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Abstract 

Generative deep learning models have emerged as a powerful approach for de novo drug design as they aid 
researchers in finding new molecules with desired properties. Despite continuous improvements in the field, a subset 
of the outputs that sequence-based de novo generators produce cannot be progressed due to errors. Here, we 
propose to fix these invalid outputs post hoc. In similar tasks, transformer models from the field of natural language 
processing have been shown to be very effective. Therefore, here this type of model was trained to translate invalid 
Simplified Molecular-Input Line-Entry System (SMILES) into valid representations. The performance of this SMILES 
corrector was evaluated on four representative methods of de novo generation: a recurrent neural network (RNN), 
a target-directed RNN, a generative adversarial network (GAN), and a variational autoencoder (VAE). This study has 
found that the percentage of invalid outputs from these specific generative models ranges between 4 and 89%, with 
different models having different error-type distributions. Post hoc correction of SMILES was shown to increase model 
validity. The SMILES corrector trained with one error per input alters 60–90% of invalid generator outputs and fixes 
35–80% of them. However, a higher error detection and performance was obtained for transformer models trained 
with multiple errors per input. In this case, the best model was able to correct 60–95% of invalid generator outputs. 
Further analysis showed that these fixed molecules are comparable to the correct molecules from the de novo gen-
erators based on novelty and similarity. Additionally, the SMILES corrector can be used to expand the amount of inter-
esting new molecules within the targeted chemical space. Introducing different errors into existing molecules yields 
novel analogs with a uniqueness of 39% and a novelty of approximately 20%. The results of this research demonstrate 
that SMILES correction is a viable post hoc extension and can enhance the search for better drug candidates.
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Introduction
Finding molecules with desired characteristics is a key 
aspect of drug discovery [1]. Advances in the field have 
led to a variety of approaches for discovering promis-
ing compounds [2]. Specifically, methods like enumer-
ated virtual libraries and de novo drug design are gaining 
attention, as they expand the search into a larger chemi-
cal space than existing physical compound libraries. 
This enhances the probability of finding drug candidates 
with specific desired properties and increases chemical 
diversity.

Over the past decade, a variety of generative models 
for de novo drug design have been published [3]. These 
models are trained to generate molecules based on a 
training set and are sampled to create new molecules. 
When reinforcement learning is incorporated into gen-
erative models, they can also be used to generate com-
pounds that fulfill specific objectives. For the majority 
of de novo generators, molecules are represented by the 
Simplified Molecular-Input Line-Entry System (SMILES) 
[4, 5]. This is the case because SMILES and other molec-
ular line notations are linear and therefore compatible 
with well-established generative models from the field of 
natural language processing (NLP) [6]. Previous research 
has shown the applicability of recurrent neural networks 
(RNNs), autoencoders, generative adversarial networks 
(GANs), and other generative models [7, 8].

A disadvantage of using SMILES and similar molecu-
lar line notations is that the generated sequences can 
be invalid. A valid SMILES sequence needs to adhere to 
specific syntax rules and also be chemically correct. The 
validity of different generative models has been compared 
in the GuacaMol benchmark, a standardized evaluation 
framework for generative models [9]. This showed that 
a general RNN-based model has a percentage of invalid 
outputs of around 4%. For generative autoencoders, the 
invalid rate was higher with around 15% invalid SMILES. 
With regards to generative variational autoencoders 
(VAE), the validity of outputs has also been reported to 
vary more, exemplifying the difficulty of sampling a con-
tinuous space [10]. The main disadvantage of these inva-
lid outputs is that they cannot be progressed, therefore 
random samples of the chemical space will be absent or 
a bias might even be introduced towards molecules that 
are easier to correctly generate.

Therefore, considerable efforts have been made to 
increase the validity of generated molecules. To this 
end, different molecular line representations like Deep-
SMILES and SELF-referencing Embedded Strings 
(SELFIES) have been designed, but not widely adopted 
[11, 12]. In addition to this, graph representations can 
be used that directly represent molecules as graphs 

[13]. An advantage of graph-based models is that they 
almost exclusively generate valid outputs [14]. How-
ever, graph-based models are more challenging to apply 
because they have a higher computational cost and a 
lower generation speed [15–17]. Another approach that 
has been used to increase the number of valid outputs 
of VAEs, is to apply context-free grammar and attrib-
ute grammar [18, 19]. However, these approaches have 
the disadvantage that they reduce the search space. 
Theoretically, invalid SMILES sequences could also be 
corrected using translator models as used in the field 
of grammatical error correction (GEC) [20]. These 
types of models have an encoder-decoder architecture 
and can be trained to translate sequences into other 
sequences. Interestingly, Zheng et  al. already showed 
that the principles from this field can be applied to cor-
rect syntax mistakes in short SMILES sequences, in 
the context of molecular building blocks [21]. In other 
SMILES-based tasks, translator models have also been 
successfully applied [22–24].

Although extensive research has been carried out 
on reducing the number of invalid outputs, no previ-
ous study has investigated the potential of these incor-
rect outputs. These outputs could be a useful source 
for the generation of new molecules and increase 
generator efficiency. In addition to this, it is probable 
that errors occur more frequently in more complex or 
longer sequences [25]. Therefore, the objective of this 
study is to fix these incorrect sequences and analyze the 
resulting molecules. Additionally, SMILES correction 
could offer a new approach to de novo drug design, in 
which the chemical space around existing molecules is 
expanded by introducing and fixing errors.

To train the SMILES corrector, a data set with pairs 
of invalid and valid SMILES was created. The number 
of errors introduced into the valid SMILES was varied 
to explore the potential benefits of training with mul-
tiple errors. The best-performing SMILES corrector 
was then used to correct invalid outputs from four de 
novo generation case studies: a general RNN, a VAE, 
a GAN and a conditional RNN model. Using chemical 
similarity and property distributions, the resulting fixed 
molecules were then compared to the training set and 
to molecules originally generated by the four de novo 
models. Lastly, the SMILES corrector was used to cor-
rect mistakes introduced into selective Aurora kinase B 
inhibitors to evaluate if local sequence exploration can 
be used to expand the nearby chemical space. Taken 
together, the work presented here provides the first 
exploration of the potential of invalid molecular repre-
sentations for de novo drug design.
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Methods
Data sets and preprocessing
Invalid SMILES and their corresponding valid molecule 
are required to train the SMILES corrector. However, to 
the best of our knowledge, no collections of manually 
corrected pairs like this exist. Therefore, mistakes were 
introduced into correct SMILES to create a training set 
of invalid-valid pairs, similarly to previously established 
techniques in GEC [26–28]. All training sets are based on 
standardized molecules without specified stereochemis-
try from the Papyrus data set (version 5.5) [29, 30]. For 
standardization the ChEMBL structure pipeline was used 
[31]. Each molecule was standardized, and solvents, salts, 
and duplicate fragments were removed. After standardi-
zation, errors were introduced based on random per-
mutations and the SMILES syntax rules. Additionally, 
valence errors were introduced by increasing the bond 
order of bonds connected to atoms with a ‘full’ valence 
and by adding small fragments from the GDB-8 data-
base to such atoms [32]. A list of all the perturbations 
used to introduce the errors can be found in Additional 
file  1: Figure S1). To determine the influence of using 
input SMILES with multiple errors, sets with different 
numbers of errors per input (2, 3, 5, 8, 12, and 20) were 
created. The interval increased as the number of errors 
to be introduced increased, because the effect of add-
ing additional errors was expected to be smaller. For all 
sets, sequences containing more than 200 tokens were 
removed. Afterward, the data sets all contained roughly 
1.3 million invalid-valid pairs. The distribution of the 
errors occurring in these sets, assessed using RDKit, can 
be found in (Additional flile 1: Figure S5).

The aforementioned Papyrus data set was also used to 
train the de novo generators. For training DrugEx, the 
data set was preprocessed as described by Liu et al. [33]. 
To train GENTRL, only SMILES that could be parsed by 
the tokenizer were included, resulting in a training set of 
1.2 million sequences. For ORGANIC, a smaller train-
ing set of 15000 diverse molecules was created from the 
Papyrus data set using RDKit’s sphere exclusion algo-
rithm [34].

For the target-directed case study, a data set was cre-
ated to train and evaluate the predictor models. To this 
end, high and medium-quality activity data was collected 
for human Aurora kinase A (AURKA) (UniProt accession 
O14965) and human Aurora kinase B (AURKB) (UniProt 
accession Q96GD4) from the Papyrus data set. The data 
set for AURKA consisted of 1232 bioactivity data points 
with pChEMBL values ranging from 3.4 to 11.0. The data 
set for AURKB consisted of 1131 bioactivity data points 
with pChEMBL values ranging from 4.1 to 11.0. For the 
selectivity window model, an additional data set was cre-
ated with compounds with experimental  Ki values for 

both of the targets [35]. This data set consisted of 849 rel-
ative affinity values ranging from -1.6 (indicating selectiv-
ity towards AURKA) to 3.0 (indicating selectivity towards 
AURKB).

Generative models
Real-world sets of incorrect SMILES were used for vali-
dation, based on four case studies: a general RNN model, 
a target-directed RNN model, a VAE, and a GAN.

DrugEx, created by Liu et  al. was used as the RNN-
based generator [33]. The pretrained version of DrugEx 
was made by training on the standardized Papyrus set 
using the code available on GitHub [36].

In order to create the target-directed RNN, the pre-
trained DrugEx model was fine-tuned on the mole-
cules tested on AURKA and/or AURKB, and optimized 
towards selective AURKB compounds using reinforce-
ment learning. To tune the target-directed RNN and to 
predict the bioactivity of novel molecules, three predic-
tion models were created; two models that were trained 
to predict the bioactivity of compounds on AURKA and 
on AURKB, and one selectivity window model that pre-
dicts a compound’s selectivity for AURKB over AURKA. 
To this end, quantitative structure–activity relation-
ship (QSAR) regression models were constructed using 
Scikit-learn [37]. The molecules were described using 
19 physicochemical properties and extended-connectiv-
ity fingerprints of the molecules. Both were calculated 
with the RDKit and the fingerprints had a radius of 3 
bonds and were folded to 2048 bits (ECFP6). Four dif-
ferent machine learning methods were compared: Naïve 
Bayesian (NB), Random Forest (RF), K-nearest neigh-
bors (KNN), and Support Vector Machine (SVM). For 
each model hyperparameter optimization was performed 
using Optuna’s Tree-structured Parzen Estimator algo-
rithm for 64 trials to maximize the Matthews Correlation 
Coefficient [38].

For the VAE generative model case study, the genera-
tor GENTRL was pretrained on the previously described 
Papyrus set [39, 40]. During training, a batch size of 50 
was used for 10 epochs with a learning rate of  10–4 simi-
lar to the procedure described by Zhavoronkov et al.

ORGANIC was used as the GAN and trained on the 
previously described set of 15,000 diverse molecules 
from the Papyrus data set [34, 41]. First, generator and 
discriminator pretraining was done for 240 and 50 
epochs, respectively. Afterwards, the model was trained 
with the objective to adhere to Lipinski’s rule of five for 
110 epochs.

After training, the different generators from each case 
study were used to create 1 million sequences. The valid 
sequences created by these models will be referred to as 
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the readily generated sequences to distinguish them from 
valid SMILES corrector outputs.

Error analysis of SMILES
To gather information on the validity of model out-
puts, invalid SMILES were identified using RDKit [42]. 
SMILES that could not be converted into molecules 
were regarded as invalid. The invalid SMILES were also 
classified into six categories based on their RDKit error 
message: syntax error, unclosed ring, parentheses error 
(extra open parentheses or extra close parentheses), bond 
already exists (dual occurrence of a bond between the 
same two atoms), aromaticity error (a combination of 
non-ring atom marked aromatic and kekulization errors) 
and valence error (an atom’s maximum number of bonds 
is exceeded).

SMILES correction model
To create a model that can correct invalid SMILES, trans-
former models were constructed using PyTorch [43]. 
The transformer model used in this research is adapted 
from Ben Trevett’s Pytorch Seq2Seq model [44]. For this 
model, the input and output sequences were tokenized 
using TorchText tokenizers and the output sequence 
was reversed. The SMILES tokenizer was based on the 
one described by Olivecrona et al. and most tokens con-
sisted of single characters, except for tokens denoting 
atoms with two-letter atom symbols, atom descriptions 
between brackets, and numbers following the % sign 
(Additional file  1: Table  S1) [45]. In addition to these 
tokens, start, stop and padding tokens were used, result-
ing in vocabulary sizes of between 101 and 110 tokens.

The transformer model architecture was based on the 
model described in the paper by Vaswani et  al., but it 
differed in that learned positional encodings were intro-
duced along with a standard Adam optimizer. Moreover, 
the implementation did not have label smoothing (Addi-
tional file  1: Figure S3) [46]. The learning rate for the 
optimizer was 0.0005. The encoder took in an embedding 
layer as well as a positional embedding layer, both with 
a dimension of 256 and a dropout of 0.1. It contained 3 
layers of multi-head attention and position-wise feed-
forward mechanisms. The multi-head attention layers 
had a dimension of 256 and 8 heads. The position-wise 
feed-forward mechanism had a dimension of 512 and a 
Rectified Linear Unit (ReLU) activation function. After 
each of these layers, a dropout of 0.1 was applied after 
which layer normalization was performed. The encoder 
generated as many context vectors as there were tokens. 
The decoder worked similarly to the encoder, but it had 
two multi-head attention mechanisms: one that used 
the target as input and another that used the encoder 

representations. The decoder also had a linear layer 
before the prediction.

The SMILES corrector models were trained on 90% 
of the invalid-valid pairs from the synthetic data sets 
and evaluated on the other 10% of the invalid and valid 
sequences from the synthetic data set, and 10,000 invalid 
outputs from each of the generative models. The mod-
els were trained for 20 epochs using a batch size of 16. 
At each epoch, the percentage of valid SMILES and the 
molecule reconstruction rate on the evaluation set were 
calculated using RDKit. This reconstruction rate was 
defined as the fraction of translator outputs that repre-
sented the same molecule as their corresponding original 
target molecule. The model with the highest SMILES val-
idation rate on the evaluation set was saved. For the case 
studies, the percentage of valid SMILES after SMILES 
correction was determined as well as the percentage of 
valid and invalid outputs that were changed compared to 
their input.

SMILES corrector for exploration
To determine the potential of using SMILES correction 
for the expansion of the nearby chemical space, errors 
were introduced into known ligands using the previ-
ously described error introduction method and cor-
rected using the SMILES corrector. As a starting point, 
compounds from the Papyrus set that are selective for 
AURKB were used. First, a random error was introduced 
into the SMILES sequences of these molecules and this 
was repeated 1000 times, after which duplicate sequences 
were removed. Finally, the errors were fixed using the 
best-performing SMILES corrector.

Comparison of fixed outputs
Evaluation metrics from the GuacaMol distribution-
learning benchmarks and MOSES benchmark were used 
to compare the readily generated and fixed molecules 
to the training set [9, 47]. The uniqueness of generated 
molecules was defined as the fraction of unique canoni-
calized SMILES in a sample of 10,000 valid sequences. 
The novelty was determined by the percentage of mol-
ecules in a set of 10,000 generated, valid molecules that 
were not present in a set of 100,000 reference molecules. 
In order to assess the similarity, the similarity to nearest 
neighbor (SNN), fragment similarity, and scaffold simi-
larity were determined following the same approach as 
in the MOSES benchmark [47]. The SNN was calculated 
by taking the average of the Tanimoto similarity between 
1024 bit ECFP4 fingerprints of the generated molecules 
and their most similar neighbor molecules from the ref-
erence set. For the fragment similarity, the frequency 
distribution of BRICS fragments was compared. For 
the scaffold similarity, the same was done based on the 
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Bemis-Murcko scaffolds. For all the similarity metrics 
10,000 generated molecules were compared to reference 
sets of 100,000 molecules. Lastly, the Kullback − Leibler 
(KL) divergence of the physicochemical property dis-
tributions of generated molecules and the reference set 
was calculated for the following properties: Bert’s com-
plexity index (BertzCT), octanol–water partition coef-
ficient (logP), molecular weight (MW), topological polar 
surface area (TPSA), number of hydrogen bond donors 
and acceptors, number of rotatable bonds, number 
of aliphatic and aromatic rings and the fraction of  sp3 
hybridized carbons (CSP3) [48]. The distribution of the 
continuous descriptors was represented by a smoothed 
histogram to allow for fast comparison of large sets 
(Additional file 1: Figure S6). The KL divergences  (DKL) of 
the different properties (i) were aggregated into one score 
following the method from GuacaMol using;

Docking in AURKB
Novel compounds generated by SMILES corrector explo-
ration of selective AURKB ligands were docked in the 
crystal structure of AURKB (Protein Data Bank identi-
fier: 4AF3). This structure was prepared for docking with 
ICM Pro (version 3.9-2d) (Molsoft LLC, San Diego, CA) 
by removing water molecules, and adding and optimizing 
hydrogen atoms [49]. The binding site was defined using 
the default settings to select the residues surrounding the 
co-crystalized ligand (VX-680), and default parameters 
were used for docking. The final results were visualized 
using PyMOL v2.5.2. [50].

Results and discussion
Prevalence and type of errors
To gain insights into the frequently occurring errors, 1 
million sequences were generated and invalid output 
sequences were analyzed. For the pretrained and target-
directed RNN models, 5.7 and 4.7% of the generated 
sequences were invalid, respectively. The percentage of 
invalid sequences was slightly higher for the GAN (9.5%), 
whereas the VAE had the highest percentage of invalid 
outputs (88.9%). A very similar validity of RNN-based 
models was also found in previous benchmarks [9, 47]. 
Specific results on the RNN-based model that was used 
(DrugEx) have also shown that fine-tuning and reinforce-
ment learning slightly increase validity [33]. The valid-
ity of the GAN that was used is consistent with the one 
reported in the MOSES benchmark [47]. However, it 
should be noted that the validity of ORGANIC has been 
found to be highly variable depending on the training set 

score =
1

k

k∑

i

exp(−DKL,i) [34]. The lower validity of VAE outputs is consistent with 
other studies and is likely caused by regions in the latent 
space that are far removed from the training data [10, 14, 
51].

To better understand the invalid SMILES the pars-
ing errors captured by the RDKit were classified into 
six different error types (Fig. 1). It should be noted that 
in the case of sequences with multiple types of errors 
only the first error is reported and the chemical validity 
of sequences with grammar errors cannot be assessed. 
Interestingly, while the RNN-based models and GAN 
mainly produced chemistry-related errors, the VAE out-
puts contain more SMILES grammar errors. Qualitative 
analysis of invalid SMILES produced by a similar VAE 
has previously shown that this type of generator often 
has problems matching pairs of parenthesis and ring 
symbols [52]. Regarding the chemistry-related errors, 
aromaticity mistakes were the most prevalent for the 
RNN-based generators whereas valence errors were most 
prevalent for the GAN models. This lower prevalence of 
other errors suggests that RNN and GAN models are bet-
ter able to learn the SMILES grammar. De novo genera-
tors that evade the problem of SMILES validity by using 
SELFIES or graph representations have also been devel-
oped, but are currently less widely used than SMILES-
based generators [12, 14, 53, 54]. Overall, these results 
demonstrate that the prevalence and nature of invalid 
outputs of different SMILES-based generative models 
vary and that a variety of different errors have to be recti-
fied in order to correct them.

Performance of the SMILES corrector
The SMILES corrector was trained on the task of fixing 
invalid SMILES. It was evaluated on an evaluation test set 

Fig. 1 Distribution of the types of errors that occur in the invalid 
sequences generated by the de novo generators. Duplicate 
sequences were deleted and the remaining erroneous sequences 
were categorized based on the error messages from RDKit
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containing both synthetic errors with their correspond-
ing valid SMILES, and invalid outputs generated by the 
de novo generators (Fig.  2A). Evaluation using the syn-
thetic test set showed that 93% of these invalid SMILES 
could be fixed. The molecule reconstruction rate of the 
translator was 78%. This rate is in line with the findings of 
Bjerrum et al. which showed that the reconstruction rate 
is lower for translation between differently represented 
molecules. This indicates that fixed molecules do not 
necessarily represent the original molecule but that in 
most cases the intended molecule will be generated [24].

To test for overcorrection, valid SMILES were used to 
evaluate the corrector. This showed that the percentage 
of valid sequences that were altered during translation 
was low (14%), indicating that mainly erroneous parts of 
SMILES were being changed. Interestingly, this percent-
age is very similar to transformer overcorrection when 
applied to spelling correction [55]. Based on this it can 
be concluded that the corrector can distinguish between 
correct and incorrect sequences.

The SMILES corrector had a lower performance when 
applied to invalid SMILES from the generative models 
exemplified by the percentage of valid outputs ranging 
from 35 to 80%, with the errors from the GAN being the 
easiest to correct (Fig. 2B). This validity rate range is sim-
ilar to the results reported by Zheng et al., in the related 
task of correcting invalid SMILES grammar in reactants 
[21]. Previous research in GEC has highlighted that per-
formance is associated with the model’s error detection 
and error correction ability [56]. They concluded that 

their transformer model was able to generalize error 
detection to a real-world evaluation whereas correction 
is more difficult. In our case, the drop in performance 
could be partly explained by insufficient error detection 
illustrated by the lower percentage of inputs that had 
been altered by the translator. Interestingly, for the VAE 
the percentage of altered inputs was 90% but the valida-
tion rate was still low, indicating that finding the right 
correction is challenging for the model. In general, the 
relatively high percentage of unaltered sequences and the 
low validity rate indicate that more representative train-
ing pairs are necessary for training the SMILES corrector.

Training with multiple errors per input improves 
performance
To assess the effect of training transformer models to 
correct sequences with multiple errors, different mod-
els were evaluated using invalid outputs from the four 
de novo generators (Fig.  3). For the baseline corrector 
model multiple types of errors remained in the output 
sequences. Increasing the number of errors the SMILES 
corrector was trained on, mainly decreased the number 
of remaining aromaticity errors and unclosed rings. For 
the VAE outputs, there was also a decrease in parentheses 
errors. However, there was a slight increase in the num-
ber of remaining syntax errors compared to the baseline 
corrector model when the number of mistakes increased 
beyond two per input, irrespective of the generator type.

Overall, the validity increased when models were 
trained with inputs containing more errors, but training 

Fig. 2 Performance of the SMILES corrector on different sets colored by the metrics used. The performance is given as the percentage of inputs 
that are different from their respective outputs (blue), valid outputs (orange), and outputs that are identical to their target molecules (green). The 
corrector was evaluated on valid and invalid SMILES from the evaluation set (A) and invalid SMILES from the four case studies (B)
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with more than 12 errors per input did not increase the 
validity much further, with on average 80% validity for 20 
errors per input compared to 78% for 12 errors per input. 
The reconstruction rate of the latter model is 70.5% on 
the validation set with 1 error per input. This model 
achieved a validity of 62, 68, 80, and 95% when used on 
outputs from the RNN, targeted RNN, VAE, and GAN 
generators, respectively. In addition to this, more than 
86% of input sequences were altered for all case studies. 
These findings suggest some generators produce more 
invalid SMILES that are difficult to correct. This means 
that developing generator-specific correction models, 
based on invalid generator outputs, could be an inter-
esting topic for future research. The beneficial effect of 
training with multiple errors is consistent with earlier 
studies on error correction which found that a model 
implements more corrections when it has been trained to 
distrust the inputs more [57]. An additional explanation 
for this might be that a subsection of the sequences from 
the case studies contained interacting errors that were 
difficult to correct for the baseline model, as has also 
been found for GEC previously [58, 59].

Effect of fixing SMILES
To establish whether SMILES correction could yield 
novel, complementary molecules, the fixed molecules 
were analyzed and compared to readily generated 

molecules from the three general generative models and 
to the training set (Table. 1). 97% of the molecules gener-
ated by the SMILES corrector were unique. Interestingly, 
more than 97% of the molecules were novel compared 
to the readily generated molecules and the average SNN 
between the two sets was relatively low (0.45). This indi-
cates that SMILES correction was able to generate com-
pounds that were novel and dissimilar compared to the 
ones that had already been generated. 

The readily generated and fixed molecules did not dif-
fer in terms of their novelty and similarity compared to 
the training set. Additionally, both the fixed molecules 
and readily generated ones approximated the training set 
to a similar extent regarding their property distributions. 
These findings suggest that SMILES correction generates 
molecules that are as useful as the molecules created by 
the generator that the errors originated from.

Local sequence exploration
As it was hypothesized that error correction could 
also be used for the expansion of the nearby chemical 
space, synthetic errors were introduced and fixed for a 
set of compounds that were selective for AURKB over 
AURKA. 97% of output sequences resulting from this 
local sequence exploration were valid, but they did have a 
low uniqueness (39%) and novelty (between 16 and 37%) 
compared to e.g. fragment-based analog generators [60, 

Fig. 3 Errors in the outputs of SMILES corrector models trained with multiple errors per input sequence. SMILES corrector models were trained with 
a different number of errors per input sequence and evaluated on invalid SMILES from the four case studies. Results are given as the percentage of 
a specific error in the SMILES corrector outputs
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61]. This was because in most cases the original molecule 
was regenerated. In a recent study, Creanza et al. created 
a SMILES-based analog generator that works by sam-
pling SMILES with substitutions [62]. When using five 
substitutions, this approach has a lower validity (11%) 
but higher uniqueness (60%) compared to SMILES cor-
rection for exploration. On average the novelty when one 
altered version of an input sequence was corrected was 
around 37% (Fig. 4). When more than 400 different ran-
dom erroneous versions were created based on the same 
sequence the novelty decreased to around 16%. These 
results, therefore, show that this method of sequence 
exploration can be used to generate novel compounds, 
which will be explored further in the next section.

Applicability on Aurora kinases
To compare SMILES-based exploration to an established 
method for target-directed de novo generation, its appli-
cability for creating new selective AURKB ligands was 
tested (Table  2). Compared to the target-directed RNN 
the molecules resulting from SMILES-based exploration 
had a higher average SNN to the original compounds. 

This similarity is comparable to the similarity of the 
SMILES-based analog generator created by Creanza et al. 
[62]. The distribution of scaffolds generated by SMILES-
based exploration was also more similar to the known 
ligands. The same trend was reflected by the KL diver-
gence score, indicating that SMILES exploration more 
closely followed the property distributions of the target 
data set. A few of the novel compounds generated based 
on an original molecule are illustrated in Fig. 5A. These 
findings suggest that SMILES exploration can contrib-
ute to de novo generation efforts in which the goal is to 
design compounds that are more similar to existing ones.

The potential of exploration of the nearby space was 
also evaluated in terms of the predicted bioactivity and 
selectivity of the novel compounds generated this way 
(Fig.  5A–D). Novel compound 2 has similar predicted 
bioactivities compared to starting compound 1 (Fig. 5A). 
Interestingly, novel compound 3 has a lower predicted 
affinity for AURKB but a slightly higher predicted selec-
tivity. Docking of both compounds in AURKB (Protein 
Data Bank identifier: 4AF3) shows that they occupy the 
same region as the co-crystalized ligand (VX-680) with 
additional stabilizing interactions (Fig.  5B, C). SMILES 

Table 1 Comparison of fixed, generated, and training set molecules

The mean ± standard deviation for the 3 general generative model case studies is given. Uniqueness is the fraction of unique molecules in a sample of 10,000 valid 
molecules. Novelty is the fraction of 10,000 molecules that are not present in a sample of 100,000 from the reference set. For the similarity metrics, 10,000 molecules 
were compared to 100,000 molecules from the reference set. SNN is the similarity to the nearest neighbor. Fragment and scaffold similarity are calculated by 
comparing the frequency distribution of different fragments or scaffolds compared to the reference set. KL divergence describes the similarity of the physicochemical 
property distributions of 10,000 molecules compared to the reference set
a Uniqueness is calculated for the fixed and generated set

Case – reference Uniquenessa Novelty Similarity KL divergence

SNN Fragment Scaffold

Fixed—generated 0.97 ± 0.05 0.97 ± 0.06 0.45 ± 0.09 0.93 ± 0.10 0.49 ± 0.31 0.77 ± 0.15

Fixed—train 1.00 ± 0.00 0.41 ± 0.02 0.92 ± 0.12 0.30 ± 0.06 0.80 ± 0.23

Generated—train 1.00 ± 0.00 1.00 ± 0.00 0.39 ± 0.10 0.88 ± 0.18 0.40 ± 0.17 0.75 ± 0.28

Fig. 4 Novelty of analog exploration using the SMILES corrector for 
different numbers of outputs. Novelty is given as the average novelty 
for fixed inputs based on 370 different selective Aurora kinase B 
ligands

Table 2 Properties of target-directed RNN and SMILES 
exploration outputs

SNN is the similarity to the nearest neighbor of 10,000 molecules from the 
generated sets compared to the set of 1627 known AURKA and AURKB ligands. 
Fragment and scaffold similarity are calculated by comparing the frequency 
distribution of different fragments or scaffolds compared to the known 
ligands. KL divergence describes the similarity of the physicochemical property 
distributions of 10,000 molecules from the generated sets compared to the 
know ligands

Similarity KL divergence

SNN Fragment Scaffold

RNN target-directed 0.38 0.95 0.07 0.64

Fixed RNN target-directed 0.32 0.97 0.05 0.46

Explore 0.85 0.99 0.63 0.81
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exploration resulted in compounds with similar bioac-
tivities to already known compounds, but with a higher 
density for bioactivities of around 6.0 log units, whilst 
the target-directed RNN was able to produce more com-
pounds with higher predicted activities (Fig.  5D). How-
ever, previous studies on derivatization design have 

suggested that there are also merits to staying closer to 
known actives, as in the case of Makara et  al. this does 
lead to a higher hit rate compared to a target-directed 
VAE [63].

Together, these results demonstrate that SMILES 
exploration is suitable for the generation of novel com-
pounds that are similar to a starting compound, although 
it is less efficient for generating compounds with desir-
able bioactivities compared to reinforcement learning.

Conclusions
This project is the first comprehensive investigation of 
the applicability of deep learning methods to correct 
invalid sequences in de novo drug design. Commonly 
used SMILES-based generators produce some percent-
age of invalid outputs and here it was shown that inva-
lid SMILES are not useless or something to avoid. This 
study has found that a transformer network trained 
on synthetic mistakes can fix more than 60% of invalid 
SMILES originating from different molecular generators 
with different distributions of error types. SMILES cor-
rectors trained on input sequences with multiple errors 
demonstrated a higher performance. This study also 
showed that the pretrained SMILES corrector generates 
novel molecules that follow the same distribution as the 
original generators and/or set of molecules, hence dem-
onstrating that the SMILES corrector can independently 
be used for the exploration of the nearby space of mol-
ecules of interest.

Abbreviations
AURKA  Aurora kinase A
AURKB  Aurora kinase B
BertzCT  Bert’s complexity index
CSP3  Sp3 hybridized carbons
ECFP  Extended-connectivity fingerprints
GAN  Generative adversarial networks
GEC  Grammatical error correction
GENTRL  Generative tensorial reinforcement learning
KL divergence  Kullback − Leibler divergence
KNN  K-nearest neighbors
LogP  Octanol–water partition coefficient
MW  Molecular weight
NB  Naïve Bayesian
NLP  Natural language processing
QSAR  Quantitative structure–activity relationship
ReLU  Rectified linear unit
RF  Random forest
RNN  Recurrent neural network
SELFIES  SELF-referencing embedded strings
SMILES  Simplified molecular-input line-entry system
SNN  Similarity to nearest neighbor
SVM  Support vector machine
TPSA  Topological polar surface area
VAE  Variational autoencoder

Fig. 5 SMILES exploration on Aurora kinases. A an example of novel 
compounds (2 and 3) generated by the SMILES corrector based on 
original compound 1, with their measured/predicted bioactivity 
on Aurora kinase A and B and selectivity of Aurora kinase B over A. 
B compound 2 (blue) docked into Aurora kinase B (PDB 4AF3) with 
co-crystalized ligand VX-680 (grey). C compound 3 (pink) docked 
into Aurora kinase B (PDB 4AF3) with co-crystalized ligand VX-680 
(grey). Hydrogen, halogen and pi-cation bonds are displayed as 
yellow, purple and green dotted lines, respectively. Figures created 
with Pymol v2.5.2. D distribution of predicted bioactivity (left) 
and predicted selectivity (right) of molecules generated by RNN 
target-directed, fixed RNN target-directed, and SMILES exploration 
compared to the predicted values of the existing ligands with 
experimentally determined selectivity
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