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In Brief
During times of hospital
admission overload, triage may
be required to maximize the
number of survivors. Mass
spectometry–based proteomic
and metabolomic analysis of
COVID patients’ blood, collected
at the time of admission to the
ICU, enabled a prediction of
survival versus nonsurvival with
92% accuracy. These analyses,
which can be performed on
widely available mass
spectrometers, have the
potential to assist physicians
with these difficult decisions.
Highlights

• Plasma samples were collected from 120 COVID-19 patients 0, 2, and 7 days after admission to the ICU.• Hundreds of proteins and metabolites were quantitated in these patient plasma samples.• Significant differences were found between COVID-19 survivors and nonsurvivors.• Day-0 expression levels of 10 proteins + 5 metabolites predicted 92% accurate survival.• Stratification of newly admitted COVID-19 patients by chance of survival was achievable.
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RESEARCH
Early Prediction of COVID-19 Patient Survival by
Targeted Plasma Multi-Omics and Machine
Learning
Vincent R. Richard1,‡ , Claudia Gaither2,‡ , Robert Popp2,‡ , Daria Chaplygina3,‡,
Alexander Brzhozovskiy3, Alexey Kononikhin3, Yassene Mohammed4,5,
René P. Zahedi1,6,7 , Evgeny N. Nikolaev3, and Christoph H. Borchers1,8,9,*
The recent surge of coronavirus disease 2019 (COVID-19)
hospitalizations severely challenges healthcare systems
around the globe and has increased the demand for reli-
able tests predictive of disease severity and mortality.
Using multiplexed targeted mass spectrometry assays on
a robust triple quadrupole MS setup which is available in
many clinical laboratories, we determined the precise
concentrations of hundreds of proteins and metabolites in
plasma from hospitalized COVID-19 patients. We observed
a clear distinction between COVID-19 patients and con-
trols and, strikingly, a significant difference between sur-
vivors and nonsurvivors. With increasing length of
hospitalization, the survivors’ samples showed a trend
toward normal concentrations, indicating a potential
sensitive readout of treatment success. Building a ma-
chine learning multi-omic model that considers the con-
centrations of 10 proteins and five metabolites, we could
predict patient survival with 92% accuracy (area under the
receiver operating characteristic curve: 0.97) on the day of
hospitalization. Hence, our standardized assays represent
a unique opportunity for the early stratification of hospi-
talized COVID-19 patients.

The coronavirus disease 2019 (COVID-19) pandemic (1),
caused by the severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), has created a global challenge for healthcare
systems and the economy (2–5). In many regions of the world,
intensive care units (ICUs) are or have been severely under
pressure, affecting not only COVID-19 patients who need
access to respiratory support but also non-COVID-19 patients
(3, 4). For the most critical COVID-19 patients, treatments
From the 1Segal Cancer Proteomics Centre, Lady Davis Institute for Med
Montreal, Canada; 3Center for Molecular and Cellular Biology, Skolko
Proteomics and Metabolomics, Leiden University Medical Center, Le
Victoria, Victoria, Canada; 6Manitoba Centre for Proteomics & System
Medicine, University of Manitoba, Winnipeg, Canada; 8Gerald Bronfm
Davis Institute for Medical Research, and 9Department of Pathology,

‡These authors contributed equally to this work.
*For correspondence: Christoph H. Borchers, Christoph.Borchers@mcg

© 2022 THE AUTHORS. Published by Elsevier Inc on behalf of American Society for Bio
This is an open access article under the CC BY-NC-ND license (http://creativecommons
involve extracorporeal membrane oxygenation or artificial
ventilation, which require elaborate management of severely
limited technical and costly resources (6, 7). Often, treatment
decisions are made based on the patient’s age, existing
comorbidities, the degree of lung damage, lung function
testing, or complex intensive care prognosis models, such as
the Sequential Organ Failure Assessment (8).
Tremendous efforts have been made by the scientific

community toward the early detection of SARS-CoV-2, the
prediction of disease severity, as well as the prediction of
clinical trajectories and outcomes, involving not only the use
of clinical scores and imaging but also omics technologies
such as mass spectrometry (MS) (3, 9–14), which is excep-
tionally powerful for the discovery of biomarkers in human
specimen and disease models (9, 15–18). MS-based COVID-
19 studies have mainly focused on proteomics, particularly (i)
for the identification of potential biomarkers of disease, which
include inflammatory and acute phase proteins, proteins
associated with the coagulation system and complement
cascade; and (ii) for assessing the risk of hospitalization and
mortality (3, 15, 19–22). Some studies have combined MS
data from COVID-19 plasma samples with machine learning
to obtain accurate patient prognoses which have out-
performed established clinical risk scores, such as the
Sequential Organ Failure Assessment or the APACHE II (i.e.,
the "Acute Physiology and Chronic Health Evaluation II")
scoring system (23). Being an easily accessible biofluid with
minimally invasive collection, blood is a good indicator of
(patho)biological processes occurring in patients (24).
Plasma in particular has been shown to be a matrix that is
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well suited for proteomic and metabolomic studies (25–27),
providing evidence of an individual’s physiological and
nutritional status and serving as a potential source of disease
biomarkers (28–30).
Most studies focusing on the identification of COVID-19

biomarkers have been based on untargeted “shotgun prote-
omics”, generating relative quantitative data of limited preci-
sion and using high-cost state-of-the-art instrumentation that
is delicate to handle. Thus, data produced from untargeted
experiments (i.e., relative fold-changes) have limited utility in a
clinical setting where decisions have to be made for individual
samples using simple and standardized assays. Additionally,
clinical assays require actual biomarker concentrations in or-
der to readily assess whether a patient falls within or outside a
determined reference range for a specific assay, while elab-
orate workflows using high-end instrumentation for COVID-19
biomarker discovery studies cannot be translated in the large
majority of hospitals around the globe.
These shortcomings of conventional discovery omics

studies can be avoided through the use of targeted MS, where
analyte concentrations are determined with high precision
using standardized and robust assays and instrumentation,
thus providing the required high interlaboratory reproducibility
(25). These key features of targeted MS allow the production
of consistent results across different laboratories and—
importantly—also allow biomarker validation using the exact
same methods and workflows in independent cohorts (18). As
a consequence, targeted MS can reveal small changes in
analyte concentrations that might not be statistically signifi-
cant using discovery approaches.
Here, we have combined standardized targeted proteomics

and metabolomics of patient plasma samples with machine
learning to determine potential COVID-19 disease severity
biomarkers that allow an early and robust prediction of dis-
ease severity and mortality (Fig. 1). Our standardized method
requires a simple setup that is available in most clinical lab-
oratories and, therefore, can be easily translated into hospitals
worldwide.
EXPERIMENTAL PROCEDURES

Experimental Design and Statistical Rationale

The overall goal was to identify multi-omic signatures with predic-
tive or prognostic value in plasma from hospitalized COVID-19
patients.

The workflow is depicted in Figure 1.
Blood plasma samples were collected from 40 hospitalized, COVID-

19-positive patients as part of the Biobanque Quebecoise de la
COVID-19 (BQC19) cohort (www.BQC19.ca). Of the 40 patients hos-
pitalized, eight were admitted to the ICU and 10 did not survive. The
average age of the patients upon hospitalization was 79.5 years (95%
confidence interval [CI]: 76.3 to 82.8) and 79.8 years (95% CI:
73.2–86.4) for survivors and nonsurvivors, respectively, with 50% of all
patients and 30% of all nonsurvivors being female. The nonsurvivors
passed away after an average of 17 days (95% CI: 11.6–23.4). COVID-
19 infection was confirmed by polymerase chain reaction (PCR), and
2 Mol Cell Proteomics (2022) 21(10) 100277
blood was collected in acid citrate dextrose (ACD) tubes at day 0, 2,
and 7 from the day of admission to the clinic, for a total of 120 plasma
samples that were processed for this study. All institutions contrib-
uting cohorts to BQC19 received ethics approval from their respective
research ethics review boards.

Blood plasma from 23 healthy volunteers was also collected as part
of a control group, of which all participants underwent a full medical
examination prior to inclusion in the study. Their participation in the
experiment was approved by the Bioethics Committee of the Institute
of Biomedical Problems of the Russian Academy of Sciences, as well
as the National Commission of the United Nations Educational, Sci-
entific and Cultural Organization.

Informed consent was obtained from all participants of this study.
All samples used in this study were collected according to the
guidelines in the Declaration of Helsinki.

Sample Collection and Preparation

Reagents and Labware–Phosphatase buffered saline (PBS) tablets,
Trizma pre-set crystals (pH 8.0), urea, dithiothreitol (DTT), and iodoa-
cetamide were purchased from Sigma Aldrich. Deep-well plates
(1.1 ml) were purchased from AXYGEN. Protein LoBind tubes and
LoBind 96-well PCR plates were purchased from Eppendorf. Oasis
HLB μElution plates (2 mg of sorbent per well, 30-μm particle size)
were purchased from Waters. Ultrapure water was obtained with a
Milli-Q Direct 8 water purification system. Formic acid (FA), methanol
(MeOH), and acetonitrile (ACN) were purchased from Fisher Scientific.
Eppendorf protein LoBind tubes were used to prepare the serial di-
lutions of the unlabeled (native, NAT) mixture, and Falcon 15-mL
conical tubes (Corning) were used for the preparation of the stable-
isotope-labeled internal standard (SIS) mixture.

COVID-19 Patient Plasma Sample Collection–Whole blood was
collected from 40 COVID-19-positive patients at the time of admission
to the clinic using Becton, Dickinson and Company’s whole blood
glass tubes with ACD anticoagulant. Subsequent sample collection
from the same patients occurred 2 and 7 days after admission, for a
total of 120 samples. The whole-blood samples were centrifuged for
10 min at room temperature (RT) at 2000 rpm. The resulting plasma
was stored frozen at −80 ◦C at the BQC19 biobank. Plasma samples
were thawed once (overnight at 4 ◦C) by the biobank and were reali-
quoted to give the required volume and then refrozen at −80 ◦C.

Blood samples from 23 healthy volunteers were taken from a vein in
the cubital fossa. The blood collection was done into commercial
Monovette tubes (SARSTEDT, Germany) containing tripotassium
ethylenediaminetetraacetic acid as the anticoagulant and Becton,
Dickinson and Company’s whole blood glass tubes with ACD anti-
coagulant. The samples were centrifuged for plasma separation
(2000 rpm for 10 min, +4 ◦C) immediately after collection. The su-
pernatant was frozen at −80 ◦C before liquid chromatography-mass
spectrometry (LC-MS) analysis.

SARS-CoV-2 Inactivation of Patient Plasma–Viral inactivation was
performed in accordance with the McGill University Health Centre
Optilab guidelines for laboratory handling and testing of specimens
obtained from patients under investigation or confirmed to have a
SARS-CoV-2 infection (31). The 120 plasma samples obtained from
the BQC19 biobank were placed in an incubator preheated to 60 ◦C
for 1 h. Aliquots from each sample were transferred to PCR plates in a
biosafety cabinet for downstream analysis.

Sample Analysis

Targeted Proteomics Workflow–Targeted quantitative MS analysis
of the plasma proteome of the patient and the healthy volunteers was
carried out using a BAK 270 kit (MRM Proteomics Inc, Montreal,
Canada) containing both SIS and NAT synthetic proteotypic peptides
for concentration measurements of the corresponding proteins in

http://www.bqc19.ca


FIG. 1. Analytical workflow. SVM, support vector machine.
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plasma. All MRM assays of the BAK 270 kit are characterized ac-
cording to Tier 2 Clinical Proteomic Tumor Analysis Consortium
(CPTAC) guidelines (32).

Digestion of Human Plasma and Bovine Serum Albumin Surrogate
Matrix–The 120 plasma aliquots and the bovine serum albumin (BSA)
surrogate matrix were proteolytically cleaved with trypsin. Briefly, 10 μl
of either BSA at 10 mg/ml in PBS or raw human plasma was denatured
and reduced at pH 8 by addition of a urea/DTT/TrisHCl buffer at final
concentrations of 7.2 M urea, 16 mM DTT, and 240 mM TrisHCl,
followed by incubation at 37 ◦C for 30 min. Proteins were then alky-
lated by adding iodoacetamide to a final concentration of 40 mM and
incubating at RT in the dark for 30 min. After the alkylation step,
L-(tosylamido-2-phenyl) ethyl chloromethyl ketone–treated trypsin
(Worthington) was added at a 20:1 (protein to enzyme, w/w) ratio, and
samples were incubated overnight (18 h) at 37 ◦C for proteolytic
cleavage. Sample digestion reactions were quenched by acidifying
with FA to a final concentration of 1.0% FA (pH ≤ 2), leading to a
peptide mixture with an estimated final concentration of 1 μg/μl.
Samples were kept on ice until further processing on the same day.

Reference Standard and Quality Control Sample Preparation–A
BSA-in-PBS-buffer surrogate matrix was used to prepare standards
and quality control (QC) samples. We have previously demonstrated
that BSA can be used as surrogate matrix without significantly
affecting the performance of the protein assays (33, 34). The lyophi-
lized NAT peptide mix, previously balanced to the lower limit of
quantitation (LLOQ) of each peptide, was dissolved in 260 μl of 30%
ACN/0.1% FA to give a final concentration of 100 × LLOQ per μL. This
NAT peptide mixture was serially diluted with 30% ACN/0.1%FA to
yield eight concentrations: 100×, 40×, 16×, 4×, 2×, 0.5×, 0.25×, and
0.1× LLOQ per μL to be used as standards for the calibration curves.
The QC samples were prepared by diluting the 100× LLOQ per μL NAT
peptide mix to give final concentrations of 0.35× (QC-A), 3.5× (QC-B),
and 35× (QC-C) LLOQ per μL. Three replicates per QC concentration
were prepared and analyzed along with the samples.

Solid-Phase Extraction and SIS Addition–The SIS peptide mixture
was solubilized in 220 μl of 30% ACN/0.1% FA, transferred to a 15-mL
Falcon tube, and then diluted to 10× LLOQ per μL with 0.1% FA. A
45-μL aliquot of plasma digest was transferred into a well of an
Eppendorf LoBind skirted PCR plate and spiked with 45 μl of the SIS
peptide mixture. For each standard curve point and each QC sample,
55 μl of BSA surrogate matrix digest (143 μg/ml) was spiked with 55 μl
of the SIS peptide mixture, as well as 55 μl of a level-specific light
peptide mixture at a ratio of 1:1:1 (v/v/v). Plasma samples were then
concentrated by solid-phase extraction (SPE) using an Oasis HLB
μElution plate. Briefly, the SPE plate was conditioned with 600 μl of
MeOH, equilibrated with 600 μl of 0.1% aqueous FA, followed by
sample loading. The wells were washed three times with 600 μl of
H2O, and the bound peptides were eluted with 55 μl of 70% ACN/
0.1% FA. After the SPE step, the eluates were evaporated using a
speed vacuum concentrator and were then stored at −80 ◦C. Plasma
samples, standards, and QC samples were then resolubilized and
analyzed on an Agilent 6495B mass spectrometer.

LC Separation and MS Analysis–Samples were solubilized with
aqueous 0.1% FA to give a final peptide mix concentration of 1 μg/μl
for online liquid chromatography/multiple reaction monitoring mass
spectrometry (LC/MRM-MS) analysis. A 10-μL aliquot of each rehy-
drated plasma digest (analyzed in blinded fashion), QC sample, and
standard was injected and separated on a Zorbax Eclipse Plus
reversed phase ultrahigh performance liquid chromatography (RP-
UHPLC) column (2.1 × 150 mm, 1.8 μm particle diameter; Agilent),
contained within an Agilent 1290 Infinity II system and maintained at
50 ◦C. The peptides were separated at a flow rate of 0.4 ml/min in a
60-min run, via a multistep LC gradient. The aqueous mobile phase
was composed of 0.1% FA in LC-MS grade water and the organic
mobile phase of 0.1% FA in LC-MS–grade ACN. The gradient was set
up to start at 2% organic mobile phase; increase to 7% at 2 min, to
30% at 50 min, 45% at 53 min, and 80% at 53.5 min; hold at 80% until
55.5 min; go back to 2% at 56 min; and then hold at 2% until 60 min. A
postgradient column re-equilibration of 4 min was used after the
analysis of each plasma sample, QC sample, or standard.

PeptiQuant 270-Protein Human Plasma MRM Panel–MRM Prote-
omics Inc.'s PeptiQuant 270-protein human plasma MRM assay kits
were used, which contain light and heavy peptide mixes, as well as
trypsin and BSA. The synthetic proteotypic peptides contained in the
two mixtures (peptide sequences, protein names, gene names, MRM
transitions are shown in supplemental Table S1) serve as peptide
surrogates for 270 human plasma proteins and were selected as
described previously, following strict rules and criteria (35, 36). Pep-
tidePicker software (37) had previously been used to carefully select
the surrogate peptides and ensure protein-specific uniqueness as well
as the lack of post-translational modifications based on The Universal
Protein Resource (UniProt) (38) (www.uniprot.org/docs/pe_criteria). In
cases where peptide variants had been documented within their se-
quences, the canonical sequence had been selected unless specified.
Similarly, when protein isoforms were noted, peptide sequences
present in all isoforms had been preferentially selected. When no
peptide sequence present in all isoforms was found to meet all of the
criteria, the peptide sequence found in most of the isoforms was
selected, and the isoforms were noted.

In this study, each protein was quantified by a single tryptic pep-
tide to maximize the number of proteins quantifiable in a single run.
Proteotypic peptides found in more than one plasma protein are
Mol Cell Proteomics (2022) 21(10) 100277 3
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noted. While the best possible peptides had been selected for each
protein, it should be kept in mind that, in rare cases, gene mutations
and/or post-translational modifications could affect the trypsin
cleavage efficiency. Each of the peptides had previously been char-
acterized for purity and accurate concentration by capillary zone
electrophoresis and amino acid analysis, respectively. Furthermore,
the synthetic peptides had been tested for detectability when spiked
into human plasma, and the ionization conditions had been optimized
empirically. Peptides had been validated for use in LC/MRM-MS
experiments, including establishing the limit of detection, linear
range, LLOQ, upper limit of quantitation, precision, and interferences,
all in accordance with the National Cancer Institute’s CPTAC
guidelines (https://proteomics.cancer.gov/sites/default/files/assay-
characterization-guidance-document.pdf) for assay development
which are available on the CPTAC assay portal website (https://
proteomics.cancer.gov/assay-portal).

MS-Based Proteomic Analysis–MS analysis was performed on an
Agilent 6495B triple quadrupole instrument operated in the positive
ion mode. MRM data were acquired at 3.5 kV and 300 V capillary
voltage and nozzle voltage, respectively. The sheath gas flow was
set to 11 L/min at a temperature of 250 ◦C, and the drying gas flow
was set to 15 L/min at a temperature of 150 ◦C, with the nebulizer
gas pressure at 30 psi. The collision cell accelerator voltage was set
to 5 V, and unit mass resolution was used in the first and third
quadrupole mass analyzers. The high-energy dynode multiplier was
set to −20 kV for improved ion detection efficiency and signal-to-
noise ratios. A single transition per peptide target was monitored
for 700 ms cycles, and 90-s detection windows were used for the
quantitative analysis.

The standards and QC samples were examined and either accepted
or rejected based on a set of rules and criteria. Standards and QC
samples were acceptable if their concentration values calculated from
Skyline (39) (https://brendanx-uw1.gs.washington.edu/labkey/wiki/
home/software/Skyline/page.view?name=default) fell within ±20% of
the theoretical concentrations. A standard curve was deemed to be
acceptable if the back-calculated concentrations of at least 5 out of
the 8 standards were found to be within ±20% of the theoretical
concentration at each point, including the LLOQ. Additionally, at least
66% of all QC samples were required to fall within ±20% of the
theoretical concentration. The experiment was deemed to be suc-
cessful if at least 90% of the peptide calibration curves were
acceptable and passed these criteria. For the evaluation of protein
standard curves and QCs, the 270 generated calibration curves were
evaluated along with their respective QC samples, according to the
acceptance criteria described earlier in the study. All of the standard
curves for these target peptides met the criteria, with 96.9% and
96.1% of all standards and QC samples, respectively, falling within
±20% of their theoretical value.

Skyline Quantitative Analysis software (39) (https://brendanx-uw1.
gs.washington.edu/labkey/wiki/home/software/Skyline/page.view?
name=default), version 21.1.0.146, University of Washington, was
used to visually examine the resulting LC/MRM-MS data. The chro-
matographic peaks for the NAT and SIS peptides in the plasma
samples, calibration curves, and QCs were assessed manually for
shape and accurate integration. Calibration curves were generated
using 1/x2-weighted linear regression and were used to calculate the
peptide concentrations in the samples as fmol per μL of plasma.

Targeted Metabolomics Workflow

Metabolite Derivatization and Extraction–Metabolites from inacti-
vated patient plasma samples were extracted and derivatized using
the TMIC PRIME targeted metabolite assay (https://www.
metabolomicscentre.ca) as part of the MYCO 1.1 sample prepara-
tion kit according to the vendor’s instruction (Molecular You,
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Vancouver, Canada). This kit allows the absolute quantitation of up to
139 endogenous metabolites from various chemical classes including
amino acids, acylcarnitines, biogenic amines, organic acids, sugars,
and lipids. Samples for metabolite analysis were split into two aliquots
for the analysis of (i) organic acids and (ii) biogenic amines, amino
acids, acylcarnitines, sugars, and lipids.

A 50-μL aliquot of plasma was used for the analysis of organic
acids. Briefly, samples were depleted of proteins by precipitation
with 150 μl of ice-cold methanol containing isotope-labelled internal
standards overnight at −20 ◦C. Samples were then cleared by
centrifugation at 13,000g for 20 min, and 50 μl of each supernatant
was transferred to a 96-well deep-well plates, followed by derivati-
zation with 3-nitrophenylhydrazine for 2 h (40). Butylated hydroxyl
toluene was added as a stabilizer, and samples were diluted 10-fold
prior to injecting 10 μl of each sample for analysis by LC/MRM-MS.

The derivatization and extraction of biogenic amines, amino acids,
acylcarnitines, sugars, and lipid species was performed on a separate
plasma aliquot using phenylisothiocyanate (PITC) to label primary and
secondary amines. Briefly, a 10-μL aliquot of each plasma sample
(including QC and calibrator sample) was spotted in the center of a
well of a 96-well filter plate and dried. Samples were derivatized by the
addition of 50 μl of 5% PITC to each filter and incubated for 20 min
(41–43). After derivatization, samples were dried and then extracted
with 5 mM ammonium acetate in methanol. Samples were incubated
with shaking at 350 RPM on an Eppendorf C Thermomixer for 30 min,
and the extracted metabolites were isolated from the upper filter plate
into a receiving 96-well plate by centrifugation for 5 min at 500g. The
metabolite-containing extract was diluted 5-fold prior to the injection
of 10 and 20 μl and analysis by LC-MRM-MS and flow injection
analysis (FIA)-MS/MS, respectively.

Mass Spectrometry–The extracted metabolites were analyzed by
FIA/MRM-MS using a Shimadzu Nexera XR UHPLC interfaced with a
Sciex QTrap 6500+ mass spectrometer controlled by Analyst 1.7
(Sciex) software. Samples for reversed phase chromatography were
separated using an Agilent Zorbax Eclipse XDB C18 Solvent
Saver Plus column (3.0 × 100 mm 3.5 micron) equipped with a
SecurityGuard cartridge-based guard column (Phenomenex). The
PITC-derivatized biogenic amines and amino acids were
analyzed in the positive ion mode using a 10-min gradient, the
3-nitrophenylhydrazine–derivatized organic acids were analyzed in
the negative ion mode using a 20-min gradient, and PITC-derivatized
lipids and acylcarnitines were analyzed by FIA in both positive and
negative ion modes from separate injections using a 3-min MRM-MS
method (42). Specific LC and FIA/MRM-MS conditions including
gradient and MS source parameters and MRM transitions can be
found in supplemental Tables S2 and S3. Data analysis and quan-
titation was performed using MultiQuant 3.0.3 (Sciex) and Analyst
1.6.2 (Sciex).

Data Analysis–Data analysis was performed in Python (3.8.10)
using Scikit-learn (0.24.1), the Pandas (1.2.3), Numpy (1.20.1), and
Scipy (1.6.3) libraries. Only proteins and metabolites whose concen-
trations were above their LLOQ in 80% of the analyzed samples were
considered for further data analysis. Significant proteins and metab-
olites were identified using a two-sided t test (SciPy Python library)
with Benjamini-Hochberg adjustment for multiple testing correction.

COVID-19 Status–Only proteins that (i) were significantly different
betweencontrols andCOVID-19samples (falsediscovery rate [FDR]<0.01)
but (ii)were not significantly different between control samples collected in
different tubes (FDR <0.01; ACD vs tripotassium ethylenediaminetetra-
acetic acid controls, supplemental Table S4) were considered as signifi-
cantly different between COVID-19 samples and controls.

COVID-19 Survival–Only proteins with an FDR of <0.01 were
considered as significantly different between survivors and
nonsurvivors.

https://proteomics.cancer.gov/sites/default/files/assay-characterization-guidance-document.pdf
https://proteomics.cancer.gov/sites/default/files/assay-characterization-guidance-document.pdf
https://proteomics.cancer.gov/assay-portal
https://proteomics.cancer.gov/assay-portal
https://brendanx-uw1.gs.washington.edu/labkey/wiki/home/software/Skyline/page.view?name=default
https://brendanx-uw1.gs.washington.edu/labkey/wiki/home/software/Skyline/page.view?name=default
https://brendanx-uw1.gs.washington.edu/labkey/wiki/home/software/Skyline/page.view?name=default
https://brendanx-uw1.gs.washington.edu/labkey/wiki/home/software/Skyline/page.view?name=default
https://brendanx-uw1.gs.washington.edu/labkey/wiki/home/software/Skyline/page.view?name=default
https://www.metabolomicscentre.ca
https://www.metabolomicscentre.ca
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Patient Age and Length of Hospitalization–ANOVA with
Benjamini-Hochberg adjustment for multiple testing (FDR<0.01) was
used to determine significantly different proteins and metabolites.

Data Preprocessing–Before model fitting, missing values (i.e., if a
protein was below the LLOQ in a sample) were imputed using half of
the lowest concentration that was measured for the respective protein
in the entire dataset (23). Next, protein and metabolite measurements
were log10-transformed. At each step of the model training (cross-
validation, model evaluation on the internal data, model evaluation on
the external data), data standardization was performed for the training
and testing cohorts separately.

Model Construction–Survival prediction was performed using a
support vector machine (SVM) classifier (svm.SVC class from the
scikit-learn Python library (https://scikit-learn.org/)) (44) with radial
basis function kernel and balanced class weighting. The regularization
parameter C was selected from the [0.1, 10] range based on the cross-
validation results (random stratified patient splitting between the
training and validation subgroups was performed 20 times). Other
parameters were set to default values.

Model evaluation using the discovery cohort–Model evaluation
was performed on the entire discovery cohort. We split the dataset
into 10 subgroups, each containing 3 survivors and 1 nonsurvivor
patient. We trained the model using 9 subgroups and evaluated the
prediction using the remaining subgroup. Area under the receiver
operating characteristic curve (AUC) values were calculated with the
roc_auc_score function of the Scikit-learn Python library; p-values
were calculated using the Mann-Whitney U test (mannwhitneyu
function from SciPy Python library).

Model Evaluation Using the External Validation Cohort–Protein
abundances in the validation datasets were converted from log2 to
their original values. Next, all the preprocessing steps that had been
applied for the training data from the discovery cohort were repeated.
The model for survival prediction was fitted on the internal data only.
During the calculations with the internal and external cohorts, and for
the reproducibility of the model, we set the random seed values to 42
and 21, respectively.
RESULTS

The Plasma Proteome Enables a Clear Distinction of
Controls and Hospitalized COVID-19 Patients

First, we examined whether a standardized targeted prote-
omics workflow determining the concentrations of 270 pro-
teins would be able to reveal COVID-19-specific changes in
the plasma proteome. A total of 132 proteins were repro-
ducibly quantified above their LLOQ in >80% of the COVID-19
and control plasma samples. Pearson's correlation analyses
confirmed the high reproducibility and low intragroup vari-
ability of protein concentrations within the COVID-19 (r >0.9)
and control (r >0.9) groups. A principal component analysis
(FDR cutoff = 0.05) shows the clear distribution of all of the
samples into the two expected clusters: controls vs. COVID-
19 samples (Fig. 2A), with no significant impact from the
length of hospitalization (day 0, 2, and 7 after admission)
(Fig. 2B) nor the type of tubes used for blood collection.
A total of 57 out of 132 quantified plasma proteins were

significantly different between healthy controls and hospital-
ized COVID-19 patient samples, based on t test at an FDR of
<0.01 (supplemental Table S4 and Fig. 2C), and the two
groups could be clearly distinguished by hierarchical
clustering (Fig. 2D). A gene ontology annotation analysis of
these proteins revealed the involvement of the immune
response (C5, TTR, C3, CRP, APCS, C9, C1RL, VCAM1, C2,
LRG1, FGB, FGA, C7, PGLYRP2, HP, APOA4, C4BPA, CFH,
GSN, SERPINA3, C4A, PRG4, SERPINA1, CFB, B2M); the
regulation of the acute inflammatory response (CRP, APCS,
ITIH4, SAA4, HP, APOA2, GIG25, SERPINA1, SAA2); and the
involvement of proteins associated with blood coagulation
(APOH, F13A1, FGB, FGA, FGG, PROS1, SERPINA1). Some
of these proteins are well-known biomarkers of various other
diseases and pathologies: for example, APOB, FGA, FGB,
and—in particular—VCAM1 are biomarkers of thrombosis (45,
46). These results are consistent with complications associ-
ated with COVID-19, such as cardiovascular and renal com-
plications, and acute inflammatory events. Not surprisingly,
the protein with the most significant increase in concentration
(>100-fold) was CRP, a well-known biomarker associated with
host defense, that promotes agglutination, complement acti-
vation, and pathogen recognition as well as clearance of
apoptotic cells (47).

Targeted Multi-Omics Allows the Discrimination of
Hospitalized COVID-19 Survivors and Nonsurvivors

Next, we wondered about the intragroup differences of the
plasma proteome between COVID-19 patients. We, there-
fore, evaluated whether these differences might be due to
patient age, the number of days after admission to the
hospital (i.e., time points—0 days, 2 days, 7 days), or mor-
tality. We observed a significant change (FDR <0.01) in the
concentration of coagulation factor X (F10) that correlates
with the age of the patients, but no significant changes in
protein concentrations correlated with the length of hospi-
talization (FDR <0.01). The most significant changes in the
plasma proteome profiles, however, were between the sur-
vivor and the nonsurvivor groups, with a two-sample t test
leading to the identification of 11 proteins (Fig. 3A) with
significantly different concentrations (FDR <0.01) between
the two groups. The concentrations of four of those proteins,
namely B2M, HP, NRP-2, and IGFALS, were also outside
their reference ranges for our control samples. Interestingly,
the concentration values of the survivor group tended to
return to normal levels with increasing length of hospitali-
zation, while on average the concentrations in the non-
survivors group remained either at the margin or at the
outside of the healthy reference range. This indicates the
potential use of our protein markers as a readout to monitor
treatment response, which would need to be confirmed in a
dedicated study. Notably, our data also imply that the
cathelicidin antimicrobial peptide (CAMP), which has been
discussed as being protective against SARS-CoV-2 infection
(48), might be another strong indicator of survival. CAMP
was disproportionately below the LLOQ in the mortality
group (95%) compared to the survival group (~50%) and
showed a general trend of downregulation in the
Mol Cell Proteomics (2022) 21(10) 100277 5
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FIG. 2. Targeted plasma proteomics clearly distinguishes hospitalized COVID-19 patients from controls. A, principal component
analysis (PCA) shows a clear segregation between COVID-19 patients and controls. B, PCA showing the days after admission to hospital (yellow
– 0 days, brown – second day, orange – seventh day). C, volcano plot, representing proteins significantly upregulated or downregulated in
COVID-19 patients (FDR <0.01). D, heat map of the significantly changed proteins (FDR <0.01) based on z-scores of the normalized, log2-
transformed concentration values. FDR, false discovery rate.
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nonsurvivors, which was significant after imputation of
missing values. More sensitive assays may confirm this
potential use of CAMP as a predictor of survival, for
instance, by using antipeptide immunoenrichment prior to
MS quantitation by either LC-MRM (immuno-MRM) (49) or
matrix-assisted laser desorption ionization (MALDI)
(immuno-MALDI) (50).
Intrigued by the finding of differences in plasma protein

concentrations between survivors and nonsurvivors, we then
hypothesized that the metabolome might even better repre-
sent such differences because it is broadly acknowledged to
be the omics discipline that is closest to the phenotype (51).
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We, therefore, used targeted MS to quantify a total of 132
metabolites in the COVID samples, including 21 amino
acids, 27 biogenic amines, 39 acylcarnitines, 24 glycer-
ophospholipids, 10 sphingolipids, and 1 sugar (supplemental
Table S5). We could not observe a significant (FDR <0.01)
correlation between metabolic changes and patient age,
while threonine concentrations changed with the length of
hospitalization (FDR <0.01; supplemental Table S5). Similar to
what we found in the proteomic data, the most significant
changes in the plasma metabolome profiles were between
the survivor and the nonsurvivor groups, with 10 metabolites
(Fig. 3B) having significantly different concentrations (FDR



FIG. 3. Significant differences between COVID-19 survivors and nonsurvivors plasma proteins and metabolites. A, the top 10 signif-
icantly changed proteins (FDR <0.01). The green area indicates the reference range for the healthy control group. (ITIH2 = Inter-alpha-trypsin
inhibitor heavy chain H2; IGFALS = Insulin-like growth factor–binding protein complex acid labile subunit). B, 10 significantly changed me-
tabolites (FDR <0.01). FDR, false discovery rate.
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<0.01). Among these 10 metabolite biomarkers were 4 lyso-
phosphatidylcholine species (lysoPCs). Lysophospholipids
are known to play an important role in lipid signaling through
lysophospholipid receptors, members of the G protein–
coupled receptor family (52). It has been previously reported
that together with GPR4, lysoPCs are involved in the inflam-
matory response (53, 54).

An SVM Classifier Allows the Prediction of Survival on the
First Day of Hospitalization

Having a total of 11 proteins and 10 metabolites that were
significantly different between the survivor and nonsurvivor
groups, we investigated whether their concentrations could be
used to reliably predict survival upon hospitalization of
COVID-19 patients. For this, we made use of an SVM classifier
(svm.SVC class from the scikit-learn Python library; https://
scikit-learn.org/) (44) with a radial basis function kernel and
balanced class weighting. Before model fitting, missing values
(i.e., if a protein was below the LLOQ in a sample) were
imputed using half of the lowest concentration that was
measured for the respective protein in the entire dataset (23).
Next, the measurements of proteins and metabolites were
log10 transformed. At each step in the training of the model
(i.e., cross-validation, model evaluation on the internal data,
model evaluation on the external data), data standardization
was performed on the training and testing cohorts separately.
The training features were selected from the set of all signifi-
cantly different proteins and metabolites. To find the optimal
subset, we determined the average accuracy and the AUC
score using cross-validation.
Mol Cell Proteomics (2022) 21(10) 100277 7
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TABLE 1
Protein markers of COVID-19 patient survival

Protein name Gene name
Uniprot accession

number
Upregulated/downregulated
in the nonsurvival group

Heparin cofactor 2 SERPIND1 P05546 ↓
Complement factor H CFH P08603 ↓
Inter-alpha-trypsin inhibitor heavy chain H2 ITIH2 P19823 ↓
Carboxypeptidase B2 CPB2 Q96IY4 ↓
Haptoglobin HP P00738 ↓
Complement C5 C5 P01031 ↓
Insulin-like growth factor–binding protein
complex acid labile subunit

IGFALS P35858 ↓

Beta-2-microglobulin B2M P61769 ↑
Neuropilin-2 NRP2 O60462 ↑
Cystatin-C CST3 P01034 ↑

Early Prediction of COVID-19 Patient Survival
The resulting set of predictors included 10 proteins and 5
metabolites with FDRs of <0.01 (Tables 1 and 2). The 10
proteins that we found to be mortality predictors are as fol-
lows: SERPIND1, CFH, ITIH2, CPB2, HP, C5, IGFALS, B2M,
NRP2, and CST3. Interestingly, although subsets of proteins
from this panel have been previously identified as putative
COVID-19 biomarkers in discovery studies ((9, 10, 12, 15, 16,
22, 55), supplemental Table S6), this study is the first to show
an association between their expression and mortality. This
may be due to the relative nature of the quantitation methods
used in these other studies and demonstrates the strength of
using a targeted MS approach. Notably, neuropilin-2 (NRP2)
has not been previously reported as a COVID-19 biomarker,
nor has it been associated with mortality in COVID-19 patients.
NRP2, however, could play a critical role in COVID-19 mortality
as it acts as a receptor for human cytomegalovirus entry in
epithelial and endothelial cells (56). B2M is involved in the
presentation of peptide antigens to the immune system (57)
and was also found to be significantly changed during COVID-
19 infection in two other studies (3, 14). The five metabolites
that were predictive of mortality were lysoPC 18:0 and lysoPC
18:2, methylhistidine, homovanillic acid, and 2-aminoadipic
acid. The most significantly changed metabolite was methyl-
histidine—a product of histidine methylation, which is known
TABLE 2
Metabolite markers of COVID-19 patient survival

Metabolites
HMDB

accession
number

Upregulatted/
downregulated

in the nonsurvival group

LysoPC 18:0 HMDB10384 ↓
LysoPC 18:2 HMDB10386 ↓
Methylhistidine ↑
Homovanillic acid HMDB0000118 ↑
alpha-Aminoadipic
acid

HMDB00510 ↑

Human Metabolome Database (HMDB) accession numbers are
given.
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to occur in immunomodulatory proteins such as S100A9 (58).
The LC-MS assay we used cannot distinguish between 1- and
3-methylhistidine since they are isobaric and are not resolved
chromatographically. Therefore, the term “methylhistidine” as
used here refers to the combined pool of 1- and 3-
methylhistidine.
Next, we trained an SVM classifier model to predict patient

survival based on the protein dataset (for the top 10 signifi-
cantly changed proteins: SERPIND1, CFH, ITIH2, CPB2, HP,
C5, IGFALS, B2M, NRP2, and CST3), the metabolite dataset
(for the top 5 significantly changed metabolites: methyl-
histidine, homovanillic acid, 2-aminoadipic acid, lysoPC 18:0,
lysoPC 18:2), as well as the combined multi-omics (10 + 5)
dataset, using all of the time points (i.e., samples at day 0, 2,
and 7 after admission; Fig. 4A). This resulted in AUC scores of
0.90 for the proteomics model, 0.93 for the metabolomics
model, and 0.97 for the combined multi-omics model, yielding
accuracies of 83%, 84%, and 90%, respectively (Fig. 4B).
Building SVM models based on single time points (i.e., either
day 0, 2, or 7 after admission) allowed us to make mortality
predictions even on the day of hospitalization. While the most
accurate predictions based on our proteomics-only or
metabolomics-only models were obtained for samples
collected on the seventh day of hospitalization (Fig. 4C), the
multi-omics model was more stable and not sensitive to the
day of sample collection (the AUC only changed from 0.96 to
0.98). Thus, targeted multi-omics of our biomarker panel of 10
proteins and 5 metabolites enabled accurate predictions at
any time after admission, including day 0 with an accuracy of
92% (Fig. 4C). The sensitivity/specificity matrices for all
samples of the dataset (Fig. 4) as well as the test cohort are
summarized in supplemental Tables S7 and S8.
To evaluate the impact of classical disease severity readouts

on the incorrect prediction of patients to survival or nonsurvival
status by the SVM predictor, we evaluated the O2 saturation
levels measured for 20 patients at 32 sampling time points,
with 20 samples belonging to survivors and 12 to nonsurvivors.
The average O2 saturation value for survivors was 73%



FIG. 4. Reliable and accurate prediction of survival upon hospitalization. A, performance of the support vector machine classifier to
predict COVID-19 patient survival based on proteomics (10 proteins), metabolomics (5 metabolites), and combined multi-omics models
(10 proteins +5 metabolites) and using all data points (days 0, 2, and 7 after admission). B, receiver operating characteristic (ROC) curves show
that the best performance was obtained with the multi-omics model (10 proteins +5 metabolites). C, ROC curve analysis for proteomics-only,
metabolomics-only, and multi-omics models at different time points after admission (days 0, 2, or 7). Upper row – proteomics model based on
10 proteins, middle row – metabolomics model based on 5 metabolites, bottom row – combined multi-omics model based on 10 proteins and
5 metabolites. AUC, area under the receiver operating characteristic curve.
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compared to 53% for nonsurvivors. The accuracy of our pro-
teomic and multi-omic models seems to depend on disease
severity—nonsurviving patients who had been incorrectly
predicted to be survivors had lower disease severity based on
their O2 saturation levels. Additionally, the proteomics model
incorrectly predicted nonsurvival for some patients with low O2

saturation. Interestingly, the nonsurvival probability, as pre-
dicted by the metabolomics model, correlated negatively with
disease severity based on O2 saturation levels. The metab-
olomics classifier incorrectly assigned some "severe" patients
to the survivor class and some "nonsevere" patients to the
nonsurvivor class.
DISCUSSION

The ongoing pressure on health systems worldwide caused
by the increasingly contagious variants of SARS-CoV-2 calls
for methods that allow a reliable early prediction of survival for
patients who are being administered to hospitals. Here, we
have used targeted MS-based quantitative proteomics and
metabolomics to precisely determine the concentrations of
138 proteins and 132 metabolites in the plasma of COVID-19
patients obtained on the day of admission, as well as on days
2 and 7 of hospitalization. Our data show a clear distinction of
all COVID-19 plasma samples, regardless of the time point
and patient, from control plasma of healthy subjects. To date,
Mol Cell Proteomics (2022) 21(10) 100277 9



FIG. 5. Validation of our support vector machine classifier using relative quantitative data from external cohorts. Even with less precise
relative quantitative data and omitting one of our markers that was not quantified by Demichev et al, our proteomics-based model allowed the
correct prediction of outcome for 83% of the Charité cohort patients (79/91 survivors predicted, 12/19 deaths predicted; AUC = 0.81) and 88%
of the Innsbruck cohort patients (18/19 survivors, predicted, 3/5 deaths predicted; AUC = 0.85). AUC, area under the receiver operating
characteristic curve.
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a few other studies have focused on blood plasma and serum
proteomic changes during COVID-19 infection (3, 9, 12, 15,
16), mostly with the goal of identifying proteins that appear to
be relatively upregulated/downregulated because of COVID-
19. Most of the proteins identified in these studies are
involved in inflammation, immune cell migration, and pro-
cesses such as blood coagulation and platelet degranulation
10 Mol Cell Proteomics (2022) 21(10) 100277
(15), which is consistent with our results (3, 15, 16). Moreover,
these studies revealed that the severity of COVID-19 is
associated with the dysfunction of platelet degranulation and
the coagulation cascade (10, 16). In total, 39 out of the 57
proteins that were significantly different between our COVID-
19 and control plasma samples have been described in
earlier discovery studies as significantly changed upon
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COVID-19 infection (supplemental Table S4). Of note, during
the review process of this manuscript, another study was
published where MRM-based quantitative proteomics was
utilized to measure a panel of 30 proteins from multiple co-
horts of hospitalized patients with COVID-19 (59). Interestingly
several proteins that we found to be associated with COVID-
19 infection, including IGFALS, CST3, APOB, C3, CRP,
PGLYRP2, PRG4,SERPINA3, SERPIND1, TF, and TTR, were
used in the afore mentioned study to stratify patients based on
disease severity or as a prognostic for mortality although
different peptides were selected for MRM in most cases.
Our data revealed that changes in the concentration of

coagulation factor X correlate with patient age, while changes
in the concentration of threonine correlated with the length of
hospitalization (FDR <0.01). The most striking observations,
however, were the significant changes in the levels of 11
proteins and 10 metabolites between survivor and nonsurvivor
COVID-19 groups of patients (FDR <0.01). Interestingly, the
most significantly changed metabolite was methylhistidine—a
product of histidine methylation, which is known to occur in
immunomodulatory proteins such as S100A9 (58).
Although it was targeted in our study, the concentrations of

S100A9 in the COVID-19 patient group were mostly below the
LLOQ (<13.64 fmol/μl of plasma). However, Suvarna et al.
reported S100A9 as being significantly dysregulated in
COVID-19 patients using relative quantitative proteomics (55).
Relative quantitative proteomics, however, does not consider
the limits of quantitation as these cannot be defined by relative
methods, and thus, fold changes determined for low-
abundance proteins can be misleading or even incorrect.
However, a potential increase of S100A9 levels in more severe
COVID-19 conditions has been reported by others (10).
Two other metabolites that were found to be predictive of

mortality in our study were homovanillic acid and
2-aminoadipic acid. Homovanillic acid is metabolized form
dopamine by catechol-O-methyltransferase and monoamine
oxidase (60). Dopaminergic pathways play a role in the
adaptive branch of the immune system and are involved in the
regulation of infectious processes (61). 2-Aminoadipic acid
has been associated with diabetes (62)—a known factor that
increases the risk of severe symptoms and complications in
COVID-19 patients. Because 2-aminoadipic acid is a common
food metabolite, additional clinical information regarding the
patients’ diet during hospitalization would need to be analyzed
in order to determine whether this is difference is reflective of
something intrinsic to the patient or is simply the result of food
intake during hospitalization.
After identifying significant differences between plasma

protein and metabolite concentrations of COVID-19 survivors
and nonsurvivors, we used machine learning in order to
identify a robust signature that is predictive of COVID-19
mortality and that, ideally, could be used on the day of
hospitalization to classify patients based on their chance of
survival. While both proteomics and metabolomics markers
separately allowed the prediction of survival with accuracies
of 83% (AUC: 0.90) and 84% (AUC: 0.93), respectively, when
combined, the concentration measurements of the 10 pro-
teins SERPIND1, CFH, ITIH2, CPB2, HP, C5, IGFALS, B2M,
NRP2, and CST3 and the five metabolites lysoPC 18:0,
lysoPC 18:2, methylhistidine, homovanillic acid, and 2-
aminoadipic acid provided a much higher accuracy of 90%
(AUC: 0.97).
To validate the predictive power of our COVID-19 survival

model, we searched for data from independent cohorts. Due
to the lack of appropriate metabolomics datasets in the liter-
ature, we applied our proteomics model to two discovery
proteomics datasets from Demichev et al (23) reporting rela-
tive shotgun proteomics data (referred to as the Charité and
the Innsbruck cohorts). In this study, the authors used the
Charité cohort for training their model and the Innsbruck
cohort for validation (Fig. 5). The Charité cohort included 110
patients, 19 (17%) of whom died; with a median time until
death of 39 days. The Innsbruck cohort included 24 patients, 5
(21%) of whom died, with a median time until death of
22 days. To allow a fair comparison, we excluded neuropilin-2
protein from our predictions as it was not detected by Demi-
chev et al (23). Despite the omission of one protein biomarker
from our panel and the use of less-precise relative quantitative
data, our model still predicted mortality with 83% accuracy for
the Charité cohort (79 of the 91 survivors were predicted, 12 of
the 19 deaths were predicted; AUC = 0.81) and 88% accuracy
for the Innsbruck cohort (18 of the 19 survivors were pre-
dicted, 3 of the 5 deaths were predicted; AUC = 0.85),
compared to an accuracy of 96% reported in the original
study based on a much larger number of 57 protein markers.
Thus, even with less precise relative quantitative data and an
incomplete protein panel, our protein biomarkers still allowed
a good prediction of COVID-19 survival. To compare our re-
sults with those obtained by Demichev et al. (23) who spe-
cifically looked at critically ill (WHO grade 7) patients, we
evaluated the performance of our proteomics classifier using
only severe disease cases (i.e., in our study, those patients
with O2 saturation levels of <60%). The accuracy of the pre-
dictions for these patients was 0.83, with 8 out of 8 correctly
predicted survival cases and 2 out of 4 correctly predicted
nonsurvival cases.
In conclusion, our results demonstrate that a relatively small

subset of molecular signatures can be used as a biomarker
panel to predict the chances of survival of hospitalized COVID-
19 patients, even on the day of admission. Our assays require
only a robust LC-MRM setup on triple-quadrupole mass
spectrometers with analytical flow rates, which is a compa-
rably low-cost platform that is already available in many clin-
ical laboratories (in 2019 >2000 were installed in clinical
laboratories worldwide). The use of internal standards and fully
standardized workflows allows absolute quantitation of ana-
lyte concentrations—with the protein-MRM assays being
validated according to CPTAC guidelines (https://proteomics.
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cancer.gov/sites/default/files/assay-characterization-guidance-
document.pdf)—thus making the obtained results fully com-
parable across laboratories and over time. This robustness
and standardization allow the reliable and early prediction of
patient outcomes from individual COVID-19 plasma samples.
Importantly, we have previously demonstrated that delays in

plasma generation do not affect the measurements of our
protein biomarkers because of the peptide-centric nature of
the assays, while ELISA or other intact protein-based assays
may be severely affected by these delays and thus produce
misleading or poor data (63). This great advantage of validated
LC-MRM assays is highly relevant in the context of the
COVID-19 pandemic as factors such as a high intake of pa-
tients, overworked staff, or understaffed clinics and hospitals
can easily lead to significant delays in sample handling after
collection.
Our biomarker panel for survival of COVID-19 patients may

indicate a need for adjusting patient management strategies.
In particular, the recent surge of COVID-19 hospitalizations
and deaths due to the rise of the SARS-CoV-2 Lambda variant
that challenges and even overburdens the healthcare systems
in many regions around the globe demands for reliable pre-
dictive tests. Our biomarkers should also be useful as in-
dicators of the effectiveness of different treatments for
COVID-19 as more and more potential treatments are
becoming available.
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