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Abstract
Background  In the current study we aimed to develop an algorithm based on 
biomarkers obtained through non- or minimally invasive procedures to identify 
healthy elderly subjects who have an increased risk of abnormal cerebrospinal 
fluid (CSF) Amyloid beta42 (Aβ) levels consistent with the presence of Alzheimer’s 
Disease (AD) pathology. Use of the algorithm may help to identify subjects with 
preclinical AD who are eligible for potential participation in trials with disease 
modifying compounds being developed for AD. Due to this pre-selection, fewer 
lumbar punctures will be needed, decreasing overall burden for study subjects 
and costs.

Methods  Healthy elderly subjects (n=200; age: 65-70 (N=100) and age >70 
(N=100) with an MMSE >24 were recruited. An automated central nervous system 
test battery was used for cognitive profiling. CSF Aβ1-42 concentrations, plasma 
Aβ1-40, Aβ1-42, neurofilament Light and total Tau concentrations were measured. 
Aβ1-42 /1-40 ratio was calculated for plasma. The neuroinflammation biomarker 
YKL-40 and ApoE ε4 status were determined in plasma. Different mathematical 
models were evaluated on their sensitivity, specificity and positive predictive 
value. A logistic regression algorithm described the data best. Data were analyzed 
using a 5-fold cross validation logistic regression classifier.

Results  Two hundred healthy elderly subjects were enrolled in this study. Data 
of 154 subjects were used for the per protocol analysis. The average age of the 154 
subjects was 72.1 (65-86) years. Twenty-four (27.3%) were Aβ positive for AD (age 
65-83). Results of the logistic regression classifier showed that predictive features 
for Aβ positivity /negativity in CSF consists of sex, 7 CNS tests and 1 plasma-based 
assay. The model achieved a sensitivity of 70.82% (±4.35) and a specificity of 89.25% 
(± 4.35) with respect to identifying abnormal CSF in healthy elderly subjects. The 
receiver operating characteristic curve showed an AUC of 65% (±0.10).

Conclusion  This algorithm would allow for a 70% reduction of lumbar punc-
tures needed to identify subjects with abnormal CSF Aβ levels consistent with AD. 
Use of this algorithm can be expected to lower overall subject burden and costs of 
identifying subjects with preclinical AD and therefore of total study costs.
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Background
As new disease-modifying therapies for Alzheimer’s disease (AD) enter clinical 
trials, identifying the disease at a clinical stage where the pathological injury is 
not too severe to allow functionally meaningful recovery, or at least stabilization, 
is a major issue of current research.1 Classification criteria aim at defining early 
clinical, biochemical, and metabolic markers of AD before the clinical criteria of 
dementia are fulfilled.2 Identification of the pre-dementia phase of AD is crucial 
to allow progress of new treatments designed to intervene in the disease process 
at the earliest possible stage.

The current leading hypothesis regarding the pathophysiology of AD is 
centered on the misfolding and aggregation of toxic amyloid beta (Aβ) species 
such as Aβ1-42, and drug research has therefore so far focused most on this ther-
apeutic target. Emerging data in otherwise healthy elderly individuals suggest 
that biomarker evidence of Aβ accumulation and neurofibrillary tangles are 
associated with functional and structural brain alterations, consistent with the 
patterns of abnormality seen in patients with mild cognitive impairment (MCI) 
and even AD, prior to the clinical expression of symptoms.3 A phase one study in 
2016 showed promising results of the anti-Aβ antibody aducanumab in patients 
with prodromal and mild AD by decreasing Aβ plaques in the brain.4 Following 
this phase one study, the compound was further studied in two identically de-
signed phase 3 trials. In March 2019, the trial was halted due to ineffectiveness. 
Further analyses showed that in one of the two phase 3 trials the patient group 
that received the highest dose of the active compound showed slower cognitive 
decline than the placebo group. Based on these results, the FDA recently ap-
proved aducanumab for the treatment of AD in the USA under the ‘accelerated 
approval pathway’ which provides patients access to drugs when there is an ex-
pectation of clinical benefit despite some uncertainty about the clinical benefit 
of the drug.12 Aβ immunotherapy could prevent (progression to) AD in healthy 
elderly who show evidence of amyloid pathology and could prevent (further) 
aggregation of neurotoxic forms of Aβ and would thereby prevent downstream 
effects as synaptic dysfunction, neuronal damage and cognitive impairment.6 
However, many phase 3 anti-amyloid trials have failed to demonstrate ef-
fects on progression of cognitive decline in patients with (mild to moderate) 
AD, despite clear Aβ lowering effects in cerebrospinal fluid (CSF) or PET.7-11 
	  Based on extensive longitudinal biomarker studies.13,14 a specific pattern of 
deterioration of AD specific biomarkers has been proposed, which reflects the 
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underlying progressive neuropathology of the disease. In this model, described 
by Jack et al., 2013, concentrations of Aβ in CSF start decreasing decades before 
clinical symptoms appear. Changes in total and phosphorylated tau (t-Tau, p-Tau) 
concentrations in CSF have been shown to occur up to 15 years prior to the clinical 
onset of AD.15,16 Studies with Aβ lowering compounds are increasingly performed 
in cognitively healthy subjects with a CSF profile consistent with AD or ‘preclin-
ical AD’, due to this early decrease of Aβ in CSF and the hypothesis that cognitive 
deterioration can still be prevented at this stage.17,18 Over the age of 65, approxi-
mately 20% of cognitively healthy subjects can be expected to have a CSF profile 
with lowered Aβ levels consistent with AD as this is shown to be an age-related 
process.19 This means that to identify a single healthy elderly subject with CSF 
values consistent with AD, four subjects will have to undergo a lumbar puncture 
unnecessarily. This leads to unnecessary overall burden for study subjects and to 
higher study costs.

In the clinical setting, the diagnosis of (probable) AD is made based on clin-
ical symptoms (e.g., self-reported memory loss, partner reports, difficulties in 
daily functioning), combined with neuropsychological testing, and confirmed 
by evidence of amyloid pathology in CSF (abnormal Aβ and /or Tau levels) or on 
amyloid PET scans, when available. The collection of CSF is however, an invasive 
technique, which is burdensome in itself but also carries a risk of adverse effects 
(e.g. post-puncture headache) while PET scans are time consuming, not available 
for all patients, and expensive.19,20

As a result of the aforementioned, many studies have attempted to identify 
blood assays which can reliably measure AD related biomarkers.21,22 Some seem 
to be successful in making a distinction between blood Aβ levels in subjects with 
(subjective) cognitive impairment, MCI or AD.23,24 Also, the biomarkers t-Tau 
and Neurofilament Light (NfL) have been able to make this distinction.25,26 
Limitations of the current blood-based biomarkers are that outcomes are not 
consistent between studies and the methods used are highly diverse.27

In the current study we aimed to develop an algorithm based on minimally 
invasive biomarkers (plasma and cognitive tests), to be used for pre-selection 
of subjects with an increased risk of lowered, abnormal, CSF Aβ levels (‘Aβ posi-
tive subjects’) consistent with the presence of AD pathology. This algorithm can 
be used to preselect cognitively healthy Aβ positive people for drug studies in 
preclinical AD, thereby resulting in fewer subjects needing to undergo a lumbar 
puncture.

375_Samantha_15.indd   88375_Samantha_15.indd   88 02/03/2023   16:2302/03/2023   16:23



Chapter IV – Identifying Alzheimer pathology in healthy elderly

89

Methods
This was a single-center, cross-sectional, observational, correlational study. All 
study participants visited the research unit twice, once for a medical screening 
and once for the study measurements.

Participants  We aimed to enroll 200 healthy male and female participants, 
with an age of 65 years and older. Of these 200 subjects, at least 100 participants 
were to be above the age of 70. All the subjects visited Centre for Human Drug 
Research (CHDR) between October 2017 and November 2018 where all study as-
sessments took place. CHDR is a clinical pharmacology research facility where 
early phase clinical drug studies and methodology and biomarker research are 
performed. For this study, a population of healthy elderly subjects aged 65 years 
and over was chosen as the prevalence of neurodegenerative disorders with an 
important cognitive component such as AD increases significantly from this 
age onwards.19 Main exclusion criteria were a diagnosis of a cognitive disorder 
(including but not limited to MCI, AD, Lewy Body dementia, Frontotemporal 
dementia), history of psychiatric disease in the past 3 years, Mini Mental State 
Examination (MMSE) ≤ 24, Geriatric Depression Scale (GDS) ≥ 6, presence of drug 
or alcohol abuse (<2 standard drinks per day for female and <3 standard drinks 
per day for male), any medication which influences the central nervous system or 
is contraindicative for the performance of a lumbar puncture.

All subjects underwent medical screening, including medical history, phys-
ical examination, vital signs measurements in supine and standing position, 
routine hematology, urinalysis and urine drug screen.

All subjects visited the clinical research unit once for the study day and under-
went blood sampling at predefined time points (0, 2 and 4 hour[s]). A single lumbar 
puncture was performed for the collection of CSF (at 4 hours). Furthermore, a CNS 
test battery was performed to collect data on different CNS domains.

Blood sampling  Approximately 10mL blood was collected via an i.v. cathe-
ter placed in an antecubital vein in the arm in appropriate K2EDTA tubes at the 
predefined time points mentioned above. Immediately following collection if 
the required blood volume, the tubes were slowly tilted backwards and forwards 
(no shaking) to bring the anticoagulant into solution. The blood plasma sam-
ples for bioanalysis were centrifuged within one hour, at 2000g for 10 minutes 
at 4°C. Prior to centrifugation, plasma samples were kept at room temperature. 
Immediately after centrifugation, supernatant was divided into 0.5 ml aliquots 
in Sarstedt polypropylene 0.5mL tubes and stored at ‑80°C.
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Lumbar Puncture  A CSF sample of 4 mL was collected in a 10 mL polypro-
pylene tube. CSF was centrifuged within one hour, at 2000g for 10 minutes at 4°C. 
Prior to centrifugation, CSF samples were kept at room temperature. Immediately 
after centrifugation, samples were divided into 0.5 ml aliquots in Sarstedt poly-
propylene 0.5 mL tubes and stored at ‑80°C. Lumbar punctures were performed 
by a trained, physician with a 25G atraumatic lumbar puncture needle (Braun, 
25G) under supervision of an experienced neurologist. The needle was placed at 
the L3-L4 or L4-L5 interspace with the subject in supine or sitting position. If a 
subject suffered from post-dural headaches, the subject was treated according to 
our standard operating procedures.

Amyloid status  Amyloid beta1-42 was measured in the CSF using the fully 
automated Elecsys platform as this is widely used for diagnostics.28 Lowered 
Aβ levels classified as amyloid abnormal and consistent with the presence of 
Alzheimer pathology were dichotomized by creating a group of ‘Aβ positive sub-
jects’ (Aβ < 1000 pg /mL) and ‘Aβ negative subjects’ (Aβ ≥ 1000 pg /mL).

Plasma analysis  Several plasma analyses were performed in plasma sam-
ples that were taken within one hour from the CSF sample. Plasma biomarkers 
have been selected based on promising previous research of the use of plasma 
biomarkers to predict AD pathology. Although analytical methods vary, previous 
research has been able to measure Aβ, t-tau and NfL in plasma and have therefore 
been included to this study and the algorithm.23-26 Plasma concentration of Aβ 
1-40, Aβ 1-42, t-Tau and NfL were measured using the fully automated, highly 
sensitive single molecule array Simoa technology.29 The Aβ scores have been used 
as single variables as well as in a ratio score Aβ 1-42 / Aβ 1-40.

Chitinase 3-like 1 (CHI3L1), or more commonly called YKL-40, is a glycoprotein 
which is mainly expressed in astrocytes. Insoluble Aβ aggregates in the brain can 
induce the activation of microglia, resulting in the synthesis of proinflammatory 
mediators, which further can stimulate astrocytic expression of YKL-40.30 Higher 
concentrations of YKL-40 were found in patients with prodromal AD, MCI and 
full-blown AD.31,32 when measured in CSF. Measuring YKL-40 in plasma can lead 
to a less invasive method of measuring inflammation related to AD in healthy 
subjects. YKL-40 was measured in plasma samples using the CHI3L1 Human ELISA 
Kit (Thermo Fisher). 

Apolipoprotein E Genotyping  Apolipoprotein E (ApoE) genotyping was 
performed after isolating DNA from EDTA blood. DNA was isolated using QIAamp 
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DNA Blood MINI kit after which a polymerase chain reaction (PCR) technique was 
applied on the clean DNA. A sequential analysis (according to the Sanger method) 
than determined the ApoE genotype. One or 2 ApoE ε4 alleles classified subjects 
as ApoE ε4 carriers, when no ApoE ε4 alleles were present a subject was classified 
as noncarrier.

Cognitive assessments and questionnaires  The NeuroCart is a bat-
tery of CNS tests used to assess a wide range of CNS domains.33 All measurements 
were performed in a quiet room with ambient illumination. Per session there 
was only one participant in the room. The following tests were performed using 
the NeuroCart: the Adaptive tracking test to measure attention and eye-hand 
coordination,34 the Face encoding and Recognition task (FACE) to measure visual 
memory,35 the Visual Verbal Learning Test (VVLT, 30 words) to measure the whole 
scope of learning behavior (i.e. acquisition, consolidation, storage and retriev-
al),36 the Milner Maze test (MMT) evaluated visuospatial working memory,37 the 
N-Back test was assessed to evaluate working memory,38 the Sustained Attention 
to Response Task (SART) as a vigilance task,39 finger tapping for motor fluency,40 
saccadic and smooth eye movement.41 were also measured.

21-Leads electro encephalography (EEG).42 recordings were made for all subjects 
to monitor (abnormal) brain activity. An 8-minute resting EEG was performed 
while the subjects alternated 4 minutes with their eyes closed and 4 minutes with 
their eyes opened while resting in a chair. Subjects face a featureless wall and 
are instructed not to stare, not to move their head and eyes, and to suppress eye 
blinks. The Refa-40 (TMSi B.V., the Netherlands) recording system and 32-lead 
cap (TMSi B.V.) have been used. The five standard EEG band have been analyzed 
Delta (1.5 < 6.0), Theta (6.0 < 8.5), Alpha (8.5 < 12.5), Beta (12.5 < 30.) and Gamma 
(30.0 < 40.0).

The clinical dementia rating scale (CDR).43 was assessed via a semi-structured 
interview with the participating subject only, to rate impairment in six differ-
ent cognitive categories (memory, orientation, judgement and problem solving, 
community affairs, home and hobbies and personal care). To rate impairment 
in more complex daily activities the Instrumental Activities of Daily Living 
Scale (IADL).44 was assessed. Both questionnaires were administered by trained 
neuropsychologists.

Sample size justification  In this study we selected elderly at the age of 65 
years old and higher of which at least a hundred above the age of 70. According 
to Jansen et al., (2015).19 we expected at least 19% amyloid pathology in a 65+ 
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population and 23% amyloid pathology among cognitively healthy 70+ elderly 
subjects. We expected more responsiveness for study participation from elderly 
between the age of 65 till 70, based on our experience with previous studies with 
participants in this age range. Participants in this age range have participated in 
studies at CHDR before and are therefore registered in our local database and have 
received emails about this study. A higher number of participants within the age 
range 65-70 are present in the database compared to older elderly. Therefore, we 
aimed to enroll at least 100 subjects of >70 years old in this study as prevalence of 
amyloid pathology is expected to be higher in this age group. This would result in 
an estimated 23 Aβ positive subjects versus approximately 77 Aβ negative subjects 
in the >70 years old age group. Along with approximately 19 Aβ positive subjects 
versus 81 Aβ negative subjects in the age group 65-70, we expected to identify at 
least 42 Aβ positive healthy elderly subjects among the total group of 200. Based 
on previous comparable studies, these numbers were considered appropriate for 
a correlational study aimed at defining an algorithm.45,46

Statistical analysis  Statistical analyses were performed using Python 
(version 3.7.3) and the sklearn package (version 0.21.3). To build a classification 
model that could differentiate between Aβ positive subjects and Aβ negative 
subjects, all parameters such as plasma data, genetic information, cognitive as-
sessments, level of education, age and gender were included as features.

When a classifier contains more features than can be justified by the observed 
data, there is a risk of the model overfitting. Overfitting occurs when a classifier 
corresponds too closely to a particular subpopulation and cannot be generalized 
to the wider population. Two methods were used to reduce the feature space, 
Variance Inflation Factor (VIF) and Penalized Regression. VIF identified the 
pairs of highly correlated features and subsequently removes one of the features 
from the classifier. Penalized Regression was applied to the logistic regression 
classifier to shrink the coefficients of features that were less predictive of the 
outcome.

For this study, we reviewed the performance of four classifiers – Ridge-penal- 
ized Logistic Regression, Random Forest Classifier, Support Vector Machine 
Classifier, and k-Nearest Neighbours Classifier — on four datasets – a dataset 
with all features, only the VIF-selected features, all features except the EEG fea-
tures and all features except the genotyping feature. To ensure that the models 
were not under- or overfitting, we performed 5-fold stratified cross-validation. 
This data partitioning approach ensures that we built a more generalized model 
that can perform well when presented with unseen data. The 5-fold stratified 

375_Samantha_15.indd   92375_Samantha_15.indd   92 02/03/2023   16:2302/03/2023   16:23



Chapter IV – Identifying Alzheimer pathology in healthy elderly

93

cross-validation randomly samples the data into 5 folds of approximately equal 
proportions. In this case, there were 30 or 31 subjects per fold. Each fold contained 
the same ratio of Aβ positive and Aβ negative subjects. The model was trained on 
4 folds of data and validated on the 5th fold. The cross-validation process was 
repeated 5 times, with each of the subsamples used exactly once as the validation 
data. The validation results were averaged over each iteration to estimate the 
model’s predictive performance. We selected the optimal classifier by selecting 
the classifier with the highest sensitivity and specificity. If the sensitivity and 
specificity scores were identical between classifier, we then choose the classifier 
with the highest F1 score.

Results
Demographic and Clinical characteristics  Two hundred healthy 
elderly subjects were enrolled in this study of which 189 were included in the CSF 
and plasma analyses due to CSF availability. The 11 missing CSF samples were due 
to absent CSF flow during lumbar puncture. The 189 CSF samples were analyzed on 
Aβ42 using the Elecsys method and 55 healthy elderly had CSF Aβ42 levels consistent 
with AD (Aβ < 1000 pg /mL). Of the 189 subjects with CSF availability, 154 subjects 
were included in the per protocol analyses. Plasma analyses were missing for 27 
subjects due to analytic errors. NeuroCart data was incomplete for 8 subjects. 
Forty-nine subject were female (68.2% were male and 31.8% female). Their mean 
age was 72.1 years (range: 65-86), with a median MMSE score of 29 (range 25-30), 
and GDS score of 0 (median, range 0-5). Self-reported memory performance and 
daily functioning were assessed using CDR and IADL scores with averaged scores 
of 0 in all subjects. Of the 154 elderly, 42 (27.3%) were Aβ positive for AD (average 
age 73.7.65-83 See Table 1).

Data analysis  For each dataset and classifier, we calculated the sensitivity, 
specificity, precision and F1 score. The VIF-selected features dataset and logistic 
regression classifier achieved a sensitivity and specificity of 70.8% and 89.2%. 
The receiver operating characteristic (ROC) curve showed an AUC of 65% (±0.10) 
see Figure 11. However, the mean performance for all four classifiers (for the VIF-
selected features dataset) was 68.0% sensitivity and 76.4% specificity. The lowest 
sensitivity and specificity for the worse performing model (the random forest) 
was 63.6% and 70.6% respectively. While we found similar performance when ap-
plying different classifiers, the logistic regression showed the highest sensitivity 
and specificity for the classification task. 
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The best performing classifier, logistic regression, included 32 of the 90 parame-
ters measured in this study. Results of the logistic regression algorithm analyses 
conclude that the best prediction of Aβ positivity /negativity in CSF in an elderly 
subject is made by combining the 32 parameters measured with the NeuroCart 
(table 2). The algorithm included the following 7 CNS tests and 1 plasma analysis: 
MMT, VVLT, finger tapping, N-Back, SART, Face, EEG, and the plasma biomarker 
YKL-40. Sex was also included. We can use the logistic regression equation to cal-
culate the probability (between 0 to 1) of a new subject being classified as amyloid 
positive or negative. If the subject is given a probability greater than 0.5, they will 
be classified as amyloid positive.

Table 1	 Demographics, clinical characteristics and biomarker 
information of the study population.

Characteristics Amyloid status CSF

Total group, n=154 Aβ positive, n=42 (27.3%) Aβ negative, n=112 
(72.7%)

Age, yr 72.1 [65;86] 73.7 [65;85] 71.4 [65;86]

Female gender 49 (31.8 %) 13 (30.6%) 36 (32.1%)

MMSE 29 (25-30) 29 (25-30) 29 (25-30)

GDS 0 (0-5) 1 (0-5) 0 (0-5)

CDR 0.0 (0-0.5) 0.0 (0) 0.0 (0-0.5)

IADL 0.0 (0) 0.0 (0) 0.0 (0)

Education* 6 (1-7) 6 (1-7) 6 (1-7)

ApoE ε4 /e4 (n=150) 5 (3.3 %) 5 (100%) 0 (0%)

ApoE at least one e4 allele 
(n=150)

39 (26 %) 18 (42.9%) 21 (18.8%) 

Continuous data are presented as mean [min; max] and dichotomous data as n (%). MMSE: Mini Mental State 
Examination; GDS: Geriatric Depression Scale; CDR: Clinical Dementia rating Scale; IADL: Instrumental Activity 
of Daily Living scale; ApoE ε4: apolipoprotein E 4. *: Level of education defined as 1) lower than primary school, 
2) primary school, 3) less than lower professional education, 4) Lower professional education, 5) Mid-level 
professional education, 6) High school /college, 7) university.

As EEG- and genotyping-based assessments are time and resource consuming 
tasks, we built two additional classification models excluding these features. 
By excluding the EEG features, the highest sensitivity and specificity achieved 
was 70.6% and 73.5%, respectively using ridge-penalized logistic regression 
classifier. Hence the exclusion of the EEG features had little to no effect on the 
sensitivity of the classifier but lead to a 15 percentage points drop in specificity 
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compared to the best performing logistic regression model. When omitting the 
genotyping features (the ApoE ε4 status), the best performing model was the 
k-Nearest Neighbour. This model achieved a sensitivity and specificity of 70.4% 
and 72.3% respectively. Like the classifier with no EEG features, the exclusion of 
the genotyping data had little to no effect on the classifier’s sensitivity, while the 
specificity did drop by 16 percentage points compared to the best performing 
logistic regression model.

Table 2	 NeuroCart activities and parameters included in the algorithm*

Activity Cognitive domain Parameter
Visual Verbal 
Learning Test  
(VVLT, 30 words)

Memory Delayed word recall number correct
Immediate word recall number doubles, 3e trial
Immediate word recall number incorrect 1st trial
Delayed word recall number doubles
Immediate word recall number doubles, 2e trial
Immediate word recall number doubles, 1st trial
Immediate word recall number incorrect 3e trial
Delayed word recognition number incorrect
Immediate word recall number incorrect 2e trial

Electro- 
encephalography 
(EEG)

Electrical brain 
activity

Delta-power Fz-Cz (eyes open)
Theta-power Fz-Cz (eyes closed)
Beta-power Fz-Cz (eyes open)
Gamma-power Pz-O2 (eyes open)
Delta-power Pz-O2 (eyes open)
Gamma-power Pz-O1 (eyes closed)
Alpha-power Fz-Cz (eyes open)
Theta-power Pz-O1 (eyes open)
Gamma-power Fz-Cz (eyes open)
Alpha-power Pz-O1 (eyes closed)

Finger Tapping Motor activation 
and fluency

Standard deviation of the mean (dominant hand)

Sustained Attention to 
Response Task (SART)

Vigilance Total omission errors
Post error slowing

N-Back Working memory Number correct – number incorrect /total for one back
Milner Maze test 
(MMT)

Spatial working 
memory

Reversed total illegal moves
Immediate total repeat errors
Immediate total illegal moves
Delayed total illegal moves
Reversed total repeat errors
Delayed total repeat errors

Face encoding and 
recognition task 
(Face)

Episodic memory Number incorrect

* Top activities /parameters have more impact on the algorithm than the bottom activities in this table.
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When aiming for 50 healthy elderly with Aβ CSF levels consistent with AD, 220 
elderly must undergo the (non-invasive) tests included in the algorithm. Of these 
220 subjects, the algorithm will predict 66 elderly with Aβ positive levels in CSF, 
50 of which will be true positives (Aβ CSF levels consistent with AD), the remain-
ing 16 will be false positive (Aβ negative). However, 21 Aβ positive subjects will 
be mislabeled as Aβ negative (see Table 3). This algorithm would allow for a 70% 
reduction of lumbar punctures needed to identify subjects with abnormal CSF 
Aβ levels consistent with AD, meaning 66 lumbar punctures instead of 220 (see 
Figure 2).

Table 3	 Sensitivity /specificity table of the logistic regression algorithm

Predicted Aβ + Predicted Aβ - Total
Actual Aβ + 50 21 71
Actual Aβ - 16 133 149
Total 66 154 220

Sensitivity & specificity table calculated with a sensitivity of 70.82% and specificity of 89.25%. When aiming 
for 50 positively predicted Aβ positive subjects, 66 will be predicted as such. Therefore 16 subjects will falsely be 
predicted as being Aβ positive and 21 will falsely be predicted as being Aβ negative.

Figure 1	 Receiver Operating Characteristic (ROC) metric to evaluate the 
logistic regression output quality using 5-fold cross-validation. 
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Discussion
This study aimed to develop an algorithm based on less-invasive (plasma) 
biomarkers for AD pathology, to be used for pre-selection of subjects who are 
suspected of lowered, abnormal, CSF Aβ levels (‘Aβ positive subjects’) consistent 
with the presence of AD pathology. The algorithm includes sex, 7 cognitive tests 
measured with the NeuroCart (MMT, VVLT, finger tapping, N-Back, SART, Face 
and EEG) and one plasma biomarker (YKL-40) and was successful in predicting 
CSF Aβ+ in healthy elderly with a sensitivity of 70.82% and specificity of 89.25%. 
When using this algorithm, 70% fewer lumbar punctures will have to be per-
formed to enroll subjects based on lowered Abeta CSF. The overall subject burden 
and costs of trials will reduce as fewer lumbar punctures will need to be per-
formed. This may also increase subject’s willingness to participate.

Four classification algorithms (Random Forest, Logistic Regression, Support 
Vector Machine Classifier and a K-nearest neighbors classifier) were used to clas-
sify Aβ positivity. A comparison of classification models is necessary to identify 
a model that best fits the data. Logistic regression outperformed the other algo-
rithms in terms of accuracy, precision and recall. The logistic regression model is 
ideal for Aβ positivity classification as it provides an estimation of the association 
between the predictor and the outcome. Palmqvist et al., (2019).47 and Jang et 
al., (2019).48 have also demonstrated the use of logistic regression to reliably di-
chotomize amyloid status using plasma. This further supports the notion that 
logistic regression can use multimodal non-invasive cognitive and blood-based 
biomarkers to stratified enrollment of subjects with preclinical AD into clinical 
trials. In this study, 200 healthy elderly were included of which 154 were eventu-
ally included in the model. This is a satisfactory amount of subjects to support the 
conclusion of this study. For the logistic regression classifier, we have selected 0.5 
to be the probabilistic threshold for classifying a patient as Aβ+ or Aβ-. Using the 
ROC curve (Figure 1), a researcher may choose a different threshold depending 
on what they choose to prioritize, the true positive rate (sensitivity) or the false 
positive rate (1-specificity)).

Approximately 50 subjects is an acceptable number for a Proof-Of-Concept 
study of a novel compound, 20-80 subjects is common in phase one trials accord-
ing to the FDA.49 Based on the 27.3% Aβ positivity in our study we estimate that 
in a new group of 220 healthy elderly, 71 subjects will be Aβ+. The algorithm will 
identify 66 subjects as having Aβ+CSF. Due to the sensitivity of 70.82%, 21 Aβ+ 
subjects would not be identified as such. Also, 16 Aβ-subjects would wrongfully 
be identified as Aβ+ which results in 50 truly Aβ+ subjects. Using the algorithm 
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would reduce the number of lumbar punctures in healthy elderly by 70%, i.e., 66 
lumbar punctures instead of 220. As this algorithm is designed to select healthy 
elderly with Aβ CSF concentrations consistent with AD, having a 100% accuracy 
is of no importance, contrary to when using a test or an algorithm for diagnos-
tic purposes. We would not perform unnecessary lumbar punctures in 89.25% 
patients with an increased chance of being Aβ-. In our opinion, this decrease in 
overall burden justifies the use of such an algorithm for subject selection for trial.

Figure 2	 Visualization of reduction of lumbar punctures using the 
algorithm.

Other studies developed algorithms focused on predicting the progression to 
dementia due to AD,50,51 the classification of different stages of AD,52,53 and for 
the diagnosis of AD in the early stages.54 These algorithms were developed for 
diagnostic purpose rather than for clinical trial participation, such as the one 
described in our study. Also, the data used in these algorithms were collected in 
clinical settings such as behavioral observation, clinical presentation and MRI 
data. When selecting healthy elderly for clinical trial participation, this infor-
mation is commonly not available. Others have tried to identify healthy subjects 
with amyloid pathology using considerably burdensome and costly MRI data.55,56 
Khan et al., (2018) suggests an algorithm for preclinical diagnosis of AD based 
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on a combination of three AD biomarkers: neuroimaging, genetic markers and 
abnormalities in CSF Aβ1-42, t-tau and p-tau (the gold standard for the diagnosis 
of AD). However, as mentioned before, data from neuroimaging is not common-
ly available and far more costly and time consuming than the tests used in our 
algorithm. Reduction of the number of lumbar punctures performed in healthy 
subjects is of great value to increase participation willingness in healthy elderly 
and to lower overall subject burden. A comparable study to this current study 
showed that Aβ positivity (confirmed by either CSF or PET-MRI) can be predicted 
by a combination of demographic variables, ApoE status, baseline cognition and 
24-month follow up rates.57 A 24-month follow up is usually not available and 
gathering follow up information on healthy subjects before the start of a clinical 
trial is too time consuming.

Accumulation of Aβ plaques in the brain associated with lowered levels of Aβ 
in CSF is still seen as the main pathological cause of AD. Various clinical trials 
have therefore focused on reducing Aβ plaques in the brain. Where reducing Aβ 
has been successful, lowering the prevalence of dementia due to AD has not been a 
result. Huang et al., (2020) reported 9 failed phase 3 anti-amyloid trails since 2016 
with 6 different compounds.58 Two of these trails were performed in subjects with 
preclinical AD, both with BACE inhibitors.17,18 and both were discontinued due 
to either toxicity or lack of efficacy. Researchers claim that interfering early in 
the disease process will probably result in higher efficacy than when the clinical 
disease process has already started, evidenced by a diagnosis of preclinical AD or 
MCI. Looking at the inclusion criteria of the aforementioned studies shows that 
healthy elderly with CSF Aβ levels consistent with AD have been selected for par-
ticipation. Healthy elderly are defined as having a clinical interview, namely the 
clinical dementia rating scale (CDR) of 0. Using the CDR total score is well accepted 
in clinical research and is widely used for clinical diagnosis of AD.59 Still, very 
subtle cognitive changes are not detected using this crude screening tool. Using 
the algorithm proposed in this article will help to better select trial participants 
by including diverse cognitive assessments instead of the more general cognitive 
score of the CDR.

Shifting focus from invasive measurements (CSF, PET-MRI) to blood-based 
biomarkers for AD has been a major topic in research as new technics have been 
developed claiming to be ultrasensitive to detecting AD related proteins.24 
Using a blood test would make it more accessible to diagnose patients but also 
to identify possible trial participants. Challenges in the use of blood-based AD 
biomarkers are the different biological system compared to the CSF system, use 
of different analytical methods (ELISA, Simoa, etc.), and the specificity for AD of 
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these biomarkers.27 Specifying pre-AD stages with the use of blood-based bio-
markers has yet to be standardized. The preclinical AD algorithm created in this 
study includes only one blood-based biomarker (YKL-40) and the limitations of 
using blood-based biomarkers are therefore minor. Use of a different analytical 
method may alter the outcome of the analysis slightly and therefore could have 
led to a different composition of the algorithm. This should be kept in mind when 
comparing the outcome of this study to those of other studies. The combination 
of blood-based biomarkers with genetic information and cognitive assessments 
appears to be a powerful tool in preselection of preclinical AD subjects in clinical 
trials.

Four out of the seven NeuroCart tasks that are included in the algorithm are 
memory tasks. Loss of memory early on in the disease process is common for 
(amnestic) MCI and often lead to the AD diagnosis.60 Especially the visual verbal 
learning task is important for the algorithm to differentiate between preclinical 
AD and healthy elderly. Visual and verbal memory problems are common in AD.61 
and have also been reported in preclinical AD.62,63

Reducing the number of lumbar punctures in healthy subjects and the 
additional benefits for clinical research must be weighed against the ethical con-
sequences of identifying healthy subjects with an elevated risk of developing AD, 
which at this moment is an untreatable disease. Approximately 53% of subjects 
fulfilling the criteria of preclinical AD will actually develop MCI or AD.64 When 
selecting trial subjects based on specific biomarkers, these subjects will become 
aware that they have CSF Aβ levels consistent with AD. The development of Aβ 
plaques in the brain and eventually developing AD can be a 20- to 30-year long 
process.65 This is a substantial amount of time to be concerned about a disease that 
one might develop. Knowledge about predispositions to develop a disease can 
even have financial consequences and reduce health benefits as people might not 
be hired for certain jobs and health insurances may increase insurance premium. 
Nevertheless, studying cognitively healthy elderly is important as treatment in 
a pre-disease phase might prevent or retard the process of developing clinically 
overt Alzheimer’s dementia. With the ultimate goal of preventing AD, the need to 
include preclinical subjects in clinical studies is vital.

Limitations
Among the limitations is that a logistic algorithm was used which cannot in-
corporate incomplete datasets.66 Hence, the model will fail to predict a class if 
a subject is missing a single feature. Missing data is not uncommon in research, 
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especially when cognitive tests are performed. Benefits of using this model how-
ever proceed this limitation. Inconclusiveness about the validity of blood based 
biomarkers can also be regarded as a limitation of this study. This study only 
includes one plasma biomarker which reduces the inconvenience. The ethical 
consequences of using an algorithm like ours in healthy elderly should always be 
taken into account and could be regarded as a limitation. The study population is 
a relatively highly educated group. This might not be completely representative 
with regards to the cognitive performance of an average population.

Conclusion
This algorithm would allow for a 70% reduction of lumbar punctures needed to 
identify subjects with abnormal CSF Aβ levels consistent with AD. We have iden-
tified an algorithm that is able to preselect healthy elderly who are more likely 
to have Aβ CSF levels consistent with AD. Using this algorithm, fewer lumbar 
punctures will have to be performed when selecting subjects for clinical trials. 
Use of this algorithm can be expected to lower overall subject burden and costs of 
identifying subjects with preclinical AD and therefore of total study costs.
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