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Spatial populations with seed-bank:
well-posedness, duality and equilibrium*

Andreas Greven† Frank den Hollander‡ Margriet Oomen§

Abstract

We consider a system of interacting Fisher-Wright diffusions with seed-bank. Individu-
als live in colonies and are subject to resampling and migration as long as they are
active. Each colony has a structured seed-bank into which individuals can retreat
to become dormant , suspending their resampling and migration until they become
active again. As geographic space labeling the colonies we consider a countable
Abelian group G endowed with the discrete topology. The key example of interest is
the Euclidean lattice G = Zd, d ∈ N. Our goal is to classify the long-time behaviour
of the system in terms of the underlying model parameters. In particular, we want
to understand in what way the seed-bank enhances genetic diversity. We introduce
three models of increasing generality, namely, individuals become dormant: (1) in the
seed-bank of their colony; (2) in the seed-bank of their colony while adopting a random
colour that determines their wake-up time; (3) in the seed-bank of a random colony
while adopting a random colour. The extension in (2) allows us to model wake-up times
with fat tails while preserving the Markov property of the evolution. The extension in
(3) allows us to place individuals in different colony when they become dormant. For
each of the three models we show that the system of continuum stochastic differential
equations, describing the population in the large-colony-size limit, has a unique strong
solution. We also show that the system converges to a unique equilibrium depending
on a single density parameter that is determined by the initial state, and exhibits
a dichotomy of coexistence (= locally multi-type equilibrium) versus clustering (=
locally mono-type equilibrium) depending on the parameters controlling the migration
and the seed-bank. The seed-bank slows down the loss of genetic diversity. In model
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(1), the dichotomy between clustering and coexistence is determined by migration
only. In particular, clustering occurs for recurrent migration and coexistence occurs
for transient migration, as for the system without seed-bank. In models (2) and (3),
an interesting interplay between migration and seed-bank occurs. In particular, the
dichotomy is affected by the seed-bank when the wake-up time has infinite mean. For
instance, for critically recurrent migration the system exhibits clustering for finite
mean wake-up time and coexistence for infinite mean wake-up time. Hence, at the
critical dimension for the system without seed-bank, new universality classes appear
when the seed-bank is added. If the wake-up time has a sufficiently fat tail, then the
seed-bank determines the dichotomy and migration has no effect at all. The presence
of the seed-bank makes the proof of convergence to a unique equilibrium a concep-
tually delicate issue. By combining duality arguments with coupling techniques, we
show that our results also hold when we replace the Fisher-Wright diffusion function
by a more general diffusion function, drawn from an appropriate class.

Keywords: Fisher-Wright diffusion; resampling; migration; seed-bank; duality; equilibrium;
coexistence versus clustering.
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1 Background and outline

1.1 Background and goals

In populations with a seed-bank, individuals can become dormant and stop reproduc-
ing themselves, until they become active and start reproducing themselves again. In
[BGCEK15] and [BGCKWB16], the evolution of a population evolving according to the
Fisher-Wright model with a seed-bank was studied. In this model individuals are subject
to resampling and can move in and out of a seed-bank. While in the seed-bank they
suspend resampling, i.e., the seed-bank acts as a repository for the genetic information
of the population. Individuals that do not reside in the seed-bank are called active,
those that do are called dormant. In the present paper we extend the single-colony
Fisher-Wright model with seed-bank introduced in [BGCKWB16] to a multi-colony setting
in which individuals live in different colonies and move between colonies. In other words,
we introduce spatialness.

Seed-banks are observed in many taxa, including plants, bacteria and other micro-
organisms. Typically, they arise as a response to unfavourable environmental conditions.
The dormant state of an individual is characterised by low metabolic activity and in-
terruption of phenotypic development (see e.g. Lennon and Jones [LJ11]). After a
varying and possibly large number of generations, dormant individuals can be resusci-
tated under more favourable conditions and reprise reproduction after having become
active. This strategy is known to have important implications for population persis-
tence, maintenance of genetic variability and stability of ecosystems. It acts as a buffer
against evolutionary forces such as genetic drift, selection and environmental variability.
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The importance of this evolutionary trait has led to several attempts to model seed-
banks from a mathematical perspective, see e.g. [KKL01], [BGCKS13], [GCAvWE+14],
[BBGCWB19]. In [BGCKWB16] it was shown that the continuum model obtained by
taking the large-colony-size limit of the individual-based model with seed-bank is the
Fisher-Wright diffusion with seed-bank. Also the long-time behaviour and the genealogy
of the continuum model with seed-bank were analysed in [BGCKWB16].

In the present paper we consider a spatial version of the continuum model with
seed-bank, in which individuals live in colonies, each with their own seed-bank, and
are allowed to migrate between colonies. Our goal is to understand the change in
behaviour compared to the spatial model without seed-bank. The latter has been the
object of intense study. A sample of relevant papers and overviews is [Shi80], [Daw93],
[DG93], [DGV95], [DG96], [EF96], [HS98], [Hol06], [DGdH+08], [GdHKK14]. We expect
the presence of the seed-bank to affect the long-time behaviour of the system not only
quantitatively but also qualitatively. To understand how this comes about, we must find
ways to deal with the richer behaviour of the population caused by the motion in and
out of the seed-bank. Earlier work on a spatial model with seed-bank, migration and
mutation was carried out in [dHP17], where the probability to be identical by decent for
two individuals drawn randomly from two colonies was computed as a function of the
distance between the colonies.

It has been recognised that qualitatively different behaviour may occur when the
wake-up time in the seed-bank changes from having a thin tail to having a fat tail
[LJ11]. One challenge in modelling seed-banks has been that fat tails destroy the Markov
property for the evolution of the system. A key idea of the present paper is that we can
enrich the seed-bank with internal states – which we call colours – to allow for fat tails
and still preserve the Markov property for the evolution. We will see that fat tails induce
new universality classes.

The main goals of the present paper are the following:

(1) Identify the typical features of the long-time behaviour of populations with a seed-
bank. In particular, prove convergence to equilibrium, and identify the parameter
regimes for clustering (= convergence towards locally mono-type equilibria) and
coexistence (= convergence towards locally multi-type equilibria).

(2) Identify the role of finite versus infinite mean wake-up time. Identify the critical
dimension in case the geographic space is Zd, d ≥ 1, i.e., the dimension at which
the crossover between clustering and coexistence occurs for migration with finite
variance.

(2a) Show that if the wake-up time has finite mean, then the dichotomy between
coexistence and clustering is controlled by the migration only and the seed-
bank has no effect. In particular, clustering prevails when the symmetrised
migration kernel is recurrent while coexistence prevails when it is transient.
This is the classical dichotomy for populations without seed-bank [CG94]. The
critical dimension is d = 2.

(2b) Show that if the wake-up time has infinite mean with moderately fat tails,
then the dichotomy is controlled by both the migration and the seed-bank. In
particular, the parameter regimes for clustering and coexistence reveal an
interesting interplay between rates for migration and rates for exchange with
the seed-bank. The critical dimension is 1 < d < 2.

(2c) Show that if the wake-up time has infinite mean with very fat tails, then the
dichotomy is controlled by the seed-bank only and the migration has no effect.
The critical dimension is d = 1.
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We focus on the situation where the individuals can be of two types. The extension to
infinitely many types, called the Fleming-Viot measure-valued diffusion, only requires
standard adaptations and will not be considered here (see [DGV95]). Also, instead of
Fisher-Wright resampling we will allow for state-dependent resampling, i.e., the rate of
resampling in a colony depends on the fractions of the two types in that colony. In what
follows we only work with continuum models, in which the components represent type
frequencies in the colonies labelled by a discrete geographic space.

The techniques of proof that we use include duality, moment relations, semigroup
comparisons and coupling. These techniques are standard, but have to be adapted to the
fact that individuals move into and out of seed-banks. Since there is no resampling and
no migration in the seed-bank, the motion of ancestral lineages in the dual process looses
part of the random-walk structure that is crucial in models without seed-bank. Moreover,
for seed-banks with infinite mean wake-up times, we encounter fat-tailed wake-up time
distributions in the dual process, and we need to deal with lineages that are dormant
most of the time and therefore are much slower to coalesce. The coupling arguments
also change. Already in a single colony, if the seed-bank has infinitely many internal
states, then we are dealing with an infinite system in which the manipulation of Lyapunov
functions and the construction of successful couplings from general classes of initial
states is hard. In the multi-colony setting this becomes even harder, and conceptually
challenging issues arise.

1.2 Outline

In Section 2 we introduce three models of increasing generality, establish their
well-posedness via a martingale problem, and introduce their dual processes, which
play a crucial role in the analysis. In Section 3 we state our main results. We focus on
the long-time behaviour, prove convergence to equilibrium, and establish a dichotomy
between clustering and coexistence. We show that this dichotomy is affected by the
presence of the seed-bank, namely, the dichotomy depends not only on the migration
rates, but can also depend on the relative sizes of the active and the dormant population
and their rates of exchange. In particular, if the dormant population is much larger
than the active population, then the residence time in the seed-bank has a fat tail that
enhances genetic diversity significantly.

Sections 4–7 are devoted to the proofs of the theorems stated in Sections 2–3. In
Appendix A we give the derivation of the single-colony continuum model from the
single-colony individual-based Fisher-Wright model in the large-colony-size limit. In the
individual-based model active individuals exchange with dormant individuals, i.e., for
each active individual that becomes dormant a dormant individual becomes active. In
Appendix B we look at the continuum limit of the single-colony individual-based Moran
model in which active and dormant individuals no longer exchange state but rather
change state independently. We show that change instead of exchange does not affect
the long-time behaviour. Both Appendices A and (B) underpin the generality of the three
models under investigation. Appendices C and D contain the proof of technical lemmas
that are needed in the proof of the convergence to equilibrium.

In three upcoming companion papers [GHO20b], [GHO20c], [GHO20a] we deal with
three further aspects:

(I) In [GHO20b] we establish the finite-systems scheme, i.e., we identify in the co-
existence regime how a finite truncation of the system behaves as both the time
and the truncation level tend to infinity, properly tuned together. This underlines
the relevance of systems with an infinite geographic space and a seed-bank with
infinitely many colours for the description of systems with a large finite geographic
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space and a seed-bank with a large finite number of colours. We show that there
is a single universality class for the scaling limit, represented by a Fisher-Wright
diffusion whose volatility constant is reduced by the seed-bank. We show that
if the wake-up time has finite mean, then the scaling time is proportional to the
geographical volume of the system, while if the wake-up time has infinite mean,
then the scaling time grows faster than the geographical volume of the system.
We also investigate what happens for systems with a large finite geographic space
and a seed-bank with infinitely many colours, where the behaviour turns out to be
different.

(II) In [GHO20c] we consider the special case where the colonies are organised in a
hierarchical fashion, i.e., the geographic space is the hierarchical group ΩN of
order N . We identify the parameter regime for clustering for all N < ∞, and
analyse the multi-scale behaviour of the system in the hierarchical mean-field
limit N →∞ by looking at block averages on successive hierarchical space-time
scales. Playing with the migration kernel, we can choose the migration to be
close to critically recurrent in the sense of potential theory. By letting N → ∞
we can approach the critical dimension, so that the migration becomes similar
to migration on the two-dimensional Euclidean geographic space. With the help
of renormalisation arguments we show that, close to the critical dimension, the
scaling behaviour on large space-time scales is universal.

(III) In [GHO20a] we identify the pattern of cluster formation in the clustering regime
(= how fast mono-type clusters grow in time) and describe the genealogy of the
population. The latter provides further insight into how the seed-bank enhances
genetic diversity.

In these papers too we will see that the seed-bank can cause not only quantitative but
also qualitative changes in the scaling behaviour of the system.

2 Introduction of the three models and their basic properties

In Section 2.1 we give a formal definition of the three models of increasing generality.
In Section 2.2 we comment on their biological significance. In Section 2.3 we establish
their well-posedness via a martingale problem (Theorem 2.4). In Section 2.4 we introduce
the associated dual processes and state the relevant duality relations (Theorems 2.5,
2.8 and 2.10). In Section 2.5 we use these duality relations to formulate a criterion for
clustering versus coexistence (Theorems 2.11 and 2.13).

2.1 Migration, resampling and seed-bank: three models

In this section we extend the model for a population with seed-bank from [BGCKWB16]
to three models of increasing generality for spatial populations with seed-bank. In each
of the three models, we consider populations of individuals of two types – either ♥ or
♦ – located in a geographic space G that is a countable Abelian group endowed with
the discrete topology. In each of the three models, the population in a colony consist of
an active part and a dormant part. The repository of the dormant population at colony
i ∈ G is called the seed-bank at i ∈ G. Individuals in the active part of a colony i ∈ G can
resample, migrate and exchange with a dormant population. Individuals in the dormant
part of a colony i ∈ G only exchange with the active population. An active individual that
resamples chooses uniformly at random another individual from its colony and adopts its
type. (Alternatively, resampling may be viewed as the active individual being replaced
by a copy of the active individual chosen. Because individuals carry a type and not a
label, this gives the same model.) When an active individual at colony i ∈ G migrates, it
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chooses a parent from another colony j ∈ G and adopts its type. In each of the three
models the migration is described by a migration kernel a(·, ·), which is an irreducible
G×G matrix of transition rates satisfying

a(i, j) = a(0, j − i) ∀ i, j ∈ G,
∑
i∈G

a(0, i) <∞. (2.1)

Here, a(i, j) is to be interpreted as the rate at which an active individual at colony
i ∈ G chooses a parent in the active part of colony j ∈ G and adopts its type. An active
individual that becomes dormant exchanges with a dormant individual that becomes
active, drawn uniformly at random from the dormant population. The three models we
discuss in the present paper differ in the way the active population exchanges with the
dormant population. However, in each of the three models the exchange mechanism
guarantees that the sizes of the active and the dormant population stay fixed over time.
The dormant part of the population only evolves due to exchange of individuals with the
active part of the population.

Since we look at continuum models obtained from individual-based models, we are
interested in the frequencies of type ♥ in the different colonies. In Appendix A we
discuss the individual-based models underlying the continuum models described below.
In particular, we show that the continuum models arise as the large-colony-size limit of
the individual-based models.

Remark 2.1 (Notation). Throughout the paper, in evolution equations we use lower case
letters for components and upper case letters for systems of components.

Model 1: single-layer seed-bank. Each colony i ∈ G has an active part A and a
dormant part D. Therefore we say that the effective geographic space is given by
G× {A,D}. For i ∈ G and t ≥ 0, let xi(t) denote the fraction of individuals in colony i of
type ♥ that are active at time t, and yi(t) the fraction of individuals in colony i of type ♥
that are dormant at time t. Then the system is described by the process

(Z(t))t≥0, Z(t) =
(
zi(t)

)
i∈G, zi(t) = (xi(t), yi(t)), (2.2)

on the state space

E = ([0, 1]× [0, 1])
G
, (2.3)

and (Z(t))t≥0 evolves according to the following SSDE:

dxi(t) =
∑
j∈G

a(i, j) [xj(t)− xi(t)] dt+
√
dxi(t)[1− xi(t)] dwi(t) (2.4)

+Ke [yi(t)− xi(t)] dt,

dyi(t) = e [xi(t)− yi(t)] dt, i ∈ G, (2.5)

where (wi(t))t≥0, i ∈ G, are independent standard Brownian motions. As initial state
Z(0) = z we may pick any z ∈ E. The first term in (2.4) describes the migration of
active individuals at rate a(i, j). The second term in (2.4) describes the resampling of
individuals at rate d ∈ (0,∞). The third term in (2.4) together with the term in (2.5)
describe the exchange of active and dormant individuals at rate e ∈ (0,∞).

The state space E equipped with the product topology is a Polish space. The factor
K ∈ (0,∞) is defined by

K =
size dormant population

size active population
, (2.6)
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A D
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Figure 1: The evolution in a single colony in Model 1. Individuals are subject to migration,
resampling and exchange with the seed-bank.

and is the same for all colonies i ∈ G. The factor K turns up in the scaling limit of the
individual-based model when there is an asymmetry between the sizes of the active and
the dormant population (see Appendix A). In Fig. 1 we give a schematic illustration of
the process (2.4)–(2.5). A detailed description of the underlying individual-based model,
as well as a derivation of the continuum limit (2.4)–(2.5) from the individual-based model
following [BGCKWB16], can be found in Appendix A. The continuum limit is also referred
to as the frequency limit or the diffusion limit.

Remark 2.2 (Interpretation of the state space). Note that the state space of the system
can also be written as

E = [0, 1]S, S = G× {A,D}, (2.7)

where A denotes the reservoir of the active population and D the repository of the
dormant population. With that interpretation, the process is denoted by

(Z(t))t≥0, Z(t) =
(
zu(t)

)
u∈S (2.8)

with zu(t) = xi(t) if u = (i, A) and zu(t) = yi(t) if u = (i,D). To analyse the system we
need both interpretations of the state space.

Model 2: multi-layer seed-bank. In this model we give the seed-bank an internal
structure by colouring the dormant individuals with countably many colours m ∈ N0.
Active individuals that become dormant are assigned a colour m that is drawn randomly
from an infinite sequence of colours labeled by N0 (see Fig. 2 for an illustration). As will
be explained in Section 2.2, this captures the different ways in which individuals can
enter into the seed-bank. In Section 2.4 we will show how this internal structure allows
for fat tails in the wake-up times of individuals while preserving the Markov property.

For each i ∈ G a colony now consists of an active part A and a whole sequence
(Dm)m∈N0 of dormant parts, labeled by their colour m ∈ N0. Therefore in this model the
effective geographic space is given by G× {A, (Dm)m∈N0}.

As before, for i ∈ G, let xi(t) denote the fraction of individuals in colony i of type ♥
that are active at time t, but now let yi,m(t) denote the fraction of individuals in colony i
of type ♥ that are dormant with colour m at time t. Then the system is described by the
process

(Z(t))t≥0, Z(t) =
(
zi(t)

)
i∈G, zi(t) = (xi(t), (yi,m(t))m∈N0), (2.9)
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A

D0

D1

Dm

exchange

resampling

K0e0

e0

K1e1

e1

Kmem

em

dmigration

Figure 2: The evolution in a single colony in Model 2. Individuals are subject to migration,
resampling and exchange with the seed-bank, as in Model 1. Additionally, when individuals
become dormant they get a colour and when they become active they loose their colour.

on the state space
E = ([0, 1]× [0, 1]N0)G, (2.10)

which equipped with the product topology is a Polish space. Suppose that active
individuals exchange with dormant individuals with colour m at rate em ∈ (0,∞), and let
the factor Km ∈ (0,∞) capture the asymmetry between the size of the active population
and the m-dormant population, i.e., similarly as in (2.6),

Km =
size m-dormant population

size active population
, m ∈ N0, (2.11)

where Km ∈ (0,∞) is the same for all colonies. Then the process (Z(t))t≥0 evolves
according to the SSDE

dxi(t) =
∑
j∈G

a(i, j) [xj(t)− xi(t)] dt+
√
dxi(t)[1− xi(t)] dwi(t) (2.12)

+
∑
m∈N0

Kmem [yi,m(t)− xi(t)] dt,

dyi,m(t) = em [xi(t)− yi,m(t)] dt, m ∈ N0, i ∈ G, (2.13)

where we have to assume that ∑
m∈N0

Kmem <∞, (2.14)

since otherwise active individuals become dormant instantly. Comparing (2.12)–(2.13)
with the SSDE of Model 1 in (2.4)–(2.5), we see that active individuals migrate (the first
term in (2.12)), resample (the second term in (2.12)), but now interact with a whole
sequence of dormant populations (the third term in (2.12) and the term in (2.13)). See
Fig. 3 for an illustration of the migration. As initial state Z(0) = z we may again take
any z ∈ E.

Remark 2.3 (Interpretation of the state space). Note that, like in Remark 2.2, the state
space of the system can also be written as

E = [0, 1]S, S = G× {A, (Dm)m∈N0
}. (2.15)
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... ...

migration

active

dormant

reproduction

D0 D1 Dm ... ...

migration

reproduction

D0 D1 Dm ... ...

reproduction

D0 D1 Dm

Figure 3: The spatial evolution in Model 2. Each colony has its own seed-bank. Reproduction
occurs within the active population in each colony. Migration occurs between active populations
in different colonies (top layer). Exchange between the active and the dormant population occurs
in each colony (transitions between the top layer and the bottom layer.

With this interpretation, the process is denoted by

(Z(t))t≥0, Z(t) =
(
zu(t)

)
u∈S, (2.16)

with zu(t) = xi(t) if u = (i, A) and zu(t) = yi,m(t) if u = (i,Dm) for m ∈ N0.

Model 3: multi-layer seed-bank with displaced seeds. We can extend the mech-
anism of Model 2 by allowing active individuals that become dormant to do so in a
randomly chosen colony. This amounts to introducing a sequence of irreducible displace-
ment kernels am(·, ·), m ∈ N0, satisfying

am(i, j) = am(0, j − i) ∀ i, j ∈ G, m ∈ N0, sup
m∈N0

∑
i∈G

am(0, i) <∞, (2.17)

and replacing (2.12)–(2.13) by

dxi(t) =
∑
j∈G

a(i, j) [xj(t)− xi(t)] dt+
√
dxi(t)[1− xi(t)] dwi(t) (2.18)

+
∑
j∈G

∑
m∈N0

Kmem am(j, i) [yj,m(t)− xi(t)] dt,

dyi,m(t) =
∑
j∈G

em am(i, j) [xj(t)− yi,m(t)] dt, m ∈ N0, i ∈ G. (2.19)

Here, the third term in (2.18) together with the term in (2.19) describe the switch of
colony when individuals exchange between active and dormant. Namely, with probability
am(i, j) simultaneously an active individual in colony i becomes dormant with colour m
in colony j and a randomly chosen dormant individual with colour m in colony j becomes
active in colony i. The state space E is the same as in (2.10). Also (2.9), (2.11), (2.14)
and (2.16) remain the same.

Initial laws. The evolution equations in (2.4)–(2.5), (2.12)–(2.13) and (2.18)–(2.19)
must be supplemented with a choice of initial state. We draw the initial state according
to a law µ(0) on P(E), the set of probability measures on E, and write µ(t) to denote the
law evolved at time t.
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We use the following classes of initial laws:

T =
{
µ ∈ P(E) : µ is invariant under translations in G

}
,

T erg =
{
µ ∈ T : µ is ergodic under translations in G

}
,

(2.20)

where translation stands for group action, and

T • =
{
µ ∈ T : µ is colour regular

}
,

T erg,• =
{
µ ∈ T erg : µ is colour regular

}
,

(2.21)

where colour regular means that limm→∞Eµ[y0,m] exists, and

I =
{
µ ∈ T : µ is invariant under the evolution

}
. (2.22)

An example of an element that lies in all four classes in (2.20)–(2.21) is µ = δθ, with θ ∈ S
the state whose components are all equal to some θ ∈ [0, 1].

Two key quantities. In Models 2 and 3 we must assume that

χ =
∑
m∈N0

Kmem <∞ (2.23)

in order to make sure that active individuals do not become dormant instantly. Define

ρ =
∑
m∈N0

Km =
size dormant population

size active population
. (2.24)

It turns out that ρ and χ are two key quantities of our system. In particular, we will see
that the long-time behaviour of Model 2 and Model 3 is different for ρ <∞ and ρ =∞.

2.2 Comments

(1) Models 1–3 are increasingly more general. Model 2 is the special case of Model 3
when am(0, 0) = 1 for all m ∈ N0, while Model 1 is the special case of Model 2 when
e0 = e, K0 = K and em = Km = 0 for all m ∈ N. Nonetheless, in what follows we
prefer to state our main theorems for each model separately, in order to exhibit the
increasing level of complexity. In Appendix A we explain how (2.4)–(2.5), (2.12)–
(2.13) and (2.18)–(2.19) arise as the large-colony-size limit of individual-based
Fisher-Wright models.

(2) As geographic space G we allow any countable Abelian group endowed with the
discrete topology. Key examples are the Euclidean lattice G = Zd, d ∈ N, and the
hierarchical lattice G = ΩN , N ∈ N. In this paper we will focus on G = Zd. The
case G = ΩN will be considered in more detail in [GHO20c].

(3) In Model 1, each colony has a seed-bank that serves as a repository for the
genetic information (type ♥ or ♦) carried by the individuals. Because the active
and the dormant population exchange individuals, the genetic information can be
temporarily stored in the seed-bank and thereby be withdrawn from the resampling.
We may think of dormant individuals as seeds that drop into the soil and preserve
their type until they come to the surface again and grow into a plant.

In Model 2, the seed-bank is a repository for seeds with one of infinitely many
colours. The colours provide us with a tool to model different distributions for
the time an individual stays dormant without loosing the Markov property for
the evolution of the system. Tuning the parameters Km and em properly and
subsequently forgetting about the colours, we can mimic different distributions for
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the time an individual stays dormant. This is of biological significance, especially
in colonies of bacteria, where individuals stay dormant for random times whose
distribution is fat-tailed (see [LJ11]).

In Model 3, the seed may even be blown elsewhere. Individuals that displace before
becoming dormant are observed in plant-species as well as in bacteria populations
(see [LJ11]).

(4) In Appendix B we comment on what happens when the rates to become active
or dormant are decoupled, i.e., individuals are no longer subject to exchange but
move in and out of the seed-bank independently. This leads to a Moran model
where the sizes of the active and the dormant population can fluctuate. We will
show that, modulo a change of variables and a short transient period in which the
sizes of the active and the dormant population establish equilibrium, this model
has the same behaviour as the model with exchange.

(5) In (2.4), (2.12) and (2.18) we may replace the diffusion functions dgFW, d ∈ (0,∞),
where

gFW(x) = x(1− x), x ∈ [0, 1], (2.25)

is the Fisher-Wright diffusion function, by a general diffusion function in the class
G defined by

G =
{
g : [0, 1]→ [0,∞) : g(0) = g(1) = 0, g(x) > 0 ∀x ∈ (0, 1), g Lipschitz

}
.

(2.26)
This class is appropriate because a diffusion with a diffusion function g ∈ G stays
confined to [0, 1], yet can go everywhere in [0,1] ([Bre68, Chapter 16, Section 7]).
Picking g 6= dgFW amounts to allowing the resampling rate to be state-dependent,
which is a significant extension from a biological perspective. The resampling rate
in state x equals g(x)/x(1− x), x ∈ (0, 1). An example is the Ohta-Kimura diffusion
function g(x) = [x(1− x)]2, x ∈ [0, 1], for which the resampling rate is equal to the
genetic diversity of the colony [OK73]. In the sequel we allow for general diffusion
functions g ∈ G in all three models, unless stated otherwise.

2.3 Well-posedness

For every law on E, with E depending on the choice of model, we want the SSDE for
Models 1, 2 and 3 to define a Borel Markov process, i.e., the law of the path is a Borel
measurable function of the initial state [Daw93, p.62]. We use a martingale problem, in
the sense of [EK86, p.173], to characterize the law of the SSDE. Let

F =
{
f ∈ Cb(E,R) : f depends on finitely many components

and is twice continuously differentiable in each component
}
.

(2.27)

The generator G of the process acting on F for Model 1 ((2.4)–(2.5)) reads

G =
∑
i∈G

([∑
j∈G

a(i, j)(xj − xi)

]
∂

∂xi
+ g(xi)

∂2

∂x2
i

+Ke (yi − xi)
∂

∂xi
+ e (xi − yi)

∂

∂yi

)
,

(2.28)
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for Model 2 ((2.12)–(2.13)) reads

G =
∑
i∈G

([∑
j∈G

a(i, j)(xj − xi)

]
∂

∂xi
+ g(xi)

∂2

∂x2
i

+
∑
m∈N0

[
Kmem (yi,m − xi)

∂

∂xi
+ em (xi − yi,m)

∂

∂yi,m

])
,

(2.29)

while for Model 3 ((2.18)–(2.19)) the last term in the right-hand side of (2.29) is to be
replaced by∑

i,j∈G

∑
m∈N0

[
Kmem am(j, i) (yj,m − xi)

∂

∂xi
+ em am(i, j) (xj − yi,m)

∂

∂yi,m

]
. (2.30)

Theorem 2.4 (Well-posedness: Models 1–3). For each of the three models the following
holds:
(a) The SSDE has a unique strong solution in C([0,∞), E). Its law is the unique solution
of the (G,F , δu)-martingale problem for all u ∈ E.
(b) The process on E is Feller and strong Markov. Consequently, the SSDE defines a
unique Borel Markov process starting from any initial law on E.

2.4 Duality

For g = dgFW the three models have a tractable dual, which will be seen to play a
crucial role in the analysis of their long-time behaviour. For g 6= dgFW the three models
do not have a tractable dual. However, as we will see later, we can compare them with
models that do and use this comparison to determine their long-time behaviour.

In [BGCKWB16, Sections 2.2 and 3] it was shown that the non-spatial Fisher-Wright
diffusion with seed-bank is dual to the so-called block-counting process of a seed-bank
coalescent. The latter describes the evolution of the number of partition elements in a
partition of n ∈ N individuals, sampled from the current population, into subgroups of
individuals with the same ancestor (i.e., individuals that are identical by descent). The
enriched dual generates the ancestral lineages of the individuals evolving according
to a Fisher-Wright diffusion with seed-bank, i.e., generates their full genealogy. The
corresponding block-counting process counts the number of ancestral lineages left
when traveling backwards in time. In this section we will extend the duality results in
[BGCKWB16] to the spatial setting.

Model 1. Recall that for Model 1, S = G × {A,D} is the effective geographic space.
For n ∈ N the state space of the n-spatial seed-bank coalescent is the set of partitions of
{1, . . . , n}, where the partition elements are marked with a position vector giving their
location. A state is written as π, where

π = ((π1, η1), . . . , (πn̄, ηn̄)), n̄ = |π|,
π` ⊂ {1, . . . , n}, and {π1, · · ·πn̄} is a partition of {1, . . . , n},
η` ∈ S, ` ∈ {1, . . . , n̄}, 1 ≤ n̄ ≤ n.

(2.31)

A marked partition element (π`, η`) is called active if η` = (j, A) and called dormant if
η` = (j,D) for some j ∈ G. The n-spatial seed-bank coalescent is denoted by

(C(n)(t))t>0, (2.32)

and starts from some

C(n)(0) = π(0), π(0) = {({1}, η1), . . . , ({n}, ηn)}, η1, . . . , ηn ∈ S. (2.33)
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t

Figure 4: Picture of the evolution of lineages in the spatial coalescent. The purple blocks depict
the colonies, the blue lines the active lineages, and the red dashed lines the dormant lineages.
Blue lineages can migrate and become dormant, (i.e., become red dashed lineages). Two blue
lineages can coalesce when they are at the same colony. Red dashed dormant lineages first have
to become active (blue) before they can coalesce with other blue and active lineages or migrate.
Note that the dual runs backwards in time. The collection of all lineages determines the genealogy
of the system.

The n-spatial seed-bank coalescent is a Markov process that evolves according to the
following two rules.

1. Each partition element moves independently of all other partition elements accord-
ing the kernel

b(1)((i, Ri), (j, Rj)) =


a(i, j), if Ri = Rj = A,

Ke, if i = j, Ri = A, Rj = D,

e, if i = j, Ri = D, Rj = A,

0, otherwise,

(2.34)

where a(·, ·) is the migration kernel defined in (2.1), K is the relative size of the
dormant population defined in (2.6), and e is the rate of exchange between the
active and the dormant population defined in (2.4)–(2.5). What (2.34) says is that
in the dual an active partition element migrates according to the transition kernel
a(·, ·) and becomes dormant at rate Ke, while a dormant partition element can only
become active and does so at rate e. In (2.34), the notation b(1) marks that the
kernel refers to Model 1. Later we will use the notation b(2) for Model 2 and b(3)

for Model 3.

2. Independently of all other partition elements, two partition elements that are at
the same colony and are both active coalesce with rate d, i.e., the two partition
elements merge into one partition element.

The spatial seed-bank coalescent (C(t))t≥0 is defined as the projective limit of the n-
spatial seed-bank coalescents (C(n)(t))t≥0 as n → ∞. This object is well-defined by
Kolmogorov’s extension theorem (see [BGCKWB16, Section 3]).

For n ∈ N we define the block-counting process (L(t))t≥0 corresponding to the n-
spatial seed-bank coalescent as the process that counts at each site (i, Ri) ∈ G× {A,D}
the number of partition elements of C(n)(t), i.e.,

L(t)=
(
`(i,A)(t), `(i,D)(t)

)
i∈G,

`(i,A)(t)=`(i,A)(C(n)(t))=

n̄∑
`=1

1{η`(t)=(i,A)}, `(i,D)(t)=`(i,D)(C(n)(t))=

n̄∑
`=1

1{η`(t)=(i,D)}.

(2.35)
Therefore (L(t))t≥0 has state space E′ = (N0 × N0)G. We denote the elements of E′

by sequences (mi, ni)i∈G, and define δ(j,Rj) ∈ E′ to be the element of E′ that is 0 at
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all sites (i, Ri) ∈ G × {A,D}\(j, Rj), but 1 at the site (j, Rj). From the evolution of
C(n)(t) described below (2.32) we see that the block-counting process has the following
transition kernel:

(mi, ni)i∈G →


(mi, ni)i∈G − δ(j,A) + δ(k,A), at rate mja(j, k) for j, k ∈ G,
(mi, ni)i∈G − δ(j,A), at rate d

(
mj
2

)
for j ∈ G,

(mi, ni)i∈G − δ(j,A) + δ(j,D), at rate mjKe for j ∈ G,
(mi, ni)i∈G + δ(j,A) − δ(j,D), at rate nje for j ∈ G.

(2.36)

The process (Z(t))t≥0 defined in (2.4)–(2.5) is dual to the block-counting process
(L(t))t≥0. The duality function H : E × E′ → R is defined by

H
(

(xi, yi)i∈G, (mi, ni)i∈G

)
=
∏
i∈G

xmii ynii =
∏
i∈G

x
`(i,A)

i y
`(i,D)

i . (2.37)

Note that H(·, (mi, ni)i∈G) is in the domain of the generator G defined in (2.28) for every
(mi, ni)i∈G.

The duality relation reads as follows.

Theorem 2.5 (Duality relation: Model 1). Let g = dgFW. Let H be defined as in (2.37).
Then for all (xi, yi)i∈G ∈ E and (mi, ni)i∈G ∈ E′,

E(xi,yi)i∈G

[
H
(

(xi(t), yi(t))i∈G, (mi, ni)i∈G

)]
=E(mi,ni)i∈G

[
H
(

(xi, yi)i∈G, (mi(t), ni(t))i∈G

)]
(2.38)

with E(·) the generic symbol for expectation (on the left over the original process, on the
right over the dual process).

Since the duality function H gives all the mixed moments of (Z(t))t≥0, the duality relation
in Theorem 2.5 is called a moment dual.

Remark 2.6 (Duality relation in terms of the effective geographic space). Interpreting
(Z(t))t≥0 with Z(t) = (zu(t))u∈S as a process on the effective geographic space S (re-
call Remark 2.2), we can rewrite the duality relation. Let the block-counting process
(L(t))t≥0 = (L(C(t))t≥0 count at each site u ∈ S the number of partition elements of C(t),
i.e.,

L(t) = (`u(t))u∈S,

`u(t) = `u(C(t)) =

n̄∑
`=1

1{η`(t)=u},
(2.39)

and rewrite the duality function H in (2.37) as

H(Z,L) =
∏
u∈S

z`uu . (2.40)

Then, on E× E′, the duality relation reads

EZ
[
H
(
Z(t), L

)]
= EL

[
H
(
Z,L(t)

)]
. (2.41)

Interpreting the duality relation in terms of the effective geographic space S, we see
that each ancestral lineage in the dual is a Markov chain that moves according to the
transition kernel b(1)(·, ·). Interpreting the duality relation in terms of the geographic
space G, we see that an ancestral lineage is a random walk moving on G, with internal
states A and D. Both interpretations turn out to be useful in analysing the long-time
behaviour of the system.

EJP 27 (2022), paper 18.
Page 15/88

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP728
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Spatial populations with seed-bank: well-posedness, duality and equilibrium

Remark 2.7 (Wake-up times). Define (see Fig. 4)

σ = typical time spent by an ancestral lineage in state A before switching to state D,

τ = typical time spent by an ancestral lineage in state D before switching to state A.
(2.42)

(Here, the word typical refers to the fact that σ and τ are random variables that do not
depend on the geographic location. For a more precise definition we refer to Section 5.2
and Fig. 5.) It follows from (2.34) that

P(σ > t) = e−Ket,

P(τ > t) = e−et.
(2.43)

An ancestral lineage in the dual of the spatial seed-bank process behaves as an ancestral
lineage in the dual of a spatial Fisher-Wright diffusion without seed-bank (see e.g.
[FG96]), but becomes dormant every once in a while. In the long run we expect an
ancestral lineage to be active only a fraction 1

1+K of the time. We will see in Section 5 that
the effect of the seed-bank on the long-time behaviour of the ancestral lineages in the
dual is a slow down by a factor 1

1+K compared to the long-time behaviour of the ancestral
lineages in the dual of interacting Fisher-Wright diffusions without seed-bank.

Model 2. The dual for Model 2 arises naturally from the dual for Model 1 by adding
internal states to the seed-bank and adapting the rates of becoming active and dor-
mant accordingly. Recall that for Model 2 the effective geographic space is S =

G × {A, (Dm)m∈N0}. Migration and coalescence are as before, but at every colony
switches between an active copy A and a dormant copy Dm now occur at rates em,
respectively, Km em. The spatial coalescent (C(t))t≥0 in (2.32) starts from an initial
configuration like (2.33) and evolves according to the same two rules, but the transition
kernel b(·, ·) must be replaced by

b(2)((i, Ri), (j, Rj)) =


a(i, j), Ri = Rj = A,

Kmem, i = j, Ri = A, Rj = Dm, for m ∈ N0,

em, i = j, Ri = Dm, Rj = A, for m ∈ N0,

0, otherwise.

(2.44)

The corresponding block-counting process becomes

L(t) =
(
`(i,A)(t),

(
`(i,Dm)(t)

)
m∈N0

)
i∈G

,

`(i,A)(t) = `(i,A)(C(t)) =

n̄∑
`=1

1{η`(t)=(i,A)},

`(i,Dm)(t) = `(i,Dm)(C(t)) =

n̄∑
`=1

1{η`(t)=(i,Dm)}, m ∈ N0.

(2.45)

The state space is now given by E′ = (N0 ×NN0
0 )G, and the transition kernel becomes

(mi, (ni,m)m∈N0)i∈G

→


(mi, (ni,m)m∈N0

)i∈G − δ(j,A) + δ(k,A), at rate mja(j, k) for j, k ∈ G,
(mi, (ni,m)m∈N0

)i∈G − δ(j,A), at rate d
(
mj
2

)
for j ∈ G,

(mi, (ni,m)m∈N0
)i∈G − δ(j,A) + δ(j,Dm), at rate mjKmem for j ∈ G,

(mi, (ni,m)m∈N0
)i∈G + δ(j,A) − δ(j,Dm), at rate nj,mem for j ∈ G.

(2.46)
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The duality function H : E × E′ → R is defined by

H
(

(xi, yi,m)i∈G,m∈N0 , (mi, ni,m)i∈G,m∈N0

)
=
∏
i∈G

∏
m∈N0

xmii y
ni,m
i,m . (2.47)

Theorem 2.8 (Duality relation: Model 2). For g = dgFW, (xi, yi,m)i∈G,m∈N0 ∈ E, (mi,

ni,m)i∈G,m∈N0 ∈ E′ and t ≥ 0,

E(xi,yi,m)i∈G,m∈N0

[
H
(

(xi(t), yi,m(t))i∈G,m∈N0
, (mi, ni,m)i∈G,m∈N0

)]
= E(mi,ni,m)i∈G,m∈N0

[
H
(

(xi, yi,m)i∈G,m∈N0
, (mi(t), ni,m(t))i∈G,m∈N0

)]
.

(2.48)

By rewriting the block-counting process as in Remark 2.6, the duality function can be
rewritten as

H(Z,L) =
∏
u∈S

zluu (2.49)

and the duality relation reads

EZ
[
H
(
Z(t), L

)]
= EL

[
H
(
Z,L(t))

)]
. (2.50)

Remark 2.9 (Fat-tailed wake-up times). Recall the definition of χ in (2.23) and the
definition of ρ in (2.24). Define

σ = typical time spent by an ancestral lineage in the active state A

before switching to a dormant state ∪m∈N0
Dm,

τ = typical time spent by an ancestral lineage in the dormant state ∪m∈N0 Dm

before switching to the active state A.
(2.51)

(Note that the switch does not record the colour of the dormant state.) It follows from
(2.44) that

P(σ > t) = e−χt,

P(τ > t) =
∑
m∈N0

Kmem
χ

e−emt,
(2.52)

independently of the colony i ∈ G. Hence

E [τ ] =
ρ

χ
. (2.53)

If ρ < ∞, then we invoke the seed-bank colours and use the balance equations for
recurrent Markov chains to see that each ancestral lineage in the dual in the long run
spends a fraction ρ

1+ρ of the time in the dormant state. Like in Model 1, an ancestral
lineage in the dual behaves like an ancestral lineage in the dual of interacting Fisher-
Wright diffusions, but is slowed down by a factor ρ

1+ρ . However, if ρ = ∞, then (2.44)
together with (2.53) imply that each ancestral lineage in the dual behaves like a null-
recurrent Markov chain on {A, (Dm)m∈N0

}, and consequently the probability to be active
tends to 0 as t → ∞. Therefore we may expect that the long-time behaviour of the
system is affected by the seed-bank. In particular, choosing

Km ∼ Am−α, em ∼ Bm−β , m→∞,
A,B ∈ (0,∞), α, β ∈ R : α ≤ 1 < α+ β,

(2.54)

we see that (2.52) implies

P(τ > t) ∼ Ct−γ , t→∞, (2.55)
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with γ = α+β−1
β and C = A

χβ B
1−γ Γ(γ), where Γ is the Gamma-function. The conditions

on α, β guarantee that ρ = ∞, χ < ∞ (recall (2.23) and (2.24)). Examples are: α = 0,
β > 1 and α ∈ (0, 1), β > 1 − α. Thus, for ρ = ∞ we can model individuals with a
fat-tailed wake-up time simply by not taking their colours into account. The internal
structure of the seed-bank captured by the colours allows us to model fat-tailed wake-up
times without loosing the Markov property for the evolution. The general mixture of
exponentials in the second line of (2.52) covers a very large class of wake-up times. The
formulas in (2.54)–(2.55) show that all possible tail exponents are included. As shown
at the end of Section 3.2, even slowly varying modulations of the tail behaviour can be
included, so that regular variation at infinity is fully covered.

Model 3. The effective geographic space is again S = G× {A, (Dm)m∈N0
}. On top of

migration and coalescence, each switch from A to Dm and vice versa is accompanied by
a displacement according to the displacement kernel am(·, ·) defined in (2.17). Therefore
each lineage in the dual evolves according to

b(3)((i, Ri), (j, Rj)) =


a(i, j), Ri = Rj = A,

Kmemam(j, i), Ri = A, Rj = Dm, for m ∈ N0,

emam(i, j), Ri = Dm, Rj = A, for m ∈ N0.

(2.56)

Again, when two ancestral lineages are active at the same site they coalesce at rate d
and the corresponding block-counting process evolves according to the transition kernel

(mi, (ni,m)m∈N0
)i∈G

→


(mi, (ni,m)m∈N0

)i∈G − δ(j,A) + δ(k,A), at rate mja(j, k) for j, k ∈ G,
(mi, (ni,m)m∈N0)i∈G − δ(j,A), at rate d

(
mj
2

)
for j ∈ G,

(mi, (ni,m)m∈N0
)i∈G − δ(j,A) + δ(k,Dm), at rate mjKmemam(k, j) for j ∈ G,

(mi, (ni,m)m∈N0)i∈G + δ(k,A) − δ(j,Dm), at rate nj,memam(j, k) for j ∈ G.

(2.57)

Theorem 2.10 (Duality relation: Model 3). Let g = dgFW. The same duality relation
holds as in (2.48), where now the dual dynamics includes not only the exchange between
active and dormant but also the accompanying displacement in space.

2.5 Dichotomy criterion

For g = dgFW the duality relations in Theorems 2.5, 2.8 and 2.10 provide us with the
following criterion to characterise the long-term behaviour. If, in the limit as t → ∞,
locally only one type survives in the population, then we say that the system exhibits
clustering. If, in the limit as t→∞, locally both types survive in the population, then we
say that the system exhibits coexistence. Here, the word locally refers to the fact that
weak convergence captures the behaviour in finite regions of geographic space only. We
will see later that the evolution preserves the average fraction of types, so that if initially
both types are present globally, then they are present globally at all later times.

For Model 1 the criterion reads as follows.

Theorem 2.11 (Dichotomy criterion: Model 1). Suppose that the initial law satisfies
µ(0) ∈ T erg. Let d ∈ (0,∞). Then the system with g = dgFW clusters if and only if in the
dual two partition elements coalesce with probability 1.

The idea behind Theorem 2.11 is as follows. If in the dual two partition elements
coalesce with probability 1, then a random sample of n individuals drawn from the current
population has a common ancestor some finite time backwards in time. Since individuals
inherit their type from their parent individuals, this means that all n individuals have the
same type. A formal proof will be given in Section 4.3.
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For Models 2–3 we need an extra assumption on µ(0) when ρ =∞.

Definition 2.12 (Colour regular initial measures). We say that a translation invariant
initial law µ(0) is colour regular (recall (2.21)) when

lim
m→∞

Eµ(0)[y0,m] exists, (2.58)

i.e., µ(0) has asymptotically converging colour means.

Thus, colour regularity is a condition on the deep seed-banks. This condition is needed
because as time proceeds lineages starting from deeper and deeper seed-banks become
active for the first time, and bring in their types into the active population. Without
control on the initial states of the deep seed-banks, there may be no convergence to
equilibrium, in which case we must work with multiple limit points. We will not pursue
this generalisation, even though the limit points would still exhibit the dichotomy.

Theorem 2.13 (Dichotomy criterion: Models 2–3). The same as in Theorem 2.11 is true
for ρ <∞, and also for ρ =∞ when µ(0) ∈ T erg,•.

Remark 2.14 (Clustering criterion general g ∈ G). In Section 3 we will see that the
dichotomy criterion in Theorems 2.11 and 2.13 for g = dgFW does not depend on d,
the rate of resampling. We will use duality comparison arguments to carry over the
dichotomy criterion in Theorems 2.11 and 2.13 to g ∈ G. We will see later that for all
three models the system with g exhibits clustering if and only if the system with gFW

exhibits clustering.

Remark 2.15 (Liggett conditions). We will see in Section 6.3 that, for Model 2 with
ρ =∞, if an initial measure satisfie µ ∈ T erg,•, then the Markov chain evolving according
to b(2)(·, ·) defined in (2.44) satisfies the following two conditions, for some θ ∈ [0, 1] and
for all (i, Ri), respectively, all (i, Ri), (j, Rj):

(1)

lim
t→∞

∑
(k,Rk)∈G×{A,(Dm)m∈N0

}

b
(2)
t

(
(i, Ri), (k,Rk)

)
Eµ[z(k,Rk)] = θ, (2.59)

(2)

lim
t→∞

∑
(k,Rk),(l,Rl)∈G×{A,(Dm)m∈N0

}

b
(2)
t

(
(i, Ri), (k,Rk)

)
b
(2)
t

(
(j, Rj), (l, Rl)

)
×Eµ[z(k,Rk)z(l,Rl)] = θ2,

(2.60)

where b(2)
t (·, ·) is the time-t transition kernel. These are precisely the conditions in [Lig85,

Chapter V.1] necessary to determine the dichotomy in the long-time behaviour of the
voter model. The parameter θ will be seen to play the role of the average density of
type ♥ in the population. The latter turns out to be preserved under the evolution. We
will show that (1) and (2) imply convergence to a unique equilibrium that is invariant
and ergodic under translations. It is difficult to identify exactly which initial measures µ
satisfy (1) and (2). This is the reason why we work with sufficient conditions and need
the notion of colour regularity.

For Model 2 with ρ <∞, conditions (1) and (2) are satisfied when µ(0) ∈ T erg, and
colour regularity is not needed. The same holds for Model 1, once the state space is
replaced by G× {A,D} and b(2)(·, ·) is replaced by b(1)(·, ·). Also for Model 3 conditions
(1) and (2) hold after replacing b(2)(·, ·) by b(3)(·, ·). If ρ =∞ in Model 3, then we need to
assume colour regularity, while if ρ <∞, then this is not needed.
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3 Long-time behaviour

In this section we study the long-time behaviour of Models 1–3. In Sections 3.1–3.3 we
prove convergence to a unique equilibrium measure, establish the dichotomy between
clustering and coexistence, and identify which of the two occurs in terms of the migration
kernel and the rates governing the exchange with the seed-bank (Theorems 3.1–3.8).

Throughout the sequel, g is a general diffusion function from the class G defined in
(2.26). Special cases are the multiples of the standard Fisher-Wright diffusion function:
g = dgFW, d ∈ (0,∞), with gFW(x) = x(1− x), x ∈ [0, 1].

3.1 Long-time behaviour of Model 1

Let a(·, ·) be as in (2.1). Define the symmetrized migration kernel

â(i, j) = 1
2 [a(i, j) + a(j, i)], i, j ∈ G, (3.1)

which describes the difference of two independent copies of the migration each driven by
a(·, ·). Let ât(0, 0) denote the time-t transition kernel of the random walk with migration
kernel â(·, ·), and suppose that

t 7→ ât(0, 0) is regularly varying at infinity. (3.2)

(Examples can be found in [Hug95, Chapter 3].) Define

Iâ =

∫ ∞
1

dt ât(0, 0). (3.3)

Note that Iâ =∞ if and only if â(·, ·) is recurrent (see e.g. [Spi64, Chapter 1]).
Define

θ = Eµ(0)

[
x0 +Ky0

1 +K

]
, (3.4)

i.e., the average density of ♥ at colony 0 under the initial law µ(0). If µ(0) is invariant and
ergodic under translations, then θ is the average density of ♥ in the entire population.
From the SSDE in (2.4)–(2.5) we see that

θ = Eµ(t)

[
x0 +Ky0

1 +K

]
= Eµ(0)

[
x0(t) +Ky0(t)

1 +K

]
∀ t ≥ 0, (3.5)

which says that the average density of ♥ is a conserved quantity under the evolution.
For θ ∈ [0, 1], we define

T erg
θ =

{
µ ∈ T erg : Eµ

[
x0 +Ky0

1 +K

]
= θ

}
. (3.6)

Write µ(t) to denote the law of Z(t), defined in (2.2). Recall that a law µ ∈ T is called
associated when increasing functions of the configuration are positively correlated,
i.e., if f : E → R and g : E → R depend on only finitely many coordinates and are
coordinate-wise increasing, then

Eµ[f(z)g(z)] ≥ Eµ[f(z)]Eµ[g(z)]. (3.7)

Theorem 3.1 (Long-time behaviour: Model 1). Suppose that µ(0) ∈ T erg
θ .

(a) (Coexistence regime) If â(·, ·) is transient, i.e., Iâ <∞, then

lim
t→∞

µ(t) = νθ, (3.8)
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where

νθ is an equilibrium measure for the process on E, (3.9)

νθ is invariant, ergodic and mixing under translations, (3.10)

νθ is associated, (3.11)

Eνθ [x0] = Eνθ [y0] = θ, (3.12)

with Eνθ denoting expectation over νθ.

(b) (Clustering regime) If â(·, ·) is recurrent, i.e., Iâ =∞, then

lim
t→∞

µ(t) = θ [δ(1,1)]
⊗G + (1− θ) [δ(0,0)]

⊗G. (3.13)

(Recall that convergence of laws is meant in the weak topology. In particular, (3.13)
means that clustering occurs locally, with the average density of type ♥ being equal to θ.
Globally both types are present when θ 6= 0, 1.)

The results in (3.8)–(3.13) say that the system converges to an equilibrium whose
density of type ♥ equals θ in (3.4), a parameter that is controlled by the initial state µ(0)

and the asymmetry parameter K. The equilibrium can be either locally mono-type or
locally multi-type, depending on whether the symmetrised migration kernel is recurrent
or transient. If the equilibrium is mono-type, then the system grows large mono-type
clusters (= clustering). If the equilibrium is multi-type, then the system allows ♥ and
♦ to mix (= coexistence). In the case of coexistence, the equilibrium measure νθ also
depends on the migration kernel a(·, ·), the values of the parameters e,K, and the
diffusion function g ∈ G (recall (2.26)). The dichotomy itself, however, is controlled by Iâ
only. In particular, g ∈ G plays no role, a fact that will be shown with the help of a duality
comparison argument. In view of Theorem 2.11, if g = dgFW, then Iâ =∞ implies that
with probability 1 two ancestral lineages in the dual coalesce. Therefore Iâ =∞ is said
to be the total hazard of coalescence. Remarkably, this dichotomy is the same as the
dichotomy observed for systems without seed-bank (see [CG94]): clustering prevails
for recurrent migration; coexistence prevails for transient migration; for G = Zd the
critical dimension is d = 2. From the proof in Section 5.2 it will become clear that in the
dual the ancestral lineages in the long run behave like the ancestral lineages without
seed-bank, but are slowed down by a factor 1

1+K . Consequently, the dormant periods of
the ancestral lineages do not affect the dichotomy of the system. In particular, it does
not affect the critical dimension separating clustering from coexistence.

Remark 3.2 (Continuity and ergodic decomposition).
(1) We will show that θ 7→ νθ is continuous in the weak topology.
(2) Because T is a Choquet simplex and θ 7→ νθ is measurable, it follows that Theorem 3.1
carries over from µ(0) ∈ T erg = ∪θ∈[01]T erg

θ to µ(0) ∈ T , after decomposition into ergodic
components.

3.2 Long-time behaviour of Model 2

For Model 2 we need the extra condition that a(·, ·) is symmetric, i.e.,

a(i, j) = a(j, i) ∀ i, j ∈ G. (3.14)

Note that ât(0, 0) = at(0, 0) because of (3.14). (In Lemma 3.6 we comment on what
happens when we drop this assumption.) Recall (2.23)–(2.24). It turns out that the
long-time behaviour of Model 2 is different for ρ <∞ and ρ =∞.
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Case ρ <∞. For a finite seed-bank, we define the initial density as

θ = Eµ(0)

[
x0 +

∑
m∈N0

Km y0,m

1 + ρ

]
, (3.15)

which is the counter part of (3.4) in Model 1. Like in Model 1, it follows from the SSDE
in (2.12)–(2.13) that

Eµ(t)

[
x0 +

∑
m∈N0

Km y0,m

1 + ρ

]
= Eµ(0)

[
x0(t) +

∑
m∈N0

Km y0,m(t)

1 + ρ

]
∀ t ≥ 0. (3.16)

Hence the average density of type ♥ is a preserved quantity under the evolution of the
system. The dichotomy is controlled by the same integral Iâ as defined in (3.3) for Model
1.

Case ρ =∞. For an infinite seed-bank, we assume that (recall Remark 2.9)

Km ∼ Am−α, em ∼ Bm−β , m→∞,
A,B ∈ (0,∞), α, β ∈ R : α ≤ 1 < α+ β,

(3.17)

for which

P (τ > t) ∼ C t−γ , t→∞, (3.18)

with γ = α+β−1
β ∈ (0, 1) and C = A

β B
1−γ γΓ(γ) ∈ (0,∞), where Γ is the Gamma-function.

In addition, we assume that the initial measure µ(0) is colour regular (recall Definition
2.12), and define

θ = lim
m→∞

Eµ(0)[y0,m]. (3.19)

This ensures the existence of the initial density

θ = lim
M→∞

Eµ(0)

[
x0 +

∑M
m=0Km y0,m

1 +
∑M
m=0Km

]
. (3.20)

It turns out that the dichotomy is controlled by the integral

Iâ,γ =

∫ ∞
1

dt t−(1−γ)/γ ât(0, 0) (3.21)

instead of the integral Iâ as for ρ <∞.

For θ ∈ [0, 1], define

ρ <∞ : T erg
θ =

{
µ ∈ T erg : Eµ

[
x0 +

∑
m∈N0

Kmy0,m

1 +
∑
m∈N0

Km

]
= θ

}
,

ρ =∞ : T erg,•
θ =

{
µ ∈ T erg,• : lim

M→∞
Eµ

[
x0 +

∑M
m=0Kmy0,m

1 +
∑M
m=0Km

]
= θ

}
.

(3.22)

Theorem 3.3 (Long-time behaviour: Model 2). (I) Let ρ<∞. Assume (3.2) and (3.14).
Suppose that µ(0) ∈ T erg

θ .

(a) (Coexistence regime) If Iâ <∞, then

lim
t→∞

µ(t) = νθ, (3.23)
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where

νθ is an equilibrium measure for the process on E, (3.24)

νθ is invariant, ergodic and mixing under translations, (3.25)

νθ is associated, (3.26)

Eνθ [x0] = Eνθ [y0,m] = θ ∀m ∈ N0, (3.27)

with Eνθ denoting expectation over νθ. Moreover,

lim inf
m→∞

em > 0: lim inf
m→∞

Varνθ (y0,m) > 0,

lim sup
m→∞

em = 0: lim sup
m→∞

Varνθ (y0,m) = 0.
(3.28)

(b) (Clustering regime) If Iâ =∞, then

lim
t→∞

µ(t) = θ [δ(1,1N0 )]
⊗G + (1− θ) [δ(0,0N0 )]

⊗G. (3.29)

(II) Let ρ =∞. Assume (3.2), (3.14) and (3.17). Suppose that µ(0) ∈ T erg,•
θ . Then the

same results as in (I) hold after Iâ in (3.3) is replaced by Iâ,γ in (3.21). Moreover,

lim sup
m→∞

Varνθ (y0,m) = 0, (3.30)

The result in part (I) shows that for ρ <∞ the long-time behaviour is similar to that of
Model 1. Like in Model 1, the results in (3.23)–(3.29) say that the system converges to an
equilibrium whose density of type ♥ equals θ in (3.4), the density of ♥ under the initial
measure µ(0). Again, the equilibrium can be either mono-type or multi-type, depending
on whether the symmetrised migration kernel is recurrent or transient. Like in Model
1, in both cases the equilibrium measure depends on θ. In the case of coexistence, the
equilibrium measure νθ also depends on the migration kernel a(·, ·), the sequences of
parameters (em)m∈N0

and (Km)m∈N0
, and the diffusion function g ∈ G (recall (2.26)).

Again, the dichotomy itself is controlled by Iâ only, and the resampling rate given by
g ∈ G plays no role. Therefore if g = dgFW , in view of Theorem 2.11, whether or not
two ancestral lineages in the dual coalesce with probability 1 is still only determined by
the migration kernel a(·, ·). The same dichotomy holds as for systems without seed-bank
(see [CG94]). Therefore part (I) of Theorem 3.3 indicates that, as long as the dormant
periods of the ancestral lineages in the dual have a finite mean (here ρ

1+ρ ; recall Remark
2.9), the seed-bank does not affect the dichotomy of the system.

Even so, (3.28) indicates that there is interesting behaviour in the deep seed-banks.
Indeed, when the exchange rate em between the m-dormant and the active population
is bounded away from zero as m→∞ the deep seed-banks are asymptotically random,
while when em tend to zero as m→∞ the deep seed-banks are asymptotically determin-
istic. The latter means that the deep seed-banks serve as a reservoir, containing a fixed
mixture of types. For ρ <∞ this reservoir is too small to influence the dichotomy of the
system, but not for ρ =∞.

The result in Part (II) shows that for ρ = ∞ the system again converges to an
equilibrium whose density of type ♥ equals θ in (3.20), the density of ♥ under the
initial measure µ(0). The equilibrium can be mono-type or multi-type, but the dichotomy
criterion has changed. Instead of Iâ, the dichotomy is now controlled by the integral Iâ,γ
(recall (3.21)), where γ is the parameter determined by relative sizes Km of the colour
m-dormant populations with respect to the active population and the exchanges rates
(em)m∈N0

with the seed-bank, recall (3.17)–(3.18). If g = dgFW , γ is the parameter of the
tail of the wake-up time of an ancestral lineages in the dual (recall (2.9)). Therefore if
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g = dgFw, in view of Theorem 2.13, we see that the dormant periods of the ancestral
lineages in the dual do affect whether or not two ancestral lineages in the dual coalesce
with probability 1. For general g ∈ G, the integral Iâ,γ in (3.21) shows a competition
between migration and exchange. The smaller γ is, the longer the individuals remain
dormant in the seed-bank, the smaller Iâ,γ is, and the more coexistence becomes likely.
As a consequence clustering requires more stringent conditions than recurrent migration;
for G = Zd the critical dimension is 1 < d < 2 for γ ∈ [ 1

2 , 1] and d = 1 for γ ∈ (0, 1
2 ). The

seed-bank enhances genetic diversity. Note that γ ↑ 1 links up with the case ρ < ∞,
where coexistence occurs if and only if the migration is transient. Also note that for
γ ∈ (0, 1

2 ) there is always coexistence irrespective of the migration.

In the case of clustering the equilibrium measure only depends on θ, while in the
case of coexistence, like for ρ < ∞, νθ depends on the migration kernel a(·, ·), the
sequences of parameters (em)m∈N0

, (Km)m∈N0
, and the diffusion function g ∈ G. Since

we assumed (3.17), we have lim supm→∞ em = 0, and so we are automatically in the
second case of (3.28). Hence the deep seed-banks are asymptotically deterministic,
i.e., the m-dormant population converges in law to a deterministic state θ as m → ∞.
Roughly speaking, in case g = dgFW , in equilibrium the volatility of a colour is inversely
proportional to its average wake-up time in the dual. Since ρ =∞, for each M ∈ N0 we
have

∑∞
m=M Km =∞, and in the coexistence regime the effect of the seed-bank can be

interpreted as a migration towards an infinite reservoir with deterministic density θ.

Remark 3.4 (Continuity and ergodic decomposition).
(1) For Model 2 with ρ <∞, we will show that θ 7→ νθ is continuous in the weak topology.
For Model 2 with ρ = ∞, we will show that θ 7→ νθ is continuous in the uniform weak
topology defined as follows: (µn)n∈N is said to converge to µ in T • in the uniform weak
topology if it converges to µ in the weak topology and limn→∞ Lµn [θ̂] = Lµ[θ̂], where

θ̂ = lim
M→∞

x0 +
∑M
m=0Kmy0,m

1 +
∑M
m=0Km

(3.31)

is the limiting density of ♥. (Later we will see that θ̂ exists µ-a.s. for every µ ∈ T •.) We
will in fact show that the convergence to equilibrium also holds in the uniform weak
topology.
(2) Because T is a Choquet simplex and θ 7→ νθ is measurable, Theorem 3.3(I) carries
over from T erg = ∪θ∈[0,1]T erg

θ to T , while Theorem 3.3(II) carries over from T erg,• =

∪θ∈[0,1]T erg,•
θ to T •.

Example of the effect of an infinite seed-bank. For a symmetric migration kernel
with finite second moment the following holds:

• For G = Z2, ât(0, 0) � t−1, t→∞, and so coexistence occurs for all γ ∈ (0, 1).

• For G = Z, ât(0, 0) � t−1/2, t → ∞, and so coexistence occurs if and only if
γ ∈ (0, 2

3 ).

In both cases the migration is recurrent, so that clustering prevails in Model 1.

Corollary 3.5 (Three regimes). Under the conditions of Theorem 3.3, the system in
(2.12)–(2.13) (Model 2) has three different parameter regimes:

(1) γ ∈ (1,∞): migration determines the dichotomy.

(2) γ ∈ [ 1
2 , 1]: interplay between migration and seed-bank determines the dichotomy.

(3) γ ∈ (0, 1
2 ): seed-bank determines the dichotomy.
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Role of symmetry in migration. Unlike in Model 1, it is not possible to remove the
symmetry assumption in (3.14), as the following counterexample shows. We consider
Model 2 with ρ <∞ under assumption (3.2), but we do not assume (3.14).

Lemma 3.6 (Counterexample). Let G = Z2, and for η ∈ (0, 1) pick

a(i, j) =

{
1
4 (1 + η), j = i+ (1, 0) or i+ (0, 1),

1
4 (1− η), j = i− (1, 0) or i− (0, 1),

(3.32)

i.e., nearest-neighbour random walk with drift upward and rightward. Suppose that τ
in (3.18) has a one-sided stable distribution with parameter γ ∈ (1, 2) (obtained from
(3.17) but with α, β ∈ R: 1 < α < 1 + β). Then coexistence occurs because Ia <∞, while
Iâ =∞ because â(·, ·) is the transition kernel of simple random walk.

Recall that for the two-dimensional nearest-neighbour random walk without drift we get
clustering according to Theorem 3.3, independently of the distribution of τ . The key
feature of the counterexample is that it corresponds to E(τ) <∞ and E(τ2) =∞. Hence
the central limit theorem fails for τ . We will see in Section 6.5 that the failure of the
central limit theorem for τ is responsible for turning clustering into coexistence.

The above raises the question to what extent the equilibrium behaviour depends on
the nature of the geographic space. To answer this question, we need a key concept for
random walks on countable Abelian groups, which we describe next.

Remark 3.7 (Dichotomy criterion and degrees of random walk). We can read the condi-
tion Iâ,γ < ∞ for coexistence versus Ia,γ = ∞ for clustering in terms of the degree of
the random walk. Namely, let â(·, ·) be the transition kernel of an irreducible random
walk on a countable Abelian group. Then the degree δ of â(·, ·) is defined as

δ = sup

{
ζ > −1:

∫ ∞
1

dt tζ ât(0, 0) <∞
}
. (3.33)

A more refined notation is to define the degree as δ+ when the integral is finite at the
degree and δ− when the integral is infinite at the degree. Hence we can rephrase the
dichotomy criterion in Theorem 3.3 as

clustering ⇐⇒ either − 1− γ
γ
≥ δ− or − 1− γ

γ
> δ+. (3.34)

For further details we refer to [DGW04], [DGW05], which relate the degree of the
random walk to the tail of its return time to the origin.

Modulation of wake-up time with slowly varying function. Under weak conditions
it is possible to modulate (3.18) by a slowly varying function. Assume that

P (τ ∈ dt)

dt
∼ ϕ(t) t−(1+γ), t→∞, (3.35)

with ϕ slowly varying at infinity. Define

ϕ̂(t) =

{
ϕ(t), γ ∈ (0, 1),∫ t

1
dsϕ(s)s−1, γ = 1.

(3.36)

As shown in [BGT87, Section 1.3], without loss of generality we may take ϕ̂ to be infinitely
differentiable and to be represented by the integral

ϕ̂(t) = exp

[∫ t

1

du

u
ψ(u)

]
(3.37)
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for some ψ : [0,∞)→ R such that limu→∞ |ψ(u)| = 0. If we assume that ψ eventually has
a sign and satisfies |ψ(u)| ≤ C/ log u for some C <∞, then (3.21) needs to be replaced
by

Iâ,γ,ϕ =

∫ ∞
1

dt ϕ̂(t)−1/γ t−(1−γ)/γ ât(0, 0). (3.38)

A proof is given in Section 6.6. The modulation of the wake-up time by a slowly varying
function appears naturally for the model on the hierarchical group, analysed in [GHO20c].
There the integral criterion for the dichotomy in (3.38) is needed to apply Theorem 3.3.

3.3 Long-time behaviour of Model 3

It remains to see how the switch of colony during the exchange affects the dichotomy.
To simplify the exposition, we will focus on the special case where the displacement
kernels do not depend on m, i.e.,

am(·, ·) = a†(·, ·) ∀m ∈ N0, (3.39)

with a†(·, ·) an irreducible symmetric random walk kernel on G×G. Let â†t(·, ·) denote
the time-t transition kernel of the random walk with symmetrised displacement kernel
â†(·, ·) (= a†(·, ·)) and jump rate 1. Assume that (compare with (3.2))

t 7→ (ât ∗ â†t)(0, 0) is regularly varying at infinity,

(âCt ∗ â†t)(0, 0) � (ât ∗ â†t)(0, 0) as t→∞ for every C ∈ (0,∞),
(3.40)

where ∗ stands for convolution. Let

Iâ∗â† =

∫ ∞
1

dt (ât ∗ â†t)(0, 0) (3.41)

and

Iâ∗â†,γ =

∫ ∞
1

dt t−(1−γ)/γ (ât ∗ â†t)(0, 0). (3.42)

Theorem 3.8 (Long-time behaviour: Model 3). Suppose that, in addition to the assump-
tions of Theorem 3.3, both (3.39) and (3.40) hold. Then the same results as for Model 2

hold: (I) for ρ <∞ after Iâ in (3.3) is replaced by Iâ∗â† in (3.41); (II) for ρ =∞ after Iâ,γ
in (3.21) is replaced by Iâ∗â†,γ in (3.42).

In the case of coexistence the equilibrium measure νθ depends on a(·, ·), a†(·, ·), (em)m∈N0 ,
(Km)m∈N0 and g ∈ G. The dichotomy itself, however, is controlled by Iâ∗â† , respectively,
Iâ∗â†,γ alone.

An interesting observation is the following. Since ât(·, ·) and â†t(·, ·) are symmetric,
we have (by a standard Fourier argument)

ât(i, j) ≤ ât(0, 0), â†t(i, j) ≤ â
†
t(0, 0) ∀ i, j ∈ G ∀ t ≥ 0. (3.43)

Hence, Iâ∗â†,γ ≤ Iâ,γ ∧ Iâ†,γ . Consequently, the extra displacement in Model 3 can only
make coexistence more likely compared to Model 2, which is intuitively plausible.

If a(·, ·) = a†(·, ·), then (at ∗ a†t)(0, 0) = a2t(0, 0) and therefore the dichotomy is the
same as for Model 2. Hence the extra displacement has in this case no effect on the
dichotomy. However, if the displacement is transient while the migration is recurrent,
then there is a difference. For instance, if ρ <∞, the migration is a simple random walk
on Z, and the displacement is a symmetric random walk on Z with infinite mean, e.g.
a†(0, x) = a†(0,−x) ∼ D|x|−δ, D ∈ (0,∞), δ ∈ (1, 2), then Iâ =∞, Iâ† <∞ and Iâ∗â† <∞
[Spi64, Section 8]. Therefore there is clustering in Model 2, but coexistence in Model 3.
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4 Proofs: Well-posedness and duality

In Section 4.1 we prove Theorem 2.4, in Section 4.2 Theorems 2.5, 2.8 and 2.10,
and in Section 4.3 Theorems 2.11 and 2.13. We first give the proof for Model 1, and
afterwards indicate what changes need to be made for Models 2–3. We will follow this
routine also in later chapters, because it is easier conceptually and notationwise.

4.1 Well-posedness

In this section we prove Theorem 2.4.

Proof. (a) We first prove Theorem 2.4(a): existence and uniqueness of solutions to
the SSDE. We do this for each of the three models separately, before we prove Theo-
rem 2.4(b).

Model 1. Existence of the process defined in (2.4)–(2.5) for Model 1 is a consequence
of the assumptions in (2.1), (2.17) and (2.23), in combination with [SS80, Theorem 3.2],
which reads as follows:

Theorem 4.1 (Unique strong solution). Let S be a countable set, and let Z = {zu}u∈S ∈
[0, 1]S. Consider the stochastic differential equation

dzu(t) = αu(zu(t)) dBu(t) + fu(Z(t)) dt, u ∈ S, (4.1)

where αu : [0, 1]→ R for all u ∈ S, fu : [0, 1]S → [0, 1] for all u ∈ S, and B = {Bu}u∈S is a
collection of independent standard Brownian motions. Suppose that:

(1) The functions αu, u ∈ S, are real-valued, 1
2 -Hölder continuous (i.e., there are

Cu ∈ (0,∞) such that |αu(x)−αu(y)| ≤ Cu|x− y|
1
2 for all x, y ∈ [0, 1]) and uniformly

bounded, with αu(0) = αu(1) = 0, u ∈ S.

(2) The functions fu, u ∈ S, are continuous and satisfy:

• There exists a matrix Q = {Qu,v}u,v∈S such that Qu,v ≥ 0 for all u, v ∈ S,
supu∈S

∑
v∈S Qu,v <∞, and

|fu(Z1)− fu(Z2)| ≤
∑
v∈S

Qu,v|z1
v − z2

v |,

for Z1 = {z1
v}v∈S ∈ [0, 1]S, Z2 = {z2

v}v∈S ∈ [0, 1]S.

(4.2)

• For Z ∈ [0, 1]S and zu = 0,

fu(Z) ≥ 0. (4.3)

• For Z ∈ [0, 1]S and zu = 1,

fu(Z) ≤ 0. (4.4)

Then (4.1) has a unique [0, 1]S-valued strong solution with a continuous path.

To apply Theorem 4.1 to Model 1, recall that

S = G× {A,D}, (4.5)

where A denotes the active part of a colony and D the dormant part of a colony. Since
G is countable and {A,D} is finite, S is countable. As before, we denote the fraction of
active individuals of type ♥ at colony i ∈ G by xi and the fraction of dormant individuals
of type ♥ at colony i ∈ G by yi. Note that for every u ∈ S we have either u = (i, A)

or u = (i,D) for some i ∈ G. Therefore Z = {zu}u∈S = {xi : i ∈ G} ∪ {yi : i ∈ G}, and
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zu = xi when u = (i, A) and zu = yi when u = (i,D). We can rewrite (2.4)–(2.5) in the
form of (4.1) by picking

αu(zu) =

{√
g(xi), u = (i, A),

0, u = (i,D),
(4.6)

and

fu(Z) =

{∑
j∈G a(i, j) (xj − xi) +Ke (yi − xi), u = (i, A),

e (xi − yi), u = (i,D).
(4.7)

Since g ∈ G (recall (2.26)), the conditions in (1) are satisfied. To check the conditions in
(2), define the matrix Q = {Qu,v}u,v∈S by

Qu,v =



∑
j∈G a(i, j) +Ke, u = (i, A), v = (i, A),

a(i, j), u = (i, A), v = (j, A),

Ke, u = (i, A), v = (i,D),

e, u = (i,D), v = (i,D) or u = (i,D), v = (i, A),

0, otherwise.

(4.8)

Then ∑
v∈S

Qu,v =

{
2
∑
j∈G a(i, j) + 2Ke, u = (i, A),

2e, u = (i,D).
(4.9)

Since we have assumed that
∑
j∈G a(i, j) =

∑
j∈G a(0, j − i) < ∞, it follows that

supu∈S
∑
v∈SQu,v < ∞. Since xi ∈ [0, 1] and yi ∈ [0, 1], the requirements on fu are

immediate. Hence we have a unique strong solution with a continuous path.
By Itô’s formula, the law of the strong solution solves the martingale problem.

Uniqueness of that solution follows from [RY99, Theorem IX 1.7(i)]. This in turn implies
the Markov property, plus the fact that z 7→ L[Z(t) | Z(0) = z] is Borel measurable for
every t ≥ 0.

Model 2. To apply Theorem 4.1 to Model 2, recall that

S = G× {A, (Dm)m∈N0
}. (4.10)

Pick

αu(zu) =

{√
g(xi), u = (i, A),

0, u = (i,Dm), m ∈ N0,
(4.11)

and

fu(Z) =

{∑
j∈G a(i, j) (xj − xi) +

∑
m∈N0

Kmem (yi,m − xi), u = (i, A),

em (xi − yi,m), u = (i,Dm).
(4.12)

Set

Qu,v=



∑
j∈G a(i, j) +

∑
m∈N0

Kmem, u=(i, A), v=(i, A),

a(i, j), u=(i, A), v=(j, A), j 6= i,

Kmem, u=(i, A), v=(i,Dm),

em, u=(i,Dm), v=(i,Dm) or u=(i,Dm), v=(i, A),

0, otherwise.
(4.13)

Then, by assumptions (2.1) and (2.23), Q, f and α satisfy the conditions of Theorem 4.1.
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Model 3. The state space S and the function α are the same as in Model 2. When u ∈ S
is of the form (i, A), we must adapt the function fu such that it takes the displacement
of seeds into account. The matrix Q must be adapted accordingly and, by assumption
(2.17), the conditions of Theorem 4.1 are again satisfied.

(b) The proof of Theorem 2.4(b) is the same for Models 1–3. The Feller property can be
proved by using duality if g = dgFW, d ∈ (0,∞). For general g we use [SS80, Remark 3.2]
(see also [Lig85, Theorem 5.8]). The Feller property in turn implies the strong Markov
property.

4.2 Duality

In this section we prove Theorems 2.5, 2.8 and 2.10.

Model 1: Proof of Theorem 2.5.

Proof. We use the generator criterion (see [EK86, p.190–193] or [JK14, Proposition 1.2])
to prove the duality relation given in (2.38). Let H((X,Y ), (M,N)) be defined as in
(2.37), with (X,Y ) = (xi, yi)i∈G and (M,N) = (mi, ni)i∈G. Let F be the generator of the
spatial block-counting process defined in (2.36). Then

F
(
H
(
(X,Y ), ·

))
(M,N)

=
∑
i∈G

[∑
k∈G

mia(i, k)
[
H
(
(X,Y ), (M,N)− δ(i,A) + δ(k,A)

)
−H

(
(X,Y ), (M,N)

)]
+ d

(
mi

2

)[
H
(
(X,Y ), (M,N)− δ(i,A)

)
−H

(
(X,Y ), (M,N)

)]
+ miKe

[
H
(
(X,Y ), (M,N)− δ(i,A) + δ(i,D)

)
−H

(
(X,Y ), (M,N)

)]
+ nie

[
H
(
(X,Y ), (M,N) + δ(i,A) − δ(i,D)

)
−H

(
(X,Y )(M,N)

)]]
.

(4.14)

Recall that G is the generator of the SSDE (recall (2.27)–(2.28)). Let DG denote the
domain of G and DF the domain of F . Let (St)t≥0 denote the semigroup of the process
(Z(t))t≥0 in (2.2) and (Rt)t≥0 the semigroup of the process (L(t))t≥0 in (2.35). Since

d2

dt2
Rt
(
H
(
(X,Y ), ·

))
(M,N) = F 2

(
Rt
(
H
(
(X,Y ), ·)

))
(M,N), (4.15)

we see that H((X,Y ), ·) ∈ DG and Rt(H((X,Y ), ·)) ∈ DG. Furthermore, it is immediate
that H((·, (M,N)) ∈ DF and St(H(·, (M,N))) ∈ DF . Applying the generator G in (2.28)
with g = 1

2dgFW to (2.37), we find

G
(
H
(
·, (M,N)

))
(X,Y )

=
∑
i∈G

{[∑
k∈G

a(i, k) (xk − xi)

]
∂

∂xi

(∏
j∈G

x
mj
j y

nj
j

)
+

1

2
d xi(1− xi)

∂2

∂x2
i

(∏
j∈G

x
mj
j y

nj
j

)
+Ke (yi − xi)

∂

∂xi

(∏
j∈G

x
mj
j y

nj
j

)

+ e (xi − yi)
∂

∂yi

(∏
j∈G

x
mj
j y

nj
j

)}

=
∑
i∈G

{[∑
k∈G

mia(i, k)
∏
j∈G
j 6=i
j 6=k

x
mj
j y

nj
j

(
xmi−1
i ynii x

mk+1
k ynkk − x

mi
i ynii x

ml
k ynkk

) ]
(4.16)
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+
∏
j∈G
j 6=i

x
mj
j y

nj
j

d
2 mi(mi − 1)

(
xmi−1
i ynii − x

mi
i ynii

)
1{mi≥2}

+miKe
∏
j∈G
j 6=i

x
mj
j y

nj
j

(
xmi−1
i yni+1

i − xmii ynii
)

+ nie
∏
j∈G
j 6=i

x
mj
j y

nj
j

(
xmi+1
i yni−1

i − xmii ynii
)}

= F
(
H
(
(X,Y ), ·

))
(M,N).

Consequently, it follows from the generator criterion that

E(X,Y )

[
H
(
(X(t), Y (t)), (M,N)

)]
= E(M,N)

[
H
(
(X,Y ), (M(t), N(t))

)]
. (4.17)

This settles Theorem 2.5.

Model 2: Proof of Theorem 2.8.

Proof. Theorem 2.8 follows after replacing in the above proof the block-counting process
in (2.36) by the one in (2.46), the duality function by the one in (2.47), and checking the
generator criterion.

Model 3: Proof of Theorem 2.10.

Proof. Theorem 2.10 follows after replacing the block-counting process in (2.36) by the
one in (2.57), the duality function is by the one in (2.47), and checking the generator
criterion.

4.3 Dichotomy criterion

In this section we prove Theorems 2.11 and 2.13.

Model 1: Proof of Theorem 2.11.

Proof.

“⇐=” The proof uses the duality relation in Theorem 2.5. Abbreviate

θx = Eµ(0)[x0], θy = Eµ(0)[y0]. (4.18)

Note that, since µ(0) is invariant under translations, we have Eµ(0)[xi] = θx and
Eµ(0)[yi] = θy for all i ∈ G. We proceed as in [BGCKWB16, Proposition 2.9]. Abbre-
viate

m(t) =
∑
i∈G

mi(t), n(t) =
∑
i∈G

ni(t). (4.19)

Let (m(0), n(0)) ∈ E′ be such that m(0) + n(0) <∞, and put

T = inf {t ≥ 0: m(t) + n(t) = 1} . (4.20)
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By assumption, each pair of partition elements coalesces with probability 1, and hence
P(T <∞) = 1. By duality,

lim
t→∞

Eµ(0)

[∏
i∈G

xi(t)
miyi(t)

ni

]

= lim
t→∞

Eµ(0)

[
E(x(0),y(0)

[∏
i∈G

xi(t)
miyi(t)

ni

]]

= lim
t→∞

Eµ(0)

[
E(m(0),n(0))

[∏
i∈G

x
mi(t)
i y

ni(t)
i

]]

= lim
t→∞

Eµ(0)

[
E(m(0),n(0))

[∏
i∈G

x
mi(t)
i y

ni(t)
i

∣∣∣ T <∞

]]
P(T <∞)

+ lim
t→∞

Eµ(0)

[
E(m(0),n(0)

[∏
i∈G

x
mi(t)
i y

ni(t)
i

∣∣∣ T =∞

]]
P(T =∞)

= lim
t→∞

Eµ(0)

[
E(m(0),n(0))

[∏
i∈G

x
mi(t)
i y

ni(t)
i

∣∣∣ T <∞, m(t) = 1, n(t) = 0

]]
× P(m(t) = 1, n(t) = 0)

+ lim
t→∞

Eµ(0)

[
E(m(0),n(0))

[∏
i∈G

x
mi(t)
i y

ni(t)
i

∣∣∣ T <∞, m(t) = 0, n(t) = 1

]]
× P(m(t) = 0, n(t) = 1)

= θx
1

1 +K
+ θy

K

1 +K
,

(4.21)

where in the last step we use that a single lineage in the dual behaves like the Markov
chain with transition kernel b(1)(·, ·) defined in (2.34). It follows from (4.21) that, for all
i, j ∈ G,

lim
t→∞

Eµ(0)

[
xi(t) +Kyi(t)

1 +K

(
1− xj(t) +Kyj(t)

1 +K

)]
= 0. (4.22)

Hence, either limt→∞(x(t), y(t)) = (0, 0)G or limt→∞(x(t), y(t)) = (1, 1)G. Computing
limt→∞Eµ(0)[xi(t)] with the help of (4.21), we find

lim
t→∞

µ(t) = (1− θ) [δ(0,0)]
⊗
G + θ [δ(1,1)]

⊗
G (4.23)

with θ = Eµ(0)

[
x0+Ky0

1+K

]
=

θx+Kθy
1+K , which means that the system clusters.

“=⇒” Suppose that the systems clusters. Then (4.23) holds, which means that

lim
t→∞

Eµ(0) [zu(t) (1− zv(t))] = 0 ∀u, v ∈ S. (4.24)

Let

|L(t)| =
∑
u∈S

`u(t) (4.25)

be the total number of lineages left at time t. Applying the duality relation in (2.41) to
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(4.24), we find

0 = lim
t→∞

Eµ(0) [zu(t)(1− zv(t))]

= lim
t→∞

Eµ(0)

[
Eδu

[∏
w∈S

z`w(t)
w

]]
− lim
t→∞

Eµ(0)

[
Eδu+δv

[∏
w∈S

z`w(t)
w

]]

=
θx +Kθy

1 +K

[
1− lim

t→∞
Pδu+δv (|L(t)| = 1)

]
− lim
t→∞

Eµ(0)

[
Eδu+δv

[∏
w∈S

z`w(t)
u

∣∣∣ |L(t)| = 2

]]
Pδu+δv (|L(t)| = 2),

(4.26)

where Pδu is the law of the block process starting from a single partition element in u,
and Pδu+δv is the law of the block process starting from two partition elements in u and
v. As to the last term in the right-hand side of (4.26), we note that

lim
t→∞

Eµ(0)

[
Eδu+δv

[∏
w∈S

z`w(t)
w

∣∣∣ |L(t)| = 2

]]

= lim
t→∞

1

(1 +K)2
Eµ(0)

[
Eδu+δv

[∏
w∈S

z`w(t)
w

∣∣∣ L(t) = δ(i,A) + δ(j,A), i, j ∈ G

]]

+ lim
t→∞

2K

(1 +K)2
Eµ(0)

[
Eδu+δv

[∏
w∈S

z`w(t)
w

∣∣∣ L(t) = δ(i,A) + δ(j,D), i, j ∈ G

]]

+ lim
t→∞

K2

(1 +K)2
Eµ(0)

[
Eδu+δv

[∏
w∈S

z`w(t)
w

∣∣∣ L(t) = δ(i,D) + δ(j,D), i, j ∈ G

]]

<
θx

(1 +K)2
+
Kθx +Kθy

(1 +K)2
+

K2θy
(1 +K)2

=
θx +Kθy

1 +K
= θ.

(4.27)

Here, the strict inequality follows from the non-trivial invariant initial distribution (ruling
out z ≡ 0 and z ≡ 1), together with the fact that the swapping between active and
dormant is driven by a positive recurrent Markov chain on {A,D}. Hence (4.24) holds if
and only if limt→∞Pδu+δv (|L(t)| = 2| |L(0)| = 2) = 0 for every u, v ∈ S. Therefore every
pair of lineages coalesces with probability 1.

Thus, we have proved Theorem 2.11.

Model 2: Proof of Theorem 2.13.

Case ρ <∞. Like for Model 1, we define

θx = Eµ(0)[x0], θy,m = Eµ(0)[y0,m], θ =
θx +

∑
m∈N0

Kmθy,m

1 + ρ
. (4.28)

For ρ < ∞, a lineage in the dual moves as a positive recurrent Markov chain on
{A, (Dm)m∈N0}. Therefore the argument for “⇐=” given for Model 1 goes through via
the duality relation, which gives (compare with (4.21))

lim
t→∞

Eµ(0)

[
E(x(0),y(0))

[∏
u∈S

zu(t)`u

]]
= lim
t→∞

Eµ(0)

[
E(m(0),n(0))

[∏
u∈S

z`u(t)
u

]]

=
θx +

∑
m∈N0

Kmθy,m

1 +
∑
m∈N0

Km
.

(4.29)

With the duality relation in (2.50), the argument for “=⇒” given for Model 1 also goes
through directly.

EJP 27 (2022), paper 18.
Page 32/88

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP728
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Spatial populations with seed-bank: well-posedness, duality and equilibrium

Case ρ =∞. For ρ =∞, a lineage in the dual moves as a null-recurrent Markov chain,
which has no stationary distribution, and so (4.29) does not carry over. However, from
[Lin92, Section 3] it follows that, for all u1, u2 ∈ S,

lim
t→∞

∥∥Pδu1 (L(t) ∈ · | |L(t)| = 1)− Pδu2 (L(t) ∈ · | |L(t)| = 1)
∥∥
tv

= 0. ∀ v ∈ S. (4.30)

Moreover, by null-recurrence, for all v ∈ S,

lim
t→∞

Pδv
(
∃ i ∈ G : L(t) = δ(i,A)

)
= 0,

lim
t→∞

Pδv
(
∃ i ∈ G : L(t) = δ(i,Dm)

)
= 0 ∀m ∈ N0,

lim
t→∞

∑
m≥M

Pδv
(
∃ i ∈ G : L(t) = δ(i,Dm)

)
= 1 ∀M ∈ N0.

(4.31)

“⇐=” By duality, we have

lim
t→∞

Eµ(0)

[
E(x(0),y(0))

[∏
u∈S

zu(t)lu

]]
= lim
t→∞

Eµ(0)

[
E(m(0),n(0))

[∏
u∈S

z`u(t)
u

]]
= lim
t→∞

θxP(m(0),n(0))

(
∃ i ∈ G : L(t) = δ(i,A)

)
+ lim
t→∞

∑
m∈N0

θy,mP(m(0),n(0))

(
∃ i ∈ G : L(t) = δ(i,Dm)

)
,

(4.32)

where we follow an argument similar as in (4.21) and use thatP(T <∞) = 1. Because the
initial measure is colour regular, we know that limm→∞ θy,m = θ (recall Definition 2.12).
Hence (4.31)–(4.32) imply, after we let M →∞, that all moments tend to θ. In particular,

lim
t→∞

Eµ(0)[xi(t)] = θ = lim
t→∞

Eµ(0)[yi,m(t)], i ∈ G, m ∈ N0. (4.33)

“=⇒” By the duality relation in (2.50) and the assumption of clustering, we have

lim
t→∞

Eµ(0) [zu(t)(1− zv(t))] = 0 ∀u, v ∈ S. (4.34)

Therefore

0 = lim
t→∞

Eµ(0) [zu(t)(1− zv(t))]

= lim
t→∞

Eµ(0)

[
Eδu

[∏
w∈S

z`w(t)
w

]]
− Eµ(0)

[
Eδu+δv

[∏
w∈S

z`w(t)
w

]]
= θ

[
1− lim

t→∞
Pδu+δv (|L(t)| = 1)

]
− lim
t→∞

Eµ(0)

[
Eδu+δv

[∏
w∈S

z`w(t)
w

∣∣∣ |L(t)| = 2

]]
Pδu+δv (|L(t)| = 2),

(4.35)

where the last equality uses (4.31) and colour regularity. Suppose that limt→∞Pδu+δv(|L(t)|
= 2) 6= 0. Then limt→∞Eδu+δv

[∏
w∈S z

`w(t)
w | |L(t)| = 2

]
= θ, because otherwise (4.35)

would be violated. However,

lim
t→∞

Eµ(0)

[
Eδu+δv

[∏
w∈S

z`w(t)
w

∣∣∣ |L(t)| = 2

]]
< lim
t→∞

Eµ(0)

[
Eδu+δv

[∏
w∈S

z`w(t)
w

∣∣∣ |L(t)| = 1

]]
= θ,

(4.36)
because we start from a nontrivial stationary distribution.

Thus, we have proved Theorem 2.13.
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Model 3: Proof of Theorem 2.13. Since the duality relation for Model 3 is exactly
the same as for Model 2, the same results hold by translation invariance and the extra
displacement does not affect the dichotomy criterion.

4.4 Outline remainder of paper

In Sections 5–7 we prove Theorems 3.1, 3.3 and 3.8, respectively. For each of the
three models we split the proof into four parts:

1. Moment relations.
2. The clustering case.
3. The coexistence case.
4. Proof of the dichotomy.

5 Proofs: long-time behaviour for Model 1

In Section 5.1 we relate the first and second moments of the process (Z(t))t≥0 in
(2.4)–(2.5) to the random walk with internal states {A,D} that evolves according to the
transition kernel b(1)(·, ·) given in (2.34) (Lemma 5.1 below). These moment relations
hold for all g ∈ G. In Section 5.2 we deal with the clustering case (Lemmas 5.4–5.5
below), in Section 5.3 with the coexistence case (Lemmas 5.7–5.13 below). In Section 5.4
we prove Theorem 3.1. In Sections 5.2 and 5.3 we will see that the moment relations are
crucial when no duality is available.

Below we write Ez instead of Eδz for the expectation given that Z(0) = δz, z ∈ E.

5.1 Moment relations

Lemma 5.1 (First and second moment). For z ∈ E, t ≥ 0 and (i, Ri), (j, Rj) ∈ G×{A,D},

Ez[z(i,Ri)(t)] =
∑

(k,Rk)∈G×{A,D}

b
(1)
t

(
(i, Ri), (k,Rk)

)
z(k,Rk) (5.1)

and

Ez[z(i,Ri)(t)z(j,Rj)(t)]

=
∑

(k,Rk),(l,Rl)∈G×{A,D}

b
(1)
t

(
(i, Ri), (k,Rk)

)
b
(1)
t

(
(j, Rj), (l, Rl)

)
z(k,Rk)z(l,Rl)

+ 2

∫ t

0

ds
∑
k∈G

b
(1)
(t−s)((i, Ri), (k,A)) b

(1)
(t−s)((j, Rj), (k,A))Ez[g(xk(s))].

(5.2)

Proof. We derive systems of differential equations for the moments and solve these in
terms of the random walk. Let (RWt)t≥0 denote the semigroup of the random walk with
transition kernel b(1)(·, ·), and recall that the corresponding generator is given by

(GRW f)(i, Ri) =
∑

(j,Rj)∈G×{A,D}

b(1)
(
(i, Ri), (j, Rj)

)
[f(j, Rj)− f(i, Ri)] ,

f : G× {A,D} → R.

(5.3)

Applying the generator (2.28) of the system in (2.4)–(2.5) to the function f(i,Ri) : E → R,
f(i,Ri)(z) = z(i,Ri), we obtain by standard stochastic calculus

dEz[z(i,Ri)(t)]

dt
=

∑
j∈G

a(i, j)
(
Ez[xj(t)]− Ez[xi(t)]) +Ke (Ez[yi(t)]− Ez[xi(t)]

) 1(Ri=A)

+ e
(
Ez[xi(t)]− Ez[yi(t)]

)
1(Ri=D).

(5.4)
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Hence, denoting by (St)t≥0 the semigroup of the system in (2.4)–(2.5), we see from (5.4)
and the definition of b(1)(·, ·) in (2.34) that (Stf(i,Ri)) solves the differential equation

F ′(t) = (GRWF )(t). (5.5)

On the other hand, for each f ∈ Cb(G× {A,D}), RWtf also solves (5.5). In particular, if
for z ∈ E we define fz : G× {A,D} → R by fz(i, Ri) = z(i, Ri), then RWtfz is a solution
to (5.5). Since

(RW0fz)(i, Ri) = z(i,Ri) = (S0f(i,Ri))(z), (5.6)

we see that (5.1) holds. To prove (5.2), we derive a similar system of differential equations
and again solve this in terms of the random walk moving according to the kernel b(·, ·).
Let f : E → R be given by f(z) = z(i,Ri)z(j,Rj). Using the generator (2.28), we obtain via
Itô-calculus that

d

dt
Ez[z(i,Ri)(t)z(j,Rj)(t)] =

∑
k∈G

a(i, k)
(
Ez[xk(t)z(j,Rj)(t)]− Ez[xi(t)z(j,Rj)(t)]

)
1{Ri=A}

+Ke
(
Ez[yi(t)z(j,Rj)(t)]− Ez[xi(t)z(j,Rj)(t)]

)
1{Ri=A}

+ e
(
Ez[xi(t)z(j,Rj)(t)]− Ez[yi(t)z(j,Rj)(t)]

)
1{Ri=D}

+
∑
l∈G

a(j, l)
(
Ez[xl(t)z(i,Ri)(t)]− Ez[xj(t)z(i,Ri)(t)]

)
1{Rj=A}

+Ke
(
Ez[yj(t)z(i,Ri)(t)]− Ez[xj(t)z(i,Ri)(t)]

)
1{Rj=A}

+ e
(
Ez[xj(t)z(i,Ri)(t)]− Ez[yj(t)z(i,Ri)(t)]

)
1{Rj=D}

+ 2Ez[g(xi(t))] 1{i=j} 1{Ri=Rj=A}.
(5.7)

Let U be the generator of two independent random walks each moving with transition
kernel b(1)(·, ·), i.e., for all h ∈ Cb((G× {A,D})2),

(Uh)((i, Ri), (j, Rj)) =
∑
k∈G

a(i, k)
[
h((k,A), (j, Rj))− h((i, Ri), (j, Rj))

]
1{i,Ri=A}

+Ke
[
h((i,D), (j, Rj))− h((i, Ri), (j, Rj))

]
1{i,Ri=A}

+ e
[
h((i, A), (j, Rj))− h((i, Ri), (j, Rj))

]
1{i,Ri=D}

+
∑
l∈G

a(j, l)
[
h((i, Ri), (l, A))− h((i, Ri), (j, Rj))

]
1{Rj=A}

+Ke
[
h((i, Ri), (j,D))− h((i, Ri), (j, Rj))

]
1{Rj=A}

+ e
[
h((i, Ri), (j, A))− h((i, Ri), (j,D))

]
1{Rj=D}.

(5.8)

Let F (t) = Ez[z(i,Ri)(t)z(j,Rj)(t)] and H(t) = 2Ez[g(xi(t))]1{i=j}1{Ri=Rj=A}. Then we can
rewrite (5.7) as

d

dt
F (t) = (UF )(t) +H(t). (5.9)

Denote by (RW
(2)
t )t≥0 the semigroup corresponding to U . Applying [Lig85, Theorem

I.2.15], we obtain

F (t) = RW
(2)
t F (0) +

∫ t

0

dsRW
(2)
t−sH(s). (5.10)

Hence

Ez[z(i,Ri)(t)z(j,Rj)(t)]

=
∑

(k,Rk),(l,Rl)∈G×{A,D}

b
(1)
t

(
(i, Ri), (k,Rk)

)
b
(1)
t

(
(j, Rj), (l, Rl)

)
Ez[z(k,Rk)z(l,Rl)]

+ 2

∫ t

0

ds
∑
k∈G

b
(1)
t−s
(
(i, Ri), (k,A)

)
b
(1)
t−s
(
(j, Rj), (k,A)

)
Ez[g(xk(s))].

(5.11)
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Remark 5.2 (Density). From Lemma 5.1 we obtain that if µ is a translation invariant
measure such that Eµ[x0] = θx and Eµ[y0] = θy, then

Eµ[z(i,Ri)(t)] = θx
∑

(k,Rk)∈G×{A}

b
(1)
t

(
(i, Ri), (k,Rk)

)
+ θy

∑
(k,Rk)∈G×{D}

b
(1)
t

(
(i, Ri), (k,Rk)

)
,

(5.12)
in particular, limt→∞Eµ[z(i,Ri)(t)] =

θx+Kθy
1+K = θ, recall (3.4), and

Eµ[z(i,Ri)(t)z(j,Rj)(t)]

=
∑

(k,Rk),(l,Rl)∈G×{A,D}

b
(1)
t

(
(i, Ri), (k,Rk)

)
b
(1)
t

(
(j, Rj), (l, Rl)

)
Eµ[z(k,Rk)z(l,Rl)]

+ 2

∫ t

0

ds
∑
k∈G

b
(1)
t−s
(
(i, Ri), (k,A)

)
b
(1)
t−s
(
(j, Rj), (k,A)

)
Eµ[g(xi(s))].

(5.13)

Remark 5.3 (First moment duality). Note that (5.1) shows that even for general g ∈ G
there is a first moment duality between the process Z(t) and the random walk RW (t),
that moves according to the kernel b(1)(·, ·). The duality function is given by

H : E ×G× {A,D} → R, H(z, (i, Ri)) = z(i,Ri). (5.14)

Equation (5.1) in Lemma 5.1 tells us that

EZ(0)[H(Z(t), RW (0))] = ERW (0)[H(Z(0), RW (t))]. (5.15)

5.2 The clustering case

The proof that the system in (2.4)–(2.5) converges to a unique trivial equilibrium
when â(·, ·) is recurrent goes as follows. We first consider the case where g = dgFW,
for which duality is available (Lemma 5.4). Afterwards we use a duality comparison
argument to show that the dichotomy between coexistence and clustering does not
depend on the choice of g ∈ G (Lemma 5.5).

• Case g = dgFW.

Lemma 5.4 (Clustering). Suppose that µ(0) ∈ T erg
θ and g = dgFW. Moreover, suppose

that â(·, ·) defined in (3.1) is recurrent, i.e., Iâ =∞. Let µ(t) be the law at time t of the
system defined in (2.4)–(2.5). Then

lim
t→∞

µ(t) = θ [δ(1,1)]
⊗G + (1− θ) [δ(0,0)]

⊗G. (5.16)

Proof. Since g = dgFW, we can use duality. By the dichotomy criterion in Theorem 2.11,
it is enough to show that in the dual two partition elements coalesce with probability 1.
Recall from Section 2.4 that each of the partition elements in the dual moves according
to the transition kernel b(1)(·, ·) on G × {A,D} defined by (2.34) (see Fig. 4). Recall
from Section (2.4) that b(1)(·, ·) describes a random walk on G with migration rate
kernel a(·, ·) that becomes dormant (state D) at rate Ke (after which it stops moving),
and becomes active (state A) at rate e (after which it can move again). When two
partition elements in the dual are active and are at the same site, they coalesce at
rate d, i.e., each time they are active and meet at the same site they coalesce with
probability d/[

∑
j∈Zd a(i, j) + Ke + d] > 0. Hence, in order to show that two partition

elements coalesce with probability 1, we have to show that with probability 1 two
partition elements meet infinitely often while being active. The latter holds if and only
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if the expected total time the random walks spend together at the same colony while
being active is infinite. We will show that this occurs if and only the random walk with
symmetrised transition rate kernel â(·, ·) is recurrent. The proof comes in 4 Steps.

1. Active and dormant time lapses. Consider two independent copies of the random
walk with kernel b(1)(·, ·), both starting at 0 and in the active state. Let

(σk)k∈N, (σ′k)k∈N, (5.17)

denote the successive time lapses during which they are active and let

(τk)k∈N, (τ ′k)k∈N, (5.18)

denote the successive time lapses during which they are dormant (see Fig. 5). These are
mutually independent sequences of i.i.d. random variables with marginal laws

P(σ1 > t) = P(σ′1 > t) = e−Ke t, t ≥ 0,

P(τ1 > t) = P(τ ′1 > t) = e−e t t ≥ 0,
(5.19)

where we use the symbol P to denote the joint law of the two sequences.

σ1 τ1 σ2 τ2 σ3 τ3

σ′1 τ ′1 σ′2 τ ′2 σ′3 τ ′3

Figure 5: Successive periods during which the two random walks are active and dormant. The
time lapses between the dotted lines represent periods of joint activity.

Let at(·, ·) denote the time-t transition kernel of the random walk with migration
kernel a(·, ·). Let

E(k, t) =

{
k∑
`=1

(σ` + τ`) ≤ t <
k∑
`=1

(σ` + τ`) + σk+1

}
,

E ′(k′, t) =


k′∑
`=1

(σ′` + τ ′`) ≤ t <
k′∑
`=1

(σ′` + τ ′`) + σ′k+1

 ,

(5.20)

be the events that the random walks are active at time t after having become dormant
and active exactly k, k′ times, and let

T (k, t) =

k∑
`=1

σ` +

((
t−

k∑
`=1

(σ` + τ`)

)
∧ σk+1

)
,

T ′(k′, t) =

k′∑
`=1

σ′` +

t− k′∑
`=1

(σ′` + τ ′`)

 ∧ σk+1

 ,

(5.21)

be the total accumulated activity times up to time t given that k, k′ transitions between
dormant and active have taken place. Note that the terms between brackets in (5.21)
are at most σk+1, respectively, σ′k′+1, and therefore are negligible as k, k′ →∞.
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Given the outcome of the sequences in (5.17)–(5.18), the probability that at time t
both random walks are active and are at the same colony equals

∑
k,k′∈N

(∑
i∈G

aT (k,t)(0, i) aT ′(k′,t)(0, i)

)
1E(k,t) 1E(k′,t). (5.22)

Therefore the expected total time the random walks are active and are at the same
colony equals

I =

∫ ∞
0

dt
∑

k,k′∈N

E(0,A),(0,A)

[(∑
i∈G

aT (k,t)(0, i) aT ′(k′,t)(0, i)

)
1E(k,t) 1E′(k′,t)

]
, (5.23)

where E is the expectation over the sequences in (5.17). Let

N(t) = max

{
k ∈ N :

k∑
`=1

(σ` + τ`) ≤ t

}
, N ′(t) = max

k′ ∈ N :

k′∑
`=1

(σ` + τ`) ≤ t

 ,

(5.24)
be the number of times the random walks have become dormant and active up to time t.
Let

T (t) = T (N(t), t), T ′(t) = T ′(N ′(t), t), E(t) = E(N(t), t), E ′(t) = E ′(N ′(t), t), (5.25)

be the total accumulated activity times of the random walks up to time t, respectively,
the events that the random walks are active at time t. Then we may write

I =

∫ ∞
0

dt E(0,A),(0,A)

[(∑
i∈G

aT (t)(0, i) aT ′(t)(0, i)

)
1E(t) 1E′(t)

]
. (5.26)

We know that coalescence occurs with probability 1 if and only if I =∞.

2. Fourier analysis. Define

M(t) = T (t) ∧ T ′(t), ∆(t) = [T (t) ∨ T ′(t)]− [T (t) ∧ T ′(t)]. (5.27)

Then ∑
i∈G

aT (t)(0, i) aT ′(t)(0, i) =
∑
j∈G

â2M(t)(0, j) a∆(t)(j, 0). (5.28)

Indeed, the difference of the two random walks at time M(t) has distribution â2M(t)(0, ·),
and in order for the random walk with the largest activity time to meet the random walk
with the smallest activity time at time 2M(t) + ∆(t), it must bridge this difference in time
∆(t). To work out (5.28), we assume without loss of generality that

∑
j∈G a(0, j) = 1,

and use Fourier analysis. For ease of exposition we focus on the special case where
G = Zd, but the argument below extends to any countable Abelian group endowed with
the discrete topology, because these properties ensure that there is a version of Fourier
analysis on G [Rud62, Section 1.2]. For φ ∈ [−π, π]d, define

a(φ) =
∑
j∈Zd

ei(φ,j)a(0, j), â(φ) = Re a(φ), ã(φ) = Im a(φ). (5.29)

Then, by Fourier inversion,

ât(0, j) =
1

(2π)d

∫
[−π,π]d

dφ e−i(φ,j) e−t[1−â(φ)],

at(j, 0) =
1

(2π)d

∫
[−π,π]d

dφ′ ei(φ′,j) e−t[1−â(φ′)−iã(φ′)],

(5.30)
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where we use that a(φ) = â(φ) + iã(φ). Inserting these representations into (5.28), we
get∑
i∈Zd

aT (t)(0, i) aT ′(t)(0, i) =
1

(2π)d

∫
[−π,π]d

dφ e−[2M(t)+∆(t)] [1−â(φ)] cos(∆(t)ã(φ)), (5.31)

where we use that
∑
j∈Zd ei(φ′−φ,j) = (2π)dδ(φ′ − φ), with δ(·) the Dirac distribution

(Folland [Fol92, Chapter 7]).

3. Limit theorems. By the strong law of large numbers, we have

lim
k→∞

1

k

k∑
`=1

σ` =
1

Ke
P-a.s., lim

k→∞

1

k

k∑
`=1

τ` =
1

e
P-a.s. (5.32)

Therefore, by the standard renewal theorem (Asmussen [Asm03, Chapter I, Theorem
2.2]),

lim
t→∞

1

t
N(t) = lim

t→∞

1

t
N ′(t) = A P-a.s.,

lim
t→∞

1

t
T (t) = lim

t→∞

1

t
T ′(t) = B P-a.s.,

lim
t→∞

P
(
E(t)

)
= lim
t→∞

P
(
E ′(t)

)
= B,

(5.33)

with

A =
1

1
Ke + 1

e

=
K

1 +K
e, B =

1
Ke

1
Ke + 1

e

=
1

1 +K
. (5.34)

Moreover, by the central limit theorem, we have(
T (t)−Bt

c
√
t

,
T ′(t)−Bt

c
√
t

)
=⇒ (Z,Z ′) in P-distribution as t→∞ (5.35)

with (Z,Z ′) independent standard normal random variables and

c2 = A
[
(1−B)2Var(σ1) +B2Var(τ1)

]
(5.36)

(see [Smi55] or [Asm03, Theorem VI.3.2]). Since T (t), E(t) and T ′(t), E ′(t) are indepen-
dent, and each pair is asymptotically independent as well, we find that

E(0,A),(0,A)

∑
i∈Zd

aT (t)(0, i) aT ′(t)(0, i)

 1E(t) 1E′(t)

 ∼ B2f(t), t→∞, (5.37)

with

f(t) =
1

(2π)d

∫
[−π,π]d

dφ e−[1+o(1)] 2Bt [1−â(φ)]E
[
cos
(

[1 + o(1)] c(Z − Z ′)
√
t ã(φ)

)]
=

1

(2π)d

∫
[−π,π]d

dφ e−[1+o(1)] 2Bt [1−â(φ)] e−[1+o(1)] c2t ã(φ)2 ,

(5.38)

where we use that cos is symmetric, Z − Z ′ =
√

2Z ′′ in P-distribution with Z ′′ standard
normal, and E(eiµZ′′) = e−µ

2/2, µ ∈ R. From (5.26) and (5.37) we have that I < ∞ if
and only if t 7→ f(t) is integrable. By Cramér’s theorem, deviations of T (t)/t and T ′(t)/t
away from B are exponentially costly in t. Hence the error terms in (5.38), arising from
(5.33) and (5.35), do not affect the integrability of t 7→ f(t). Note that, because a(·, ·)
is assumed to be irreducible (recall (2.1)), â(φ) = 1 if and only if φ = 0. Hence the
integrability of t 7→ f(t) is determined by the behaviour of â(φ) and ã(φ) as φ→ 0.
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4. Irrelevance of asymmetric part of migration. We next observe that ã(φ)2 ≤
1− â(φ)2 ≤ 2[1− â(φ)]. Hence, t ã(φ)2 ≤ 2t [1− â(φ)]. Therefore we see from (5.38) that
for sufficiently large T ∈ R we can bound t 7→ f(t) on [T,∞) from above and below by
functions of the form t 7→ gC(t) with

gC(t) =
1

(2π)d

∫
[−π,π]d

dφ e−Ct [1−â(φ)], C ∈ (0,∞). (5.39)

From (5.30) we have
gC(t) = âCt(0, 0) � ât(0, 0), (5.40)

where the last asymptotics uses that t 7→ ât(0, 0) is regularly varying at infinity (recall
(3.2)). Combining (5.26), (5.37) and (5.39)–(5.40), we get

I =∞ ⇐⇒ Iâ =∞ (5.41)

with Iâ =
∫∞

1
dt ât(0, 0). Thus, if â(·, ·) is recurrent, then I =∞ and the system clusters.

Moreover, we see from the bounds on f(t) (recall (5.38)) that the asymmetric part of
the migration kernel has no effect on the integrability.

This settles the dichotomy between clustering and coexistence when g = gFW.

• Case g 6= dgFW. For g 6= dgFW the proof of Lemma 5.4 does not go through. However,
the moment relations in Lemma 5.1 hold for general g ∈ G. Using these moment relations
and a technique called duality comparison (see [CG94]), we prove Lemma 5.4 for general
g ∈ G.

Lemma 5.5 (Duality comparison). Suppose that µ(0) ∈ T erg
θ and g ∈ G. Moreover,

suppose that â(·, ·) defined in (3.1) is recurrent, i.e., Iâ =∞. Let µ(t) be the law at time
t of the system defined in (2.4)–(2.5). Then

lim
t→∞

µ(t) = θ [δ(1,1)]
⊗G + (1− θ) [δ(0,0)]

⊗G. (5.42)

Proof. We proceed as in the proof of [CG94, Theorems 1–2]. First assume that µ(0) = δz
for some z ∈ E, which satisfies

lim
t→∞

∑
(k,Rk)∈G×{A,D}

b
(1)
t ((i, Ri), (k,Rk)) z(k,Rk) = θ. (5.43)

By Lemma 5.1, we have

Ez
[
z(i,Ri)(t)

]
=

∑
(k,Rk)∈G×{A,D}

b
(1)
t ((i, Ri), (k,Rk)) z(k,Rk). (5.44)

Hence, by assumption, for all (i, Ri) ∈ G× {A,D} we have

lim
t→∞

Ez
[
z(i,Ri)(t)

]
= θ. (5.45)

We have clustering if, for all (i, Ri), (j, Rj) ∈ G× {A,D},

lim
t→∞

Ez
[
z(i,Ri)(t)(1− z(j,Rj)(t))

]
= 0, (5.46)

because this implies that

i = j : lim
t→∞

Pz
(
z(i,Ri)(t) ∈ [0, ε) ∪ (1− ε, 1]

)
= 1 ∀ ε > 0,

i 6= j : lim
t→∞

Pz

(
z(j,Rj)(t) ∈ (1− ε, 1] | lim

t→∞
z(i,Ri)(t) ∈ (1− ε, 1]

)
= 1 ∀ ε > 0.

(5.47)
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Thus we are left to prove that

lim
t→∞

Ez
[
z(i,Ri)(t)z(j,Rj)(t)

]
= θ. (5.48)

Since (5.45) implies that lim supt→∞Ez[z(i,Ri)z(j,Rj)] ≤ θ, we are left to prove that

lim inf
t→∞

Ez[z(i,Ri)(t)z(j,Rj)(t)] ≥ θ. (5.49)

Like in [CG94], we will prove (5.49) by comparison duality.

Fix ε > 0. Since g ∈ G we can choose a c = c(ε) > 0 such that g(x) ≥ g̃(x) =

c(x− ε)(1− (x+ ε)), x ∈ [0, 1]. Note that g̃(x) < 0 for x ∈ [0, ε) ∪ (1− ε, 1], so we cannot
replace g by g̃ in the SSDE. Instead we use g̃ as an auxiliary function.

Consider the Markov chain (B(t))t≥0, with state space {1, 2} × (G× {A,D})× (G×
{A,D}) and B(t) = (B0(t), B1(t), B2(t)), evolving according to

(1, (i, Ri), (i, Ri))→ (1, (k,Rk), (k,Rk)), at rate b(1)((i, Ri), (k,Rk)),

(2, (i, Ri), (j, Rj))→


(2, (k,Rk), (j, Rj)), at rate b(1)((i, Ri), (k,Rk)),

(2, (i, Ri), (l, Rl)), at rate b(1)((j, Rj), (l, Rl)),

(1, (i, Ri), (i, Ri)), at rate c1{i=j}1{Ri=Rj=A}.

(5.50)

This describes two random walks, evolving independently according to the transition
kernel b(1)(·, ·), that coalesce at rate c > 0 when they are at the same site and are active.
We put B0(t) = 1 when the two random walks have already coalesced by time t, and
B0(t) = 2 otherwise. Let P(2,(i,Ri),(j,Rj)) denote the law of the Markov chain (B(t))t≥0

that starts in (2, (i, Ri), (j, Rj)). Note that

P(2,(i,Ri),(j,Rj)) (B1(t) = (k,Rk)) = b
(1)
t ((i, Ri), (k,Rk)), (5.51)

and similarly

P(2,(i,Ri),(j,Rj)) (B2(t) = (l, Rl)) = b
(1)
t ((j, Rj), (l, Rl)). (5.52)

By the proof of Lemma 5.4, since we have assumed that â(·, ·) is recurrent, i.e., Iâ =∞,
the two random walks meet infinitely often at the same site while being active and hence
in the dual coalesce with probability 1. Therefore

lim
t→∞

P(2,(i,Ri),(j,Rj)) (B0(t) = 2) = 0. (5.53)

We can rewrite the SSDE in (2.4)–(2.5) in terms of b(1)(·, ·), namely, for all (i, Ri) ∈
G× {A,D},

dz(i,Ri)(t) =
∑

(k,Rk)∈G×{A,D}

b(1)((i, Ri), (j, Rj))[z(j,Rj)(t)− z(i,Ri)(t)] dt

+
√
g(z(i,Ri)(t)) 1{Ri=A} dwi(t).

(5.54)

Using (5.54) and Itô-calculus, we obtain

dEz[z(i,Ri)(t)− ε]
dt

=
∑

(k,Rk)∈G×{A,D}

b(1)((i, Ri), (k,Rk))Ez
[
(z(k,Rk)(t)− ε)− (z(i,Ri)(t)− ε)

]
(5.55)
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and

dEz[(z(i,Ri)(t)− ε)(z(j,Rj)(t) + ε)]

dt

=
∑

(k,Rk)∈G×{A,D}

b(1)((i, Ri), (k,Rk))

× Ez
[
(z(j,Rj)(t) + ε)(z(k,Rk)(t)− ε)− (z(j,Rj)(t) + ε)(z(i,Ri)(t)− ε)

]
+

∑
(l,Rl)∈G×{A,D}

b(1)((j, Rj), (k,Rk))

× Ez
[
(z(i,Ri)(t)− ε)(z(l,Rl)(t) + ε)− (z(i,Ri)(t)− ε)(z(j,Rj)(t) + ε)

]
+ Ez

[
c(z(i,Ri)(t)− ε)(1− (z(j,Rj)(t) + ε)) 1{i=j}1{Ri=Rj=A}

]
+ Ez

[(
g(z(i,Ri)(t))− g̃(z(i,Ri)(t))

)
1{i=j}1{Ri=Rj=A}

]
.

(5.56)

For t ≥ 0, define Ft : {1, 2} × (G× {A,D})× (G× {A,D})→ R by

Ft(1, (i, Ri), (i, Ri)) = Ez
[
z(i,Ri)(t)− ε

]
Ft(2, (i, Ri), (j, Rj)), = Ez

[
(z(i,Ri)(t)− ε)(z(j,Rj)(t) + ε)

]
,

(5.57)

and Ht : {1, 2} × (G× {A,D})× (G× {A,D})→ R by

Ht(1, (i, Ri), (i, Ri)) = 0,

Ht(2, (i, Ri), (j, Rj)) = Ez
[(
g(z(i,Ri)(t))− g̃(z(i,Ri)(t))

)
1{i=j} 1{Ri=Rj=A}

]
.

(5.58)

Let B denote the generator of (B(t))t≥0, and let (Vt)t≥0 the associated semigroup. Then

dFt
dt

= BFt +Ht. (5.59)

Hence, by [Lig85, Theorem I.2.15], it follows that

Ft = VtF0 +

∫ t

0

ds V(t−s)Hs. (5.60)

Since Ht ≥ 0 for all t ≥ 0, we obtain

Ft(2, (i, Ri), (j, Rj)) ≥ VtF0(2, (i, Ri), (j, Rj))

= E(2,(i,Ri),(j,Rj)) [F0(B(t))]

= E(2,(i,Ri),(j,Rj))

[
F0(B(t))1{B0(t)=1} + F0(B(t)) 1{B0(t)=2}

]
=

∑
(k,Rk),(l,Rl)∈G×{A,D}

P(2,(i,Ri),(j,Rj)) [B0(t) = 1, B1(t) = (k,Rk)] (z(k,Rk) − ε)

+ E(2,(i,Ri),(j,Rj))

[
F0(B(t))1{B0(t)=2}

]
=

∑
(k,Rk),(l,Rl)∈G×{A,D}

P(2,(i,Ri),(j,Rj)) [B1(t) = (k,Rk)] (z(k,Rk) − ε)

−
∑

(k,Rk),(l,Rl)∈G×{A,D}

P(2,(i,Ri),(j,Rj)) [B0(t) = 2, B1(t) = (k,Rk)] (z(k,Rk) − ε)

+ E(2,(i,Ri),(j,Rj))

[
F0(B(t))1{B0(t)=2}

]
≥

∑
(k,Rk)∈G×{A,D}

b
(1)
t ((i, Ri), (k,Rk)) (z(k,Rk) − ε)− (1 + ε2)P(2,(i,Ri),(j,Rj)) [B0(t) = 2] .

(5.61)
Hence, by (5.43), (5.53) and (5.57), we obtain

lim inf
t→∞

Ez
[
(z(i,Ri)(t)− ε)(z(j,Rj)(t) + ε)

]
≥ θ − ε. (5.62)
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Letting ε ↓ 0, we get (5.48).
To get rid of the assumption µ(0) = δz, note that for µ(0) ∈ T erg

θ we have, by Remark
5.2,

lim
t→∞

∑
(k,Rk)∈G×{A,D}

bt((i, Ri), (k,Rk))Eµ(0)[z(k,Rk)] = θ. (5.63)

Hence, by the above argument,

Eµ(0)

[
(z(i,Ri)(t)− ε)(zj,Rj (t) + ε)

]
=

∫
Ez
[
(z(i,Ri)(t)− ε)(zj,Rj (t) + ε)

]
µ(0)(dz)

≥
∫ ∑

(k,Rk)∈G×{A,D}

b
(1)
t ((i, Ri), (k,Rk))(z(k,Rk) − ε)

− (1 + ε2)P(2,(i,Ri),(j,Rj)) [B1(t) = 2]µ(0)(dz).
(5.64)

Letting first t→∞ and then ε ↓ 0 we find that, for all (i, Ri), (j, Rj) ∈ G× {A,D},

lim
t→∞

Eµ(0)

[
z(i,Ri)(t)(1− z(j,Rj)(t))

]
= 0. (5.65)

5.3 The coexistence case

For the coexistence case we proceed as in [CG94] with small adaptations. For the
convenience of the reader we have written out the full proof. The proof relies on the
moment relations in Lemma 5.1 and no distinction between g = dgFW and general g ∈ G
is needed. The proof consist of several lemmas (Lemmas 5.7–5.13 below), organised
into 4 Steps. In Step 1 we use the moment relations in Lemma 5.1 to define a set of
measures that are preserved under the evolution. In Step 2 we use coupling to prove
that, for each given θ, the system converges to a unique equilibrium. In Step 3 we show
that, for each given θ, each initial measure under the evolution converges to an invariant
measure. In Step 4 we show that the limiting measure is invariant, ergodic and mixing
under translations, and is associated.

1. Properties of measures preserved under the evolution. Let θ be defined as in

(3.4) such that θ = Eµ(0)

[
x0+Ky0

1+K

]
=

θx+Kθy
1+K .

Definition 5.6 (Preserved class of measure). Let R(1)
θ denote the set of measures µ ∈ T

satisfying:

(1) For all (i, Ri) ∈ G× {A,D},

lim
t→∞

Eµ[z(i,Ri)(t)] = θ. (5.66)

(2) for all (i, Ri), (j, Rj) ∈ G× {A,D},

lim
t→∞

∑
(k,Rk),(l,Rl)∈G×{A,D}

b
(1)
t

(
(i, Ri), (k,Rk)

)
b
(1)
t

(
(j, Rj), (l, Rl)

)
Eµ[z(k,Rk)z(l,Rl)]=θ2.

(5.67)

Clearly, if µ ∈ R(1)
θ , then (1) and (2), together with Lemma 5.1 and Remark 5.2, imply

lim
t→∞

Eµ


 ∑

(k,Rk)∈G×{A,D}

b
(1)
t ((i, Ri), (k,Rk)) z(k,Rk) − θ

2
 = 0, (5.68)
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and so limt→∞ z(i,Ri)(t) = θ in L2(µ).

On the other hand, suppose that (5.68) holds for some (i, Ri) ∈ G× {A,D}. Then, by
Lemma 5.1 and Remark 5.2, we can rewrite (5.68) as

lim
t→∞

Eµ

[(
Ez[z(i,Ri)(t)]− θ

)2]
= 0. (5.69)

This implies

lim
t→∞

Eµ[z(i,Ri)(t)] = θ, (5.70)

and hence, by translation invariance,

lim
t→∞

Eµ[z(k,Ri)(t)] = θ ∀ k ∈ G. (5.71)

Using that switches between the active state at the dormant state occur at a positive
rate, we can use the strong Markov property to obtain that (5.71) holds both for Ri = A

and for Ri = D. Hence (5.66) holds. Combining (5.66) and (5.68), we see that also (5.67)
holds.

Lemma 5.7. T erg
θ ⊂ R(1)

θ (recall (3.6)).

Proof. The proof relies on Fourier analysis and the existence of spectral measures. As
in Section 5.2, for ease of exposition we focus on the special case where G = Zd, but
the argument below extends to any countable Abelian group endowed with the discrete
topology.

By translation invariance and the Herglotz theorem, there exist spectral measures
λA and λD such that, for all j, k ∈ Zd,

Eµ [(xj − θx)(xk − θx)] =

∫
(−π,π]d

ei(j−k,φ)dλA(φ),

Eµ [(yj − θy)(yk − θy)] =

∫
(−π,π]d

ei(j−k,φ)dλD(φ).

(5.72)

Let a(φ) =
∑
k∈Zd ei(φ,j)a(0, k) be the characteristic function of the kernel a(·, ·) (recall

(5.29)), and T (t) the activity time of the random walk up to time t (recall (5.21)). Then

∑
k∈Zd

aT (t)(0, k) ei(k,φ) =
∑
n∈N0

e−T (t)[T (t)]n

n!

∑
k∈Zd

an(0, k) ei(k,φ)

=
∑
n∈N0

e−T (t)[T (t) a(φ)]n

n!

= e−T (t)(1−a(φ)).

(5.73)

Let E(t) be defined as in (5.25). Then, for fixed t > 0,
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P(0,A)(E(t)) =
∑
k∈Zd b

(1)
t ((0, A), (k,A)) > 0 and hence

Eµ


 1

P(0,A)(E(t))

∑
k∈Zd

b
(1)
t ((0, A), (k,A))xk − θx

2


=
1

P(0,A)(E(t))2

∑
k,l∈Zd

b
(1)
t ((0, A), (k,A)) b

(1)
t ((0, A), (l, A))Eµ [(xk − θx)(xl − θx)]

=
1

P(0,A)(E(t))2

∑
k,l∈Zd

b
(1)
t ((0, A), (k,A)) b

(1)
t ((0, A), (l, A))

∫
(−π,π]d

ei(k−l,φ)dλA(φ)

=
1

P(0,A)(E(t))2

∑
k,l∈Zd

× E(0,A),(0,A)

[
aT (t)(0, k) aT ′(t)(0, l) 1E(t) 1E′(t)

] ∫
(−π,π]d

ei(k−l,φ)dλA(φ)

=
1

P(0,A)(E(t))2

×
∫

(−π,π]d
E(0,A),(0,A)

∑
k∈Zd

aT (t) ei(k,φ)(0, k)1E(t)

∑
l∈Zd

aT ′(t) e−i(l,φ)(0, l)1E′(t)

dλA(φ)

=
1

P(0,A)(E(t))2

∫
(−π,π]d

E(0,A),(0,A)

[
e−T (t)(1−a(φ))1E(t) e−T

′(t)(1−ā(φ))1E′(t)

]
dλA(φ).

(5.74)
Since a(·, ·) is irreducible, a(φ) 6= 1 for all φ ∈ (−π, π]d\{0}. Taking the limit t→∞, we
find

lim
t→∞

Eµ


 1

P(0,A)(E(t))

∑
k∈Zd

b
(1)
t ((0, A), (k,A))xk − θx

2
 = λA({0}). (5.75)

Similarly,

lim
t→∞

Eµ


 1

P(0,A)(Ec(t))
∑
k∈Zd

b
(1)
t ((0, A), (k,D))yk − θy

2
 = λD({0}). (5.76)

Hence

lim
t→∞

Eµ


 ∑

(k,Rk)∈Zd×{A,D}

b
(1)
t ((0, A), (k,Rk) z(k,Rk) − θ

2


= lim
t→∞

Eµ

[(
P(0,A)(E(t))

∑
k∈Zd

b
(1)
t ((0, A), (k,A))

P(0,A)(E(t))
xk −

θx
1 +K

+ P(0,A)(Ec(t))
∑
k∈Zd

b
(1)
t ((0, A), (k,D))

P(0,A)(Ec(t))
yk −

Kθy
1 +K

)2]

≤ lim
t→∞

P(0,A)(E(t))Eµ


∑
k∈Zd

b
(1)
t ((0, A), (k,A))

P(0,A)(E(t))
xk −

θx
(1 +K)

1

P(0,A)(E(t))

2
 (5.77)
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+ P(0,A)(Ec(t))Eµ


∑
k∈Zd

b
(1)
t ((0, A), (k,D))

P(0,A)(Ec(t))
yk −

Kθy
1 +K

1

P(0,A)(Ec(t))

2


=
1

1 +K
λA({0}) +

K

1 +K
λD({0}).

Hence, if λA({0}) = 0 and λD({0}) = 0, then µ ∈ R(1)
θ . We will show that λA({0}) = 0

and λD({0}) = 0 for µ ∈ T erg
θ .

Let ΛN = [0, N)d ∩Zd. By the L2-ergodic theorem, we have, for µ ∈ T erg
θ ,

lim
N→∞

Eµ


 1

ΛN

∑
j∈ΛN

xj − θx

2
 = 0. (5.78)

(For general G note that countable groups endowed with the discrete topology are
amenable. For amenable groups G, (ΛN )N∈N must be replaced by a so-called Følner
sequence, i.e., a sequence of finite subsets of G that exhaust G and satisfy
limN→∞ |gΛN4ΛN |/|ΛN | = 0 for any g ∈ G [Lin99].) Using the spectral measure, we can
write

lim
N→∞

Eµ


 1

ΛN

∑
j∈ΛN

xj − θx

2


= lim
N→∞

1

Λ2
N

∑
j,k∈ΛN

∫
(−π,π]d

ei(j−k,φ)dλA

= lim
N→∞

∫
(−π,π]d

 1

ΛN

∑
j∈ΛN

ei(j,φ)

( 1

ΛN

∑
k∈ΛN

e−i(k,φ)

)
dλA

= λA{0}.

(5.79)

In the last equality we use dominated convergence and

1. For all φ ∈ (−π, π]d,

lim
N→∞

1

ΛN

∑
j,k∈ΛN

e−i(k,φ) = 1{0}(φ). (5.80)

2. For all δ > 0 there exist ε(N, δ) > 0 such that if Jδ = (−δ, δ), then∣∣∣∣∣∣ 1

ΛN

∑
j,k∈ΛN

e−i(k,φ) − 1{0}(φ)

∣∣∣∣∣∣ ≤ 1Jδ(φ) + ε(N, δ), (5.81)

where ε(N, δ) ↓ 0 as N →∞.

We conclude that λA({0}) = 0. Similarly we can show that λD({0}) = 0, and hence

µ ∈ R(1)
θ .

Recall that (St)t≥0 is the semigroup associated with (2.4)–(2.5).

Lemma 5.8 (Preservation). If b(·, ·) is transient and µ ∈ R(1)
θ , then the following hold:

(a) µSt ∈ R(1)
θ for each t ≥ 0.

(b) If tn →∞ and µStn → µ(∞), then µ(∞) ∈ R(1)
θ .
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Proof. Our dynamics preserve translation invariance. To check property (1) of R(1)
θ (see

(5.66)), set f(z) = z(i,Ri). Since µ ∈ R(1)
θ , applying Lemma 5.1 multiple times, we obtain

lim
s→∞

EµSt [z(i,Ri)(s)] = lim
s→∞

∑
(k,Rk)∈G×{A,D}

b(1)
s

(
(i, Ri), (k,Rk)

)
EµSt [z(k,Rk)]

= lim
s→∞

∑
(k,Rk)∈G×{A,D}

b(1)
s

(
(i, Ri), (k,Rk)

)
Eµ[z(k,Rk)(t)]

= lim
s→∞

∑
(k′,R′

k′ )∈G×{A,D}

b
(1)
s+t

(
(i, Ri), (k

′, Rk′)
)
Eµ[z(k′,Rk′ )

]

= lim
s→∞

Eµ[z(i,Ri)(t+ s)] = θ.

(5.82)

To check property (2) of R(1)
θ (see (5.67)), we set f(z) = z(i,Ri)z(j,Rj). Then, again by

applying Lemma 5.1, we find

lim
s→∞

∑
(k,Rk),(l,Rl)∈G×{A,D}

b(1)
s

(
(i, Ri), (k,Rk)

)
b(1)
s

(
(j, Rj), (l, Rl)

)
EµSt [z(k,Rk)z(l,Rl)]

= lim
s→∞

∑
(k,Rk),(l,Rl)∈G×{A,D}

b(1)
s

(
(i, Ri), (k,Rk)

)
b(1)
s

(
(j, Rj), (l, Rl)

)
Eµ[z(k,Rk)(t)z(l,Rl)(t)]

= lim
s→∞

[ ∑
(k′,Rk′ ),(l

′,Rl′ )∈G×{A,D}

b
(1)
t+s

(
(i, Ri), (k

′, Rk′)
)
b
(1)
t+s

(
(j, Rj), (l

′, Rl′)
)
Eµ[z(k′,Rk′ )

z(l′,Rl′ )
]

+2

∫ t

0

dr
∑
k′∈G

b
(1)
t−r+s

(
(i, Ri), (k

′, A)
)
b
(1)
t−r+s

(
(j, Rj), (k

′, A)
)
Eµ[g(xk′(r))]

]
.

(5.83)
Since µ ∈ R(1)

θ , we are left to show that

lim
s→∞

∫ t+s

s

du
∑
k′∈G

b(1)
u

(
(i, Ri), (k

′, A)
)
b(1)
u

(
(j, Rj), (k

′, A)
)
Eµ[g(xk′(t+s−u))] = 0. (5.84)

Using the notation of Section 5.2, we get (‖g‖ denotes the supremum norm of g)

lim
s→∞

∫ t+s

s

du
∑
k′∈G

b(1)
u

(
(i, Ri), (k

′, A)
)
b(1)
u

(
(j, Rj), (k

′, A)
)
Eµ[g(xk′(t+ s− u))]

≤ ‖g‖ lim
s→∞

∫ t+s

s

du
∑
k′∈G

b(1)
u

(
(i, Ri), (k

′, A)
)
b(1)
u

(
(j, Rj), (k

′, A)
)

= ‖g‖ lim
s→∞

∫ t+s

s

du E(i,Ri),(j,Rj)

[∑
k′∈G

aT (u)(i, k
′) 1E(u) aT ′(u)(j, k

′) 1E′(u)

]

≤ ‖g‖ lim
s→∞

∫ t+s

s

du E(0,A),(0,A)

[∑
k′∈G

aT (u)(i, k
′) 1E(u) aT ′(u)(j, k

′) 1E′(u)

]
= 0,

(5.85)

where the last equality follows from the assumption Iâ <∞ in Theorem 3.1, (5.23) and
(5.41). The last inequality follows from the Markov property and the observation that, in
order to get a contribution to the integral, the two random walks first have to meet at
the same site and both be active. We conclude that µSt ∈ R(1)

θ for all t ≥ 0.

To show that µ(∞) ∈ R(1)
θ , we proceed like in (5.82), to obtain

lim
s→∞

Eµ(∞)[z(i,Ri)(s)] = lim
s→∞

lim
n→∞

EµStn [z(i,Ri)(s)] = lim
s→∞

lim
n→∞

Eµ[z(i,Ri)(tn + s)] = θ,

(5.86)
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and so (5.66) is satisfied. To get (5.67), we note that, by Lemma 5.1,∑
(k,Rk),(l,Rl)∈G×{A,D}

b
(1)
tn

(
(i, Ri), (k,Rk)

)
b
(1)
tn

(
(j, Rj), (l, Rl)

)
Eµ[z(k,Rk)z(l,Rl)]

≤ Eµ[z(i,Ri)(tn)z(j,Rj)(tn)]

≤
∑

(k,Rk),(l,Rl)∈G×{A,D}

b
(1)
tn

(
(i, Ri), (k,Rk)

)
b
(1)
tn

(
(j, Rj), (l, Rl)

)
Eµ[z(k,Rk)z(l,Rl)]

+ 2‖g‖
∫ tn

0

ds
∑
k∈G

b
(1)
tn−s

(
(i, Ri), (k,A)

)
b
(1)
tn−s

(
(j, Rj), (k,A)

)
.

(5.87)

Letting n→∞, we see that, since µ ∈ R(1)
θ ,

θ2 ≤ Eµ(∞)[z(i,Ri)z(j,Rj)]

≤ θ2 + 2‖g‖
∫ ∞

0

dr
∑
k∈G

b(1)
r

(
(i, Ri), (k,A)

)
b(1)
r

(
(j, Rj), (k,A)

)
.

(5.88)

Inserting (5.88) into (5.67), we see that it is enough to show that

lim
s→∞

∑
(k,Rk),(l,Rl)∈G×{A,D}

b(1)
s

(
(i, Ri), (k,Rk)

)
b(1)
s

(
(j, Rj), (l, Rl)

)
× 2‖g‖

∫ ∞
0

dr
∑
k′∈G

b(1)
r ((k,Rk), (k′, A)) b(1)

r ((l, Rl), (k
′, A))

= lim
s→∞

2‖g‖
∫ ∞

0

dr
∑
k′∈G

b
(1)
r+s

(
(i, Ri), (k

′, A)
)
b
(1)
r+s

(
(j, Rj), (k

′, A)
)

= 0.

(5.89)

However, from the assumption Iâ <∞ in Theorem 3.1, (5.23) and (5.41), we have

lim
s→∞

‖g‖
∫ ∞

0

dr
∑
k′∈G

b
(1)
r+s

(
(i, Ri), (k

′, A)
)
b
(1)
r+s

(
(j, Rj), (k

′, A)
)

= lim
s→∞

‖g‖
∫ ∞
s

dr E(i,Ri),(j,Rj)

[∑
k′∈G

aT (r)(i, k
′)1E(r)aT ′(r)(j, k

′)1E′(r)

]
= 0.

(5.90)

2. Uniqueness of the equilibrium. In this section we show that, for given θ, the
equilibrium when it exists is unique. To prove this we extend the coupling argument
in [CG94]. Consider two copies of the system (2.4)–(2.5) coupled via their Brownian
motions:

dxki (t) =
∑
j∈G

a(i, j) [xkj (t)− xki (t)] dt+
√
g(xki (t)) dwi(t) (5.91)

+Ke [yki (t)− xki (t)] dt,

dyki (t) = e [xki (t)− yki (t)] dt, k ∈ {1, 2}. (5.92)

Here, k labels the copy, and the two copies are driven by the same set of independent
Brownian motions (wi(t))t≥0, i ∈ G. As initial probability distributions we choose µ1(0)

and µ2(0) that are both invariant and ergodic under translations.
Let

z̄i(t) = (z1
i (t), z2

i (t)), zki (t) = (xki (t), yki (t)), k ∈ {1, 2}. (5.93)

The coupled system (z̄i(t))i∈G has a unique strong solution (the marginals are the single-
component systems, which by [SS80, Theorem 3.2] have a unique strong solution).
Write P̂ to denote the law of the coupled system, and let ∆i(t) = x1

i (t) − x2
i (t) and

δi(t) = y1
i (t)− y2

i (t).
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Lemma 5.9 (Coupling dynamics). For every t ≥ 0,

d

dt
Ê
[
|∆i(t)|+K|δi(t)|

]
= −2

∑
j∈G

a(i, j) Ê
[
|∆j(t)| 1{sgn ∆i(t) 6= sgn ∆j(t)}

]
− 2Ke Ê

[(
|∆i(t)|+ |δi(t)|

)
1{sgn ∆i(t) 6= sgn δi(t)}

]
.

(5.94)

Proof. Let f(x) = |x|, x ∈ R. Then f ′(x) = sgnx and f ′′(x) = 0 for x 6= 0, but f is not
differentiable at x = 0, a point the path hits. Therefore, by a generalization of Itô’s
formula, we have

d|∆i(t)| = sgn ∆i(t) d∆i(t) + dL0
t ,

d∆i(t) =
∑
j∈G

a(i, j)[∆j(t)−∆i(t)] dt+

[√
g(x1

i (t))−
√
g(x2

i (t))

]
dwi(t)

+Ke
[
δi(t)−∆i(t)

]
dt,

(5.95)

where L0
t is the local time of ∆i(t) at 0 (see [RW00, Section IV.43]). Next, we use that

∆i(t) has zero local time at x = 0 because g is Lipschitz (see [RW00, Proposition V.39.3]).
Taking expectation, we get

d

dt
Ê
[
|∆i(t)|

]
=
∑
j∈G

a(i, j) Ê
[
sgn ∆i(t) [∆j(t)−∆i(t)]

]
+Ke Ê

[
sgn ∆i(t) [δi(t)−∆i(t)]

]
.

(5.96)
Similarly, we have

d|δi(t)| = sgn δi(t) dδi(t),

dδi(t) = e
[
∆i(t)− δi(t)

]
dt.

(5.97)

Taking expectation, we get

d

dt
Ê
[
|δi(t)|

]
= e Ê

[
sgn δi(t) [∆i(t)− δi(t)]

]
. (5.98)

Combining (5.96) and (5.98), we get

d

dt
Ê
[
|∆i(t)|+K|δi(t)|

]
=
∑
j∈G

a(i, j) Ê
[
sgn ∆i(t) [∆j(t)−∆i(t)]

]
+K e Ê

[
[sgn ∆i(t)− sgn δi(t)] [δi(t)−∆i(t)]

]
.

(5.99)

Note that

sgn ∆i(t) [∆j(t)−∆i(t)] = |∆j(t)| − |∆i(t)| − 2 |∆j(t)| 1{sgn ∆i(t) 6=sgn ∆j(t)}. (5.100)

By translation invariance, E[|∆i(t)|] is independent of i. Hence the first sum in the
right-hand side can be rewritten as

− 2
∑
j∈G

a(i, j) Ê
[
|∆j(t)| 1{sgn ∆i(t) 6=sgn ∆j(t)}

]
. (5.101)

Similarly, the second sum in the right-hand side can be rewritten as

− 2Ke Ê
[(
|∆i(t)|+ |δi(t)|

)
1{sgn ∆i(t) 6= sgn δi(t)}

]
. (5.102)

Combining (5.99) and (5.101)–(5.102), we get the claim.

Lemma 5.9 tells us that t 7→ Ê[|∆i(t)|+K|δi(t)|] is non-increasing, i.e., is a Lyapunov
function. Therefore limt→∞ Ê[|∆i(t)|+K|δi(t)|] = ci ∈ [0, 1 +K] exists. To show that the
coupling is successful we need the following lemma.
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Lemma 5.10 (Uniqueness of equilibrium). If a(·, ·) is transient, then ci = 0 for all i ∈ G,
and so the coupling is successful, i.e.,

lim
t→∞

Ê
[
|∆i(t)|+K|δi(t)|

]
= 0. (5.103)

Proof. Write−hi(t) to denote the right-hand side of (5.94). We begin with the observation
that t 7→ hi(t) has the following properties:

(a) hi ≥ 0.
(b) 0 ≤

∫∞
0

dt hi(t) ≤ 1 +K.
(c) hi is differentiable with h′i bounded.

Property (a) is evident. Property (b) follows from integration of (5.94):

∫ t

0

ds hi(s) = Ê
[
|∆i(0)|+K|δi(0)|

]
− Ê

[
|∆i(t)|+K|δi(t)|

]
. (5.104)

The proof of Property (c) is given in Appendix D. It follows from (a)–(c) that limt→∞ h(t) =

0. Hence, for every ε > 0,

∀ i, j ∈ G with a(i, j) > 0:

lim
t→∞

P̂
(
{∆i(t) < −ε, ∆j(t) > ε} ∪ {∆i(t) > ε, ∆j(t) < −ε}

)
= 0,

∀ i ∈ G :

lim
t→∞

P̂
(
{∆i(t) < −ε, δi(t) > ε} ∪ {∆i(t) > ε, δi(t) < −ε}

)
= 0.

(5.105)

In Appendix C we will prove the following lemma:

Lemma 5.11 (Successful coupling). For all i, j ∈ G and ε > 0,

lim
t→∞

P̂
(
{∆i(t) < −ε, ∆j(t) > ε} ∪ {∆i(t) > ε, ∆j(t) < −ε}

)
= 0. (5.106)

The proof of this lemma relies on the fact that â(·, ·) is irreducible. Let

E0 × E0 =
{
z̄ ∈ E × E : z1

(i,Ri)
≥ z2

(i,Ri)
∀(i, Ri) ∈ G× {A,D}

}
∪
{
z̄ ∈ E × E : z2

(i,Ri)
≥ z1

(i,Ri)
∀(i, Ri) ∈ G× {A,D}

}
.

(5.107)

Then Lemma 5.11 together with (5.105) imply that limt→∞ P̂ (z̄(t) ∈ E0 × E0) = 1, which
we express by saying that “one diffusion lies on top of the other”.

Using Lemma 5.11 we can complete the proof of the successful coupling. Let
tn → ∞ as n → ∞ and suppose, by possibly going to further subsequences, that
limn→∞ µ1(tn) = ν1

θ and limn→∞ µ2(tn) = ν2
θ for some laws ν1

θ and ν2
θ on E. Let ν̄θ be

the law on E × E given by ν̄θ = ν1
θ × ν2

θ . Using dominated convergence, invoking the

preservation of translation invariance, and using the limiting distribution of b(1)
t (·, ·) on
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{A,D}, we find∫
E×E

dν̄θ |∆i|+K|δi|

= (1 +K)

∫
E0×E0

dν̄θ lim
n→∞

∑
j∈G

[
b
(1)
tn

(
(i, Ri), (j, A)

)
|x1
i − x2

i |+ b
(1)
tn

(
(i, Ri), (j,D)

)
|y1
i − y2

i |
]

= lim
n→∞

(1 +K)

∫
E0×E0

dν̄θ

∣∣∣∣∣∣
∑

j∈G×{A,D}

b
(1)
tn

(
(i, Ri), (j, Rj)

)
(z1

(j,Rj)
− z2

(j,Rj)
)

∣∣∣∣∣∣
≤ lim
n→∞

(1 +K)

∫
E

dν1
θ

∣∣∣∣∣∣
∑

j∈G×{A,D}

b
(1)
tn

(
(i, Ri), (j, Rj)

)
z1

(j,Rj)
− θ

∣∣∣∣∣∣
+ lim
n→∞

(1 +K)

∫
E

dν2
θ

∣∣∣∣∣∣
∑

i∈G×{A,D}

b
(1)
tn

(
(i, Ri), (j, Rj)

)
z2

(j,Rj)
− θ

∣∣∣∣∣∣ = 0.

(5.108)
Here, the last equality follows because both ν1

θ and ν2
θ are in R(1)

θ by Lemma 5.8. Thus,
we see that ν̄θ concentrates on the diagonal. Suppose now that there exists a se-
quence (tn)n∈N such that limn→∞E[|∆i(tn)| + K|δi(tn)|] = δ > 0. Since {L(Z̄(tn))}n∈N
is tight (recall (5.93)), by Prokhorov’s theorem there exists a converging subsequence
{L(Z̄(tnk))}k∈N. Let ν̄θ denote the limiting measure. Then, by Lemma 5.8 and (5.108),

δ = lim
k→∞

E[|∆i(tnk)|+K|δi(tnk)|] =

∫
E×E

dν̄θ [|∆i|+K|δi|] = 0. (5.109)

Thus, limt→∞E[|∆i(t)|+K|δi(t)|] = 0, and we conclude that the coupling is successful.
Hence, given the initial average density θ in (3.4), the equilibrium measure is unique if
it exists.

3. Stationarity of νθ and convergence to νθ.

Lemma 5.12 (Existence of equilibrium). Let µ(0) ∈ T erg
θ . Then limt→∞ µ(t) = νθ for some

invariant measure νθ.

Proof. To prove that the limit is an invariant measure, suppose that µ(0) = δθ, where θ is
the state with all components equal to θ. Since the state space of (Z(t))t≥0 is compact,
each sequence {L(Z(tn))}n∈N is tight. Hence, by Prokhorov’s theorem, there exists a

sequence (tn)n∈N such that limn→∞ δθStn = νθ. Since δθ ∈ R(1)
θ , Lemma 5.8 tells us that

limn→∞ δθStn ∈ R
(1)
θ .

To prove that νθ is invariant, fix any s0 ≥ 0 and put µ(0) = δθSs0 . Then, by Lemma

5.8, µ(0) ∈ R(1)
θ and, by Lemma 5.11, we can find a further subsequence (tnk)k∈N such

that limk→∞ µ(0)Stnk = νθ. By the Feller property of the SSDE in (2.4)–(2.5), we obtain

νθSs0 = lim
n→∞

δθStnSs0 = lim
k→∞

δθSs0Stnk = lim
k→∞

µ(0)Stnk = νθ. (5.110)

Hence, νθ is indeed an invariant measure.
Suppose that µ(0) 6= δθ, but µ(0) ∈ T erg

θ . Then, by Lemma 5.7, we can couple the two
processes starting from µ(0) and δθ.

To prove the convergence of µ(t) to νθ, note that νθ ∈ R(1)
θ by Lemma 5.8. By the

invariance of νθ, we have limt→∞ νθSt = νθ. By Lemma 5.10, we have limt→∞ µ(0)St =

limt→∞ νθSt = νθ for all µ(0) ∈ R(1)
θ .
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4. Ergodicity, mixing and associatedness.

Lemma 5.13 (Properties of equilibrium). Let µ(0) ∈ R(1)
θ be ergodic under translations.

Then νθ = limt→∞ µ(t) is ergodic and mixing under translations, and is associated.

Proof. After a standard approximation argument, [HP91, Corollary1.5 and subsequent
discussion] tells us that associatedness is preserved over time. Note that δθ is an
associated measure and lies in R(1)

θ . Hence, by Lemma 5.12, νθ = limt→∞ δθSt and
therefore νθ is associated.

We prove the ergodicity of νθ by showing that the random field of components is
mixing. To prove that νθ is mixing, we use associatedness and decay of correlations.
Let B,B′ ⊂ G be finite, and let cj , di be positive constants for j ∈ B, i ∈ B′. For k ∈ G,
define the random variables

Y0 =
∑
j∈B

cjz(j,Rj), Yk =
∑
i∈B′

diz(i+k,Ri+k). (5.111)

Note that both Y0 and Yk are associated under νθ because (z(i,Ri))(i,Ri)∈G×{A,D} are
associated. Therefore, by [NW81, Eq.(2.2)], it follows that for s, t ∈ R,∣∣∣Eνθ [ei(sY0+tYn)]− Eνθ [eisY0 ]Eνθ [e

itYn ]
∣∣∣ ≤ |st|Covνθ (Y0, Yn). (5.112)

Since µ ∈ R(1)
θ by Lemma 5.1,

Covνθ (Y0, Yk) =
∑
j∈B

∑
i∈B′

cjdi lim
t→∞

Covµ(z(j,Rj)(t), z(i+k,Ri+k)(t)) (5.113)

≤ 2‖g‖
∑
j∈B

∑
i∈B′

cjdi

∫ ∞
0

dr
∑

(l,Rl)∈G×{A}

b(1)
r

(
(j, Rj), (l, A)

)
b(1)
r

(
(i+ k,Ri+k), (l, A)

)
.

The last integral gives the expected total time for two independent random walks,
starting in (j, Rj) and (i + k,Ri+k), to be active at the same site. To show that this
integral converges to 0 as ‖k‖ → ∞, we rewrite the sum as (recall (5.27)–(5.28))

E(i+k,Ri+k),(j,Rj)

[(∑
l∈G

aT (r)(j, l) aT ′(r)(i+ k, l)

)
1E(r) 1E′(r)

]

= E(i+k,Ri+k),(j,Rj)

[(∑
l′∈G

â2M(r)(i+ k − j, l′) a∆(r)(l
′, 0)

)
1E(r) 1E′(r)

]

≤ E(i+k,Ri+k),(j,Rj)

[(∑
l′∈G

â2M(r)(i+ k − j, l′)
[
a∆(r)(l

′, 0) + a∆(r)(0, l
′)
])

1E(r) 1E′(r)

]
= E(i+k,Ri+k),(j,Rj)

[
â2M(r)+2∆(r)(i+ k − j, 0)1E(r) 1E′(r)

]
.

(5.114)
Because â(·, ·) is symmetric, we have â2M(r)+2∆(r)(i+ k− j, 0) ≤ â2M(r)+2∆(r)(0, 0). Since

T (t) + T ′(t) ≤ 2M(r) + 2∆(r) ≤ 2 (T (t) + T ′(t)) , (5.115)

the Fourier transform in (5.37)–(5.38) implies that∫ ∞
0

drE(i+k,Ri+k),(j,Rj)

[
â2M(r)+2∆(r)(0, 0)1E(r) 1E′(r)

]
<∞ (5.116)

if and only if Iâ < ∞. Since we are in the transient regime, i.e., Iâ < ∞, we can use
dominated convergence, in combination with the fact that lim‖k‖→∞ ât(i+ k − j, 0) = 0

for all i, j, t, to conclude that lim‖k‖→∞ Covνθ (Y0, Yk) = 0.
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5.4 Proof of the dichotomy

Theorem 3.1(a) follows from Lemmas 5.7, 5.12 and 5.13. The equality Eνθ [x0] =

Eνθ [y0] = θ follows from the evolution equations in (2.4)–(2.5), the fact that νθ is an
equilibrium measure, and the preservation of θ (see (3.5)). Theorem 3.1(b) follows from
Lemma 5.5. The fact that θ 7→ νθ is continuous in the weak topology, as claimed in
Remark 3.2, follows from the fact that ‖νθ(zi ∈ ·) − νθ′(zi ∈ ·)‖tv ≤ (1 + K)|θ − θ′| for
all i ∈ G, with zi = (z(i,Ri))Ri∈{A,D}. The latter follows from the coupling argument in
Lemmas 5.9–5.12. (Pick µ(0) equal to δθ, δθ′ and use the contraction via the Lyapunov
function.)

6 Proofs: long-time behaviour for Model 2

In Sections 6.1–6.4 we show that the results proved in Sections 5.1–5.4 carry over
from Model 1 to Model 2. In Section 6.5 we show that symmetry of a(·, ·) is needed. In
Section 6.6 we show what happens when for infinite seed-bank the fat-tailed wake-up
time is modulated by a slowly varying function.

6.1 Moment relations

Like in Model 1, we start by relating the first and second moments of the system in
(2.12)–(2.13) to the random walk that evolves according to the transition kernel b(2)(·, ·)
on G × {A, (Dm)m∈N0} given by (2.44). Also here these moment relations hold for all
g ∈ G. Moreover these moment relations holds for ρ <∞ as well as for ρ =∞. Below we
write Ez for Eδz , the expectation when the process starts from the initial measure δz,
z ∈ E.

Lemma 6.1 (First and second moment). For z ∈ E, t ≥ 0 and (i, Ri), (j, Rj) ∈ G ×
{A, (Dm)m∈N0

},

Ez[z(i,Ri)(t)] =
∑

(k,Rk)∈G×{A,(Dm)m∈N0
}

b
(2)
t

(
(i, Ri), (k,Rk)

)
z(k,Rk) (6.1)

and

Ez[z(i,Ri)(t)z(j,Rj)(t)]

=
∑

(k,Rk),(l,Rl)∈G×{A,(Dm)m∈N0
}

b
(2)
t

(
(i, Ri), (k,Rk)

)
b
(2)
t

(
(j, Rj), (l, Rl)

)
z(k,Rk)z(l,Rl)

+ 2

∫ t

0

ds
∑
k∈G

b
(2)
(t−s)((i, Ri), (k,A)) b

(2)
(t−s)((j, Rj), (k,A))Ez[g(xk(s))].

(6.2)

Proof. The proof follows from that of Lemma 5.1 after we replace b(1)(·, ·) by b(2)(·, ·) and
use (2.12)–(2.13) instead of (2.4)–(2.5).

Remark 6.2 (Density). From Lemma 6.1 we obtain that if µ is invariant under transla-
tions with Eµ[x0(0)] = θx and Eµ[y0,m(0)] = θy,m for all m ∈ N0, then

Eµ[z(i,Ri)(t)] = θx
∑

(k,Rk)∈G×{A}

b
(2)
t

(
(i, Ri), (k,Rk)

)
+
∑
m∈N0

θy,m
∑

(k,Rk)∈G×{Dm}

b
(2)
t

(
(i, Ri), (k,Rk)

) (6.3)
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and

Eµ[z(i,Ri)(t)z(j,Rj)(t)]

=
∑

(k,Rk),(l,Rl)∈G×{A,(Dm)m∈N0
}

b
(2)
t

(
(i, Ri), (k,Rk)

)
b
(2)
t

(
(j, Rj), (l, Rl)

)
Eµ[z(k,Rk)z(l,Rl)]

+ 2

∫ t

0

ds
∑
k∈G

b
(2)
t−s
(
(i, Ri), (k,A)

)
b
(2)
t−s
(
(j, Rj), (k,A)

)
Eµ[g(xi(s))].

(6.4)

• For ρ < ∞, b(2)(·, ·) projected onto {A, (Dm)m∈N0} is a recurrent Markov chain.
Therefore, by translation invariance in G, we have

lim
t→∞

Eµ[z(i,Ri)(t)] =
θx +

∑
m∈N0

Kmθy,m

1 +
∑
m∈N0

Km
= θ. (6.5)

• For ρ =∞, b(2)(·, ·) viewed as a kernel on {A, (Dm)m∈N0} is a null-recurrent Markov
chain. Hence, for all (i, Ri),

lim
t→∞

∑
k∈G

b
(2)
t ((i, Ri), (k,A)) = 0,

lim
t→∞

∑
k∈G

b
(2)
t ((i, Ri), (k,Dm)) = 0 ∀m ∈ N0,

lim
t→∞

∑
m≥M

∑
k∈G

b
(2)
t ((i, Ri), (k,Dm)) = 1 ∀M ∈ N0,

(6.6)

which is the analogue of (4.31). Since for ρ = ∞ we assume that µ ∈ T erg,•
θ , it

follows that, for all M ∈ N0,

lim
t→∞

Eµ[z(i,Ri)(t)]= lim
t→∞

θx
∑
k∈G

b
(2)
t

(
(i, Ri), (k,A)

)
+
∑
m∈N0

θy,m
∑
k∈G

b
(2)
t

(
(i, Ri), (k,Dm)

)
= lim
t→∞

∑
m≥M

θy,m
∑
k∈G

b
(2)
t

(
(i, Ri), (k,Dm)

)
.

(6.7)
Letting M →∞, using (6.6) and noting that limm→∞ θy,m = θ by colour regularity,
we obtain

lim
t→∞

Eµ[z(i,Ri)(t)] = θ. (6.8)

6.2 The clustering case

In this section we prove convergence to a trivial equilibrium when ρ <∞ and Iâ =∞
and when ρ =∞ and Iâ,γ =∞. The proof follows along the same lines as in Section 5.2.
Therefore we again first consider g = dgFW, and subsequently use a duality comparison
argument to show that the results hold for g 6= dgFW as well.

Case g = dgFW. We start by proving the equivalent of Lemma 5.4, which is Lemma 6.3
below.

Lemma 6.3 (Clustering). Suppose that µ(0) ∈ T erg
θ and g = dgFW. Let µ(t) be the law at

time t of the system defined in (2.12)–(2.13). Then the following two statements hold:
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• If ρ <∞ and Iâ =∞, i.e., â(·, ·) is recurrent, then

lim
t→∞

µ(t) = θ [δ(1,1N0 )]
⊗G + (1− θ) [δ(0,0N0 )]

⊗G. (6.9)

• If ρ =∞ and Iâ,γ =∞ then

lim
t→∞

µ(t) = θ [δ(1,1N0 )]
⊗G + (1− θ) [δ(0,0N0 )]

⊗G. (6.10)

Proof. We distinguish between ρ <∞ and ρ =∞, which exhibit different behaviour.

Case ρ < ∞. The same dichotomy as for Model 1 holds when the average wake-up
time is finite (recall (2.23)–(2.24), (2.53)). Indeed, the argument in (5.32)–(5.41) can be
copied with Ke, e replaced by χ, χ/ρ and A,B by χ/(1+ρ), 1/(1+ρ). Under the symmetry
assumption in (3.14) we have ã(φ) = 0. Hence only the law of large numbers in (5.33) is
needed, not the central limit theorem in (5.35), which may fail (see Section 6.5).

Case ρ =∞. When the average wake-up time is infinite, we need the assumptions in
(3.2) and (3.17). By the standard law of large numbers for stable random variables (see
e.g. [Fel71, Section XIII.6]), we have

lim
k→∞

1

k

k∑
`=1

σ` =
1

χ
P-a.s., lim

k→∞

1

k1/γ

k∑
`=1

τ` = W in P-probability, (6.11)

with W a stable law random variable on (0,∞) with exponent γ. Therefore

lim
t→∞

1

tγ
N(t) = lim

t→∞

1

tγ
N ′(t) = W−γ in P-probability,

lim
t→∞

1

tγ
T (t) = lim

t→∞

1

tγ
T ′(t) =

1

χ
W−γ in P-probability,

lim
t→∞

t1−γ P
(
E(t)

)
= lim
t→∞

t1−γ P
(
E ′(t)

)
=

1

χ
E[W−γ ], t→∞.

(6.12)

For the last statement to make sense, we must check the following.

Lemma 6.4 (Finite limits). E[W−γ ] <∞.

Proof. Let Wk = k−1/γ
∑k
l=1 τl. Then W−γk ≤ k(max1≤i≤k τ

γ
i )−1 and, since τi are i.i.d.

random variables,

E[W−γk ] ≤
∫ ∞

0

dxP

(
k

(
max

1≤i≤k
τγi

)−1

> x

)
=

∫ ∞
0

dxP
(
τγ1 < k

x

)k
. (6.13)

To estimate the integral in the right-hand side of (6.13), we introduce three constants, T ,
C1, C2. Let ε ∈ (0, 1) and choose T ∈ R+ such that, for all t > T , |[P(τ > t)/(Ct−γ)]−1| <
ε. Since P(τ ≤ t) = 1− χ−1

∑
m∈N0

Kmem e−emt, we note that, under assumption (3.17),
τ admits a continuous bounded density. Hence there exists a C1 ∈ R+ such that
P(τ ≤ t) < C1t. Finally, choose C2 ∈ R+ such that C2 > max(1, Cγ1 ). Split∫ ∞

0

dxP
(
τγ1 < k

x

)k
=

∫ k/T

0

dxP
(
τγ1 < k

x

)k
+

∫ kC2

k/T

dxP
(
τγ1 < k

x

)k
+

∫ ∞
kC2

dxP
(
τγ1 < k

x

)k
.

(6.14)
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We estimate each of the three integrals separately. For the first integral, we use the
estimate (1− P(τγ1 ≥ k

x ))k ≤ exp[−kP(τγ1 ≥ k
x )] to obtain∫ k/T

0

dxP
(
τγ1 < k

x

)k
=

∫ k/T

0

dx exp
[
−kP

(
τ1≥

(
k
x

)1/γ)]≤∫ k/T

0

dx e−(1−ε)Cx≤ 1

(1− ε)C
.

(6.15)
For the second integral, we note that t 7→ tP(τγ1 > t) is a continuous function on [ 1

C2
, T ],

and hence attains a minimum value C3 ∈ R+ on [ 1
C2
, T ]. Therefore

∫ kC2

k/T

dxP
(
τγ1 < k

x

)k
=

∫ kC2

k/T

dx
[
1− P

(
τγ1 ≥ k

x

)]k
≤
∫ kC2

k/T

dx exp

[
−x
(
k

x
P(τγ1 ≥ k

x )

)]
≤ 1

C3
.

(6.16)

For the third integral, we compute

∫ ∞
kC2

dxP
(
τγ1 < k

x

)k ≤ ∫ ∞
kC2

dx
(
Cγ1

k
x

) k
γ =

∫ 1/C2

0

dv k
v2 (Cγ1 v)

k
γ =

Cγ1 k
k
γ − 1

(
Cγ1
C2

) k
γ−1

,

(6.17)
where in the first equality we substitute v = k

x . Since C2 > Cγ1 , we see that the right-hand
side tends to zero as k →∞. Hence

E[W−γk ] ≤ 1

(1− ε)(C/γ)
+

1

C3
+

Cγ1 k
k
γ − 1

(
Cγ1
C2

)k−1

, (6.18)

and by dominated convergence it follows that E[W−γ ] = limk→∞E[W−γk ] <∞.

By (3.14), we have â(φ) = a(φ) and ã(φ) = 0 in (5.29), and so (5.37) becomes, with
the help of (6.12),

E(0,A),(0,A)

[(∑
i∈G

aT (t)(0, i) aT ′(t)(0, i)

)
1E(t) 1E′(t)

]
� t−2(1−γ)f(t), t→∞, (6.19)

with (recall (5.31))

f(t) = âctγ (0, 0) (6.20)

for some c ∈ (0,∞). Here we use that deviations of T (t)/tγ and T ′(t)/tγ away from order
1 are stretched exponentially costly in t [EJU19], and therefore are negligible. Since
t 7→ ât(0, 0) is regularly varying at infinity (recall (3.2)), it follows that

âctγ (0, 0) � âtγ (0, 0), t→∞. (6.21)

Combining (5.26) and (6.19)–(6.21), we get

I =∞ ⇐⇒ Iâ,γ =∞ (6.22)

with Iâ,γ =
∫∞

1
dt t−2(1−γ) âtγ (0, 0). Putting s = tγ , we have

Iâ,γ =

∫ ∞
1

ds s−(1−γ)/γ âs(0, 0), (6.23)

which is precisely the integral defined in (3.21).
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Case g 6= dgFW. To prove that the dichotomy criterion of Lemma 6.3 holds for general
g ∈ G we need the equivalent of Lemma 5.5. Replacing (2.4)–(2.5) by (2.12)–(2.13),
replacing b(1) by b(2) in the proof of Lemma 5.5, and using the moment relations in
Lemma 6.1 instead of the moment relations in Lemma 5.1, we see that Lemma 6.3 also
holds for g ∈ G.

6.3 The coexistence case

In this section we prove the coexistence results stated in Theorem 3.3. Like for Model
1 the proofs hold for general g ∈ G and we need not distinguish between g = dgFW

and g 6= dgFW. For ρ < ∞, the argument is given in Section 6.3.1 and proceeds as in
Section 5.3. It is organised along the same 4 Steps as the argument for Model 1, plus
an extra Step 5 that settles the statement in (3.28). For ρ =∞, the argument is given
in Section 6.3.2 and is also organised along 5 Steps, but structured differently. In Step
1 we define a set of measures that is preserved under the evolution. In Step 2 we use
a coupling argument to show the existence of invariant measures. In Step 3 we show
that these invariant measures have vanishing covariances in the seed-bank direction. In
Step 4 we use the vanishing covariances to show uniqueness of the invariant measure by
coupling. Finally, in Step 5 we show that the unique equilibrium measure is invariant,
ergodic and mixing under translations, and is associated.

6.3.1 Proof of coexistence for finite seed-bank

1. Properties of measures preserved under the evolution. For Model 2 with
ρ < ∞, the class of preserved measures is equivalent to R(1)

θ for Model 1 and is now
defined as follows.

Definition 6.5 (Preserved class of measure). Let R(2)
θ denote the set of measures µ ∈ T

satisfying, for all (i, Ri), (j, Rj) ∈ G× {A, (Dm)m∈N0
},

(1)
lim
t→∞

Eµ[z(i,Ri)(t)] = θ, (6.24)

(2)

lim
t→∞

∑
(k,Rk),(l,Rl)∈G×{A,(Dm)m∈N0

}

b
(2)
t

(
(i, Ri), (k,Rk)

)
b
(2)
t

(
(j, Rj), (l, Rl)

)
× Eµ[z(k,Rk)z(l,Rl)] = θ2.

(6.25)

We begin by stating the following analogues.

Lemma 6.6. Lemmas 5.7 and 5.8 carry over after b(1)(·, ·) is replaced by b(2)(·, ·) and

R(1)
θ by R(2)

θ .

Proof. Like for Model 1, properties (1) and (2) of Definition 6.5 hold if and only if

lim
t→∞

Eµ


 ∑

(k,Rk)∈G×{A,(Dm)m∈N0
}

b
(2)
t ((i, Ri), (k,Rk)) z(k,Rk) − θ

2
 = 0

for some (i, Ri) ∈ G× {A, (Dm)m∈N0}.

(6.26)

(By irreducibility, (6.26) holds either for all (i, Ri) or for no (i, Ri).) Also for Model 2 with

ρ < ∞ we have T erg
θ ⊂ R(2)

θ . To see why, note for all t > 0 and m ∈ N0, (xi(t))i∈G and

EJP 27 (2022), paper 18.
Page 57/88

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP728
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Spatial populations with seed-bank: well-posedness, duality and equilibrium

(yi,m(t))i∈G still are stationary in G. Hence with the help of the Herglotz theorem we can
define spectral measures λA, λDm for m ∈ N0 as in (5.72). Let (RWt)t≥0 be the random
walk evolving according to b(2)(·, ·). Introduce the sets

E(t) =
{

at time t the random walk is active
}
,

Em(t) =
{

at time t the random walk is dormant with colour m
}
.

(6.27)

Note that (pick (i, Ri) = (0, A))

lim
t→∞

Eµ


 ∑

(k,Rk)∈G×{A,(Dm)m∈N0
}

b
(2)
t ((0, A), (k,Rk)) z(k,Rk) − θ

2


≤ lim
t→∞

P(i,Ri)(E(t))Eµ

(∑
k∈G

b
(2)
t ((0, A), (k,A))

P(0,A)(E(t))
xk −

1

P(0,A)(E(t))

θx
1 + ρ

)2


+
∑
m∈N0

P(0,A)(Em(t))Eµ

(∑
k∈G

b
(2)
t ((0, A), (k, (Dm))

P(0,A)(Em(t))
yk,m −

1

P(0,A)(Em(t))

Kmθy,m
1 + ρ

)2
 .

(6.28)
Hence we can use the same argument as in the proof of Lemma 5.7 to get the claim.
Also the proof of Lemma 5.8 carries over.

2. Uniqueness of the equilibrium. To prove uniqueness of the equilibrium for given
θ, we use a similar coupling as for Model 1 in Section 5.3 in Step 3. Consider two copies
of the system in (2.12)–(2.13) coupled via their Brownian motions:

dxki (t)=
∑
j∈G

a(i, j)
[
xkj (t)−xki (t)

]
dt+

√
g(xki (t)) dwi(t)+

∑
m∈N0

Kmem
[
yki,m(t)−xki (t)

]
dt,

(6.29)

dyki,m(t)=em
[
xki (t)−yki,m(t)

]
dt, m ∈ N0, k ∈ {1, 2}. (6.30)

Here, k labels the copy, and the two copies are driven by the same Brownian motions
(wi(t))t≥0, i ∈ G. As initial measures we choose µ1(0), µ2(0) ∈ T erg

θ .

Let

z̄i(t) =
(
z1
i (t), z2

i (t)
)
, zki (t) =

(
xki (t), (yki,m(t))m∈N0

)
, k ∈ {1, 2}. (6.31)

By [SS80, Theorem 3.2], the coupled system (z̄i(t))i∈G has a unique strong solution
whose marginals are the single-component systems. Write P̂ to denote the law of the
coupled system, and let ∆i(t) = x1

i (t)− x2
i (t) and δi,m(t) = y1

i,m(t)− y2
i,m(t), m ∈ N0. The

analogue of Lemma 5.9 reads:

Lemma 6.7 (Coupling dynamics ρ <∞). For every t ≥ 0,

d

dt
Ê

[
|∆i(t)|+

∑
m∈N0

Km|δi(t)|

]
= −2

∑
j∈G

a(i, j) Ê
[
|∆j(t)| 1{sgn ∆i(t) 6= sgn ∆j(t)}

]
− 2

∑
m∈N0

Kmem Ê
[(
|∆i(t)|+ |δi,m(t)|

)
1{sgn ∆i(t) 6= sgn δi,m(t)}

]
.

(6.32)
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Proof. Note that the left-hand side of (6.32) is well defined because ρ <∞. The proof
of Lemma 6.7 carries over from that of Lemma 5.9 after replacing (2.4)–(2.5) by (2.12)–
(2.13).

The analogue of Lemma 5.10 reads as follows.

Lemma 6.8 (Succesfull coupling ρ < ∞). If a(·, ·) is transient, then the coupling is
successful, i.e.,

lim
t→∞

Ê

[
|∆i(t)|+

∑
m∈N0

Km|δi,m(t)|

]
= 0 ∀i ∈ G. (6.33)

Proof. This follows in the same way as in the proof of Lemma 5.10, by defining −hi(t) as
in the right-hand side of (6.32). Using that the second line of (5.105) now holds for δi,m(t)

and all m ∈ N0, we can finish the proof after replacing b(1)
t (·, ·) in (5.108) by b(2)

t (·, ·) and
summing over the seed-banks Dm, m ∈ N0.

3. Stationarity of the equilibrium νθ and convergence to νθ. Lemma 5.12 holds
also for µ ∈ R(2)

θ . This follows after replacing µ ∈ R(1)
θ by µ ∈ R(2)

θ in the proof of
Lemma 5.12, using the equivalent of Lemma 5.8 and invoking Lemma 6.8 instead of
Lemma 5.10.

4. Ergodicity, mixing and associatedness. Also Lemma 5.13 holds, after replacing
b(1)(·, ·) by b(2)(·, ·). The proof even simplifies, since we can invoke the symmetry of a(·, ·)
in (5.114).

5. Variances under the equilibrium measure νθ. If lim supm→∞ em = 0, then the
claim in (3.28) is a direct consequence of the proof of Lemma 6.12 for ρ = ∞. If
lim infm→∞ em > 0, then the claim follows from the fact that µ ∈ R(2)

θ and

Varνθ (y0,m) = lim
t→∞

2

∫ t

0

ds
∑
k∈G

b
(2)
t−s
(
(0, Dm), (k,A)

)
b
(2)
t−s
(
(0, Dm), (k,A)

)
Eµ[g(xi(s))].

(6.34)
Since em > 0 for all m ∈ N0 and lim infm→∞ em > 0, there is a positive probability that
after the first steps the two random walks are both active at 0, i.e., are both in state
(0, A). Hence, for all m ∈ N0 there exists a constant c > 0 such that

Varνθ (y0,m) ≥ cVarνθ (x0). (6.35)

Since νθ is a non-trivial equilibrium, we have Varνθ (x0) > 0.

6.3.2 Proof of coexistence for infinite seed-bank

1. Properties of measures preserved under the evolution. For ρ = ∞, the class
of preserved measures is given by

R(2),•
θ =

{
µ ∈ R(2)

θ : µ is colour regular
}
. (6.36)

(Recall Definition 6.5.) We begin by stating the following analogues.

Lemma 6.9. Lemmas 5.7 and carry over after T erg
θ ,R(2)

θ are replaced by T erg,•
θ ,R(2),•

θ .
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Proof. Let the sets Em(t), t > 0, m ∈ N0, be defined as in (6.27), and define λA and λDm
analogously to (5.72), like for ρ <∞. The equivalent of (5.74) is

Eµ

( 1

P(0,A)(E(t))

∑
k∈G

b
(2)
t ((0, A), (k,A))xk − θx

)2


=
1

P(0,A)(E(t))2

∫
[−π,π]d

E(0,A),(0,A)

[
e−T (t)(1−a(φ))1E(t)e

−T ′(t)(1−ā(φ))1E′(t)

]
dλA.

(6.37)
Using that T (t), T ′(t) → ∞ as t → ∞ (see (6.12)), that T (t), T ′(t), E(t), E ′(t) are

asymptotically independent and that a(·, ·) is irreducible, we still find

lim
t→∞

Eµ

( 1

P(0,A)(E(t))

∑
k∈G

b
(2)
t ((0, A), (k,A))xk − θx

)2
 = λA({0}) (6.38)

and, similarly,

lim
t→∞

Eµ

( 1

P(0,A)(Em(t))

∑
k∈G

b
(2)
t ((0, A), (k,A))yk,m − θy,m

)2
 = λDm({0}). (6.39)

Since µ ∈ T erg
θ , we have λA({0}) = 0 and λDm({0}) = 0 for all m ∈ N0 (recall (5.79)). By

the colour regularity,

lim
t→∞

θxP(0,A)(E(t)) +
∑
m∈N0

θy,mP(0,A)(Em(t)) = θ. (6.40)

Therefore we can rewrite (6.28) as

lim
t→∞

Eµ


 ∑

(k,Rk),(l,Rl)∈G×{A,(Dm)m∈N0
}

b
(2)
t ((0, A), (k,Rk)) z(k,Rk) − θ

2


≤ lim
t→∞

P(0,A)(E(t))Eµ

(∑
k∈G

b
(2)
t ((0, A), (k,A))

P(0,A)(E(t))
(xk − θx)

)2


+
∑
m∈N0

P(0,A)(Em(t))Eµ

(∑
k∈G

b
(2)
t ((0, A), (k, (Dm))

P(0,A)(Em(t))
(yk,m − θy,m)

)2


= lim
t→∞

P(0,A)(E(t))λA({0}) +
∑
m∈N0

P(0,A)(Em(t))λDm({0}) = 0.

(6.41)
We conclude that indeed µ ∈ R(2),•

θ . Also the proof of Lemma 5.8 carries over.

Like for ρ <∞, Lemma 5.8 carries over after we replace b(1)(·, ·) by b(2)(·, ·) and R(1)
θ

by R(2),•
θ .

2. Existence of invariant measures νθ for ρ = ∞. Since the dynamics for ρ = ∞
and ρ <∞ are the same, we can still use the coupling in (6.29)–(6.30). Also Lemma 6.7
holds for ρ = ∞, but if ρ = ∞, then the left-hand side of (6.32) can become infinite.
Therefore we cannot use the line of argument used for Model 1 to show that the coupling
is successful for arbitrary initial measures µ1, µ2 ∈ T erg,•

θ . However, we can prove the
following lemma.
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Lemma 6.10 (Successful coupling). If µ1, µ2 ∈ T erg,•
θ satisfy

Ê

[
|∆i(0)|+

∑
m∈N0

Km|δi(0)|

]
<∞, (6.42)

then the coupling in (6.29)–(6.30) is successful.

Proof. We proceed similarly as in Step 3 for ρ <∞. Note, in particular, that
∫∞

0
dt hi(t)

(recall (6.32)) is bounded from above by Ê[|∆i(0)| +
∑
m∈N0

Km|δi(0)|] (compare with
(5.104)). Also for ρ =∞ we obtain Lemma 5.11. Like for Model 1, if we define

E0 × E0 =
{
z̄ ∈ E × E : z1

(i,Ri)
≥ z2

(i,Ri)
∀(i, Ri) ∈ G× {A, (Dm)m∈N0

}
}

∪
{
z̄ ∈ E × E : z2

(i,Ri)
≥ z1

(i,Ri)
∀(i, Ri) ∈ G× {A, (Dm)m∈N0

}
}
,

(6.43)

then we find limt→∞P(E0 × E0) = 1 and hence the coupled diffusions (Z1(t))t≥0 and
(Z2(t))t≥0 lay on top of each other as t→∞. However, in (5.108) the limiting distribution

of b(1)
tn (·, ·) was used “to compensate” the factors Km in |∆i| +

∑
m∈N0

Km|δi,m|. Since,

for ρ =∞, b(1)
tn (·, ·) does not have a well-defined limiting distribution for the projection

on {A, (Dm)m∈N0
}, we need a different strategy.

To obtain a successful coupling, as before, let (tn)n∈N be a subsequence such that
ν1
θ = limn→∞ L(Z1(tn)) with L(Z1(0)) = µ1 and ν2

θ = limn→∞ L(Z2(tn)) with L(Z2(0)) =

µ2. For G = Zd, let ΛN = [0, N)d ∩Zd, N ∈ N. (As noted before, for amenable groups G,
(ΛN )N∈N must be replaced by a so-called Følner sequence.) Note that

Eν1
θ


 1

|ΛN |
∑
j∈ΛN

xj − θ

2
 =

1

|ΛN |2
∑

i,j∈ΛN

Covν1
θ
(xi, xj). (6.44)

Since µ1 ∈ T erg,•
θ , we have µ1 ∈ R(2)

θ . Hence, by Lemma 6.1 and Remark 6.2,

Covν1
θ
(xi, xj) = lim

n→∞
Covµ1(xi(tn), xj(tn))

≤ lim
n→∞

2‖g‖
∫ tn

0

ds
∑
k∈G

b
(2)
(tn−s)((i, A), (k,A)) b

(2)
(tn−s)((j, A), (k,A))

≤ 2‖g‖
∫ ∞

0

ds
∑
k∈G

E(i,A),(j,A)

[
aT (s)(i, k) 1E(s) aT ′(s)(j, k) 1E′(s)

]
≤ 2‖g‖

∫ ∞
0

ds E(i,A),(j,A)

[
âT (s)+T ′(s)(i− j, 0) 1E(s) 1E′(s)

]
.

(6.45)

Since Iα,γ <∞, we see that the last integral is finite. Since
lim||i−j||→∞ ât(i− j, 0) = 0 for all t > 0, it follows by transience and dominated conver-
gence that lim||i−j||→∞ Covν1

θ
(xi, xj) = 0. Since Covν1

θ
(xi, xj) ≤ 1 for all i, j ∈ G, for all

ε > 0 there exists an L ∈ N such that

lim
N→∞

Eν1
θ


 1

|ΛN |
∑
j∈ΛN

xj − θ

2
 = lim

N→∞

1

|ΛN |2
∑

i,j∈ΛN

Covν1
θ
(xi, xj)

= lim
N→∞

1

|ΛN |2
∑

i,j∈ΛN
‖i−j‖≤L

Covν1
θ
(xi, xj) +

1

|ΛN |2
∑

i,j∈ΛN
‖i−j‖>L

Covν1
θ
(xi, xj)

≤ lim
N→∞

|{i, j ∈ ΛN : ‖i− j‖ ≤ L}|
|ΛN |2

+ ε lim
N→∞

|{i, j ∈ ΛN : ‖i− j‖ > L}|
|ΛN |2

< ε.

(6.46)
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We conclude that

lim
N→∞

Eν1
θ


 1

ΛN

∑
j∈ΛN

xj − θ

2
 = 0, (6.47)

and the same holds for νθ2 . Let limn→∞ L(Z̄(tn)) = ν̄θ such that limn→∞ L(Z1(tn)) = ν1
θ

and limn→∞ L(Z2(tn)) = ν2
θ . Then by translation invariance of ν̄θ and the fact that

ν̄θ(E0 × E0) = 1, we find∫
E×E

dν̄θ|∆i| =
∫
E0×E0

dν̄θ
1

|ΛN |
∑
j∈ΛN

|x1
j − x2

j |

≤
∫
E0

dν1
θ

∣∣∣∣∣∣ 1

|ΛN |
∑
j∈ΛN

x1
j − θ

∣∣∣∣∣∣+

∫
E0

dν2
θ

∣∣∣∣∣∣ 1

|ΛN |
∑
j∈ΛN

x2
j − θ

∣∣∣∣∣∣ .
(6.48)

Letting N →∞, we see by translation invariance of ν̄θ that Eν̄θ [|∆i|] = 0 for all i ∈ G.
The result in (6.47) holds also for xi replaced by yi,m, m ∈ N0, since the integral in

(6.45) can only become smaller when we start from a dormant site. Replacing |∆i| in
(6.48) by |δi,m|, we obtain, for all m ∈ N0,

Eν̄θ [|δi,m|] = 0 ∀m ∈ N0. (6.49)

We conclude that the coupling is successful.

Let (St)t≥0 denote the semigroup associated with (2.12)–(2.13). To prove the ex-
istence of an invariant measure, note that E × E is a compact space (in the product
topology). Hence, if tn →∞, then the sequence µStn has a convergent subsequence. In
Lemma 6.11 below we show that each weak limit point of the sequence µStn is invariant
under the evolution of (2.12)–(2.13).

Lemma 6.11 (Invariant measure). Suppose that µ ∈ R(2),•
θ . If tn → ∞ and µStn → νθ,

then νθ is an invariant measure under the evolution in (2.12)–(2.13).

Proof. Fix s > 0. Let µ1 = µ and µ2 = µSs. We couple the evolutions starting from
µ1 and µ2 via their Brownian motions (see (6.29)–(6.30)). Note that, by the SSDE in
(2.12)–(2.13),

Ê

[
|∆i(0)|+

∑
m∈N0

Km|δi,m(0)|

]
= E

[
|xi(0)− xi(s)|+

∑
m∈N0

Km|yi,m(0)− yi,m(s)|

]

= E

[∣∣∣∣∣
∫ s

0

∑
j∈G

a(i, j) [xj(r)− xi(r)] dr

+

∫ s

0

√
g(xi(r)) dwi(r)

+

∫ s

0

∑
m∈N0

Kmem [yi,m(r)− xi(r)] dr

∣∣∣∣∣
+
∑
m∈N0

Km

∫ s

0

|em[yi,m(r)− xi(r)]|dr

]
.

(6.50)
Using that all rates are finite and that, by Knight’s theorem (see [RY99, Theorem V.1.9
p.183]), we can write the Brownian integral as a time-transformed Brownian motion,
we see that Ê[|∆i(0)|+

∑
m∈N0

Km|δi,m(0)|] <∞. Hence, by (6.42), we can successfully
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couple the evolutions starting from µ1 and µ2, and so limn→∞ µ2Stn = limn→∞ µSsStn =

νθ. By the Feller property of the SSDE in (2.12)–(2.13), it follows that

νθSs = lim
n→∞

µ(tn)Ss = lim
n→∞

µStnSs = lim
n→∞

µSsStn = νθ. (6.51)

We conclude that νθ is indeed an invariant measure for the SSDE in (2.12)–(2.13).

3. Invariant measures have vanishing covariances in the seed-bank direction
for ρ =∞. In this step we prove that an invariant measure νθ has vanishing variances
in the seed-bank direction. In Step 5 we use this property to successfully couple any two
invariant measures.

Lemma 6.12 (Deterministic deep seed-banks). If νθ = limn→∞ µStn for some µ ∈ R(2),•
θ

and tn →∞, then
lim
m→∞

Varνθ (yi,m) = 0 ∀i ∈ G. (6.52)

Proof. Since νθ is translation invariant, it is enough to show that limm→∞ Varνθ (y0,m) = 0.

Since µ(0) ∈ R(2),•
θ , it follows from Lemma 6.1 that

lim
m→∞

Varνθ [y0,m]

= lim
m→∞

lim
n→∞

Eµ

[
(y0,m(tn)− Eµ[y0,m(tn)])

2
]

= lim
m→∞

lim
n→∞

2

∫ tn

0

ds
∑
k∈G

b
(2)
(tn−s)((0, Dm), (k,A)) b

(2)
(tnk−s)

((0, Dm), (k,A))Ez[g(xk(s))].

(6.53)
Since g is positive and bounded, it is therefore enough to prove that

lim
m→∞

lim
n→∞

∫ tn

0

du
∑
k∈G

b(2)
u ((0, Dm), (k,A)) b(2)

u ((0, Dm), (k,A)) = 0. (6.54)

Recall (see e.g. (6.45)) that b(2)
u ((0, Dm), (k,A)) b

(2)
u ((0, Dm), (k,A)) is the probability that

two independent random walks, denoted by RW and RW ′ and moving according to
b(2)(·, ·), are at time u at the same site k and both active. Define

τ =
{
t ≥ 0 : RW (t) = RW ′(t) = (i, A) for some i ∈ G

}
. (6.55)

Then we can rewrite the left-hand side of (6.54) as

lim
m→∞

lim
n→∞

∫ tn

0

du
∑
k∈G

b(2)
u ((0, Dm), (k,A)) b(2)

u ((0, Dm), (k,A))

= lim
m→∞

lim
n→∞

∫ tn

0

duE(0,Dm),(0,Dm)

[∑
k∈G

1{RW (u)=k} 1{RW ′(u)=k} 1E(u) 1E′(u)

]
= lim
m→∞

lim
n→∞∫ tn

0

duE(0,Dm),(0,Dm)

[∑
k∈G

1{RW (u)=k} 1{RW ′(u)=k} 1E(t) 1E′(t)
(
1{τ<∞} + 1{τ=∞}

)]
= lim
m→∞

lim
n→∞

E(0,Dm),(0,Dm)

[
1{τ<∞}E(0,Dm),(0,Dm)

[∫ tn

0

du
∑
k∈G

1{RW (u)=k}1{RW ′(u)=k}1E(u)1E′(u) | Fτ

]]
= lim
m→∞

lim
n→∞
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E(0,Dm),(0,Dm)

[
1{τ<∞}E(0,A),(0,A)

[∫ tn−τ

0

du
∑
k∈G

1{RW (u)=k}1{RW ′(u)=k}1E(u)1E′(u)

]]

≤ lim
m→∞

E(0,Dm),(0,Dm)

[
1{τ<∞}E(0,A),(0,A)

[∫ ∞
0

du
∑
k∈G

1{RW (u)=k}1{RW ′(u)=k}1E(u)1E′(u)

]]
= lim
m→∞

P(0,Dm),(0,Dm) (τ <∞) Iâ,γ , (6.56)

where we use that Iâ,γ <∞, the strong Markov property, and the fact that for τ =∞ the
product of the indicators equals 0 for all u ∈ R≥0. Therefore (6.52) holds if

lim
m→∞

P(0,Dm),(0,Dm) (τ <∞) = 0. (6.57)

Define

τ∗ = inf
{
t ≥ 0 : both RW and RW ′ are active at time t

}
. (6.58)

Note that τ∗ ≤ τ . Theorefore we can write (recall that in Model 2 the random walk
kernel a(·, ·) is assumed to be symmetric),

lim
m→∞

P(0,Dm),(0,Dm) (τ <∞)

= lim
m→∞

E(0,Dm),(0,Dm)[1{τ<∞}]

= lim
m→∞

E(0,Dm),(0,Dm)

[
1{τ∗<∞}E(0,Dm)2

[
1{τ<∞} | Fτ∗

]]
= lim
m→∞

E(0,Dm),(0,Dm)

[
ERW (τ∗),RW ′(τ∗)

[
1{τ<∞}

]]
= lim
m→∞

∑
k,l∈G

P(0,Dm),(0,Dm) (RW (τ∗) = (k,A), RW ′(τ∗) = (l, A)) E(k,A),(l,A)

[
1{τ<∞}

]
= lim
m→∞

∑
k,l∈G

E(0,Dm),(0,Dm)[âT (τ∗)(0, k) âT ′(τ∗)(0, l)]E(0,A),(l−k,A)

[
1{τ<∞}

]
= lim
m→∞

∑
k,l∈G

E(0,Dm),(0,Dm)[âT (τ∗)(0, k) âT ′(τ∗)(−k, l − k)]E(0,A),(l−k,A)

[
1{τ<∞}

]
= lim
m→∞

∑
k,j∈G

E(0,Dm),(0,Dm)[âT (τ∗)(0,−k) âT ′(τ∗)(−k, j)]E(0,A),(j,A)

[
1{τ<∞}

]
= lim
m→∞

∑
j∈G

E(0,Dm),(0,Dm)[âT (τ∗)+T ′(τ∗)(0, j)]E(0,A),(j,A)

[
1{τ<∞}

]
= lim
m→∞

∑
j∈G
‖j‖≤L

E(0,Dm),(0,Dm)[âT (τ∗)+T ′(τ∗)(0, j)]E(0,A),(j,A)

[
1{τ<∞}

]
+ lim
m→∞

∑
j∈G
‖j‖>L

E(0,Dm),(0,Dm)[âT (τ∗)+T ′(τ∗)(0, j)]E(0,A),(j,A)

[
1{τ<∞}

]
.

(6.59)
To prove that the expression in the right-hand side tends to zero, we fix ε > 0 and prove
that there exists an L ∈ N such that both sums are smaller that ε

2 .

Claim 1: There exists an L such that
limm→∞

∑
j∈G,‖j‖>LE(0,Dm)2 [âT (τ∗)+T ′(τ∗)(0, j)]E(0,A),(j,A)[1{τ<∞}] <

ε
2 . Using the sym-
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metry of the kernel a(·, ·) in Model 2, we find

E(0,A),(j,A)

[
1{τ<∞}

]
= E(0,A),(j,A)

[∫ ∞
0

ds 1{τ∈ds}

]
≤ E(0,A),(j,A)

[∫ ∞
0

ds
∑
k∈G

1E(s)1E′(s)1{RW=k}1{RW ′=k}

]

≤ E(0,A),(j,A)

[∫ ∞
0

ds
∑
k∈G

âT (s)(0, k) âT ′(s)(j, k) 1E(s) 1E′(s)

]

≤ E(0,A),(j,A)

[∫ ∞
0

ds âT (s)+T ′(s)(j, 0)1E(s)1E′(s)

]
.

(6.60)

The last integral in the right-hand side is dominated by Iâ,γ (recall (3.42)). Since, for all
t ∈ R≥0,

lim
‖j‖→∞

ât(0, j) = 0, (6.61)

it follows by dominated convergence that for each ε > 0 we can find an L such that, for
all ‖j‖ > L,

E(0,A),(j,A)

[
1{τ<∞}

]
< ε

2 . (6.62)

Hence, for L sufficiently large, we find

lim
m→∞

∑
j∈G,|‖j‖|>L

E(0,Dm),(0,Dm)[âT (τ∗)+T ′(τ∗)(0, j)]
[
E(0,A),(j,A)

[
1{τ<∞}

]]
≤ lim
m→∞

ε
2

∑
j∈G,‖j‖>L

E(0,Dm),(0,Dm)[âT (τ∗)+T ′(τ∗)(0, j)] ≤ ε
2 .

(6.63)

Claim 2: For L given as in Claim 1,
limm→∞

∑
j∈G,‖j‖≤LE(0,Dm)2 [âT (τ∗)+T ′(τ∗)(0, j)]E

(0,A),(j,A)[1{τ<∞}] < ε
2 . For the first

sum, note that

lim
m→∞

∑
j∈G
‖j‖≤L

E(0,Dm),(0,Dm)[â(T (τ∗)+T ′(τ∗))(0, j)]E(0,A),(j,A)

[
1{τ<∞}

]
≤ lim
m→∞

∑
j∈G
‖j‖≤L

E(0,Dm),(0,Dm)[âT (τ∗)+T ′(τ∗)(0, j)]

= lim
m→∞

∑
j∈G
‖j‖≤L

E(0,A),(0,Dm)[âT (τ∗)+T ′(τ∗)(0, j)],

(6.64)

where in the last equality we condition on the first time one of the two random walks
wakes up, and use the strong Markov property. We will show that the right-hand side
tends to zero as m → ∞. Recall that we assumed (3.17): em ∼ Bm−β for β > 0. Note
that, in order for the random walks to be both active at the same time, the random walk
starting in (0, Dm) has to become active at least once. Hence, for all t ≥ 0, we have

lim
m→∞

P(0,Dm),(0,A)(τ
∗ ≤ t) ≤ lim

m→∞
1− e−emt = 0. (6.65)

By (6.12) and [EJU19], we also have for the random walk starting in (0, A) that

lim
t→∞

T (t) ∼ ctγ . (6.66)
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Fix ε > 0. Since limt→∞ ât(0, j) = 0 for all j ∈ G, we can find a T ? such that, for all
t > T ?, ∑

j∈G
‖j‖≤L

ât(0, j) <
ε
6 . (6.67)

By (6.66), we can find a t̃ ∈ R≥0 such that P(0,A)(T (t̃) > T ?) ≥ 1− ε
6 . By (6.65), we can

find an M ∈ N0 such that for all m > M ,

lim
m→∞

P(0,Dm),(0,A)(τ
∗ ≤ t̃) < ε

6 , (6.68)

and hence

lim
m→∞

∑
j∈G
‖j‖≤L

E(0,A),(0,Dm)[âT (τ∗)+T ′(τ∗)(0, j)] <
ε
6 + ε

6 + ε
6 = ε

2 . (6.69)

4. Uniqueness of the invariant measure νθ when ρ =∞.

Lemma 6.13 (Uniqueness of and convergence to νθ). For all θ ∈ (0, 1) there exists a
unique invariant measure νθ such that limt→∞ µ(t) = νθ for all µ(0) ∈ T erg,•

θ .

Proof. Suppose that ν1
θ and ν2

θ and are two different weak limit points of µ(tn) as tn →∞,

and that µ(0) ∈ R(2),•
θ . Let (Z̄(t))t≥0 = (Z1(t), Z2(t))t≥0 be the coupled process from

(6.29)–(6.30) with L(Z̄(0)) = ν̄θ, and marginals L(Z1(0)) = ν1
θ , L(Z2(0)) = ν2

θ . Define the
process Y 1 by

Y 1 =
(
Y 1(m)

)
m∈{−1}∪N0

,

Y 1(−1) = (x1
i (0))i∈G, Y 1(m) = (y1

i,m(0))i∈G, m ∈ N0.
(6.70)

Thus, Y 1 has state space ([0, 1]G){−1}∪N0 and L(Y 1) = L(Z1(0)) = ν1
θ . We can interpret

Y 1 as a process that describes the states of the population in the seed-bank direction.
Similarly, define the process Y 2 by

Y 2 =
(
Y 2(m)

)
m∈{−1}∪N0

,

Y 2(−1) = (x2
i (0))i∈G, Y 2(m) = (y2

i,m(0))i∈G, m ∈ N0.
(6.71)

Thus, Y 2 has state space ([0, 1]G){−1}∪N0 and L(Y 2) = L(Z2(0)) = ν2
θ .

Define the σ-algebras B1
M and B1, respectively, B2

M and B2 by

Bk = ∩M∈N0
BkM , BkM = σ

(
yki,m : i ∈ G, m ≥M

)
, k ∈ {1, 2}. (6.72)

Here, B1 and B2 are the tail-σ-algebras in the seed-bank direction. By Lemma 6.12, we
have

lim
m→∞

Lν1
θ
(yi,m) = lim

m→∞
Lν2

θ
(yi,m) = δθ. (6.73)

Hence, B1 = B2, both are trivial, and ν1
θ and ν2

θ agree on them. Therefore Goldstein’s
Theorem [Gol79] implies that there exists a successful coupling of Y 1 and Y 2. Conse-
quently, there exists a random variable T coup ∈ {−1} ∪N0 such that, for all m ≥ T coup,
Y 1(m) = Y 2(m), i.e., |δi,m(0)| = 0 for all i ∈ G and P(T coup <∞) = 1. Hence

Ê

[
|∆i(0)|+

∑
m∈N0

Km|δi(0)|

]
= Ê

[
|∆i(0)|+

T coup∑
m=0

Km|δi(0)|

]
. (6.74)

However, we cannot conclude that the left-hand side of (6.74) is finite. Therefore, let
ν̄θ|{T coup<T} denote the restriction of the measure ν̄θ to the set {T coup < T}. Since
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{T coup < T} is a translation-invariant event in the spatial direction, the measure
ν̄θ|{T coup<T} is translation invariant. Moreover,

Êν̄θ|{Tcoup<T}

[
|∆i(0)|+

∑
m∈N0

Km|δi(0)|

]
= Êν̄θ|{Tcoup<T}

[
|∆i(0)|+

T∑
m=0

Km|δi(0)|

]
<∞.

(6.75)
Therefore we can use the dynamics in (6.32) and conclude that, for all T ∈ N,
P̂ν̄θ|{Tcoup<T}(E0 ×E0) = 1 (recall (6.43)). Since limT→∞ ν̄θ|{T coup<T} = ν̄θ, it follows that

P̂ν̄θ (E0 × E0) = 1. (6.76)

By (6.48) and (6.49), we conclude that ν1
θ = ν2

θ and hence that all weak limit points of
(µ(t))t≥0 are the same. Suppose now that µ1(0), µ2(0) ∈ T erg,•

θ are two different initial
measures. By the above argument, we know that limt→∞ µ1(t) = ν1

θ and limt→∞ µ2(t) =

ν2
θ . By Lemma 6.12, we know that ν1

θ and ν2
θ have the same trivial tail-σ-algebras in the

seed-bank direction. Hence, repeating the above argument, we find that ν1
θ = ν2

θ . We
conclude that for each initial measure µ ∈ T erg,•

θ the SSDE in (2.12)–(2.13) converges to
a unique non-trivial equilibrium measure νθ.

5. Ergodicity, mixing and associatedness. The equivalent of Lemma 5.13 for ρ =∞
follows in the same way as for ρ <∞.

6.4 Proof of the dichotomy

Theorem 3.3(I)(a) follows from Lemma (6.8) and Steps 3-5 in Section 6.3.1. The
equality Eνθ [x0] = Eνθ [y0,m] = θ, m ∈ N0, follows from (2.12)–(2.13), the fact that νθ is
an equilibrium measure, and the preservation of θ (see Section 3.2). Theorem 3.3(I)(b)
follows by combining Lemma 6.3 with the analogue of Lemma 5.5. Theorem 3.3(II)
follows from Lemmas 6.3, 6.12, 6.13, the analogue of Lemma 5.5, and Step 6 in Section
6.3.2. The equality Eνθ [x0] = Eνθ [y0,m] = θ, m ∈ N0, follows from (6.8) in Step 1 of
Section 6.3.2.

The fact that, for ρ < ∞, θ 7→ νθ is continuous in the weak topology, as claimed in
Remark 3.4, follows from the fact that ‖νθ(zi ∈ ·) − νθ′(zi ∈ ·)‖tv ≤ (1 + ρ)|θ − θ′| for
all i ∈ G, with zi = (z(i,Ri))Ri∈{A,(Dm)m∈N0

}, as follows from the coupling argument in
Lemmas 6.7–6.8. (Pick µ(0) equal to δθ, δθ′ and use the contraction via the Lyapunov
function.) The fact that, for ρ =∞, θ 7→ νθ is continuous in the uniform weak topology, as
claimed in Remark 3.4, uses the coupling argument in Lemma 6.10–6.11 together with
the fact that the deep seed-banks are deterministic stated in Lemma 6.12. Lemma 6.9
guarantees that the limit in (3.31) equals θ µ-a.s. for every µ ∈ T erg,•

θ .
Corollary 3.5(1) corresponds to γ ∈ (1,∞) and ρ < ∞, and migration dominates.

Corollary 3.5(2) corresponds to γ ∈ [ 1
2 , 1] and ρ =∞, and Iâ,γ shows in interplay between

migration and seed-bank. Corollary 3.5(3) corresponds to γ ∈ (0, 1
2 , 1) and ρ =∞, and

the seed-bank dominates: Iâ,γ <∞ because ât(0, 0) ≤ 1.

6.5 Different dichotomy for asymmetric migration

It remains to explain how the counterexample below Theorem 3.3 arises. We focus
on the case when ρ <∞, which implies E(τ) <∞, but we assume E(τ2) =∞. Therefore
the central limit theorem does not hold for T (t), T ′(t), and ∆(t)�

√
M(t). Hence (5.38)

must be replaced by

f(t) =
1

(2π)d

∫
[−π,π]d

dφ e−[1+o(1)] 2Bt [1−â(φ)]E
[
cos
(

∆(t)ã(φ)
)]
. (6.77)
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The key observation is that if ã(φ) 6= 0 (due to the asymmetry of a(·, ·); recall (5.29)),
then the expectation in (6.77) can change the integrability properties of f(t).

Under the assumption that τ has a one-sided stable distribution with parameter
γ ∈ (1, 2), we have (5.33) with A = χ/(1 + ρ) and B = 1/(1 + ρ), while there exists a
constant C ∈ (0,∞) such that (see [Fel71, Chapter XVII])

E[cos(∆(t)ã(φ))] = e−[1+o(t)]At|Cã(φ)|γ . (6.78)

Substituting (6.78) into (6.77), we see that for large t the contribution to f(t) comes from
φ such that â(φ)→ 1 and ã(φ)→ 0. By our choice of the migration kernel in (3.32), this
holds as φ = (φ1, φ2) → (0, 0). Using that 1 − â(φ) ∼ 1

2 (φ2
1 + φ2

2) and ã(φ) ∼ 1
2η(φ1 + φ2)

for (φ1, φ2)→ (0, 0), we find that (6.77) equals

f(t) =
1

(2π)2

∫
[−π,π]2

dφ e−[1+o(1)] {Bt(φ2
1+φ2

2)+At[| 12Cη(φ1+φ2)|]γ}, t→∞. (6.79)

Hence the integral in (6.79) is determined by φ such that

B(φ2
1 + φ2

2) +A
[
| 12Cη(φ1 + φ2)|

]γ ≤ c

t
. (6.80)

for c a positive constant, and we find that f(t) � t−( 1
γ+ 1

2 ). Since γ ∈ (1, 2), f(t) is much
smaller than ât(0, 0) � 1/t, valid for two-dimensional simple random walk. Thus we see
that t 7→ f(t) is integrable, while t 7→ ât(0, 0) is not.

6.6 Modulation of the law of the wake-up times by a slowly varying function

The integral in (3.38) is the total hazard of coalescence of two dual lineages:

• If γ ∈ (0, 1), then the probability for each of the lineages to be active at time s

decays like � ϕ(s)−1s−(1−γ) [AB16]. Hence the expected total time they are active
up to time s is � ϕ(s)−1sγ . Because the lineages only move when they are active,

the probability that the two lineages meet at time s is � a
(N)
ϕ(s)−1sγ (0, 0). Hence

the total hazard is �
∫∞

1
dsϕ(s)−2s−2(1−γ) a

(N)
ϕ(s)−1sγ (0, 0). After the transformation

t = t(s) = ϕ(s)−1sγ , we get the integral in (3.38), modulo a constant. (When
carrying out this transformation, we need that lims→∞ sϕ′(s)/ϕ(s) = 0, which is
immediate from (3.37), and ϕ(t(s))/ϕ(s) � 1 as s → ∞, which is immediate from
the bound we imposed on ψ together with the fact that lims→∞ logϕ(s)/ log s = 0.)

• If γ = 1, then the probability for each of the lineages to be active at time s decays
like ϕ̂(s)−1 [AB16]. Hence the expected total time they are active up to time s

is � sϕ̂(s)−1. Hence the total hazard is �
∫∞

1
ds ϕ̂(s)−2 a

(N)
ϕ̂(s)−1s(0, 0). After the

transformation t = t(s) = ϕ̂(s)−1s, we get the integral in (3.38), modulo a constant.

7 Proofs: long-time behaviour for Model 3

The arguments for Model 2 in Section 6 all carry over with minor adaptations. The
only difference is that for ρ = ∞ the clustering criterion changes. In this section we
prove the new clustering criterion and comment on the modifications needed in the
corresponding proofs for Model 2 in Section 6.

7.1 Moment relations

Like in Model 1 and 2, we can relate the first and second moments of the system in
(2.18)–(2.19) to the random walk that evolves according to the transition kernel b(3)(·, ·)
on G × {A, (Dm)m∈N0

} given by (2.56). Replacing in Lemma 6.1 the kernel b(2)(·, ·) by
b(3)(·, ·), we find the moment relation for Model 3. Also here these moment relations hold
for all g ∈ G. Moreover these moment relations holds for ρ <∞ as well as for ρ =∞.
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7.2 The clustering case

To obtain the equivalent of Lemma 6.3, we need to replace the kernel â(·, ·) by the
convoluted kernel (â ∗ â†)(·, ·). Each time one of the two copies of the random walk
with migration kernel a(·, ·) moves from the active state to the dormant state, it makes
a transition according to the displacement kernel a†(·, ·) (recall (3.39)). Therefore the
expression in (5.23) needs to be replaced by

I =

∫ ∞
0

dt
∑

k,k′∈N

∑
i,i′∈G

∑
j∈G

E(0,A)

[
âT (k,t)(0, i) âT ′(k′,t)(0, i

′) â†k(i, j) â†k′(i
′, j) 1E(k,t) 1E′(k′,t)

]
,

(7.1)
where â†k(·, ·) is the step-k transition kernel of the random walk with displacement kernel
â†(·, ·). Using the symmetry of both kernels, we can carry out the sum over j, i′ and write

I =

∫ ∞
0

dt
∑

k,k′∈N

∑
j∈G

E(0,A)

[
âT (k,t)+T ′(k′,t)(0, j) â

†
k+k′(0, j) 1E(k,t) 1E′(k′,t)

]
=

∫ ∞
0

dt
∑
j∈G

E(0,A)

[
âT (t)+T ′(t)(0, j) â

†
N(t)+N ′(t)(0, j) 1E(t) 1E′(t)

]
=

∫ ∞
0

dtE(0,A)

[(
âT (t)+T ′(t) ∗ â†N(t)+N ′(t)

)
(0, 0) 1E(t) 1E′(t)

]
.

(7.2)

The last expression is the analogue of (5.26).

For ρ <∞, following the same line of argument as for Model 2, we find with the help
of (3.40) that

I �
∫ ∞

1

dt (ât ∗ â†t)(0, 0). (7.3)

For ρ =∞, with the help of the Fourier transform we compute

E(0,A)

[(
aT (t)+T ′(t) ∗ a†N(t)+N ′(t)

)
(0, 0)

]
= E(0,A)

[
1

(2π)d

∫
(−π,π]d

dφ e−(T (t)+T ′(t))[1−â(φ)] â†(φ)N(t)+N ′(t)

]

=
1

(2π)d

∫
(−π,π]d

dφ e−[1+o(1)] 2ct−γ [1−â(φ)] e−[1+o(1)] 2t−γ [1−â†(φ)]

� (âct−γ ∗ â†t−γ )(0, 0) � (ât−γ ∗ â†t−γ )(0, 0),

(7.4)

where we use (3.40), (6.12) and the fact that deviations of T (t)/tγ and T ′(t)/tγ away
from order 1 are stretched exponentially costly in t [EJU19]. Hence

I �
∫ ∞

1

dt t−2(1−γ)(âtγ ∗ â†tγ )(0, 0). (7.5)

Putting s = tγ we obtain, instead of (6.22),

I =∞ ⇐⇒ Iâ∗â†,γ =∞ (7.6)

with

Iâ∗â†,γ =

∫ ∞
1

ds s−(1−γ)/γ (âs ∗ â†s)(0, 0), (7.7)

which is precisely the integral in (3.42).
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7.3 The coexistence case

The coexistence results in Theorem 3.8 follow for both ρ < ∞ and ρ = ∞ by the
same type of argument as the one we used for Model 2 in Section 6.3. We replace
(2.12)–(2.13) by (2.18)–(2.19), replace b(2)(·, ·) (see (2.44)) by b(3)(·, ·) (see (2.56)), and
use the Fourier transform of â ∗ â†(·, ·) instead of â(·, ·). The key of the argument is
that, in the coexistence case, for ρ < ∞ we have Iâ∗â† < ∞, while for ρ = ∞ we have
Iâ∗â†,γ <∞.

7.4 Proof of the dichotomy

This follows in exactly the same way as for Model 2.

A Derivation of continuum model from individual-based model

Model 1. We give the derivation of (2.4)–(2.5) as the continuum limit of an individual-
based model when the size of the colonies tends to infinity. We start with the continuum
limit of the Fisher-Wright model with (strong) seed-bank for a single-colony model as
defined in [BGCKWB16]. Subsequently we show how the limit extends to a multi-colony
model with seed-bank.

Single-colony model. The Fisher-Wright model with (strong) seed-bank defined in
[BGCKWB16] consists of a single colony with N ∈ N active individuals and M ∈ N
dormant individuals. Each individual can carry one of two types: ♥ or ♦. Let ε ∈ [0, 1]

be such that εN is integer and εN ≤M . Put δ = εN
M . The evolution of the population is

described by a discrete-time Markov chain that undergoes four independent transitions
per step:

(1) From the N active individuals, (1− ε)N are selected uniformly at random without
replacement. Each of these individuals resamples, i.e., adopts the type of an
active individual selected uniformly at random from the previous generation with
replacement, and remains active.

(2) Each of the εN active individuals not selected first resamples, then adopts the
type of an active individual selected uniformly at random with replacement, and
subsequently becomes dormant.

(3) From the M dormant individuals, δM = εN are selected uniformly at random
without replacement, and each of these becomes active. Since these individuals
come from the dormant population they do not resample.

(4) Each of (1− δ)M dormant individuals not selected remains dormant and retains its
type.

Note that the total sizes of the active and the dormant population remain fixed. During
the evolution the dormant and active population exchange individuals. We are interested
in the fractions of individuals of type ♥ in the active and the dormant population.

Let c = εN = δM , i.e., c is the number of pairs of individuals that change state. Label
the N active individuals from 1 to N and the M dormant individuals from 1 up to M . We
denote by [N ] = {1, . . . , N} and by [M ] = {1, . . . ,M}. Let ξ(k) = (ξj(k))j∈[N ] ∈ {0, 1}[N ]

be the random vector where ξj(k) = 1 if the j-th active individual is of type ♥ at time
k and ξj(k) = 0 if the j-th active individual is of type ♦ at time k. Similarly, we let
η(k) = (ηj(k))j∈[M ] ∈ {0, 1}[M ] be the random vector where ηj(k) = 1 if the j-th dormant
individual is of type ♥ at time k and ηj(k) = 0 if the j-th dormant individual is of type ♦ at
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4

t

Dormant
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Active
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Figure 6: Example of the evolution for a population with N = 5 active individuals and M = 3

dormant individuals. The solid lines within the active population represent resampling, those
between the active and the dormant population represent exchange with the seed-bank. Only 1
active individual and 1 dormant individual exchange places per unit of time, which corresponds to
ε = 1

5
and δ = 1

3
. The relative size of the dormant and the active population is K = 3

5
. Note that

the genetic diversity in the active population is lost in generation t = 2, but returns in generation
t = 3 via the seed-bank.

time k. Let IN = {0, 1
N ,

2
N ,

3
N . . . , 1} and IM = {0, 1

M , 2
M , 3

M . . . , 1}. Define the variables

XN (k) =
1

N

∑
j∈[N ]

1{ξj(k)=1} on IN ,

Y N (k) =
1

N

∑
j∈[N ]

1{ηj(k)=1} on IM .
(A.1)

Let Px,y denote the law of the Markov process

(XN , Y N ) = (XN (k), Y N (k))k∈N0
(A.2)

given that (XN (0), Y N (0)) = (x, y) ∈ IN × IM . Then, as shown in [BGCKWB16],

px,y(x̄, ȳ) = Px,y(XN
1 = x̄, Y N1 = ȳ)

=

c∑
c′=0

Px,y(Z = c′)Px,y(U = x̄N − c′)Px,y(V = ȳM − yM + c′).
(A.3)

Here, Z denotes the number of dormant ♥-individuals in generation 0 that become
active in generation 1 (Lx,y(Z) = HypM,c,yM ), U denotes the number of active individuals
in generation 1 that are offspring of active ♥-individuals in generation 0 (Lx,y(U) =

BinN−c,x), and V denotes the number of active individuals in generation 0 that become
dormant ♥-individuals in generation 1 (Lx,y(V ) = Binc,x).

Speed up time by a factor N . The discrete-time generator GN for the process
((XN (bNkc), Y N (bNkc))k∈N0 equals

(GNf)(x, y) = N Ex,y
[
f(XN (1), Y N (1))− f(x, y)

]
,

(x, y) ∈ IN × IM ,
(A.4)

where the prefactor N appears because one step of the Markov chain takes time 1
N .

Inserting the Taylor expansion for f (which we assume to be smooth), using that XN (1) =
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U+Z
N and Y N (1) = yM+V−U

M and letting N →∞, we end up with the limiting continuous-
time generator G given by

(Gf)(x, y) = c(y − x)
∂f

∂x
(x, y) +

c

K
(x− y)

∂f

∂y
(x, y) + 1

2x(1− x)
∂2f

∂x2
(x, y),

(x, y) ∈ [0, 1]× [0, 1],

(A.5)

where K = M
N is the relative size of the dormant population compared to the active

population. This is the generator of the Markov process in the continuum limit [EK86,
Section 7.8]. It follows from the form of G that this limit is described by the system of
coupled stochastic differential equations

dx(t) = c [y(t)− x(t)] dt+
√
x(t)(1− x(t)) dw(t),

dy(t) =
c

K
[x(t)− y(t)] dt.

(A.6)

This is the version of (2.4)–(2.5) for a single colony (no migration) and exchange rate

e =
c

K
. (A.7)

Multi-colony model. First fix a number L ∈ N and consider |G| = L colonies. The
multi-colony version with migration is obtained by allowing the (1− ε)N selected active
individuals to undergo a migration in step (1):

(1) Each active individual at colony i ∈ G chooses colony j ∈ G with probability 1
N a(i, j)

and adopts the type of a parent chosen from colony j. If an active individual does
not migrate, it adopts the type of a parent chosen from its own population.

Using the same strategy as in the single-colony model, this results in (2.4)–(2.5), for
|G| = L. Subsequently we can let L→∞ and use convergence of generators to obtain
(2.4)–(2.5) for countable G.

Model 2. The same argument works for (2.12)–(2.13). Steps (1)-(4) are extended by
considering a seed-bank with colours labelled by N0. First we consider the truncation
where only finitely many colours are allowed, for which the argument carries through
with minor adaptations. Afterwards, we pass to the limit of infinitely many colours, which
is straightforward for a finite time horizon because large colours are only seen after
large times. See also [Moj18].

Model 3. To get (2.18)–(2.19), also extend Step (3) by adding a displacement via the
kernel a†(·, ·) for each transition into the seed-bank.

B Moran versions of Models 1–2

In this appendix we consider the Moran version of the single-colony individual-based
model in Appendix A, i.e., we allow individuals to become active or dormant without
exchange. Our goal is to show that, in the large-colony-size limit, this modification
has no effect on the long-time behaviour: after an initial transient period the evolution
converges to that of the model with exchange, after an appropriate tuning of parameters.
The brief exposition below is based on [Moj18].

In the Moran version each active individual resamples at rate 1 and becomes dormant
at a certain rate, while each dormant individual does not resample and becomes active
at a certain rate. Since switches between active and dormant are done independently,
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the sizes of the active and the dormant population are no longer fixed and individuals
change state without the necessity to exchange state. In Model 1 there are two Poisson
clocks, in Model 2 there are two sequences of Poisson clocks, namely, two for each colour.
In Appendices B.1–B.2 we compute the scaling limit for the case where the number of
colours is m = 1 and m = 2, respectively. The extension to m ≥ 3 is given in Appendix B.3.

Migration can be added in the same way as is done in Appendix A. We leave this
extension to the reader.

B.1 Moran version of Model 1

To describe the Moran version of Model 1 we need the following variables.

• Total number of individuals: N ∈ N.
• Two types: ♥ and ♦.
• X(t) is the number of ♥-individuals in the active population at time t.
• Y (t) is the number of ♥-individuals in the dormant population at time t.
• Z(t) is the number of individuals in the active population at time t (either ♥ or ♦).

In the Moran model with seed-bank each active individual resamples at rate 1, each
active individual becomes dormant at rate ε and each dormant individual becomes active
at rate δ. Hence the transition rates for (X(t), Y (t), Z(t)) are:

• (i, j, k)→ (i+ 1, j, k) at rate (k − i) ik .

• (i, j, k)→ (i− 1, j, k) at rate i (k−i)
k .

• (i, j, k)→ (i− 1, j + 1, k − 1) at rate εi.
• (i, j, k)→ (i+ 1, j − 1, k + 1) at rate δj.
• (i, j, k)→ (i, j, k − 1) at rate εk−iN .

• (i, j, k)→ (i, j, k + 1) at rate δN−k−jN .

For the scaling limit we consider the variables

X̄(t) =
1

N
X(Nt), Ȳ (t) =

1

N
Y (Nt), Z̄(t) =

1

N
Z(Nt). (B.1)

Hence
(X̄(t), Ȳ (t), Z̄(t)) ∈ IN × IN × IN , IN =

{
0, 1

N ,
2
N , . . . ,

N−1
N , 1

}
. (B.2)

Since in (B.1) we speed up time by a factor N , we must also speed up the transition
rates by a factor N . To get a meaningful scaling limit, we assume that there exist
cA, cD ∈ (0,∞) such that (see [BGCKWB16, p. 8])

Nε = cA, Nδ = cD, N ∈ N. (B.3)

We can then write down the generator GN :

(GNf)

(
i

N
,
j

N
,
k

N

)
= N(k − i) i

k

[
f

(
i+ 1

N
,
j

N
,
k

N

)
− f

(
i

N
,
j

N
,
k

N

)]
+Ni

k − i
k

[
f

(
i− 1

N
,
j

N
,
k

N

)
− f

(
i

N
,
j

N
,
k

N

)]
+ cAi

[
f

(
i− 1

N
,
j + 1

N
,
k − 1

N

)
− f

(
i

N
,
j

N
,
k

N

)]
+ cDj

[
f

(
i+ 1

N
,
j − 1

N
,
k + 1

N

)
− f

(
i

N
,
j

N
,
k

N

)]
+ cA(k − i)

[
f

(
i

N
,
j

N
,
k − 1

N

)
− f

(
i

N
,
j

N
,
k

N

)]
+ cD(N − k − j)

[
f

(
i

N
,
j

N
,
k + 1

N

)
− f

(
i

N
,
j

N
,
k

N

)]

(B.4)
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Assuming that f is smooth and Taylor expanding f around
(
i
N ,

j
N ,

k
N

)
, we get

(GNf)

(
i

N
,
j

N
,
k

N

)
=
i(k − i)

k

[(
1

N

)
∂2f

∂x2
+O

((
1

N

)2
)]

+ cAi

[(
−1

N

)
∂f

∂x
+

(
1

N

)
∂f

∂y
+

(
−1

N

)
∂f

∂z
+O

((
1

N

)2
)]

+ cDj

[(
1

N

)
∂f

∂x
+

(
−1

N

)
∂f

∂y
+

(
1

N

)
∂f

∂z
+O

((
1

N

)2
)]

+ cA(k − i)

[(
−1

N

)
∂f

∂z
+O

((
1

N

)2
)]

+ cD(N − k − j)

[(
1

N

)
∂f

∂z
+O

((
1

N

)2
)]

.

(B.5)

Next, suppose that

lim
N→∞

i

N
= x, lim

N→∞

j

N
= y, lim

N→∞

k

N
= z. (B.6)

Letting N →∞ in (B.5), we obtain the limiting generator G:

(Gf)(x, y, z) = z
x

z

(
1− x

z

)(∂2f

∂x2

)
+ [cD y − cA x]

∂f

∂x

+ [cA x− cD y]
∂f

∂y
+
[
cD (1− z)− cA z

]∂f
∂z
.

(B.7)

Therefore the continuum limit equals

dx(t) =

√
z(t)

x(t)

z(t)

(
1− x(t)

z(t)

)
dw(t) +

[
cD y(t)− cA x(t)

]
dt,

dy(t) =
[
cA x(t)− cD y(t)

]
dt,

dz(t) =
[
cD (1− z(t))− cA z(t)

]
dt.

(B.8)

Since z(t) is the fraction of active individuals in the population, 1− z(t) is the fraction of
dormant individuals in the population. Therefore the equivalent of the parameter K in
Appendix A is K(t) = (1− z(t))/z(t). Moreover, x(t)/z(t) is the fraction of ♥-individuals
in the active population at time t and y(t)/(1 − z(t)) is the fraction of ♥-individuals in
the dormant population at time t. The last line of (B.8) is an autonomous differential
equation whose solution converges to

z∗ =
1

1 + cA

cD

(B.9)

exponentially fast. After this transition period we can replace z(t) by z∗, and we see that
K∗ = cA/cD.

Time is to be scaled by the total number of active and dormant individuals, instead of
the total number of active individuals only:

x(t) =
number of active individuals of type ♥

total number of individuals
,

y(t) =
number of dormant individuals of type ♥

total number of individuals
.

(B.10)
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To compare the Moran model with a 1-colour seed-bank with the Fisher-Wright model
with a 1-colour seed-bank, we look at the variables

x̄(t) =

(
1 +

cA

cD

)
x

(
t

1 + cA

cD

)
, ȳ(t) =

(
1 +

cA

cD

)(
cD

cA

)
y

(
t

1 + cA

cD

)
. (B.11)

After a short transition period in which z(t) tends to z∗, we see that by setting

K = K∗ =
cA

cD
, e =

cD

cA
1

1
cA

+ 1
cD

, (B.12)

we obtain
dx̄(t) =

√
x̄(t)(1− x̄(t)) dw(t) +Ke [ȳ(t)− x̄(t)] dt,

dȳ(t) = e [x̄(t)− ȳ(t)] dt,
(B.13)

which is the single-colony version of (2.4)–(2.5) but without migration. Migration can be
added in the same way as was done in Appendix A.

B.2 Moran version of Model 2: Two colours

We consider the following system:

• Total number of individuals: N ∈ N.

• Two types: ♥ and ♦.

• X(t) is the number of ♥-individuals in the active population at time t.

• Y1(t) is the number of ♥-individuals of colour 1 in the dormant population at time t.

• Y2(t) is the number of ♥-individuals of colour 2 in the dormant population at time t.

• ZD1
(t) is the number of dormant individuals of colour 1 at time t (either ♥ or ♦).

• ZD2
(t) is the number of dormant individuals of colour 2 at time t. (either ♥ or ♦).

Note that the number of active individuals at time t (either ♥ or ♦) is given by ZA(t) =

N −ZD1(t)−ZD2(t). Since the number of individuals N is constant during the evolution,
ZA(t) can be derived from ZD1(t) and ZD2(t). Each active individual resamples at rate
1, and becomes dormant at rate ε. When an individual becomes dormant, it gets either
colour 1 with probability p1 or colour 2 with probability p2, where p1, p2 ∈ (0, 1) and
p1 + p2 = 1. For ease of notation, we denote the rate to become dormant with colour 1

by ε1 = ε · p1 and the rate to become dormant with colour 2 by ε2 = ε · p2. A dormant
individual with colour 1 becomes active at rate δ1, a dormant individual with colour 2

becomes active at rate δ2. Thus, the transition rates for (X(t), Y1(t), Y2(t), ZD1
(t), ZD2

(t))

are:

• (i, j, k, l,m)→ (i+ 1, j, k, l,m) at rate (N − l −m− i) i
N−l−m .

• (i, j, k, l,m)→ (i− 1, j, k, l,m) at rate i (N−l−m−i)
N−l−m .

• (i, j, k, l,m)→ (i− 1, j + 1, k, l + 1,m) at rate ε1i.

• (i, j, k, l,m)→ (i+ 1, j − 1, k, l − 1,m) at rate δ1j.

• (i, j, k, l,m)→ (i− 1, j, k + 1, l,m+ 1) at rate ε2i.

• (i, j, k, l,m)→ (i+ 1, j, k − 1, l,m− 1) at rate δ2k.

• (i, j, k, l,m)→ (i, j, k, l + 1,m) at rate ε1(N − l −m− i).
• (i, j, k, l,m)→ (i, j, k, l,m+ 1) at rate ε2(N − l −m− i).
• (i, j, k, l,m)→ (i, j, k, l − 1,m) at rate δ1(l − j).
• (i, j, k, l,m)→ (i, j, k, l,m− 1) at rate δ2(m− k).
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Proceeding in the same way as for the 1-colour seed-bank, we define the scaled variables

X̄(t) =
1

N
X(Nt), Ȳ1(t) =

1

N
Y1(Nt), Ȳ2(t) =

1

N
Y2(Nt),

Z̄A(t) =
1

N
ZA(Nt), Z̄D1(t) =

1

N
ZD1(Nt), Z̄D2(t) =

1

N
ZD1(Nt).

(B.14)

We assume that there exist cA1 , c
A
2 , c

D
1 , c

D
2 ∈ (0,∞) such that

Nε1 = cA1 , Nε2 = cA2 , Nδ1 = cD1 , Nδ2 = cD2 , N ∈ N, (B.15)

and further assume for the starting values that

lim
N→∞

i

N
= x, lim

N→∞

j

N
= y1, lim

N→∞

k

N
= y2,

lim
N→∞

N − l −m
N

= zA lim
N→∞

N − l −m
N

= zD2
, lim

N→∞

N − l −m
N

= zD1
.

(B.16)

Using the same method of converging generators as for Model 1, we obtain the following
continuum limit:

dx(t) =

√
zA(t)

zA − x(t)

zA(t)

x(t)

zA(t)
dw(t)

+
[
cD1 y1(t)− cA1 x(t)

]
dt+

[
cD2 y2(t)− cA2 x(t)

]
dt,

dy1(t) =
[
cA1 x(t)− cD1 y1(t)

]
dt,

dy2(t) =
[
cA2 x(t)− cD2 y2(t)

]
dt,

dzA(t) =
[
cD1 zD1(t)− cA1 zA(t) + cD2 zD2

(t)− cA2 zA(t)
]

dt,

dzD1(t) =
[
cA1 zA(t)− cD1 zD1

(t)
]

dt,

dzD2(t) =
[
cA2 zA(t)− cD2 zD2

(t)
]

dt.

(B.17)

Note that the equation for zA(t) = 1− zD1
(t)− zD2

(t) follows directly from the equations
from zD1

(t) and zD2
(t). It is therefore redundant, but we use it for notational reasons.

Again, we see that z(t) = (zA(t), zD1
(t), zD2

(t)) is governed by an autonomous system of
differential equations. Solving this system, we see that

lim
t→∞

zA(t) =
1

1 +
cA1
cD1

+
cA2
cD2

a.s.,

lim
t→∞

zD1
(t) =

cA1
cD1

1 +
cA1
cD1

+
cA2
cD2

a.s.,

lim
t→∞

zD2
(t)) =

cA2
cD2

1 +
cA1
cD1

+
cA2
cD2

a.s.

(B.18)

To compare the Moran model with a 2-colour seed-bank with the Fisher-Wright model
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with a 2-colour seed-bank, we look at the variables

x̄(t) =

(
1 +

cA1
cD1

+
cA2
cD2

)
x

 t

1 +
cA1
cD1

+
cA2
cD2

 ,

ȳ1(t) =

(
1 +

cA1
cD1

+
cA2
cD2

)(
cD1
cA1

)
y1

 t

1 +
cA1
cD1

+
cA2
cD2

 ,

ȳ2(t) =

(
1 +

cA1
cD1

+
cA2
cD2

)(
cD2
cA2

)
y2

 t

1 +
cA1
cD1

+
cA2
cD2

 .

(B.19)

Defining

Km =
cAm
cDm

, em =
cDm

1 +
cA1
cD1

+
cA2
cD2

, m ∈ {1, 2}, (B.20)

we see that, after a short transition period, the system becomes

dx̄(t) =
√
x̄(t)(1− x̄(t)) dw(t) +K1e1 [ȳ2(t)− x̄(t)] dt+K2e2 [ȳ1(t)− x̄(t)] dt,

dȳ1(t) = e1 [x̄(t)− ȳ1(t)] dt,

dȳ2(t) = e2 [x̄(t)− ȳ2(t)] dt,

(B.21)

which is the single-colony version of (2.12)–(2.13) with 2 colours and without migration.
Note, in particular, that after z(t) reaches the equilibrium point in (B.18), we have

Km =
number of dormant individuals with colour m

number of active individuals
, m ∈ {1, 2}. (B.22)

It is instructive to show how the above result can also be derived with the help of
duality. The argument that follows easily extends to an n-coloured seed-bank for any
n ∈ N finite, to be considered in Appendix B.3. Recall from (B.17) that

dzA(t) =
[
cD1 zD1(t)− cA1 zA(t) + cD2 zD2(t)− cA2 zA(t)

]
dt,

dzD1(t) =
[
cA1 zA(t)− cD1 zD1(t)

]
dt,

dzD2(t) =
[
cA2 zA(t)− cD2 zD2(t)

]
dt.

(B.23)

Let

z̄A(t) =

(
1 +

cA1
cD1

+
cA2
cD2

)
zA(t),

z̄D1
(t) =

(
1 +

cA1
cD1

+
cA2
cD2

)(
cD1
cA1

)
zD1

(t),

z̄D2(t) =

(
1 +

cA1
cD1

+
cA2
cD2

)(
cD2
cA2

)
zD2(t).

(B.24)

Substitute (B.24) into (B.23), to obtain

dz̄A(t) = cA1 [z̄D1
(t)− z̄A(t)] + cA2 [z̄D2

(t)− z̄A(t)] dt,

dz̄D1
(t) = cD1 [z̄A(t)− z̄D1

(t)] dt,

dz̄D2
(t) = cD2 [z̄A(t)− z̄D2

(t)] dt.

(B.25)

To define a dual for the process (z̄A(t), z̄D1(t), z̄D2(t)))t≥0, let (M(t))t≥0 be the continuous-
time Markov chain on {A,D1, D2} with transition rates

A→ Dm at rate cAm, m ∈ {1, 2},
Dm → A at rate cDm, m ∈ {1, 2}.

(B.26)
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Consider l independent copies of (M(t))t≥0, evolving on the same state space {A,D1, D2}.
Let (L(t))t≥0 = (LA(t), LD1

(t), LD2
(t))t≥0 be the process that counts how many copies of

M(t) are on site {A}, {D1} and {D2} at time t. Let l = m+ n1 + n2. Then (L(t))t≥0 is the
Markov process on N3

0 with transition rates

(m,n1, n2)→


(m− 1, n1 + 1, n2) at rate mcA1 ,

(m− 1, n1, n2 + 1) at rate mcA2 ,

(m+ 1, n1 − 1, n2) at rate n1c
D
1 ,

(m+ 1, n1, n2 − 1) at rate n2c
D
2 .

. (B.27)

Note that LA(t) + LD1
(t) + LD2

(t) = LA(0) + LD1
(0) + LD2

(0) = m+ n1 + n2 = l. Define
H : R3 ×N3

0 → R by

H((z̄A, z̄D1
, z̄D2

), (m,n1, n2)) := z̄mA z̄
n1

D1
z̄n2

D2
(B.28)

Using the generator criterion [JK14, Proposition 1.2], we see that, for all t ≥ 0,

E [H((z̄A(t), z̄D1
(t), z̄D2

(t)), (m(0), n1(0), n2(0)))]

= E [H((z̄A(0), z̄D1(0), z̄D2(0)), (m(t), n1(t), n2(t)))] .
(B.29)

Therefore (L(t))t≥0 and (z̄(t))t≥0 are dual to each other with duality function H.
Since (M(t))t≥0 is a irreducible and recurrent, we can define

πA = lim
t→∞

P(M(t) = A) =
1

1 +
cA1
cD1

+
cA2
cD2

,

πD1 = lim
t→∞

P(M(t) = D1) =

cA1
cD1

1 +
cA1
cD1

+
cA2
cD2

,

πD2 = lim
t→∞

P(M(t) = D2) =

cA2
cD2

1 +
cA1
cD1

+
cA2
cD2

.

(B.30)

Using the duality relation in (B.29) together with (B.30) and (B.24), we find

lim
t→∞

E[z̄A(t)] = πAz̄A(0) + πD1
z̄D1

(0) + πD2
z̄D2

(0)

=
1

1 +
cA1
cD1

+
cA2
cD2

z̄A(0) +

cA1
cD1

1 +
cA1
cD1

+
cA2
cD2

z̄D1
(0) +

cA2
cD2

1 +
cA1
cD1

+
cA2
cD2

z̄D2
(0)

= zA(0) + zD1
(0) + zD2

(0) = 1.

(B.31)

Using the duality relation in (B.29) once more, we get

lim
t→∞

E[z̄A(t)] = lim
t→∞

E[z̄D1
(t)] = lim

t→∞
E[z̄D2

(t)] = 1. (B.32)

Computing the limiting second moment limt→∞E[z̄A(t)2] by duality, we obtain

lim
t→∞

E[z̄A(t)2] = lim
t→∞

∑
i,j∈

{A,D1,D2}

P(M1
t = i) z̄i(0)P(M2

t = j) z̄j(0)

=
∑

i∈{A,D1,D2}

πiz̄i(0)
∑

j∈{A,D1,D2}

πj z̄j(0) = 1.

(B.33)
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Similarly, we find limt→∞E[z̄D1
(t)2] = 1 and limt→∞E[z̄D2

(t)2] = 1. Combining (B.32)
and (B.33),

lim
t→∞

z̄A(t) = lim
t→∞

z̄D1
(t) = lim

t→∞
z̄D2

(t) = 1 a.s. (B.34)

Hence we conclude that

lim
t→∞

zA(t) =
1

1 +
cA1
cD1

+
cA2
cD2

a.s.,

lim
t→∞

zD1(t) =

cA1
cD1

1 +
cA1
cD1

+
cA2
cD2

a.s.,

lim
t→∞

zD2
(t) =

cA2
cD2

1 +
cA1
cD1

+
cA2
cD2

a.s.

(B.35)

Continuing as in (B.19), we again find the single-colony version of (2.12)-(2.13) with 2
colours and no migration.

B.3 Moran version of Model 2: Three or more colours

The argument in Appendix B.2 can be extended to an m ∈ N-colour seed-bank, by
introducing sequences of variables (Ym(t))mm=0 and (Zm(t))mm=0 that count the number
of ♥-individuals in the colour-m seed-bank at time t, respectively, the total number of
individuals in the colour-m seed-bank at time t. Let ε > 0 be the total rate at which
an active individual becomes dormant, and define a probability vector (pm)mm=0 such
that εm = εpm is the rate at which an active individual becomes dormant with colour m.
Let δm be the rate at which m-dormant individuals become active. Via the same line of
argument as in Appendix B.2, we see that the equivalent of (B.17) reads

dx(t) =

√
zA(t)

zA − x(t)

zA(t)

x(t)

zA(t)
dw(t) +

m∑
m=0

[
cDmym(t)− cAmx(t)

]
dt,

dym(t) =
[
cAmx(t)− cDmym(t)

]
dt,

dzA(t) =
m∑

m=0

[
cDmzDm(t)− cAmzA(t)

]
dt,

dzDm(t) =
[
cAmzA(t)− cDmzDm(t)

]
dt, 0 ≤ m ≤ m.

(B.36)

Solving the autonomous system describing z(t) = (zA(t), (zDm(t))Nm=0) via duality, and
subsequently substituting into (B.36) the variables

x̄(t) =

(
1 +

m∑
n=0

cAn
cDn

)
x

 t

1 +
∑m
n=0

cAn
cDn

 ,

ȳm(t) =

(
1 +

m∑
n=0

cAn
cDn

)(
cDm
cAm

)
ym

 t

1 +
∑m
n=0

cAn
cDn

 , 0 ≤ m ≤ m,

(B.37)

we find the single-colony version of (2.12)–(2.13) with N -colours and no migration.
Migration can be added as in Appendix A.

It is straightforward to derive the version (2.12)–(2.13) withN -colours andM colonies.
Afterwards we can let N,M → ∞ and use convergence of generators, to find (2.12)–
(2.13). The limit is unproblematic because we are interested in finite time horizons
only.
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C Successful coupling

To prove Lemma 5.11 we proceed as in [CG94], with minor adaptations. The notation
used in this appendix is the same as in Section 5.3. For Model 1 we write down the full
proof. The proof works for Model 2 and 3 by invoking the colours m ∈ N0 and the SSDE
in (2.12)–(2.13), respectively, (2.18)–(2.19).

Proof of Lemma 5.11. The proof consists of 5 steps.

Step 1. If z ∈ E with xi = 0 and xk > 0 for some k 6= i, then

Pz (∃ t∗ > 0 such that xi(t) = 0 ∀ t ∈ [0, t∗]) = 0. (C.1)

Proof. Suppose that z is such that xi = 0, but xk > 0 for some i, k ∈ G. By (2.4),

xi(t) =

∫ t

0

ds
∑
j∈G

a(i, j) [xj(s)− xi(s)] +

∫ t

0

dsKe [yi(s)− xi(s)] +

∫ t

0

dwi(s)
√
g(xi(s)).

(C.2)
Suppose that there exists a T > 0 such that xi(t) = 0 for all t ∈ [0, T ], and therefore
g(xi(t)) = 0. Then we obtain for all t ∈ [0, T ] that∫ t

0

ds
∑
j∈G

a(i, j)xj(s) +

∫ t

0

dsKeyi(s) = 0. (C.3)

Hence, by path continuity of (Z(t))t≥0, we see that yi(t) = 0 for all t ∈ [0, T ], as well
as xj(t) = 0 for all j ∈ G such that a(i, j) > 0. Repeating this argument, we obtain by
irreducibility of a(·, ·) that xk(t) = 0 for all k ∈ G and hence yk(t) = 0 for all k ∈ G. By
path continuity, this contradicts the assumption that xk(0) > 0. We conclude that (C.1)
holds.

Step 2. If z̄ ∈ E × E and g(x1
i ) 6= g(x2

i ), then for all j,

P̂z̄ (∃ t∗ > 0 such that ∆j(t) = 0 ∀ t ∈ [0, t∗]) = 0. (C.4)

Proof. Note that the SSDE in (2.4)–(2.5) can be rewritten as

dz(i,Ri)(t) =
∑

(j,Rj)∈G×{A,D}

b(1)((i, Ri), (j, Rj)) [z(j,Rj)(t)− z(i,Ri)(t)] dt

+
√
g(z(i,Ri)(t)) 1{Ri=A} dwi(t),

∀ (i, Ri) ∈ G× {A,D},

(C.5)

with b(1)(·, ·) defined as in (2.34).
Suppose that z̄ is such that g(x1

i ) 6= g(x2
i ). Suppose there exist a T > 0 such that

∆j(t) = 0 for all t ∈ [0, T ]. Then also
√
g(x1

j (t)) −
√
g(x2

j (t)) = 0 for all t ∈ [0, T ]. Using

(C.5) on ∆j(t) = z1
(j,A)(t)− z

2
(j,A)(t), we obtain

0 =

∫ t

0

ds∑
(k,Rk)∈G×{A,D}

b(1)((j, A), (k,Rk))
[(
z1

(k,Rk)(s)− z
2
(k,Rk)(s)

)
−
(
z1

(j,Rj)
(s)− z2

(j,Rj)
(s)
)]
.

(C.6)
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Hence ∑
(k,Rk)∈G×{A,D}

b(1)((j, A), (k,Rk))
[(
z1

(k,Rk)(t)− z
2
(k,Rk)(t)

)
−
(
z1

(j,Rj)
(t)− z2

(j,Rj)
(t)
)]

= 0 ∀ t ∈ [0, T ].
(C.7)

Using (C.5), we can write the SDE for∑
(k,Rk)∈G×{A,D}

b(1)((j, A), (k,Rk))
[(
z1

(j,Rj)
(t)− z2

(j,Rj)
(t)
)
−
(
z1

(i,Ri)
(t)− z2

(i,Ri)
(t)
)]
,

(C.8)
which yields that, for all t ∈ [0, T ],

−
∫ t

0

dwk(s)
∑

(k,Rk)∈G×{A,D}

b(1)((j, A), (k,Rk))
(√

g(z1
k,Rk

(s))−
√
g(z2

k,Rk
(s))

)
1{Rk=A}

=

∫ t

0

ds
∑

(k,Rk)∈G×{A,D}

b(1),2((j, A), (l, Rl))

×
[(
z1

(j,Rj)
(t)− z2

(j,Rj)
(t)
)
−
(
z1

(i,Ri)
(t)− z2

(i,Ri)
(t)
)]
,

(C.9)
where b(1),2(·, ·) is the 2-step kernel of b(1)(·, ·).

The two process in the right-hand side form a process of bounded variation, while
the process in the left-hand side is a continuous square-integrable martingale, whose
quadratic variation is given by∫ t

0

ds
∑
k∈G

a(j, k)2

(√
g(x1

k(s))−
√
g(x2

k(s))

)2

. (C.10)

Since a square-integrable martingale of bounded variation is constant, it follows that
(C.10) equals 0. Hence, for all k such that a(j, k) > 0, it follows that g(x1

k(t)) = g(x2
k(t))

for all t ∈ [0, T ]. Moreover, the right-hand side of (C.9) is equal to 0. Iterating the right-
hand side of (C.9) further, we find by the irreducibility of a(·, ·) that g(x1

i (t)) = g(x2
i (t))

for all t ∈ [0, T ], which contradicts the assumption on z̄ that g(x1
i (0)) 6= g(x2

i (0)). Hence
we find that there does not exist a T > 0 such that ∆j(t) = 0 for all t ∈ [0, T ].

Step 3. If z̄ ∈ E ×E, i, k ∈ G and g(x1
i ) = g(x2

i ) with ∆i < 0 and ∆k > 0 for some k 6= i,
then

P̂z̄
(
∃ t∗ ∈ [0, 1

2 ] : ∆i(t
∗) < 0, ∆k(t∗) > 0, g(x1

i (t
∗)) 6= g(x2

i (t
∗))
)
> 0. (C.11)

Proof. Note that by assumption we have x1
i < 1 and x1

k > 0. Let t0 ∈ [0, 1
4 ]. If x1

i > 0,
then set t0 = 0. Otherwise, by Step 1 and path continuity, we find with probability 1 a
t0 ∈ [0, 1

4 ] such that x1
i (t0) > 0, ∆i(t0) < 0 and ∆k(t0) > 0. Let z̃ = z̄(t0). By the existence

of t0 and the Markov property, it is enough to prove that

P̂z̃
(
∃ t∗ ∈ [0, 1

4 ] : ∆i(t
∗) < 0, ∆k(t∗) > 0, g(x1

i (t
∗)) 6= g(x2

i (t
∗))
)
> 0 (C.12)

in order to prove (C.11). Define the following two martingales:

Mi(t) =

∫ t

0

dwi(s)
√
g(x1

i (s)), (C.13)

Mk(t) =

∫ t

0

dwk(s)

(√
g(x1

k(s))−
√

2g(x2
k(s))

)
. (C.14)

EJP 27 (2022), paper 18.
Page 81/88

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP728
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Spatial populations with seed-bank: well-posedness, duality and equilibrium

Their corresponding quadratic variation processes are given by

〈Mi(t)〉 =

∫ t

0

ds g(xi(s)), (C.15)

〈Mk(t)〉 =

∫ t

0

ds

(√
g(x1

k(s))−
√

2g(x2
k(s))

)2

. (C.16)

By Knight’s theorem (see [RY99, Theorem V.1.9 p.183]), we can write Mi(t) and Mk(t)

as time-transformed Brownian motions:

Mi(t) = wi (〈Mi(t)〉) , (C.17)

Mk(t) = wk (〈Mk(t)〉) . (C.18)

We may assume that g(x̃1
i ) = g(x̃2

i ), otherwise we can set t∗ = 0. Recall that 0 < x̃1
i < 1,

∆̃i < 0 and ∆̃k > 0, and, since 0 < g(x̃1
i ) = g(x̃2

i ), also x̃2
i < 1. Choose an ε ∈ (0, 1

15 )

such that x̃1
i , x̃

2
i ∈ [5ε, 1 − 5ε], −∆̃i > 5ε and ∆̃k > 5ε. Let ξ ∈ (0, ε) be such that

g(ξ) < min{g(u) : ε ≤ u ≤ 1 − ε}, and set c1 = min{g(u) : ξ ≤ u ≤ 1 − ξ} and c2 = ‖g‖.
Then we can make the following estimates:

〈Mi(t)〉 ≤ c2t 〈Mk(t)〉 ≤ c2t, t ≥ 0, (C.19)

〈Mi(t)〉 ≥ c1t for t ≥ 0 such that xi(s) ∈ [ξ, 1− ξ] ∀ s ∈ [0, t]. (C.20)

Define c3 = min{ ξ
2Ke ,

ξ
2}. Fix T ∈ [0, c3] and define

Ω0 =

{
min

t∈[0,c1T ]
wi(t) < −1, max

t∈[0,c2T ]
wi(t) < ε, max

t∈[0,c2T ]
|wk(t)| < ε

}
, (C.21)

Ω1 =
{
∃t∗ ∈ [0, 1] such that ∆i(t

∗) < 0, ∆k(t∗) > 0, g(x1
i (t
∗)) = g(x2

i (t
∗))
}
.(C.22)

Note that P(Ω0) > 0. Therefore it suffices that Ω0 ⊂ Ω1.
We start by checking the conditions ∆k. Using (2.4), we can write

∆k(t) = ∆k(0) +

∫ t

0

ds
∑
l∈G

a(k, l) [∆l(s)−∆k(s)] +

∫ t

0

dsKe [δk(s)−∆k(s)]

+

∫ t

0

dwk(s)

(√
g(x1

k(s))−
√

2g(x2
k(s))

)2

.

(C.23)

Since |∆l(t)| ≤ 1, |δk(t)| ≤ 1 for all t ≥ 0, and Mk(t) = wk(〈Mk(t)〉) for t ∈ [0, T ], we may
estimate

∆k(t) > 5ε− 2c3 − 2Kec3 − ε = 2ε. (C.24)

So, on Ω0, ∆k(t) > 0 for all t ∈ [0, T ]. By expanding x1
i (t), we find

x1
i (t) = x1

i (0) +

∫ t

0

ds
∑
l∈G

a(i, l) [x1
l (s)− x1

i (s)] +

∫ t

0

dsKe [y1
i (s)− x1

i (s)] +Mi(t), (C.25)

so that on Ω0 we have, for t ∈ [0, T ],

x1
i (t) < 1− 10ε+ c3 +Kec3 + ε = 1− 8ε. (C.26)

To check the conditions on x1
i (t) and ∆i(t), we define the following random times:

σ = inf{t ≥ 0: x1
i (t) = ξ},

τ = inf
{
t > 0: g(x1

i (t)) 6= g(x2
i (t))

}
.

(C.27)
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We will prove that, on Ω0, we have σ < τ and x2
i (τ) ≥ x1

i (τ) + 3ε. To do so, we first prove
that σ < T . Assume the contrary σ ≥ T . Then by (C.26) we have x1

i (t) ∈ [ξ, 1− ξ] for all
t ∈ [0, T ], which implies that min[0,T ]Mi(t) < −1. Hence there exists a κ such that, by
(C.25),

x1
i (κ) < 1− 10ε+ ε− 1 < 0. (C.28)

However, this contradicts the fact that x1
i > 0 for all t ≥ 0. We conclude that σ < T . Now

suppose that τ > σ. Expanding ∆i, we get, for t < τ ,

∆i(t) = ∆i(0) +

∫ t

0

ds
∑
l∈G

a(i, l) [∆l(s)−∆i(s)] +

∫ t

0

dsKe [δi(s)−∆i(s)], (C.29)

which can be rewritten as

x2
i (t) = x1

i (t)− x1
i (0) + x2

i (0)−
∫ t

0

ds
∑
l∈G

a(i, l)[∆l(s)−∆i(s)]−
∫ t

0

dsKe[δi(s)−∆i(s)].

(C.30)
By (C.30), we obtain, for t ∈ [0, σ],

x2
i (t) ≤ 1− 5ε+ 2ε+ 2ε = 1− ε,
x2
i (t) ≥ x1

i (t) + 5ε− 2ε ≥ 3ε,
(C.31)

so x2
i (t) ∈ [ε, 1− ε] for t ∈ [0, σ]. But then g(x1

i (σ)) = g(ξ) < g(x2
i (t)) by the definition of ξ.

Hence we obtain a contradiction and conclude that τ ≤ σ. From (C.31) we obtain that
∆i(t) < 0 for all t ∈ [0, τ ], which concludes the proof that Ω0 ⊂ Ω1.

Step 4. If z̄ ∈ E × E and ∆i < 0,∆j = 0, ∆k > 0 for some i, j, k, then

P̂z̄ (∃ t∗ ∈ [0, 1] : ∆i(t
∗) < 0,∆j(t

∗) 6= 0,∆k(t∗) > 0) > 0. (C.32)

Proof. Suppose that z̄ satisfies ∆i < 0, ∆j = 0, ∆k > 0. Define

Γ0 = {z̄ ∈ E × E : ∆i < 0,∆j 6= 0,∆k > 0},
Γ1 = {z̄ ∈ E × E : ∆i < 0, g(x1

i ) 6= g(x2
i ), ∆k > 0}.

(C.33)

By Step 3 and path continuity, there exists a T ∈ [0, 1
2 ] such that Pz̄ (z̄(T ) ∈ Γ1) > 0. By

the Markov property,

P̂z̃
(
∃ t∗ ∈ [0, 1] : z̄(t∗) ∈ Γ0

)
≥
∫

Γ1

P̂z̄(z̄(T ) ∈ dz̃) P̂z̃
(
∃t∗ ∈ [0, 1

2 ] : z̄(t∗) ∈ Γ0

)
. (C.34)

By path continuity, we can find for z̄ ∈ Γ1 a t′ such that, for all t ≤ t′, ∆i(t) < 0, ∆k(t) > 0

and g(x1
i (t)) 6= g(x2

i (t)). By Step 2 there exists a t∗ < t′ such that z̄(t∗) ∈ Γ0. Hence both
probabilities in the integral on the right-hand side of (C.34) are positive.

Step 5. Proof of Lemma 5.11.

Proof. Suppose that (5.106) holds for the pair i, j, and a(j, k) > 0, but (5.106) fails for the
pair i, k. This implies that there exist ε0 > 0, δ0 > 0 and a positive increasing sequence
(tn)n∈N of times with tn →∞, such that

lim
t→∞

P̂z̄ ({∆i(t) < ε0,∆k(t) > ε0} ∪ {∆i(t) > ε0,∆k(t) < ε0}) > δ0. (C.35)
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By compactness of E ×E, there exists a subsequence tnk such that L(z̄(tnk)) converges
and (C.35) holds. Let ν̄ = limk→∞ L(z̄(tnk)). Then

ν̄ ({∆i < ε0,∆j > ε0} ∪ {∆i > ε0,∆j < ε0}) = 0,

ν̄ ({∆j < ε0,∆k > ε0} ∪ {∆j > ε0,∆k < ε0}) = 0,

ν̄ ({∆i < ε0,∆k > ε0} ∪ {∆i > ε0,∆k < ε0}) > δ0.

(C.36)

Assume without loss of generality that ν̄ ({∆i < ε0,∆k > ε0}) > 0. Hence, by (C.36),

ν̄ ({∆i < ε0,∆k > ε0}) = ν̄ ({∆i < ε0,∆j ∈ (−ε0, ε0),∆k > ε0}) > 0. (C.37)

For each z̄ ∈ {∆i < ε0,∆j ∈ (−ε0, ε0),∆k > ε0}, Step 4 implies that

P̂z̄ (∃ t∗ ∈ [0, 1] : ∆i(t
∗) < 0,∆j(t

∗) 6= 0,∆k(t∗) > 0) > 0, (C.38)

and therefore, by (C.37),

P̂ν̄ (∃ t∗ ∈ [0, 1] : ∆i(t
∗) < 0,∆j(t

∗) 6= 0,∆k(t∗) > 0) > 0. (C.39)

By path continuity, we can find T ∈ [0, 1] and ε > 0 such that

P̂ν̄ (∆i(T ) < −ε, |∆j(T )| , ∆k(T ) > ε) > 0. (C.40)

Let µ̄(tn) = L(z̄(tn)). Then, by the Markov property and (C.40),

lim inf
n→∞

P̂µ̄(tn) (∆i(T ) < −ε, |∆j(T )| > ε, ∆k(T ) > ε)

= lim inf
n→∞

P̂µ̄(0) (∆i(T + tn) < −ε, |∆j(T + tn)| > ε, ∆k(T + tn) > ε) > 0.
(C.41)

However, this violates (5.106) for either i, j or j, k. We conclude that (C.35) fails and that
(C.35) holds for i, k. By irreducibility, (C.35) holds for all i, k ∈ G.

D Bounded derivative of Lyapunov function

Recall from Section 5.3 that

h(t) = 2
∑
j∈G

a(i, j) Ê
[
|∆j(t)| 1{sgn ∆i(t) 6= sgn ∆j(t)}

]
+ 2Ke Ê

[(
|∆i(t)|

+ |δi(t)|
)

1{sgn ∆i(t) 6= sgn δi(t)}
]
. (D.1)

In this section we show that h′(t) exists for all t > 0 and is bounded. To do so, we need
to get rid of the indicator in the expectations.

Let
h1,j(t) = Ê

[
|∆j(t)| 1{sgn ∆i(t) 6= sgn ∆j(t)}

]
(D.2)

and
h2(t) = 2Ke Ê

[(
|∆i(t)|+ |δi(t)|

)
1{sgn ∆i(t) 6= sgn δi(t)}

]
. (D.3)

Then h(t) = 2
∑
j∈G a(i, j)h1,j(t) + h2(t). We show that h1,j(t) is differentiable with

bounded derivative for j ∈ G. The proof of the differentiability of h2(t) is similar. Fix
t ≥ 0. Note that

Ê
[
|∆j(t)| 1{sgn ∆i(t) 6= sgn ∆j(t)}

]
= Ê

[
|∆j(t)| 1{sgn ∆i(t) 6= sgn ∆j(t)} | |∆i(t)| 6= 0, |∆i(t)| 6= 0

]
P (|∆i(t)| 6= 0, |∆j(t)| 6= 0)

+Ê
[
|∆j(t)| 1{sgn ∆i(t) 6= sgn ∆j(t)} | |∆i(t)|=0 or |∆j(t)|=0

]
P (|∆i(t)|=0 or |∆j(t)|=0) .

(D.4)
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Since ∆i(t) and ∆j(t) have zero local time, the second term vanishes and P(|∆i(t)| 6=
0, |∆j(t)| 6= 0) = 1. By continuity of ∆i(t) and ∆j(t), we can define sets

Bn =
{
|∆i(r)| > 0 and |∆j(r)| > 0,∀r ∈ B(t, 1

n )
}
. (D.5)

Then
· · · ⊂ Bn ⊂ Bn+1 ⊂ Bn+2 ⊂ · · · , (D.6)

so

Bn =

n⋃
i=0

Bi (D.7)

and we define

B :=

∞⋃
i=0

Bn = lim
n→∞

Bn. (D.8)

Since P(|∆i(t)| 6= 0, |∆j(t)| 6= 0) = 1, it follows that P(B) = 1.
For each Bn, we have

Bn = Cn ∪ Ccn, Cn =
{
ω ∈ Bn : 1{sgn ∆i(r) 6= sgn ∆j(r)} = 1, ∀r ∈ B(t, 1

n )
}
, (D.9)

and, by the definition of Bn,

· · · ⊂ Cn ⊂ Cn+1 ⊂ Cn+2 ⊂ · · · · · · ⊂ Ccn ⊂ Ccn+1 ⊂ Ccn+2 ⊂ · · · (D.10)

Let C =
⋃∞
i=0 Ci and Cc =

⋃∞
i=0 C

c
i be such that B = C ∪ Cc. Using (5.95), we obtain

1

s
(h1,j(t+ s)− h1,j(t))

=
1

s

[
Ê
[
|∆j(t)| 1{sgn ∆i(t+s) 6= sgn ∆j(t+s)}

]
− Ê

[
|∆j(t)| 1{sgn ∆i(t) 6= sgn ∆j(t)}

]]
=

1

s

[
Ê
[
|∆j(t+ s)| 1{sgn ∆i(t+s) 6= sgn ∆j(t+s)} − |∆j(t)| 1{sgn ∆i(t) 6= sgn ∆j(t)} | B

]]
=

1

s

[
Ê [|∆j(t+ s)| − |∆j(t)| | C]

]
P(C)

=
1

s
Ê

∑
j∈G

a(i, j)

∫ t+s

t

dr sgn (∆i(r))[∆j(r)−∆i(r)] | C

 P(C)

+
1

s
Ê

[∫ t+s

t

dwi(r) sgn (∆i(r))

[√
g(x1

i (r))−
√
g(x2

i (r))

]
| C
]
P(C)

+
1

s
Ê

[
Ke

∫ t+s

t

dr sgn (∆i(r))
[
δi(r)−∆i(r)

]
| C
]
P(C)

=
∑
j∈G

a(i, j)Ê

[
1

s

∫ t+s

t

dr sgn (∆i(r))[∆j(r)−∆i(r)] | C
]
P(C)

+
1

s
Ê

[∫ t+s

t

dwi(r) sgn (∆i(r))

[√
g(x1

i (r))−
√
g(x2

i (r))

]
| C
]
P(C)

+ Ê

[
Ke

1

s

∫ t+s

t

dr sgn (∆i(r))
[
δi(r)−∆i(r)

]
| C
]
P(C).

(D.11)

In the last equality, the first and third term are bounded, because ∆i(t), δi(t) and ∆j(t)

are continuous functions of t, and sgn (∆i) is constant since we conditioned on the set C.
Therefore, letting s→ 0, it follows from the fundamental theorem of calculus that these
terms are bounded. The second term is more involved. Since, on the set C,

sgn (∆i(r))

[√
g(x1

i (r))−
√
g(x2

i (r))

]
(D.12)
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is a continuous function, we can rewrite the stochastic integral as a time-transformed
Brownian motion:

1

s
Ê

[∫ t+s

t

dwi(r) sgn (∆i(r))

[√
g(x1

i (r))−
√
g(x2

i (r))

]
| C
]

=
1

s
Ê

[
W

(∫ t+s

0

dr

[√
g(x1

i (r))−
√
g(x2

i (r))

]2
)

−W

(∫ t

0

dr

[√
g(x1

i (r))−
√
g(x2

i (r))

]2
)
| C
]
.

(D.13)

Since the normal distribution is differentiable with respect to its variance, we are done.
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