrimental to classification
performance, analogous to the removal of samples in the filtering methods.

4.3.2 Label Noise Detection

Most label noise detection methods are based on supervised learning ap-
proaches [Frénay and Verleysen, 2013]. Their purpose is two-fold: (1) to target
samples which may indicate real-world noncompliance within the inspection
domains [Pereira Barata et al., 2018b]; and (2) to perform data preprocessing
towards classifier learning [Gamberger et al., 1996].

The task of detecting label-noisy samples is most commonly undertaken by
analysing measures of belongingness of a sample towards its observed class la-
bel. In this sense, belongingness may be represented as either a score function
or the class-conditional posterior probability P (Y |X), both usually tractable
by classifier learning [Jeatrakul et al., 2010, Thongkam et al., 2008, Brodley and
Friedl, 1996]. Instances with a low score or posterior probability with respect
to the class label may be flagged as mislabels [Sun et al., 2007]. Throughout
the label noise detection literature, a recurring theme is the usage of supervised
classification techniques to infer sample belongingness [Frénay and Verleysen,
2013]. Accordingly, belongingness may be computed according to one of the
following three strategies.

The first strategy is to learn a classifier on the entire dataset and to deploy
the trained model on the same dataset; in recent work [Müller and Markert,
2019], a robust learner was applied with the purpose of detecting mislabelled
entries and presented them to human experts for further evaluation. Even
though robust learners may be used, however, overfitting may still occur. Thus,
mislabelled instances might be evaluated inappropriately, resulting in unreli-
able belongingness values.

The second strategy involves learning multiple classifiers on training sub-
sets in a CV manner and deploying each trained model on the corresponding
validation set [Gamberger et al., 1999]. While this strategy helps mitigate over-
fitting, classifier outputs are not comparable across folds since difference train-
ing sets were used to yield the scores [Bennett, 2000].

The third strategy is ensemble voting (e.g., majority or consensus by differ-
ent learners). It can be applied to the generate votes by following either strategy
previously mentioned [Miranda et al., 2009,John, 1995]. Since this strategy is de-
pendent on the aforementioned strategies, all mentioned issues apply. A further
disadvantage of these approaches is their focus on the removal or relabelling of
samples: a poor decision described in Section 4.3.1.
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Literature in both classifier learning with noisy samples and label noise de-
tection tasks is extensive. With respect to classifier learning, simply using a ro-
bust learner is a too generic approach and does not actively leverage the noisy
samples. Removing or relabelling samples is also not suitable since the choice
of hard thresholds is difficult to justify.

Sample weighting can mitigate the threshold issue, but current strategies ei-
ther require access to curated samples, which are hard to obtain, or they do not
exploit the information of probable mislabels during training. That is, weight
values asymmetrically take belongingness and non-belongingness into account.
In terms of label noise detection, there is currently no solution to computing be-
longingness which provides both minimal overfitting and calibrated (i.e., com-
parable) output. Ultimately, a new sample weighting strategy is required, as
well as a novel sample belongingness computation approach. In the following
Section 4.4, we describe our method.

4.4 The DENOISE Method

Below now provide the details of our method: DENOISE. It is data-driven
method which provides noise-resilient classification by effectively identifying
noisy samples, jointly dealing with the problems of label prediction with noisy
samples and label noise detection. Succinctly, it learns a surrogate classifier
from noisy data which is robust to both label noise and feature noise collec-
tively by means of a log-odds sample weighting strategy. The sample weights
are retrieved when addressing the label noise detection problem.

For each instance we retrieve the calibrated belongingness values and use
them to compute the respective sample weights. In turn, the belongingness
values are yielded by several robust surrogate learners deployed in a CV fash-
ion with the addition of a calibration protocol. The label noise detection is then
solved by applying a sensible threshold to the calibrated output. In Section 4.4.1
we detail our classifier learning setup. In Section 4.4.2 we describe the label
noise detection process.

4.4.1 Learning with Sample Weights

The main concept behind our method is directly linked to the strategy by which
sample weights are computed. Given noisy samples (X̃1, Ỹ1) . . . , (X̃n, Ỹn) of D̃,
a loss L, and weights W1, . . .Wn, the task of the learner is to find a function
f ∈ F :

arg min
f∈F

1

n
·
n∑
i=1

Wi · L(f(X̃i), Ỹi), where (4.3)
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Wi = ln

(
PD̃(Ỹi|X̃i)

1− PD̃(Ỹi|X̃i)

)
. (4.4)

We propose the sample weight of the ith instance to be the log-odds of the event,
i.e., the posterior probability; sample weights can therefore take zero, positive,
or negative values.

Zero

Sample weights of zero only occur for samples with a posterior probability of
0.5. It entails no contribution to the learning of the final learner. This is sensible,
since a posterior of 0.5 towards one class is the same towards the other.

Positive

Weights greater than zero translate to the learner having the information that
the observed label is probably not noisy. The larger the weight associated with
a specific instance, the more a learner is impacted by it, while trusting its label.

Negative

Weights lesser than zero follow the same logic as positive weights except that
the observed label is assumed to be incorrect during learning. A negative
weight inverts the output of the loss function: the learner is rewarded for in-
correctly learning the observed label. The more negative a sample weight is,
the larger the impact of that sample towards learning its opposite label.

Posterior Estimation

Albeit intuitive and conceptually simple, our method requires the estimation of
posterior probabilities to compute the sample weights; see Eq. 4.4. To be able to
compute these posterior probability estimates, and hence the sample weights,
we use sample belongingness as a starting point towards acquiring the posteri-
ors. Since belongingness has a myriad of caveats as detailed in Section 4.3.2, in
the following Section 4.4.2 we show how to generate it appropriately, address-
ing the pitfalls mentioned in the literature.

4.4.2 Posterior Estimation and Detection

Our approach to label noise detection is data-driven in the sense that it uses
a set of learning functions to compute the belongingness of samples. The be-
longingness will translate to the posterior probabilities required to compute the
sample weights, required for classifier learning (mentioned in Section 4.4.1).
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Learning Functions

We follow a supervised learning approach, where the belongingness of a sam-
ple is determined by a set of learned classifiers. The learners should be robust to
noise and incorporate (1) regularisation, (2) feature selection, or (3) both proto-
cols [Sharma et al., 2017]. The choice of architecture should be sensibly chosen
given the type of data being handled; e.g., tabular data may be handled with
gradient boosted approaches [Pafka, 2019], and image datasets by dropout con-
volutional neural network [Park and Kwak, 2016]. To minimise overfitting, be-
longingness is computed per class on a left out part, rather than on the training
set. Consequently, we need to optimise several classifiers in a CV setup.

Since, each CV fold has a specific training set with which a learned classi-
fier is yielded, the output of each classification model is not necessarily com-
parable. As a result, all classifiers must be calibrated such that their output is
comparable. To note, all hyperparameters can be optimised through standard
CV [Claesen and De Moor, 2015, Bergstra and Bengio, 2012].

Calibration

To calibrate the output of the learner functions, Platt scaling [Platt et al., 1999] is
used. This is a widely accepted method in supervised learning literature which
converts classifier output into well-calibrated posterior probabilities [Böken,
2021, Niculescu-Mizil and Caruana, 2005, Guo et al., 2017]. Here, multiple
learner functions are learned and calibrated; calibration sets are used such that
the output of a learner function is, itself, used as input towards re-learning the
observed class label by sigmoid functions (i.e., LR modelling).

The original output of a learned model then becomes the estimated posterior
probability through nested CV. For an outer K-fold CV setup, each K-training
fold is further split using L-fold CV. The K-training folds serve to calibrate
the learner functions. Probabilities are gathered by deploying the calibrated
learners onto the respective K-test folds. The estimated posterior probabilities
of all samples become the union of all the folds:

PD̃(Ỹ |X̃) =
K⋃
k=1

PD̃(Ỹk|X̃k). (4.5)

PD̃(Ỹk|X̃k) represents the posterior probabilities of samples from the kth test
fold, given by the learners calibrated on the respective kth training fold.



74 Chapter 4. Noise-Resilient Classifier

Detection

To solve the noisy sample detection problem, we propose using the afore-
mentioned estimated posterior probabilities as detection scores in which the
lower the probability of a sample, the more likely that sample is to be flagged
as noisy. A detection threshold may be applied to the sample probabilities,
such that posterior values lesser than 0.5 flag samples as having label noise.
Conversely, a monotonic transformation could be applied such that higher
transformed probabilities equate to higher detection scores; e.g., the − log2(x)

function transforms probabilities into their information content, in which sam-
ples with a value higher than 1 are considered label noise.

4.5 Experiments

In this section we describe the experimental setup by which we evaluate our
methods. The setup for classifier learning and label noise detection share three
similarities:

1. ten noise-free classification datasets were gathered to allow for a con-
trolled scenario, in which ground truth labels are known (Section 4.5.1);

2. to simulate a NNAR mechanism, a proportion of the class labels was
flipped and a proportion of feature values were replaced, replicated for
several random seeds (Section 4.5.2);

3. baseline state-of-the-art methods were used to gauge the comparative per-
formance of our approaches (Section 4.5.3).

To measure the performance of classifier learning, classifiers were learned
on noise-injected training sets, deployed on non-manipulated test sets, and the
AUC [Narkhede, 2018] was computed (Section 4.5.3). For label noise detec-
tion, the detection targets were considered as the manipulated samples, and
AP [Robertson, 2008, Naseer et al., 2018] was used as the performance measure
of the detection task (Section 4.5.3).

For the choice of learner, a gradient boosted framework (XGBoost [Chen
and Guestrin, 2016]) was selected for its robustness. The surrogate loss func-
tion applied was the logistic loss [Painsky and Wornell, 2018]. For reproducibil-
ity purposes, our setup is made available online with the all necessary code to
download the datasets, manipulate them, perform the learning and detection
tasks, and output the yielded results1.

1https://github.com/pereirabarataap/denoise

https://github.com/pereirabarataap/denoise
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4.5.1 Data

Since we are interested in measuring the performance of classifier learning and
label noise detection, we gathered datasets with known class labels. Ten bench-
mark [Asuncion and Newman, 2007] classification datasets were retrieved from
openML [Vanschoren et al., 2014]: an open, organised, and community-driven
online ecosystem for machine learning. These datasets were selected for their
heterogeneity regarding sample size, dimensionality (i.e., number of features),
and feature type (e.g., number of numerical or categorical features).

Table 4.1 summarises each dataset with respect to aforementioned charac-
teristics. Regarding it, #samples indicates sample size, and #features represents
the number of features of which #numeric are numerical and #category are cate-
gorical. The datasets were then manipulated to simulate a NNAR mechanism.

Table 4.1: Datasets retrieved for noise simulations

ID #samples #features #numeric #category

1495 250 6 0 6
53 270 13 13 0

40710 303 13 5 8
40690 512 9 0 9

335 554 6 0 6
1510 569 30 30 0

40705 959 44 42 2
1462 1372 4 4 0
1504 1941 33 33 0

41143 2984 144 8 136

4.5.2 Synthetic Noise

Noise was synthetically generated by replacing class labels and feature values.
Different combinations of label noise ρy and feature manipulation ρx were con-
sidered. Specifically for the learning task, datasets were first split into train-
ing (90%) and testing (10%) sets; only the training sets were injected with
noise. Noise was generated ten times with different initialisation seeds per pair
(ρx, ρy) to account for randomness.
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Label Noise

Several proportions of label noise were considered. For each dataset, ρy ∈
{.05, .1, .15, .2, .25, .3, .35, .4} label noise proportions were introduced follow-
ing a uniformly-distributed sample selection. This range of values was chosen
since ρy < 0.05 would have negligible impact on robust learners and ρy > 0.4

would prove too corrupt for any meaningful experimental results.

Feature Manipulation

To recreate the scenario in which feature values are manipulated, samples
which were label-swapped had a proportion of their feature values replaced.
The proportions ρx ∈ {0, .05, .1, .15, .2, .25, .3, .35, .4} of randomly-selected fea-
tures were selected per sample. Manipulated features had their values replaced
per label-swapped sample as described previously. Replacement values were
drawn from univariate feature distributions with parameters estimated condi-
tionally from the category being mimicked.

The distributions used to sample the replacement values were modelled as
either: (a) the normal distribution N (µ, σ) for numeric features, with µ and σ

as the estimated mean and standard deviation; or (b) the multinomial distribu-
tion with estimated event probabilities {p1, p2, . . . , pπ}, π being the number of
unique feature values.

4.5.3 Evaluation

We compared DENOISE to current methods of classifier learning with sample
weighting and label noise detection. For all tasks, a learning framework was
required which was robust to label noise.

Since the datasets in our experiments data are tabular and have heteroge-
neous characteristics, a gradient boosted framework with a surrogate logistic
loss function was selected and applied equally to all scenarios being tested. For
the classifier learning task, the sample weighting method in [Liu and Tao, 2015]
(LT15) —detailed in Section 4.3.1, Eqs. 4.1 and 4.2— was used as benchmark.
For the label noise detection task, the solution presented in [Müller and Mark-
ert, 2019] (MM19) —described in Section 4.3.2— was selected as our benchmark.

Learning Performance

Our method DENOISE and LT15 were evaluated using 10-fold crossvalidation.
For each fold, the training set (90%) was comprised of noisy samples and the
test set (10%) was comprised of non-manipulated samples. To note, only the
weighting strategies of each method were evaluated during the learning task.
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Both methods had access to the same posterior probability values per sample,
which were yielded by DENOISE.

Classification performance was measured as AUC on the non-manipulated
tests set for each fold. Accordingly, the true class label is our target prediction.
AUC values were averaged across all folds per dataset, across different random
seed initialisations, for each noise configuration pair (ρx, ρy). Each learning
strategy being evaluated yielded one mean AUC score per dataset, per noise
configuration pair.

Detection Performance

To compare DENOISE to MM19, the detection targets were considered to be the
synthetically manipulated instances described previously. The measure of be-
longingness yielded by each specific method was used as the detection score.
Accordingly, detection performance was measured in terms of AP, a common
measure used in anomaly detection [Frery et al., 2017].

AP values were averaged across the different random initialisations, for
each noise configuration pair (ρx, ρy). Each detection strategy being evaluated
yielded one mean AP score per dataset, per noise configuration pair.

4.6 Results

Here, we present the results of our experiments. We present them in two man-
ners for both tasks, classifier learning (Section 4.6.1), and label noise detection
(Section 4.6.2). An aggregated presentation —Fig. 4.1 and Fig. 4.2— is comprised
of averages across all performance measures yielded for all datasets and noise
configurations. We present these results as heatmaps in which each cell corre-
sponds to a noise pair (ρx, ρy): lighter cell tones indicate higher performance
values. Numbers indicate the mean performance score yielded for that specific
noise configuration, across all datasets and random initialisations, for each spe-
cific task and method used to solve that task.

A performance difference heatmap is also provided, showing comparative
changes in performance between the methods being gauged. Similarly to the
previous heatmaps, each cell represents the average performance gain of our
method for a particular noise configuration, comparatively to the literature
baseline usedc. Should we present all datasets and all noise configurations
discriminably, a total of 720 performance values would need to be provided
which would not be practical. A presentation per dataset —Table 4.2 and Ta-
ble 4.3— relays the performance means and standard deviations yielded by all
our experiments for a subset of datasets (IDs 1510, 10705, and 41143) and noise
configurations (0, .05), (0, .4), (.2, .2), (.4, .05), and (.4, .4).
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Table 4.2: Learning performances with noisy data (per dataset)

Dataset ID (ρx, ρy) LT15 DENOISE

1510

(0, .05) 0.988 ± 0.002 0.987 ± 0.002
(0, .4) 0.727 ± 0.014 0.860 ± 0.047
(.2, .2) 0.984 ± 0.003 0.988 ± 0.002
(.4, .05) 0.991 ± 0.001 0.988 ± 0.001
(.4, .4) 0.987 ± 0.003 0.990 ± 0.002

40705

(0, .05) 0.968 ± 0.003 0.976 ± 0.002
(0, .4) 0.710 ± 0.016 0.827 ± 0.072
(.2, .2) 0.966 ± 0.003 0.967 ± 0.004
(.4, .05) 0.978 ± 0.001 0.976 ± 0.001
(.4, .4) 0.969 ± 0.004 0.962 ± 0.008

41143

(0, .05) 0.858 ± 0.003 0.865 ± 0.002
(0, .4) 0.653 ± 0.012 0.753 ± 0.014
(.2, .2) 0.854 ± 0.002 0.857 ± 0.002
(.4, .05) 0.864 ± 0.002 0.867 ± 0.002
(.4, .4) 0.847 ± 0.005 0.849 ± 0.006

These datasets and noise configurations were selected to provide a repre-
sentative sample of the entire set of experiments. The datasets have mostly
disparate characteristics (see Table 4.1), and the noise configurations values are
the most spread. Bolded values indicate a mean performance gain of at least
0.01 of the corresponding method versus the other.

4.6.1 Classifier Learning Task

We present the aggregated average AUC performance scores yielded for the
learning task in Fig. 4.1. The three heatmaps represent LT15 (left), DENOISE

(center), and the performance difference between the two methods (right). For
every configuration of label swapping (vertical axis) and feature manipulation
(horizontal axis), DENOISE shows superior performance. The difference in AUC
performance varies significantly across different noise configurations (ρx, ρy).

The minimum performance change is ≈ .01, seen in, for example, cell
(.4, .05). The maximum performance difference is ≈ .1 in configuration (0, .35).
On average, the difference in performance tends to increase as the noise label
proportion increases; i.e., the more label noise is present, the better our method
fares. The performance difference also tends to increase as the feature manipu-
lation proportion decreases.
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Table 4.3: Detection performances of noisy samples (per dataset)

Dataset ID (ρx, ρy) MM19 DENOISE

1510

(0, .05) 0.858 ± 0.037 0.860 ± 0.037
(0, .4) 0.576 ± 0.014 0.621 ± 0.034
(.2, .2) 0.719 ± 0.030 0.837 ± 0.020
(.4, .05) 0.476 ± 0.072 0.536 ± 0.052
(.4, .4) 0.763 ± 0.018 0.825 ± 0.018

40705

(0, .05) 0.734 ± 0.033 0.721 ± 0.032
(0, .4) 0.569 ± 0.018 0.627 ± 0.042
(.2, .2) 0.458 ± 0.029 0.616 ± 0.025
(.4, .05) 0.196 ± 0.009 0.322 ± 0.020
(.4, .4) 0.494 ± 0.016 0.609 ± 0.022

41143

(0, .05) 0.224 ± 0.033 0.464 ± 0.019
(0, .4) 0.491 ± 0.011 0.533 ± 0.027
(.2, .2) 0.260 ± 0.006 0.436 ± 0.011
(.4, .05) 0.062 ± 0.003 0.180 ± 0.014
(.4, .4) 0.364 ± 0.007 0.503 ± 0.010

In Table 4.2 we show the per dataset average AUC performance scores for
the selected datasets and noise configurations, as well as the respective stan-
dard deviations along the ten different random initialisations. Bolded entries
translate to an increase in mean performance of at least 0.01. The differences
in performance are most apparent in noise configuration (0, .4) in all datasets,
where our method DENOISE vastly outperforms LT15. In those cases, the per-
formance gain is consistently ≥ 0.1.

Regarding the standard deviations, most noise pair configurations present
similar values. However, two outliers stand out in the DENOISE entries. Notice-
ably, datasets with IDs 1510 and 40705, since the same noise configuration (0, .4)

shows larger standard deviations than the LT15 method. However, it is also for
those two datasets and the particular noise configuration that LT15 also has an
increased spread of the mean performance comparatively to all other datasets
and noise pairs.

4.6.2 Label Noise Detection Task

We display the aggregated average AP performance yielded for the detection
task in Fig. 4.2. The three heatmaps represent MM19 (left), our DENOISE

method (center), and the performance difference between the two methods
(right).
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For every noise configuration, our method shows superior performance
overall. The difference in AP performance varies significantly across different
noise configurations (ρx, ρy). The minimum performance change is ≈ .01, seen
in, for example, cell (0, .4). The maximum performance difference is ≈ .13 in
configuration (.1, .2). Comparatively, the performance difference steadily de-
creases from its maximum, regardless of the direction taken in the horizontal or
vertical axes.

Table 4.3 represents the per dataset AP performance scores for the selection
of datasets and noise configurations and standard deviations across the ten ran-
dom initialisations. With the exception of two entries, our approach yielded
a mean performance gain overall. The differences in performance vary across
datasets as well as along the noise pairs. For the majority of entries, our method
shows higher standard deviation values. Yet, the differences are small. The
largest difference in spread between the two methods is 0.024 for the entry with
ID 40705 and noise pair (0, .4).

4.7 Chapter Conclusion

In this chapter we proposed DENOISE, a method for noise-resilient classifier
learning which leverages label noise detection via log-odds sample weighting.
We compared our method to the state-of-the-art in learning with noise and label
noise detection, under a NNAR mechanism in which label noise and feature
noise may share dependencies.

In summary, with regard to the problem description, we may conclude that
in the NNAR scenario DENOISE achieves overall (1) better class label predic-
tions with noisy training data, and (2) better detections of those noisy samples
than current literature methods.

We designed an experimental setup in which ten datasets with hetero-
geneous characteristics were used, representing different domains. For each
dataset, different parameterised combinations of label noise and feature noise
were extensively explored. Experimental setups were repeated ten times with
different random initialisations.

Within the NNAR setting we considered the two tasks of: (1) learning a
classifier that is resilient to this type of noise such that performance loss is min-
imal compared to the non-noisy case, and (2) detecting samples of which the
label is corrupted, while the feature values may be disharmonious with respect
to the true (unobserved) label. The results demonstrate that DENOISE overall
outperforms the state-of-the-art overall in both learning and detection tasks.

Synthesising the NNAR mechanism is a complex task. On the one hand, cor-
rupting class labels in a binary classification setting is rather straightforward.
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On the other hand, the addition of feature manipulation involves applying de-
pendency assumptions. While we chose a random feature selection strategy, a
different approach could have been chosen; e.g., features could have been se-
lected per class instead of per sample. A different approach to feature selection
would be to follow a non-random selection strategy based on feature impor-
tance. Similarly, different robust classifiers could have been used, alongside
different types of data, as well we different loss functions instead of the ap-
plied logistic loss. As such, our results are bound to our experimental setup
and further work may be performed to other experimental setups. Yet, we have
laid out a framework upon which experimental design choices can be made to
generate specific noise scenarios.

Ultimately, handling noisy data remains a difficult task, even though noise
mechanisms can be formally defined. For a NNAR case, as discussed in this
chapter, the properties of the underlying distributions of the observed noisy
data are often varied and not fully tractable. Future work could improve upon
these simulations by using different assumptions over the noise in the data, e.g.,
by stipulating (1) different types of distributions for feature manipulation, and
(2) varying correlations with the well-defined class labels.
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Chapter 5

Fair Tree Classifier

When learning classification models from biased data, the resulting classifiers
tend to exacerbate the biases present [Richardson, 2022]. With respect to the
Inspectorate, a case in point is confirmation bias.

Consider the following example. In international cargo ship risk assess-
ment, a prevailing trait towards selecting a ship for inspection is the colour
of the flag of the ship. A reputable country is assigned a white flag. However,
the flag may be either white, grey, or black, and reflects the detention rate of
ships for that country. Indeed, inspectors may be disproportionately influenced
by the colour of a flag, causing more frequent and stringent inspections of ships
with non-white flags, leading to confirmation bias in data.

To learn a classifier from such biased data, the standard classification prob-
lem becomes three-fold: (1) it is necessary to learn a model with high classifica-
tion performance; (2) the impact of the biases on the model must be suppressed
(i.e., model fairness); and (3) the performance-fairness trade-off must be tunable
such that the requirements by the relevant stakeholders can be easily met.

In this chapter, we propose SCAFF: a solution to the problem at hand in the
form of a compound splitting criterion which combines (a) AUC, (b) strong de-
mographic parity, and (c) a performance-fairness trade-off tunability parameter.
In our experimental results, we show via performance-fairness trade-off curves
how SCAFF generates effective models with competitive performance and high
fairness. This result answers RQ3: how can we, from biased data, learn a model
tunable with respect to the performance-fairness trade-off such that the selec-
tion of the trade-off point is made intuitive for the relevant stakeholders?

The current chapter corresponds to the following publication:
Pereira Barata, A., Takes, F. W., van den Herik, H. J., and Veenman, C. J. (2022).
Fair tree classifier using strong demographic parity. Machine Learning (under
review)
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5.1 Algorithmic Fairness

The application of machine learning algorithms for classification has become
ubiquitous within an abundance of domains [Brink et al., 2016, Sarker, 2021,
Azar and El-Metwally, 2013,Pereira Barata et al., 2021,Dressel and Farid, 2018].
Great dependency on automated decision-making, however, gives rise to con-
cerns over model bias; e.g., bias was reported by Amazon’s automatic recruit-
ment tool in which women unfairly scored lower. It turns out that models were
trained on resumes submitted mostly by men, thus disadvantaging women a
priori [Dastian, 2018]. To prevent the modelling of historical biases, it is of the
utmost importance to develop fairness-aware methods [European Commission,
2019c].

A fair classification model has three goals: (1) to make adequate class predic-
tions from unseen observations; (2) to ensure that the bias in data is suppressed
from those predictions [Cho et al., 2020]; and (3) to allow for the tunability of the
inherent trade-off between the aforementioned two goals —the performance-
fairness trade-off [Kleinberg et al., 2016]— such that the ethical, legal, and so-
cietal needs of the end user (i.e., domain expert) are met. Here we remark that
the third goal is of greatest importance, as achieving it provides a manner by
which trade-off points can be made selectable by the relevant stakeholders.

To quantify model fairness (i.e., the extent to which the biases in data have
been suppressed) different fairness measures have been proposed (see Defini-
tions 1.5, 1.6, and 1.7). Traditionally, fairness measures such as demographic
parity [Dwork et al., 2012], equal opportunity [Corbett-Davies and Goel, 2018],
or equalised odds [Hardt et al., 2016] are used. These fairness measures are
all threshold-dependent. A threshold-dependent fairness measure is defined as
follows.

Definition 5.1 – Threshold-dependent fairness measure

A threshold-dependent fairness measure is a quantification of algorith-
mic bias with respect to some sensitive group, measured as a function of
the class predictions induced by applying a threshold to the (continuous)
model output.

Considering a classification model with continuous output, a decision
threshold must be set to produce class predictions, upon which those measures
are reliant. In other words, fairness would only be ensured with respect to that
particular threshold. To counter this limitation, a threshold-independent fairness
measure can be used instead. A threshold-independent fairness measure is de-
fined as follows.
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Definition 5.2 – Threshold-independent fairness measure

A threshold-independent fairness measure is a quantification of algorith-
mic bias with respect to some sensitive group, measured as a function of
the (continuous) model output, rather than the class predictions.

One such measure is the strong demographic parity. The strong demographic
parity extends the aforementioned demographic parity by considering fairness
throughout the entire range of possible decision thresholds. Although having
been proposed in [Jiang et al., 2020], the authors provided an implementation
of strong demographic parity merely towards the linear classifier case.

Tree-based algorithms are regarded as a state-of-the-art solution for the clas-
sification problem [Zabihi et al., 2017, Dogru and Subasi, 2018, Angenent et al.,
2020]. Their prevalence in the literature is mostly due to (1) model interpretabil-
ity, (2) their tendency to not overfit when used as ensembles, (3) requiring little
data pre-processing, and (4) handling mixed data types and missingness [Do-
gru and Subasi, 2018]. Past work on tree splitting criteria has shown positive re-
sults with respect to threshold-dependent fairness [Kamiran et al., 2010]. There
is a desire to extend it towards the threshold-independent case.

In this work, we propose SCAFF: the Splitting Criterion AUC For Fair-
ness. SCAFF allows for fair tree classifier learning by directly optimising for the
threshold-independent fairness measure of strong demographic parity. In par-
ticular, we propose a fair tree classifier learning algorithm which simultaneously
(1) optimises for threshold-independent classification performance (i.e., AUC);
(2) suppresses the impact of bias directly in terms of strong demographic par-
ity; and (3) is tunable with respect to the performance-fairness trade-off during
learning. In addition, our method handles various multicategorical sensitive at-
tributes simultaneously, and easily extends to bagging (i.e., random forest) and
(gradient) boosting frameworks.

The structure of the chapter follows: Section 5.2 expresses our problem de-
scription formally; Section 5.3 discusses related work; Section 5.4 elaborates our
SCAFF method; Section 5.5 describes our experiments; Section 5.6 refers to our
results; and Section 5.7 concludes and recommends research directions.

5.2 Problem Description

We consider the scenario in which a labelled dataset is intrinsically biased with
respect to one or more sensitive attributes of which the values may be either
binary or multicategorical. Our task is to learn a fair predictive model from
the biased data, such that future predictions are independent from the sensitive
attribute(s).
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We require that the measures of model performance and fairness do not de-
pend on a decision threshold set upon the output. Since there is no unique solu-
tion in the trade-off between performance and fairness, the fair model must also
be readily tunable in this regard, as to meet the requirements of the application
domain.

Formally, consider a dataset D with n samples, m features, and two classes.
Without loss of generality, assume the case in which a single binary sensitive
attribute exists. Let X , Y , and S be the underlying variable distributions rep-
resenting the feature space, classes, and sensitive attribute, respectively, from
which the n samples were drawn. Accordingly, each sample may be repre-
sented as (xi, yi, si), for i = 1, 2, . . . , n.

The goal of the learning algorithm is to learn the distribution for which the
conditional P (Y |X) ≈ P (Y |X,S). In practice, this amounts to learning from
the data a mapping function f : x ∈ X → z ∈ Z where Z represents the model
output (i.e., classification score) upon which a threshold t induces a class pre-
diction, and under which the condition of strong demographic parity must be
met, ∀t ∈ Z : P (Z ≥ t|S+) = P (Z ≥ t|S−), while maximising for the threshold-
independent classification performance P [(Z|Y+) ≥ (Z|Y−)]. The compromise
between strong demographic parity and the corresponding maximal predictive
performance must also be tunable.

5.3 Related Work

In this section, we discuss the concepts from the literature related to our work:
the measures of fairness (Section 5.3.1), and the fair tree splitting criteria used
towards fair tree classification learning (Section 5.3.2).

5.3.1 Measures of Fairness

Fairness measures in the literature may be categorised as being either (a)
threshold-dependent or (b) threshold-independent. With respect to threshold-
dependent measures, the three most prevalent are: (1) demographic par-
ity [Dwork et al., 2012]; (2) equal opportunity [Corbett-Davies and Goel, 2018];
and (3) equalised odds [Hardt et al., 2016].

First, demographic parity (see Definition 1.6) is the condition under which
each sensitive group (e.g. male/female) should be granted a positive outcome,
at equal rates. It is the absolute difference between the proportion of posi-
tive class predictions Ŷ+ in samples with a positive sensitive attribute value
S+ and samples with a negative sensitive attribute value S−, and is computed
as |P (Ŷ+|S+)− P (Ŷ+|S−)|.
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Second, the measure of equal opportunity is defined as follows.
Definition 5.3 – Equal opportunity

Equal opportunity is the fairness measure which considers the absolute
difference between the conditional TPR of each sensitive group

Equal opportunity is the fairness measure which accounts for the predictive
reliability within each sensitive group and is computed as the absolute differ-
ence |P (Ŷ+|S+, Y+)− P (Ŷ+|S−, Y+)|.

Third, the definition of equalised odds follows.
Definition 5.4 – Equalised odds

Equalised odds is the fairness measure which considers the absolute dif-
ference between the conditional TPR of each sensitive group, as well as
the difference between the conditional FPR of each sensitive group.

Equalised odds extends from the measure of equal opportunity by also in-
corporating the unreliability of predictions in the sensitive groups. It is com-
puted as ||P (Ŷ+|S+, Y+)− P (Ŷ+|S−, Y+)| − |P (Ŷ+|S+, Y−)− P (Ŷ+|S−, Y−)||.

Albeit computationally different, the three measures share at least one com-
mon aspect: the output of the classification model must be binary; i.e., a deci-
sion threshold must be placed upon the continuous output which induces the
class prediction. As a result, a problem arises when applying these measures to-
wards learning a fair classifier. These measures of fairness are limited to being
exclusively reliable for the specific threshold which produces the class predic-
tion: there is no guarantee that fairness holds for different threshold values.

In practice, when learning several fair classifiers for real-world applications,
(i.e., hyperparameter optimisation), the final classification model should not
be dependent on any arbitrary threshold, as fairness should be maintained
throughout. Rather, the decision threshold should only be placed a posteri-
ori, according to the performance requirements of the end user (e.g., precision
vs recall) whilst incurring minimal impact over fairness.

With respect to threshold-independent fairness measures, the notion of de-
mographic parity has been extended into strong demographic parity (see Defi-
nition 1.7). Strong demographic parity takes into account the continuous output
of the model, such that the ordering of the output should be independent of the
sensitive groups. It is computed as the absolute difference between the proba-
bilities |P [(Z|S+) ≥ (Z|S−)]− P [(Z|S+) < (Z|S−)]|.

Although strong demographic parity was proposed with a working fair
learning framework in [Jiang et al., 2020], their implementation only considers
the linear classifier case. We focus on extending the implementation towards
non-linear models, specifically towards tree-based architectures.
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5.3.2 Fair Tree Splitting Criteria

The practice of learning a tree classifier from biased data is directly linked to the
splitting criterion used to construct the tree structure. Within the fairness litera-
ture with respect to tree-based algorithms, we recommend the works by [Kami-
ran et al., 2010] and [Zhang and Ntoutsi, 2019], in which different approaches
are used to measure classification performance and fairness. The measures are
then jointly used as splitting criteria during training to select the best split.

In the work by [Kamiran et al., 2010], the authors propose to address the fair
splitting criterion problem, by accounting for the impact of bias in the model
during learning. They do so by extending the concept of information gain in
traditional classification towards the sensitive attribute. Given data D, a split is
evaluated as the information gain with respect to the class label:

IGY = HY (D)−
k∑
i=1

|Di|
|D|
·HY (Di), (5.1)

and the information gain with respect to the sensitive attribute:

IGS = HS(D)−
k∑
i=1

|Di|
|D|
·HS(Di), (5.2)

where HY and HS denote the entropy with respect to the class label and the
sensitive attribute, respectively, and Di, i = 1, . . . , k denotes the partitions of D
induced by the split under evaluation.

Both information gains are then merged to produce two distinct compound
splitting criteria by either: (1) subtracting IGY by IGS , hereinafter termed
KamiranSub, or (2) dividing IGY by IGS , hereinafter denoted as KamiranDiv.
Although this work was fundamental in establishing fair tree-learning frame-
works, it is limited in scope since fairness is only considered as the threshold-
dependent demographic parity.

In the work of [Zhang and Ntoutsi, 2019], a fairness-aware Hoeffding
tree (FAHT) is introduced. Although the method was developed with on-
line streaming classification as its focus, the splitting criterion developed may
be generally applicable to the fair learning problem. The FAHT approach re-
lies, as with the previous work, on a compound criterion composed of a class
label part and a sensitive attribute part and addresses demographic parity.
Both works use the same class label information gain IGY . However, the fair-
ness component is computed differently between them. For FAHT, the fairness
gain FG of a split is given as a function of Disc(D) of a set of data:

FG = Disc(D)−
k∑
i=1

|Di|
|D|
·Disc(Di). (5.3)
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The bias term is defined as the observed demographic parity of the system
|P (Y+|S+)− P (Y+|S−)|. The splitting criterion of FAHT evaluates as follows:

{
IGY , if FG = 0

IGY · FG , otherwise
. (5.4)

The two proposed splitting criteria present some limitations, three of which
deserve to be named in particular: (1) the construction processes were devel-
oped with only threshold-dependent fairness in mind; (2) both implementa-
tions only address a single binary sensitive attribute; and (3) there exists no
performance-fairness trade-off tuning parameter built into the splitting criteria.
In the following section, we propose our method which lifts these limitations.

5.4 The SCAFF Method

In this section we propose our SCAFF method. It is a probabilistic learning
framework which (1) optimises for threshold-independent classification perfor-
mance (i.e., AUC); (2) addresses fairness in terms of strong demographic parity;
and (3) is tunable with respect to the performance-fairness trade-off. In addi-
tion, SCAFF leverages multiple sensitive attributes simultaneously and easily
extends to bagging and boosting frameworks.

We begin by addressing the implementation of the classification perfor-
mance in Section 5.4.1, followed by the implementation of the fairness measure
of strong demographic parity in Section 5.4.2. In Section 5.4.3, we provide our
compound splitting criterion which incorporates a tunable parameter towards
the trade-off between classification performance and fairness. In Section 5.4.4,
we describe the tree construction process, reporting on how our method lever-
ages multiple sensitive attributes simultaneously and extends to bagging and
boosting frameworks. A working Python implementation of our algorithm can
be found in [Pereira Barata, 2021].

5.4.1 AUC Computation

In machine learning, the AUC is a measure which expresses the quality of a
sample ordering with respect to a binary label {Y−, Y+}. It computes the prob-
ability P [(Z|Y+) ≥ (Z|Y−)]. Here, a random order results in AUC = 0.5 and a
perfect order results in AUC = 1; conversely AUC = 0 if all labels are flipped
and still perfectly ordered.
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Traditionally, computing the AUC has a time complexity O(n · log(n)):

AUC(Z, Y ) =

∑y+
i=1

∑y−
j=1 σ(Zi, Zj)

y+ · y−
, (5.5)

where

σ(Zi, Zj) =


1, if Zi > Zj
1
2 , if Zi = Zj

0, otherwise

. (5.6)

Here, y+ and y− are the number of all instances Y+ and Y− respectively, and Zi
and Zj represent the Z output scores of each corresponding instance.

Yet, for the scenario in which a parent node is split into two child nodes
—towards candidate split evaluation—the time complexity of computing the
AUC may be reduced. From [Lee, 2019], the AUC of a split may be re-written as
a function of the TPR and the FPR induced by the split. The AUC then becomes:

AUC =
1 + TPR− FPR

2
. (5.7)

For each candidate split, the child node with highest P (Y+) is assigned as
the positive prediction node such that all samples contained in it are labelled
Ŷ+. The other child node induces Ŷ−. This strategy is equivalent to computing
the AUC traditionally; i.e., assigning samples in each node with Z scores equal
to the proportion of ground truth positive labels P (Y+) of their corresponding
node. Hereinafter, we denote AUCY as the AUC with respect to the class label.

5.4.2 Strong Demographic Parity

The strong demographic parity condition aims to minimise the difference in
candidates from the sensitive groups among the selected candidates, regardless
of any arbitrary decision threshold t. The goal is to minimise the expression
|P [(Z|S+) ≥ (Z|S−)] − P [(Z|S+) < (Z|S−)]| from Section 5.3.1. The condition
is reached by learning the target function f which randomly orders the samples
towards the sensitive groups; i.e., the AUC towards the sensitive attribute.

We find the fair classifier f by optimising for an AUC value of 0.5 on the
sensitive attribute. In order to solve the optimisation problem, we aim at min-
imising the AUC with S+ as the positive class, which we denote as AUCS+ .
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Since AUCS+ = 0 is as maximally unfair as AUCS− = 1, we define sensitive
AUC (AUCS) —fS from Section 5.2— as the following:

AUCS = max[1−AUC(Z, S),AUC(Z, S)], (5.8)

such that the max operator bounds the range of possible AUCS values to [0.5, 1].

Definition 5.5 – Sensitive AUC

Sensitive AUC is the AUC towards a sensitive attribute, bounded to val-
ues [0.5, 1] and is proportional to the strong demographic parity. AUCS

can be computed as a function of the strong demographic parity:

AUCS =
strong demographic parity + 1

2

AUCS of 1 indicates that the model is completely biased, while 0.5 indi-
cates that the model is complete fair.

Now that both classification performance AUCY and fairness measure
AUCS have been described, the splitting criterion may be constructed.

5.4.3 Splitting Criterion AUC For Fairness

Towards tunability of the performance-fairness trade-off, we define the orthog-
onality parameter Θ as follows.

Definition 5.6 – Orthogonality parameter Θ

The orthogonality parameter Θ ∈ [0, 1] is the parameter of SCAFF which
regulates the performance-fairness trade-off of the learned model: Θ = 0

results in a completely biased but most performing model, whereas Θ = 1

results in a completely fair but nonperforming model.

The objective is then to find a split which, for a given Θ, maximises AUCY

(towards AUCY = 1), while minimising AUCS (towards AUCS = 0.5). Accord-
ingly, for the fair classification problem given instance scores Z, class label Y ,
and sensitive attribute S, we define SCAFF:

SCAFF(Z, Y, S,Θ) = (1−Θ) ·AUCY −Θ ·AUCS. (5.9)

The purpose of Θ is to change the direction of the splitting criterion score to-
wards either classification or fairness. To illustrate this effect, consider Fig. 5.1.
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Each heatmap represents, for varying values of Θ, the split evaluation scores
for all possible values of AUCY (vertical axis) and AUCS (horizontal axis), ac-
cording to Eq. 5.9. The direction of the optimal score, from darkest to brightest
tones, is additionally represented as an arrow. From left to right, the optimal
score direction rotates along Θ. We call it the orthogonality parameter since it
rotates the direction of the optimal scores, making Θ = 0 and Θ = 1 orthogonal
score directions.

5.4.4 Tree Construction

As with any typical tree architecture, learning is done by selecting, at each step
(i.e., depth), the split which optimises the splitting criterion score. A split at
some feature value partitions a node into two child nodes and is evaluated ac-
cording to the Z scores of the parent node and the new Z ′ scores of the child
nodes induced by that split. The optimal split is the one which, across all possi-
ble feature value split points, maximises the splitting criterion score.

Given (a) the parent node scores Z and (b) the child scores Z ′ induced by a
split, the SCAFF gain SG associated with that split is defined as:

SG = SCAFF(Z ′, Y, S,Θ)− SCAFF(Z, Y, S,Θ). (5.10)

The split with maximal SG across all evaluated splits is selected if and only if
its corresponding SG ≥ 0. Otherwise, no splitting occurs.

SCAFF is not only able to handle binary sensitive attributes but also extends
to the multivariate and multicategorical scenarios, including intersectional fac-
tors (i.e., the combination of sensitive attributes) [Buolamwini and Gebru, 2018]
via a one-versus-rest (OvR) approach [Tax and Duin, 2002]. The AUCS used in
SCAFF is the maximum OvR, since no sensitive attribute should have priority
over fairness.

An example of SCAFF evaluation can be viewed in Fig. 5.2, in which the
OvR AUCS = max(0.6, 0.917) = 0.917. In the aforementioned example, we
mention that Z scores are given as P (Y+) in a node. We remark that our meth-
ods extends trivially to the bagging (i.e., random forest) case by considering
the final score of a sample as the average score across all trees. Yet, other Z
score definitions are viable; e.g., (gradient) boosting techniques compute Z by
iteratively updating existing sample scores [Hastie et al., 2009]. In that sense,
samples within the same child node may have distinct Z scores.

Our method extends to such boosting cases since SG relies on Z, regardless
of its computation. In contrast, traditional tree learning algorithms do not ex-
tend to boosting, since no Z scores are incorporated into the splitting criteria.
We remark that, for samples in the same node which have distinct Z scores, the
computation of the AUC must follow the traditional approach (Eq. 5.5).
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Figure 5.2: Computing AUC values for SCAFF. AUCY and AUCS in a system
with 10 samples, a class label, and two sensitive attributes (gender and race).

5.5 Experiments

For the description of our experiments, we begin by mentioning the datasets
and how we used them (Section 5.5.1); we then characterise the experimen-
tal setup deployed to (1) gather the performance and fairness values and (2)
report on the relationship between the threshold-independent and threshold-
dependent demographic parities (Section 5.5.2). We compared SCAFF against
other fair splitting criteria by using benchmark fairness datasets. Since the
methods against which we compare our approach are neither suited for mul-
tivariate nor multicategorical sensitive attributes, we focus on the single binary
sensitive attribute case first. We additionally experimented on a single dataset
to explore how SCAFF handles multiple sensitive attributes simultaneously as
well as multicategorical values. Lastly, we tested the quantitative relationship
of the strong demographic parity yielded by our method with the correspond-
ing demographic parity at different decision-thresholds. For reproducibility,
our experiments are made available in [Pereira Barata, 2021].

5.5.1 Datasets

Three binary classification datasets were used. These are benchmark datasets
used for fairness methods [Quy et al., 2021]. Each of them has at least one
sensitive attribute. Specifically, we employed the following: (a) Bank (45, 211

instances, 50 features) in which the sensitive attribute is the binary condition of
age ≥ 65 (b) Adult (45, 222 instances, 97 features), where the sensitive attribute
may be either (i) race ∈ {white,non-white} or (ii) gender ∈ {male, female}; and
(c) Recidivism (6150 instances, 8 features) of which the sensitive attributes may
be either (i) race ∈ {white,non-white} or (ii) gender ∈ {male, female}.
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For the binary sensitive attribute case, we considered each dataset-sensitive
attribute configuration, making for a total of five different dataset configura-
tions. Two scenarios were further set in which the Adult dataset was considered:
(i) the multiple sensitive attribute scenario such that both sensitive attributes
(race and gender) were handled simultaneously; and (ii) the multicategorical
sensitive attribute scenario in which the intersectional attributes {non-white fe-
male (NWF), non-white male (NWM), white female (WF), white male (WM)}
were concurrently considered.

5.5.2 Experimental Setup

To provide an adequate comparison between our splitting criterion and the
state-of-the-art, we considered previous works in fair splitting criteria; specif-
ically, the works proposed by [Kamiran et al., 2010] and [Zhang and Ntoutsi,
2019]. For each dataset configuration, and for all methods, the same 10-fold CV
was applied.

To measure classification performance and algorithm fairness, AUCY (the
accepted standard measure for classifier performance) and AUCS were used,
respectively. The performance and fairness measures across test folds were av-
eraged to produce a single value pair for each dataset, per method, and in our
case for each value of orthogonality Θ. For all methods, the classification output
scores Z of samples were computed as the P (Y+) of the terminal leaf node of a
single tree, as previously shown in Fig. 5.2.

To be able to achieve state-of-the-art performance, each method was de-
ployed as a random forest (i.e., bagging) [Breiman, 2001]. As such, the final
classification score of a sample is the average Z model output of all terminal
nodes across the different trees generated. Throughout all methods, the same
set of hyperparameters was used, such as the number of trees (500), the maxi-
mum depth of each tree (4), and the random seed initialisation.

Bootstrapping, random feature selection, and continuous-feature discretisa-
tion were also applied, given their prevalence in real-world implementations of
tree-based algorithms, such as [Chen and Guestrin, 2016]. For our method, a
range of 11 values for Θ was used between 0 and 1. For details of the imple-
mentation, see [Pereira Barata, 2021].

To relate the threshold-dependent and threshold-independent demographic
parities, decision thresholds were applied to the classifier outputs of our
method across different values of Θ for the different datasets. The thresholds
were considered as 9 quantiles values between 0.1 and 0.9 of each test set out-
put and, consequently, demographic parity —defined in Section 5.3.1— was
averaged over folds.
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We measured, at each decision threshold —along Θ values— the Pearson
correlation coefficient [Kirch, 2008], and the respective null hypothesis p-values,
between strong demographic parity (as AUCS) and demographic parity. The
purpose is to check whether the behaviour of strong demographic parity across
Θ transfers to that of the induced demographic parity.

5.6 Results

In this section, we present the results of our experiments. We report on the
classification performance, fairness, and tunability of the performance-fairness
trade-off achieved by our method via orthogonality Θ. We do so for the afore-
mentioned sensitive attribute configurations: binary (Section 5.6.1), and non-
binary (Section 5.6.2). Specifically for the binary configuration, we compare
our method to the competing approaches. Finally, we show how the strong
demographic parity (measured in AUCS) yielded by our method translates to
the induced demographic parity across different (a) decision thresholds and (b)
values of orthogonality Θ (Section 5.6.3).

5.6.1 Binary Sensitive Attribute

To regard the performance and fairness of all methods per dataset configura-
tion, see Fig. 5.3. For our method, each point corresponds to a value of Θ ∈ [0, 1].
An orthogonality value Θ = 0 is equivalent to a traditional classifier and corre-
sponds to the right-most point. Conversely, Θ = 1 corresponds to the left-most
point. In the horizontal axis, AUCS represents (un)fairness. The vertical axis
depicts AUCY as classification performance.

Unlike the other methods which output a single performance-fairness value
(represented as a point), our SCAFF method produces a performance-fairness
trade-off curve along Θ. This is advantageous as it provides a way for practi-
tioners to make informed decisions. The impact of Θ on the tunability of the
performance-fairness trade-off for each dataset-sensitive attribute pair is con-
sistent: as increasingly greater values of Θ are used, the greater the fairness and
lesser the classification performance.

Noticeably, in Bank (Age), SCAFF was able to reduce AUCS by 0.2 at a loss in
performance of only 0.02. Overall, our method consistently performs better in
the combination of classification performance and fairness, allowing for a suit-
able target point. It is a convincing result of (1) the use of AUC in the splitting
criterion and (2) the flexibility of the orthogonality parameter Θ.
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5.6.2 Multiple and Multicategorical Cases

We present in Fig. 5.4 the outcomes of the dataset configurations for multiple
sensitive attributes —Adult (Multiple) in the left panel — and multicategorical
sensitive attribute values, considered as the intersectional values: Adult (Inter-
sectional) in the right panel.

For both panels, across different values of orthogonality Θ (horizontal axis),
the classification performance AUCY is shown in blue and the different AUCS

are provided (vertical axis). To the left, the AUCS for race and gender can be
regarded; to the right, the AUCS for each of the different intersectional sensitive
attribute values are displayed: NWF, NWM, WF, and WM.

Focusing on the Adult (Multiple) configuration, it is witnessable that the be-
haviour of the fairness measures along Θ match those of the Adult (Race) and
Adult (Gender) previously shown in Fig. 5.3: greater values of orthogonality
translate to greater values of fairness (decreasing AUCS) and lesser classifica-
tion performance AUCY. This is expected, since the performance-fairness trade-
off phenomenon is known.

SCAFF was able to reduce the bias towards both sensitive attributes simul-
taneously whilst maintaining adequate classification performance; in particular
at Θ = 0.7, both race and gender AUCS = 0.55 (a remarkably low bias value),
and AUCY is above 0.8 indicating model adequacy. Similarly for Adult (Inter-
sectional) at the same value of the orthogonality parameter Θ = 0.7, our method
was able to converge the bias of all sensitive attribute values to sensible values
concurrently whilst maintaining proper classification performance.

These results show our proposed method is able to produce adequate clas-
sification models with regards to multiple and multicategorical sensitive at-
tributes which maximise performance with the least decrease in fairness. To
put it differently, our method is able to exploit the performance-fairness trade-
off even for multiple and multicategorical sensitive attributes.

We remark, however, one limitation of our OvR approach. Since the OvR
AUCS along multiple attributes or values is evaluated as its maximum (as de-
scribed in Section 5.4.3), there is no guarantee that all attributes will have their
biases decreased along Θ: regard the slight increase in NWM bias.

Yet, this characteristic of our approach inherently bounds the highest pos-
sible value of bias. In other words, along Θ, the maximum value of AUCS is
strictly monotonically decreasing. The remark is further corroborated by the
NWF, WF, and WM intersectional sensitive attributes, of which the curves be-
have in a nearly-identical manner along the different values of Θ. Under the
assumption that none of the sensitive attributes is of greater importance than
any other, the maximally-valued sensitive attribute should always be consid-
ered as the attribute by which fairness is measured.
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5.6.3 Relationship with Demographic Parity

Below, we describe the results of applying our method to the five dataset config-
urations for different values of Θ, and measuring the corresponding (threshold-
dependent) demographic parity at different decision thresholds. The purpose
is to determine if (1) threshold-independence extends across arbitrary decision
thresholds, and (2) if changes in Θ induce an equivalent behaviour between
demographic parity and strong demographic parity.

In Fig. 5.5, it is shown how for different decision thresholds (horizontal axis),
the mean demographic parity (vertical axis) —across all test folds— behaves
with different values of Θ (differently-coloured lines), for the five binary sensi-
tive attribute dataset configurations. An additional panel is provided (bottom-
right), where for each value of Θ (horizontal axis), the variation of demographic
parity across decision thresholds for each dataset is present.

Across all dataset configurations, and particularly noticeable in those with
high demographic parity —concretely Bank (Age) and Adult (Gender)— the ef-
fect of the orthogonality parameter Θ is generally the same: as orthogonality
values increase, values for demographic parity decrease, regardless of the deci-
sion threshold selected.

The spread of demographic parity (measured as standard deviation) also
decreases along Θ, for different decision thresholds. To put it differently, higher
values of Θ translate to greater threshold-independence. This is sensical since,
by definition, SCAFF directly optimises for threshold-independent measures.

To grasp the relationship between strong and threshold-dependent demo-
graphic parities, regard Table 5.1. Each row depicts a decision threshold at
which demographic parity was computed; a column indicates a dataset con-
figuration. A cell depicts the Pearson correlation coefficient between the two
measures of fairness along the parameter Θ, for the decision threshold. The
coefficients represent how similar the behaviour between threshold-dependent
and - independent demographic parities is, induced by shifts in Θ.

Noteworthily, bolded entries indicate a statistical significance of α = 0.05

towards the null hypothesis of no correlation. Safe for a single outlying en-
try —threshold 0.9 in the Adult (Race) configuration, in which the value of de-
mographic parity is negligible— all table entries are consistently high and of
statistical significance. This shows that the effect of shifting the orthogonality
parameter Θ is, in practice, identical for both types of demographic parity re-
gardless of the decision threshold selected, validating our method with respect
to threshold independence.
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Table 5.1: Pearson correlation coefficients between strong demographic parity
(measured as AUCS) and demographic parity, along Θ, for different decision
thresholds in the five dataset configurations; bolded entries indicate a null hy-
pothesis p-value ≤ 0.05.

Dataset

Th Bank (A) Adult (R) Adult (G) Recid. (R) Recid. (G)

0.1 0.983 0.963 0.994 0.937 0.839

0.2 0.984 0.965 0.997 0.995 0.895

0.3 0.993 0.971 0.994 0.987 0.968

0.4 0.988 0.992 0.991 0.995 0.949

0.5 0.997 0.988 0.995 0.990 0.973

0.6 0.993 0.994 0.995 0.998 0.975

0.7 0.984 0.979 0.984 0.991 0.992

0.8 0.975 0.871 0.919 0.983 0.984

0.9 0.941 0.267 0.947 0.944 0.922

5.7 Chapter Conclusion

In the present work, we introduced SCAFF. By doing so, we proposed a learn-
ing algorithm which simultaneously (1) optimises for threshold-independent
performance —AUC— and fairness —strong demographic parity— (2) is able
to handle various multicategorical sensitive attributes simultaneously, (3) is
tunable with respect to the performance-fairness trade-off via an orthogonal-
ity parameter Θ, and (4) easily extends to bagging and (gradient) boosting.

Moreover, we empirically validated our method through experimentation
on benchmark datasets traditionally used in the fairness literature. Then we val-
idated our experiments with real datasets. Here, we showed that our approach
outperformed the competing state-of-the-art criteria methods, by its predictive
performance and model fairness, as well as by its capability of handling multi-
ple sensitive attributes simultaneously, of which the values may be valued mul-
ticategorically. Moreover, we demonstrated how the behaviour of strong de-
mographic parity induced by our method extends to the threshold-dependent
demographic parity.

As future work, we recommend to extend the current framework from
learning classification problems towards other learning paradigms. Ultimately,
the development and deployment of fair machine learning approaches within
sensitive domains is the goal in this field of research.
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Chapter 6

Conclusions

In the final chapter, we answer the three RQs in Section 6.1. Then, we address
the problem statement and clearly identify the research results together with
their conclusions in Section 6.2. Lastly, in Section 6.3, research directions are
proposed with the intent of furthering reliable and fair data-driven risk assess-
ment applications.

6.1 Answers to the Research Questions

Below, the RQs are reiterated as formulated in Chapter 1. Each question is an-
swered separately.

RQ1: Given data with missing values, which (a) missing data-handling tech-
nique and (b) learning algorithm should be jointly selected such that, regardless
of the missing mechanism, the detriment to the downstream task performance
is minimal when compared to the non-missing (unavailable) case?

When dealing with real-world data, a non-MCAR scenario is traditionally
assumed. Thus, a viable option is to use the missing-indicator method, encod-
ing the missingness itself [Lipton et al., 2016]. However, this assumption does
not always hold; in such cases, the missing-indicator method may even deteri-
orate the performance of the (downstream) classification task, when compared
to an imputation approach.

It is established in Section 2.6 that, under MCAR, the differences in the
downstream classification task performance between (a) imputation, and (b)
missing-indicator are negligible, if the appropriate learner is used. Specifically
via feature selection protocols, it is possible to learn classification models of
which the performances are statistically indistinguishable across the two differ-
ent methods used to handle missingness.



108 Chapter 6. Conclusions

Given that real-world data are seldom MCAR and that, even under the
MCAR mechanism, the performance decrease can be made indistinguishable
between imputation and missing-indicator, the answer to RQ1 is, therefore, that
the missing-indicator method, in conjunction with decision tree-based learners
—particularly via gradient boosting— is an adequate solution. In doing so,
the detriment to classification performance should be minimal, whether under
MCAR or non-MCAR.

One limitation to our answer is that, in our experimental design, both train-
ing and test sets are identically distributed with respect to the missing mecha-
nism. Further studies could be conducted to assess classifier performance under
a slightly different, yet most impactful scenario, in which the training set (i.e.,
the available training data) and test set (representing the model deployment)
are differently distributed with respect to the mechanism of missingness. For ex-
ample, if a classifier were to be learned from data under MCAR, coupled with
a missing-data handling technique, what would the expected performance be if
the test data were either non-missing or non-MCAR?

RQ2: Given data with label noise, how can noisy-samples be (a) adequately
detected, and (b) used to learn a well-performing model?

In Chapter 3, the notion of crosslier is introduced. Crossliers are anomalous
instances with respect to a domain-sensible category. These instances may be
misconducts as their characteristics position them farther from their category
cluster, across the decision boundary towards one or more other categories.
With respect to the Inspectorate, waste category crossliers were presented as
potential misconducts.

By learning well-calibrated probabilistic classifiers, it is possible to use the
output probabilities of trained models towards a set of new samples, where
lowest posterior probability indicates a most probable crosslier. To achieve this,
we propose the EXPOSE method. Our method addresses the entire dataset in
a CV manner, generating well-calibrated sample probabilities for the test sets.
As a result, all samples have comparable crosslier scores with which crosslier
detection may be performed. This process answers RQ2(a).

Yet, we denote that (as established in Chapter 1), data within the Inspec-
torate represent the administrative reality. What might be considered miscon-
duct, could in fact be simply a data quality issue (e.g., an entry error). The
distinction is, however, dependent on which reality the data represents. For
this reason, special care is required when considering the real-world meaning of
a sample with a high crosslier score. Ultimately, a case-by-case approach should
be taken if deployment is to be reliable in the Inspectorate.
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The amount of noise in observations can be quantified so long as there is
access to the posterior probabilities of those samples. After quantification us-
ing the EXPOSE method, the probabilities may be manipulated into weights
reflective of the clean target distribution. In Chapter 4, we proposed a viable
weighting scheme in which we consider the weight of an observation as the
log-odds of its posterior probability. This proposed learning method is coined
DENOISE. We showed that the resulting models learned on noisy data with this
sample weighting scheme are well-performing. This result answers RQ2(b).

Although we are confident on the performance of our method, we must
denote that the manner by which noise was artificially generated is a limita-
tion: instead of a random univariate approach to noise generation, a more com-
plex approach could have been deployed. For example, selecting features of
which the importance for the final classifier is high. Further studies should be
conducted, where learning performance could be assessed not only in terms of
noise probability, but also in terms of the generation of noise itself.

RQ3: How can we, from biased data, learn a model tunable with respect to the
performance-fairness trade-off such that the selection of the trade-off point is
made intuitive for the relevant stake-holders?

In Chapter 5, a decision tree learning framework is leveraged by incorporat-
ing a threshold-agnostic fair classification splitting criterion termed SCAFF. The
splitting criterion is formulated as a weighted linear combination of (a) the AUC
towards the class label and (b) the strong demographic parity, implemented as
the AUC towards the sensitive attribute. To provide tunability with respect to
performance-fairness trade-off, an orthogonality parameter Θ ∈ [0, 1, ] is part of
the splitting criterion.

By analysing the performance-fairness trade-off curve, an appropriate value
of Θ can be selected according to the application domain requirement(s). In
addition, multiple multicategorical sensitive attributes may be addressed si-
multaneously by minimising the maximal sensitive AUC across all sensitive
attributes as the term in the splitting criterion. Through experimentation and
comparison with other fair splitting criteria, we validated our method for var-
ious datasets and sensitive attribute scenarios. Our proposed SCAFF method,
specifically via the orthogonality parameter Θ, answer RQ3.

While the implementation of our method easily extends to bagging and
boosting frameworks, the computational costs associated with either of the ex-
tensions are not equivalent. Concretely, the computation of AUC in the boosting
framework needs to follow the traditional and more time complex approach:
unlike with bagging where each tree node can be represented as either a pos-
itive or negative class prediction, nodes in boosted trees contain samples each
with their sample-specific prediction score.



110 Chapter 6. Conclusions

6.2 Answer to the Problem Statement

We may now give an answer to the PS based on the answers to the RQs pro-
vided above.

PS: How can machine learning methods advance data-driven risk assessment
by the Inspectorate in a reliable and fair manner?

In our research, we focused on two aspects inherent to the development and de-
ployment of high-risk AI: reliability and fairness. In particular, we highlighted
classification models towards risk assessment under the current EU movement
towards trustworthy AI. In line with our research, we first address reliability
and thereafter fairness.

At the start, we transposed the aspect of reliability into that of two impor-
tant data quality issues: missingness and noise. For missingness, as described
in Chapter 2, we experimented with different methods which handle missing
data, by addressing RQ1. Based on our results, we may conclude that with
real-world data, a missing-indicator method in conjunction with a decision tree-
based learner is a viable solution to address the problem of missing data.

With respect to noise, discussed in Chapter 3, we considered noise in data as
potential real-world misconduct. Hence, we proposed a method to detect it by
addressing RQ2(a). Moreover in Chapter 4 we leveraged this noise detection
towards a novel method of learning adequately-performing models from noisy
data by addressing RQ2(b).

With respect to fairness, we claim that countering biased data is crucial in
risk assessment. In Chapter 5, we consolidated this claim by answering RQ3.
Our main result is proposing a decision tree learning algorithm which takes
into account bias in data to produce a classifier that performs adequately and is
easily-tunable in terms of the performance-fairness trade-off.

We contribute to reliable and fair machine learning methods for risk assess-
ment by the Inspectorate via Chapters 2– 5. On top of that, we reinforce the
principle given in Chapter 1 towards trustworthy AI: the expertise of domain ex-
perts must not be replaced by automation, but rather enhanced by it. To note, while
we state that we contribute towards reliability and fairness, we wish to make
very explicit that the road to data-driven solutions for the problem of risk as-
sessment has merely started being paved.

The opportunities for continuation are ample, and present their own set of
stimulating challenges: not only in terms of the actual implementation of the
solutions presented in this thesis into the daily operations of the Inspectorate,
but also in terms of the myriad of other data-related issues that this thesis did
not cover. As such, we follow with suggestions for potential future research in
this domain.
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6.3 Future Research

Dealing with real-world data in the inspection domain is (1) a sensitive and la-
borious undertaking and (2) a stimulating research area. One straightforwards
research direction is to procure a joint solution to the individual issues derived
from the three investigations (RQs 1–3). To put it differently, it would be advan-
tageous to develop learners which are able to simultaneously address (1) miss-
ingness, (2) noise, and (3) fairness, while remaining highly performing. This
could be achieved by applying the missing-indicator method, in conjunction
with the incorporation of our sample weighing scheme into our fair tree learner.

Another prominent research direction, specifically with application in the
Inspectorate, may be to broaden the scope of how data is represented, prior
to learning. In other words, while the classification problems remain the same
(e.g., identifying misconduct in different sub-fields), there is still opportunity
for enhancing the feature representation/embedding process which, in turn,
might promote superior model performance. A common approach to ade-
quately model the complex interactions between individuals in a dataset, builds
on concepts from the relatively young field of network science [Barabási, 2016].
It is widely accepted in the literature that networks are the de facto data architec-
tures towards modelling the behaviour and dynamics of real-world systems, as
further corroborated by our most recent work towards automated and fair ship
targetting [de Bruin et al., 2022]. Therefore, we believe that more applications
should be tractable following such approaches.

Lastly, another problem of relevance to the Inspectorate relates to the fol-
lowing. By definition, historical inspection data is neither an independent nor
identically distributed sample of the entire population. In other words, since the
function of the inspectors of the ILT is to select for inspection the cases which are
of highest risk, the selection will generate data samples of which the distribu-
tion in feature space is not representative of the entire pool of cases. This makes
it difficult to learn a classifier that distinguishes between more or less risky sam-
ples adequately due to this under-representation of feature space, which may
lead to inspection blind-spots; i.e., regions in feature space which are considered
by the inspectors and, consequently, the classifier to be of non-interest when in
fact they pertain to risk behaviour. One way to address this issue would be to
deploy active sampling methods such that, rather than targetting samples of
which the true (unseen) label most probably indicates risk, samples would be
selected towards increasing the generalisation of a given model. Another ap-
proach would be to leverage the study of co-domain adaptation (or covariate
shift), under which the assumption is that the training and deployment distri-
butions are different between each other.
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Ultimately, our goal is to enact tangible change in the way the Inspectorate
operates. For this purpose, however, action by the responsible agents, and not
solely the machine learners, is required. The shift towards a data-driven Inspec-
torate has only just begun.







115

References

[Abellán and Masegosa, 2010] Abellán, J. and Masegosa, A. R. (2010). Bagging
decision trees on data sets with classification noise. In International Sym-
posium on Foundations of Information and Knowledge Systems, pages 248–265.
Springer.

[Abellán and Moral, 2003] Abellán, J. and Moral, S. (2003). Building classifica-
tion trees using the total uncertainty criterion. International Journal of Intelli-
gent Systems, 18(12):1215–1225.

[Ahirwar, 2020] Ahirwar, J. P. (2020). Five laws of library science and informa-
tion economics. Informatics Studies, 7(1).

[Alazzam et al., 2019] Alazzam, H., Alsmady, A., and Shorman, A. A. (2019).
Supervised detection of IoT botnet attacks. In Proceedings of the Second Inter-
national Conference on Data Science, E-Learning and Information Systems, pages
1–6.
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Summary

In Chapter 1, we introduce the current movement towards trustworthy AI, as
well as its application in risk assessment activities, which is the motivation
of this work. In particular, we further elaborate on the practical use-cases
within the Inspectorate of the Netherlands, in which reliable and fair models
are required, given the high-risk nature of the domain. Our aim is to pro-
mote a paradigm-shift towards data-driven approaches —via machine learning
techniques— to be used by the agents of the Inspectorate (i.e., inspectors).

Explicitly, the focus of this thesis is on classification models. Data generated
by the Inspectorate is often tabular. As such, we focus on tree-based learn-
ing architectures. Moreover, two real-world data traits detrimental to classifier
learning are considered: (1) data quality, viz missingness and noise; and (2)
bias in the data. The goal is to generate, via learning techniques which combat
these drawbacks, adequately-performing classifiers (measured in AUC) which
are both (1) reliable, and (2) fair, respectively addressing each data trait. As
such, we formulate the PS as follows.

PS: How can machine learning methods advance data-driven risk assessment
by the Inspectorate in a reliable and fair manner?

Thereafter, we decompose the PS into three tractable RQs. Below, these are
stated, together with the main results gathered from answering them.

When dealing with missing data, one of three distinct mechanisms of miss-
ingness occurs: (1) MCAR; (2) MAR; or (3) MNAR (see List of Abbreviations).
Depending on the missing mechanism, the efficiency of missing-data handling
techniques varies. This is measured in the performance of the downstream task
(i.e., classification performance) which is also dependent on the selected learner.

On the one hand, under a non-MCAR scenario, an adequate approach is to
encode missingness; i.e., the missing-indicator method. On the other hand, im-
putation is preferred under MCAR. Although real-world data are rarely MCAR
(thus justifying a missing-indicator approach), the assumption over the missing
mechanism is not always true.
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Although testing for MCAR is possible, the result is not a guaranteed truth.
With this uncertainty in mind, the first RQ is formulated accordingly.

RQ1: Given data with missing values, which (a) missing data-handling tech-
nique and (b) learning algorithm should be jointly selected such that, regardless
of the missing mechanism, the detriment to the downstream task performance
is minimal when compared to the non-missing (unavailable) case?

In Chapter 2, the MCAR scenario is studied. In a controlled environment,
missing data is artificially generated for different proportions of missingness;
several imputation and missing-indicator methods are deployed. Distinct clas-
sifiers are then constructed via distinct learning algorithms. The resulting per-
formance of each learner-data handling pair is retrieved.

The results show that imputation methods provide a superior classification
performance, compared to the missing-indicator method, under the MCAR sce-
nario. Yet and most importantly, for the classifiers learned via decision tree-
based gradient boosting, the differences in performance derived from the two
distinct data-handling techniques becomes negligible. Hence, the answer to
RQ1 is that the missing-indicator method, in conjunction with a decision tree-
based learner —particularly via gradient boosting— should be used regardless
of the missing mechanism.

Noise in data deteriorates the classification performance and may present it-
self as either feature noise or (class) label noise, of which the latter is more detri-
mental. Under label noise, three noise-generating mechanisms exist: (1) NCAR;
(2) NAR; and (3) NNAR. Handling noise in data generally entails generating
noisy-sample detection scores, traditionally addressed by leveraging classifiers
learned on the noisy data, which is an endeavour in itself.

Within the scenario of the Inspectorate, noisy data may represent miscon-
duct; e.g., companies manipulating waste transportation reports to lower the
costs associated with each waste type. Therefore, it is of importance to detect
these misconducts and simultaneously learn classifiers from the available data
which contain them. Hence, the second RQ is a compound one and decom-
posed into RQ2(a) and RQ2(b).

RQ2: Given data with label noise, how can noisy-samples be (a) adequately
detected, and (b) used to learn a well-performing model?

In Chapter 3, we introduce the term crosslier. It denotes a sample with
disharmonious feature values. Concretely, crossliers are a special case of out-
lier with respect to some overarching category feature. They are samples which
exhibit label noise with respect to the category feature, and potentially feature
noise, relating to the NNAR mechanism. To detect crossliers, we propose the
EXPOSE method.
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The EXPOSE method evaluates samples in a CV-manner, such that all sam-
ples in the data are evaluated. Each training set is used to produce a well-
calibrated classifier via Platt scaling. The classifier is then deployed on the cor-
responding test samples. From the classifier output f(x), the crosslier score
is − log2[f(x)]. By evaluating the performance of our method in a controlled
setup, we validate EXPOSE. Then, we answer RQ2(a).

Chapter 4 follows logically, utilising the core principal of EXPOSE —and its
established validity— towards classifier learning with noisy data. We term our
compound method DENOISE. The DENOISE method entails two steps.

First, well-calibrated probabilities are computed for each sample following
the EXPOSE method. Second, the probabilities are used to generate individual
sample weights, such that the weight is the log-odds of the output sample prob-
ability. Under a logistic loss function applied via a gradient boosting decision
tree learner, an adequately-performing noise-resilient classifier is produced. In
a controlled experimental environment, we validate our method, thereby an-
swering RQ2(b).

Learning from biased data leads to biased models. Even when the condi-
tions of the data gathering processes are ideal, bias in data may still occur due
to historical factors (e.g., gender wage gap). To address this issue, different fair
machine learning techniques can be used. The purpose of these techniques is to
generate models of which the output is independent of some sensitive attribute,
such as gender; i.e., fair models. Moreover, several measures of fairness exist,
of which the strong demographic parity is analogous to the AUC performance
measure. Generally, the greater the fairness of a model, the lesser its predictive
performance: here we speak of the performance-fairness trade-off.

Regarding the Inspectorate, biased data may represent a form of bias given
some distinct criterion. For example, ships sailing under specific country flags
are deemed of higher risk and hence more targetable than others, which may
result in confirmation bias. Moreover, since the country flag is easily mutable,
it enables companies to bypass the inspection selection protocol. From these
considerations, we formulate our RQ3.

RQ3: How can we, from biased data, learn a model tunable with respect to the
performance-fairness trade-off such that the selection of the trade-off point is
made intuitive for the relevant stake-holders?

In Chapter 5, we propose a fair decision tree learning algorithm via strong
demographic parity. We do so by defining a compound splitting criterion,
termed SCAFF —splitting criterion AUC for fairness— which is tunable with
respect to the performance-fairness trade-off. It leverages several sensitive at-
tributes concurrently, of which the values may be multicategorical.
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SCAFF is defined as a weighted linear combination of (a) the traditional
AUC classification performance, and (b) the strong demographic parity scaled
to the range of the AUC. We term the scaled fairness measure sensitive AUC. The
closer the sensitive AUC is to 0.5, the greater the fairness of the model. By incor-
porating an orthogonality parameter Θ ∈ [0, 1] implemented as an elastic net-
like weight to the performance and the fairness terms, the performance-fairness
trade-off is tunable. In the case of Θ = 0, a traditional (potential) non-fair clas-
sifier is generated, and increasing Θ augments the fairness of the final model.
By comparing SCAFF to other fair splitting criteria in a controlled experiment,
we validate our approach and answer RQ3.

The conclusion of the thesis is that, under the current movement towards
trustworthy AI in Europe, shifting the current risk assessment paradigm to a
more data-driven methodology is a delicate yet feasible venture via reliable and
fair machine learning. Given the high-risk nature of risk assessment activities,
and the characteristics of the data generated by them, we believe that technical
methods can ensure the adequacy of the final learned models. In particular,
the issues associated with learning a classification model from biased and low-
quality data can be successfully addressed, producing adequate models.
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Samenvatting

Het inschatten van risico’s is het hoofdonderwerp van dit proefschrift. In
Hoofdstuk 1 introduceren we in algemene zin de recente ontwikkelingen op
het gebied van kunstmatige intelligentie (Artificial Intelligence, AI). We kijken
daarbij vooral naar het gebruik van AI-technieken bij het inschatten van risico’s.
In het bijzonder besteden we aandacht aan de praktische inzetbaarheid van
AI-programma’s bij de Inspectie Leefomgeving en Transport (ILT). Binnen dit
orgaan van de Nederlandse overheid is grote behoefte aan een eerlijke en be-
trouwbare inschatting van risico’s. Het onderzoekswerk is een bijdrage aan de
paradigma-verschuiving die in 2016 in gang gezet is bij de start van het pro-
gramma Anders Omgaan Met Data (AOMD). Ons werk draagt dan ook bij
aan de voortdurende verbetering van het data-gestuurd werken door de ILT-
inspecteurs, met name door middel van de inzet van machine learning.

De focus van dit proefschrift ligt expliciet op classificatiemodellen. Data
die door de inspectie wordt gegenereerd, verzameld en geclassificeerd staan
vaak (a) in tabelvorm en (b) bevatten diverse datatypen. In het onderzoekswerk
richten we ons met name op data in beslisbomen. Daarbij onderzoeken we
twee problemen die regelmatig voorkomen bij classificatie: (1) bias in de data;
en (2) datakwaliteit. Bij datakwaliteit kijken we in het bijzonder naar welke data
er missen (missing data) en ruis (noise). Het doel is om adequaat presterende
classificatiemodellen te ontwerpen die deze problemen oplossen, en dus zowel
eerlijk als betrouwbaar zijn. De probleemstelling van dit proefschrift luidt dan
ook als volgt.

Probleemstelling: Hoe kunnen we bijdragen aan eerlijke en betrouwbare ma-
chine learning methoden, die inzetbaar zijn voor de inschatting van risico’s
door de Inspectie Leefomgeving en Transport (ILT)?

De probleemstelling wordt onderverdeeld in drie onderzoeksvragen. Hier-
onder bespreken we deze vragen, geven dan de precieze formulering en vatten
tenslotte de belangrijkste bevindingen samen.
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Bij missing data speelt een precieze karakterisering van het mechanisme
(waardoor ontbreken de data eigenlijk?) een belangrijke rol. We onderschei-
den drie mechanismen: (1) MCAR (Missing Completely At Random); (2) MAR
(Missing At Random); en (3) MNAR (Missing Not At Random). Afhankelijk
van het mechanisme waar we mee te maken hebben, zien we dat de efficiency
van de missing-data technieken nogal varieert. In ons onderzoek meten we
de performance van de verschillende technieken en kijken we naar de relatie
tussen de performance en het gekozen machine learning model.

In een niet-MCAR-scenario (dus MAR en MNAR) lijkt een adequate be-
nadering te zijn: het coderen van ontbrekende gegevens door een extra variabele
(of attribuut). Dit is de zogeheten missing-indicator methode. Bij het MCAR-
scenario heeft daarentegen —zo lijkt het— imputatie van de missing data de
voorkeur. In de werkelijke wereld ontbreekt data echter zelden volgens het
MCAR mechanisme; bovendien is het testen of data ontbreekt volgens het
MCAR mechanisme moeilijk en soms ook nog onbetrouwbaar. Daarom luidt
de eerste onderzoeksvraag als volgt.

Onderzoeksvraag 1: Welke combinatie van methoden voor het behandelen
van missing data en machine learning algoritmen moet worden gebruikt om,
los van het precieze missing data mechanisme, een adequaat presterend model
te verkrijgen?

In Hoofdstuk 2 wordt het MCAR mechanisme bestudeerd. Door op een
gecontroleerde manier verschillende gradaties van missing data volgens het
MCAR mechanisme te genereren, kan empirisch worden vergeleken hoe combi-
naties van bepaalde methoden voor het behandelen van missing data en machine
learning algoritmen presteren. De resultaten laten zien dat onder het MCAR
mechanisme imputatiemethoden doorgaans beter presteren dan de missing-indicator
methode.

Een belangrijke bevinding is dat voor gradient boosting classificatie-
algoritmen op basis van beslisbomen, de verschillen in prestaties verwaarloos-
baar lijken. Het antwoord op de eerste onderzoeksvraag is dan ook dat de
missing-indicator methode, in combinatie met een beslisboomalgoritme — met
name op basis van gradient boosting — moet worden gebruikt, ongeacht het pre-
cieze mechanisme dat aangeeft welke data er ontbreekt.

Door ruis in de data zullen in het algemeen de classificatie-prestaties ver-
slechteren. Ruis kan voorkomen als featureruis of als (klasse) labelruis. Vooral
labelruis heeft een sterke invloed. Bij labelruis bestaan drie mechanismen: (1)
NCAR (Noise Completely At Random); (2) NAR (Noise At Random); en (3)
NNAR (Noise Not At Random). De aanpak bij ruis in de data richt zich in het
algemeen op het bepalen van detectiescores voor de ruisdata.
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De detectiescores worden traditioneel bepaald door gebruik te maken van
classificatiescores die zijn geleerd op de ruis bevattende dataset. Binnen het
scenario van de Inspectie kunnen data met labelruis juist een aanwijzing zijn
voor afwijkingen, vooral wanneer er ook featureruis is (d.w.z., volgens NNAR
mechanisme); bijv., bedrijven die afvaltransport-rapporten manipuleren om de
kosten ervan te verlagen. Het is van belang om niet alleen deze afwijkingen op
te sporen, maar ook om zo goed mogelijk classificatiemodellen te leren uit de
beschikbare gegevens.

Binnen het scenario van de Inspectie kunnen data met labelruis juist een
aanwijzing zijn voor afwijkingen, vooral wanneer er ook featureruis is (d.w.z.,
volgens NNAR mechanisme); b.v. bedrijven die afvaltransportrapporten ma-
nipuleren om de kosten ervan te verlagen. Het is van belang om niet alleen
deze afwijkingen op te sporen, maar ook om zo goed mogelijk classificatiemod-
ellen te leren uit de beschikbare gegevens.

De tweede onderzoeksvraag is samengesteld uit onderzoeksvraag 2(a) en
onderzoeksvraag 2(b) en luidt in zijn geheel als volgt.

Onderzoeksvraag 2: Gegeven data met labelruis, hoe kan die data met ruis
(a) adequaat worden opgespoord, en (b) worden gebruikt om een model met
adequate performance te leren?

In Hoofdstuk 3 introduceren we de term crosslier, die een sample aanduidt
met afwijkende features. Preciezer gezegd crossliers zijn een speciaal type out-
lier die afwijkend zijn ten opzichte van een bepaalde categorie. Het zijn samples
die labelruis vertonen met betrekking tot een bepaalde categorische feature,
waarbij de ruis mogelijk het NNAR-mechanisme volgt. Om crossliers te de-
tecteren, stellen we de onderzoeksmethode EXPOSE voor. De EXPOSE-methode
evalueert samples op een cross-validatie (CV) manier, zodat uiteindelijk alle
samples worden geëvalueerd. In de CV loops wordt elke training set gebruikt
om een goed gecalibreerde classifier te produceren daarbij gebruik makend van
Platt-schaling. De classifier wordt vervolgens ingezet op de bijbehorende test
samples. Van de classificatie output f(x), is de corresponderende crosslierscore
− log2[f(x)]. Om de prestaties van onze aanpak te evalueren, valideren we
de EXPOSE-methode in een gecontroleerde experimentele omgeving. Daarmee
beantwoorden we onderzoeksvraag 2(a).

Hoofdstuk 4 bouwt voort op de uitgangspunten van EXPOSE en levert een
aanpak op voor het leren van een classificatiemodel met gegevens die ruis
bevatten. We noemen deze samengestelde methode DENOISE. De DENOISE

methode bestaat uit twee stappen. Eerst worden goed gecalibreerde kansen
berekend voor elk sample volgens de EXPOSE-methode. Ten tweede worden de
kansen gebruikt om individuele sample gewichten te genereren als de log-odds
van de gecalibreerde sample kans.
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Tezamen met een logistische verliesfunctie die wordt toegepast op de
leeralgoritme van de gradient boosting beslissingsboom ontstaat een adequaat
presterende ruisbestendige classifier. In een gecontroleerde experimentele
omgeving valideren we vervolgens onze methode. Daarmee beantwoorden we
onderzoeksvraag 2(b).

Leren van gegevens met een bias leidt tot modellen met een bias. Zelfs wan-
neer de omstandigheden van het verzamelen van gegevens ideaal zijn, kan er
nog steeds vertekening in de gegevens optreden als gevolg van historische fac-
toren (bijv., de loonkloof tussen mannen en vrouwen). Om dit probleem aan
te pakken, kunnen verschillende eerlijke (fair) machine learning-technieken wor-
den gebruikt. Het doel van deze technieken is om modellen te genereren waar-
van de output onafhankelijk is van een gevoelig attribuut, zoals geslacht; dat
wil zeggen, eerlijke (fair) modellen. Let wel, er bestaan verschillende maat-
staven voor eerlijkheid, waarvan strong demographic parity analoog is aan de
AUC prestatiemaatstaf voor classificatie performance. Over het algemeen geldt
dat fairness op gespannen voet staat met de voorspellende kracht van perfor-
mance. Het betreft hier de trade-off tussen performance en fairness gegeven een
bepaald criterium.

Een voorbeeld is als schepen onder de vlag van een bepaald land varen, dan
kunnen ze worden beschouwd als schepen met een hoger risico. Dit kan beteke-
nen dat ze daarom meer aandacht krijgen dan andere schepen, wat kan leiden
tot confirmation bias. Aangezien de landsvlag gemakkelijk kan worden gewij-
zigd, kunnen bedrijven het inspectie-selectieprotocol betrekkelijk gemakkelijk
omzeilen. Op grond van deze observaties (en gevolgtrekkingen) formuleren we
de onderzoeksvraag 3 als volgt.

Onderzoeksvraag 3: Hoe kunnen we een model bouwen van vooringenomen
gegevens, zodat het door de domeinexpert kan worden aangepast met be-
trekking tot de trade-off tussen performance en fairness?

In Hoofdstuk 5, we stellen een eerlijk algoritme voor om een beslisboom
te leren voor strong demographic parity. We doen dit door een samengesteld
splitsingscriterium te definiëren, genaamd SCAFF (Splitsings Criterium AUC
For Fairness). SCAFF kan worden getuned met betrekking tot de trade-off tussen
performance en fairness. Tegelijkertijd kan het mechanisme gebruik maken van
verschillende gevoelige attributen, waarvan de waarden multi-categorisch kun-
nen zijn.

SCAFF wordt derhalve gedefinieerd als een gewogen lineaire combinatie
van (a) de traditionele AUC classificatieperformance , en (b) de strong demo-
graphic parity die geschaald is in overeenstemming met het bereik van de AUC.
We noemen deze AUC een sensitive AUC. Hoe dichter de sensitive AUC bij 0.5

ligt, des te eerlijker is het model.
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Door een orthogonaliteitsparameter Θ ∈ [0, 1] op te nemen, die
geı̈mplementeerd wordt als een elastisch net-achtig gewicht op de trade-off
tussen performance en fairness, kan de waarde worden aangepast; Θ = 0

genereert een traditioneel (potentieel) niet-eerlijke classificatie, en het verhogen
van Θ vergroot de fairness van het uiteindelijke model. Door SCAFF te vergelij-
ken met andere eerlijke splitsingscriteria in een gecontroleerd experiment,
valideren we onze aanpak en beantwoorden we de derde onderzoeksvraag.

De conclusie van het proefschrift wordt gegeven in Hoofdstuk 6. Door de
nadruk op betrouwbare AI in Europa zien we een verschuiving van het huidige
paradigma van risicobeoordeling naar een meer data-gestuurde beoordeling.
Het resultaat is een delicate maar haalbare onderneming via eerlijke en be-
trouwbare machine learning. Met inachtneming van het risicovolle karakter
van de beoordelingsactiviteiten en de kenmerken van de data die door de be-
oordelingen worden gegenereerd, kunnen technische methoden de geschikt-
heid van de uiteindelijk geleerde modellen garanderen. Met name de proble-
men die samenhangen met het leren van een classificatiemodel uit data met een
bias (en met lage kwaliteit) kunnen hiermee worden aangepakt.
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