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Abstract

The factors determining a drug’s success are manifold, making
de novo drug design an inherently multi-objective optimisation
(MOO) problem. With the advent of machine learning and
optimisation methods, the field of multi-objective compound
design has seen a rapid increase in developments and appli-
cations. Population-based metaheuris-tics and deep rein-
forcement learning are the most commonly used artificial
intelligence methods in the field, but recently conditional
learning methods are gaining popularity. The former ap-
proaches are coupled with a MOO strat-egy which is most
commonly an aggregation function, but Pareto-based strate-
gies are widespread too. Besides these and conditional
learning, various innovative approaches to tackle MOO in drug
design have been proposed. Here we provide a brief overview
of the field and the latest innovations.
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Introduction
Drug discovery is a challenging and expensive process.
On average, taking more than ten years and costing more

than two billion dollars [1]. Computer-aided drug design
can reduce these costs by early discontinuation of failed
compounds and reducing the number of experiments
needed. In de novo drug design (DNDD), the vast space
of drug-like molecules (~ 1063) [2] is explored in the
search for attractive novel drug candidates. Typically the
predicted efficacy, synthesizability, and drug-likeness of
the compounds need to be maximised while off-target
effects and toxicity minimised. In addition, favourable
physicochemical and pharmacokinetic properties need
to be obtained. This makes DNDD inherently a multi-
objective optimisation (MOO) problem.

The field of MOO seeks to develop algorithmic methods
for simultaneously minimising (or maximising) multiple
objectives. Due to conflicting objective functions, in
MOO, there typically exists no single best solution, but
one needs to choose out of the following three ap-
proaches [3].

o A priori: Aggregate the objective functions into a
single objective function employing a predefined
scalarisation function, which is then optimised.

e A posteriori: Determine or approximate the set of non-
dominated solutions (Pareto optimal set). After non-
dominated ranking, the trade-off between solutions
is assessed.

o Progressive or interactive: Alternate between automated
search and preference elicitation phases, in which the
decision maker refines preferences (e.g., weights or
regions of interest) based on inspection of interme-
diate results.

The advent of machine learning-based prediction tools
and optimisation algorithms that could handle com-
plex, non-numerical solution representations (eg,
chemical graphs) enabled the application of MOO in
molecular design. Such algorithms typically belong to
the class of population-based metaheuristics, among
which multi-objective evolutionary algorithms and
(particle) swarm optimisation algorithms are major sub-
classes [4,5]. Starting with an initial set of compounds,
these methods create new molecules by structural
modifications at each iteration and apply selection
operators that favour Pareto optimal solutions and
provide diversity [6,7].
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In the last decade, these methods have been accompa-
nied by generative methods that sample candidate
molecules in promising parts of the chemical space and
construction heuristics that, to generate candidate so-
lutions, start with an empty compound description (but
not necessarily without prior knowledge), and extend it
step-by-step (e.g. by adding groups or atoms, deciding
based on learned probabilities for good ‘moves’). Typi-
cally these generative methods are optimised with
transfer (TL) and reinforcement learning (RL) [8].
Recently multiple models with conditional learning
(CL), where the desired ranges of properties are defined
a priori and passed as additional input to the generator
model, have emerged.

A plethora of published molecular generators with MOO
is available; examples here include recurrent neural
networks (RNNs), generative adversarial networks
(GANSs), graph convolutional policy networks (GCPN)
with MOO in a reinforcement learning framework, but
also conditional variational autoencoders (cVAEs),
RNNs (cRNNs), transformers (cTrans) and genetic al-
gorithms (GAs) among others. For a recent review, see
Liu et al. [9].

These generators are coupled with different formula-
tions of the objective functions. The variety of molecule
scoring approaches is illustrated in Figure 1. Early ap-
plications of MOO often used physicochemical proper-
ties to generate drug-like molecules. Due to the
enormous progress in modern Al methods, there has
been a major increase in the use of ML-based quanti-
tative structure—activity relationship (QSAR) models
for generating target-specific compounds. Evolutionary
and swarm optimisation algorithms use the objective
function(s) as selection operator(s), while in reinforce-
ment and conditional learning they are part of the
reinforcement and conditional learning optimisa-
tion scheme.

In section 2, we briefly introduce classic MOO ap-
proaches, followed by recent applications and de-
velopments in DNDD in section 3, before concluding
with final remarks on the perspectives in the field.

Methods of MOO

A priori approach - aggregation methods

A straightforward and most commonly used method to
deal with the complexities of MOO is to convert the
MOO to single-objective optimisation. A scalarisation
function is employed to aggregate all the objectives into
a single scalar objective function called the multi-
objective desirability function. Frequently used scalar-
isation functions include the weighted arithmetic and
geometric means or the Chebychev scalarisation. If the
sum of the weight equals 1, weighted arithmetic and
geometric means are reduced to the weighted sum (WS)
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Molecule scoring approaches used in objective functions: A human expert
performing the selection [10] (blue), quick to calculate physico-chemical
properties of drug-like molecules (green), structure-based molecule
scoring (yellow), machine learning-based QSAR predictions (orange), or
so-called closed-loop drug discovery where iteratively molecules are
generated, synthesised, tested and experimental information is fed back
to the model (purple) [11]. The thin arrows indicate the flow of information
between the different scoring methods.

and product (WP), respectively. In Figure 2a-c., we give
their formulas and illustrate decomposition ranking on a
two-objective example. A common optimisation task is
maximising the similarity to an existing compound and
the QED. Here we illustrate different rankings by
maximising similarity to methotrexate, a chemotherapy
agent and immune-system suppressant.

As illustrated by comparing rankings in Figure 2a-c To
Figure 2d., a multi-objective desirability function is not
guaranteed to find the full optimal Pareto front, since
the form of the function can strongly affect the ranking
of the molecules. Typically, scalarization methods only
result in a single best solution. In the case of objective
maximisation, the weighted sum (Figure 2b.) will
reward compounds that perform well on average,
whereas the Chebychev scalarisation, with the origin as a
reference point (Figure 2c¢.), will reward compounds
that perform well on the best performing objective. The
weighted product (Figure 2a.) performs well when the
least performing objective performs well. All individual
objectives need to be normalised to the same range.
Modifier functions are often used to clip all raw single-
objective values between 0 (undesirable) and 1 (desir-
able) before combining.
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lllustration of two-objective ranking of 1000 example molecules based on maximisation of the QED and Tanimoto similarity to methotrexate. Top: Ranking
with aggregation functions: A. weighted geometric mean (WGM), B. weighted arithmetic mean (WAM), and C. weighted Chebychev scalarisation (WCS),
and below their formulas where w;and x; are the weight and value of the ith objective and fa modifier function. In these examples wqep = Wrsim = 0.5 and f
(QED) = QED and f(Tgim) = MinMax (Tgim). Bottom: D. Pareto ranking with Pareto front marked with dark blue hexagons, and example molecules from the

Pareto front.

A posteriori approach - Pareto-based methods

In contrast to aggregation, Pareto-based optimisation
methods do not combine multiple objectives into one
but rather search for the best trade-off between them. In
Pareto ranking (PR), one solution is only considered
better than another when it is better or equal in every
objective and better in at least one objective. This means
there are several equivalent best or so-called ‘non-
dominated’ solutions. The set of optimal solutions in the
objective space forms the Pareto front (Figure 2d).

One of the most widely used Pareto ranking (PR)
methods is the Non-dominated Sorting Genetic Algo-
rithm (NSGA-II) [12]. It is a genetic algorithm where
the new generation is selected from the current popu-
lation by ranking the parent and new generation of so-
lutions through applying non-dominated sorting and
subsequently sorting by crowding distance to increase
the diversity of solutions.

In general, the convergence time of Pareto-frontier
computation is higher than those of scalarization

methods, because in the first case the computational
resources are distributed over the points (compounds)
of an approximation set, whereas in the letter case only a
single point (compound) has to be improved. In case of
many objectives, also the ranking by an aggregation
method is faster and scales slightly better than with a
method using Pareto frontiers, but often in DNDD the
difference in computation time is small compared to the
other steps: the molecules generation and scoring them
on different objectives.! The scalarisation functions are
more stable when moving to a higher number of objec-
tives, as the number of equivalent Pareto solutions in-
creases with the number of dimensions. On the other
hand, the Pareto-based schemes enforce diversity in the
ranking which is not the case for the multi-objective
desirability functions. To circumvent the lack of di-
versity and the risk of being stuck in local optima

! The weighted sum - and the NSGA-II ranking procedure have a worst-case
complexity of O(MN log N) and O(min(MN?, N(log N)YH=Dy (Jensen-Fortin-Buzdalov
algorithm), respectively, with A/ the number of objectives and N the number of
compounds.
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aggregation methods can be coupled with the diversity
filters [13].

Recent developments and applications in
DNDD

In Table 1, we summarise the recent developments and
application of MOO in DNDD with and without RL,
and in the following sub-sections, we present recent
developments and applications of MOO in DNDD by
optimisation strategy.

Population-based metaheuristics

The versatility of nature-inspired algorithms makes
them one of the most widely used methods for molec-
ular generation. With LigBuilder v3, Yuan et al. [14]
present a structure-based DNDD method to design li-
gands to target multiple receptors, binding sites, or
various conformers. They propose GA-based strategies
to build molecules into the multiple binding site
structures and combine the binding free energies in
their desirability function. Other recently used nature-
based MOOQO algorithms with an aggregation function
include works by Bilsland et al. [15] with swarm opti-
misation algorithms applied using a ‘dual’ autoencoder,
encoding and decoding SMILES and molecular finger-
prints simultaneously, and SAGS [16] which uses
simulated annealing with a graph neural network to
optimise molecular graphs.

The use of NSGA-II for DNDD is exemplified in
Ref. [17] with the SELFIES molecular representation.
SELFIES, unlike SMILES, are always syntactically
correct; therefore, mutation operators can be used
without creating non-valid molecules. Verhellen [18]
combined a graph-based representation with NSGA-II
and NSGA-III, which uses so-called reference di-
rections to select diverse compounds instead of the
crowding distance. In Ref. [19], the authors propose a
variation of LigBuilder where they replace the GA-
strategy with their own multi-objective bio-film opti-
misation algorithm, MoBifi; a MOO algorithm that
mimics the behaviour of bacteria in bio-film using
Pareto dominance.

Reinforcement learning

Due to the prominence of RNN-based natural language
processing models in the last decade, a plethora of
SMILES-based RNN models with RL framework are
still being developed and applied [20—29]. The RL
framework has also been used with other generator ar-
chitectures such as GCPNs [30,31], GANs [32,33], and
cTrans [34,35].

A large majority of these methods employ a WS or WP
scalarisation function with weights that are fixed hyper-
parameters [20—24,30,34—36]; the most prominent
being REINVENT 2.0 [20], a production-ready DNDD

package that has become a reference tool in the field
and the base algorithm for subsequent developments
and extensions [21,37,25,38]. In their work, Perron et al.
[24] use a WS composed of 13 objectives, affinities, and
ADME properties in a practical drug discovery project,
claiming added value from a DNDD with a MOO
approach over traditional medicinal chemistry ap-
proaches. Out of the 11 top predicted compounds they
synthesised and tested, 3 fulfilled all 13 objectives. In a
different approach, DrugEx v2 [27] and DeepFMPO
v3D [28] use a parametric-WS. It uses dynamic weights
to reward compounds that score well in objectives where
most molecules are performing badly. At each iteration
these weights are updated.

As for the use of PR methods, DrugEx v2 [27] proposes a
novel variation of NSGA-II to rank the molecules in the
same Pareto front using the Tanimoto distance between
molecules instead of the crowding distance. Abbasi et al.
[33] use Fonseca and Flemming’s Due to the promi-
nence sorting algorithm, where dominated molecules
are scored based on how many predicted molecules
dominate them. Alberga et al. present pair-wise Pareto
optimisation in Ref. [38], a novel PR approach. Instead
of applying PR on all objectives simultaneously, the so-
lutions are ranked using each combination of two ob-
jectives. The authors claim that this method provides an
advantage over traditional PR with an increasing number
of objectives as the number of equivalent solutions will
also increase in this scenario.

Both Goel et al. [26] and Guo et al. [25] propose using a
sequence of single objectives to tackle the MOO prob-
lem. In Guo et al. [25], the objectives are arranged as a
sequence of increasing complexity and the agent is
trained on a single objective until convergence before
moving to the next objective. This is shown to accel-
erate agent convergence on complex MOO when
compared to the baseline RL. Whereas in MoCulLAR
[26], the agent is optimised with alternating rewards
where the objective is changed every # iteration.

RationaleRL [36] is a novel approach using ‘rationales’
which are molecular substructures that are linked to the
desired property in a compound. First, rationales per
objective are extracted from a set of molecules with the
desired property by pruning molecular graphs while
maintaining the desired property by a Monte Carlo Tree
Search algorithm. Then rationals for multiple objectives
are combined and completed using a VAE in a
RL framework.

Conditional learning

In recent years, there has been a strong interest in
conditional learning for molecular generation. These
conditional generators show promising results for MOO
of compounds and are a serious alternative to the

Current Opinion in Structural Biology 2023, 79:102537

www.sciencedirect.com


www.sciencedirect.com/science/journal/0959440X

WI09°1081IPBJUBIOS MMM

/€5201:62 ‘€202 ABojoig |eanjonns ul uoluidQ uesng

Table 1

Recent de novo drug design methods with multi-objective optimization.

Method Ref. Architecture® Representation MOO Strategy® Objectives® Open Source

GNC [45] AE + DNN continuous WS [3] Affinities (BACE1, ALK or CDK4 and No
CDK6) and TS

Bilsland [15] AE + PSO SMILES + WS [6] fragment score, SA, heavy atom count, Yes

fingerprints FSP3, and undesirable functionalities

Kotsias [39] cRNN SMILES CL [7] Affinity (DRD2), logP, TPSA, MW, QED, Yes
HBA and HBD

CMG [42] cTrans SMILES CL [4] Affinity (DRD2), logP, QED and TS Yes

MolGPT [43] cTrans SMILES CL [4] logP, SA, TPSA and QED Yes

He [49] cTrans SMILES CL [3] logP, solubility and clearance Yes

MCMG [35] cTrans + RL SMILES CL + WS [4] Affinities (DRD2 or JNK3 and GSJ30), Yes
QED and SA

GCT [41] cTrans + VAE SMILES CL [3] logP, TPSA and QED Yes

MGCVAE [40] cVAE graph CL [2] logP and molar refractivity Yes

PaccMann®t [34] cVAE + RL SELFIES CL + WS [2] Affinity (41 SARS-CoV-2 targets) and Yes
toxicity

LigBuilder v3 [14] GA 3D WS Ligand affinity and efficiency (HIV protease Yes
and HIV), drug-likeness and MCF

Elend [50] GA SMILES WS [5] DS (SARS-CoV-2 main protease), SA, No
QED, natural product-likeness and toxicity

Cofala [17] GA SELFIES WS/PR [5] DS (SARS-CoV-2 main protease), SA, No
QED, natural product-likeness and toxicity

Verhellen [18] GA graph PR [5] Affinities (nERG, SCN2A, DAPK1, Yes
DRP1, ZIPk, 5-HT2A, 5-HT2B and DR2D)
or sets of 5 GuacaMol tasks

MoBifi [19] GA SELFIES PR [3] TS, oral bioavailability, Veber score No

DLGN [32] GAN + RL SMILES WS [2] Affinities (DRD2 and HTR1A) Yes

Abbasi [33] GAN + RL continuous GAN + PR [2] Affinity (ADORA2A or KOR) and logP, Yes
SA or TPSA

DeepGraphMolGen [30] GCPN + RL graph WS [2] Affinities (Dopamine and norepinephrine Yes
transporters)

MNCE-RL [31] GCPN + RL graph WS/WP [2] TS, logP or QED Yes

SAGS [16] GNN + SA graph/SMILES WGM [2] logP and QED Yes

lovanac [48] gVAE + TL Grammar parse trees CL + Active learning [3] vertical ionization potential, electron Yes

based on SMILES affinity, dipole moment

RationalRL [36] MCTS + VAE + RL graph WS [4] Affinities (JNK3 and GSJ3(), QED and Yes
SA

STONED [46] mutations SELFIES median molecules [3] LUMO, dipole moment, HOMO-LUMO Yes
gap

REACTOR [51] RL SMARTS WCS [4] Affinities (DRD1, DRD2, DRD3), logP, no
MW, and absorption

Megasyn [22] RNN + RL SMILES WS [6] Affinities (HER1, HER2 and HERG), On request
QED, TS and BBB

Bung [23] RNN + RL SMILES WS [4] DS (5-HT1B), MW, BBB and logP On request

Perron [24] RNN + RL SMILES WS [13] 7 Affinities (5-HT2A, 5-HT2B, alphai, No

D1, Nav1.2, hERG, 1 undisclosed), 4 ADME

(continued on next page)
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Table 1. (continued)
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Method Ref. Architecture® Representation MOO Strategy® Objectives® Open Source
assays (microsomal stability on human
(HLM) and rat (RLM) and permeability and
efflux Caco2 assays) and TS and QED
REINVENT 2.0 [20] RNN + RL SMILES WS/WP - Yes
LibINVENT [21] RNN + RL SMILES WS/WP [2] Affinity (DRD2) or ROCS and reaction Yes
filters
Pereira [29] RNN + RL SMILES WS/WCS [2] Affinity (ADORA2A) and BBB Yes
DeepFMPO v3D [28] RNN + RL SMILES + 3D pWwWS [3] MW, logP and TPSA Yes
DrugEx v2 [27] RNN + RL SMILES pWS/PR [3] Affinities (ADORA2A, ADORA2B, Yes
hERG)
Guo [25] RNN + RL SMILES Curriculum learning [3] DS (PDK1), TS, ROCS and QED Yes
Alberga [38] RNN + RL SMILES WS + pair-wise PR [5] Affinities (NA, AChe or SARS-CoV-2 Yes
Mpro) and subsets of MW, logP, HBD, HBA,
aliphatic rings, TS
MoleGuLAR [26] RNN + RL SMILES Alternative [5] DS (TTBK1 or SARS-CoV-2 Myo), Yes
rewards dGhyq, QED, logP and TPSA
Yasonik [47] RNN + TL SMILES PR [5] logP, MW, HBA, HBD, rotable bonds Yes

2 AE - autoencoder, DNN - deep neural network, GA - genetic algorithm, GAN - generative adversarial network, GNN - graph neural network, GCPN - graph convolutional policy network, PSO -
particle swarm optimization, RL - reinforcement learning, TL - transfer learning, (c)RNN - (conditional) recurrent neural network, SA - simulated annealing, (c)Trans - (conditional) transformer, (c)
VAE - (conditional) variational autoencoder.

b CL - conditional learning, GAN - generative adversarial network, PR - Pareto ranking, WCS - weighted Chebychev scalarization, WGM - weighted geometric mean, WP - weighted product, (p)WS
- (parametric) weighted sum.

° BBB - blood—brain barrier, DS - docking score, CNS - central nervous system desirability score, FSP3 - fraction sp3-hybridized carbons, HBA/B—hydrogen bond acceptors/donors, (p)logP -
(penalized) partition coefficient, MCF - medical chemical filter of toxic fragments, MW - molecular weight, QED - quantitative estimation of drug-likeness, SA - synthetic accessibility, TPSA -
topological polar surface area, TS - Tanimoto similarity.
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computationally expensive optimisation loops of RL
with MOO. Kotsias et al. [39] proposed a SMILES-
based cRNN, Lee et al. [40] a molecular graph cVAE,
and a variety of conditional transformer models for
DNDD have been proposed [34,35,41—44]. The cRNN
differs from the other models as the generation is
conditioned with molecular properties only without
molecular encoding during training or generation.

In 2021, two methods combining conditional generators
with the RL framework were proposed. PaccMann®l
[34] uses a ¢'Trans combined with a distillation model to
create the prior for the RL instead of using a transfer
learning step. In MCMG [35], the RL agent is obtained
by first training two VAEs, one for SELFIES and another
one for proteins, and then combining the pretrained
protein-encoder with the pretrained molecule-decoder.

Other methods

Gao etal. [45] propose an original approach, a Generative
Network Complex, where an input molecule is encoded
into latent space and then optimised with a DNN by
minimising the multi-objective loss with gradient
descent. Another quite distinct method is proposed by
Nigam et al. [46]. To find molecules optimised for mul-
tiple properties, a molecule scoring high per objective is
selected and then median molecules that are chemically
close to the target molecules are sought. To find these
median molecules, they generate the local chemical
subspace around molecules using mutations of multiple
SELFIES representing the target molecule.

Yasonik et al. [47] use the evolutionary approach to
optimise a RNN. Generated compounds are ranked with
Fonseca and Flemming’s non-dominated sorting algo-
rithm, and the top compounds are selected and used to
fine-tune the agent through TL. In their work, lovanac
et al. [48] use an active learning process to improve their
grammar VAE coupled with linear property predictors
using the later features. The latent features are condi-
tionally sampled during generation to fulfill given
property ranges and decoded to SMILES. The gener-
ated molecules are then inspected with a quantum
calculation and the model is retrained with prom-
ising compounds.

The main advantage of population-based metaheuristics
is that they do not require a huge initial dataset to create
drug-like molecules in contrast to pre-training genera-
tive models. They are also faster to train than generative
models with reinforcement or transfer learning, but
their efficiency depends strongly on the initial popula-
tion. Furthermore, population-based models only learn
optimal features and information about unwanted fea-
tures is lost at each iteration. The generative models are
able to learn, in addition to the optimal features, un-
wanted ones and avoid creating them. Population-based

Al in multi-objective drug design Luukkonen et al. 7

metaheuristics and reinforcement learning require
looping over computationally expensive scoring, which is
not the case for conditional learning,.

Concluding remarks

In the past few years, a tremendous number of studies
have been published on the topic of multi-objective
compound optimisation; among these were novel
methods as well as techniques adapted from other dis-
ciplines. The vast majority of new d¢ novo drug design
applications incorporate MOO, and a gradual shift to-
wards an increasing number of objectives is occurring
with the development of new methods. This progression
towards many-objective optimisation (MaOO, more
than three objectives) is very relevant for drug discovery
as not few but many factors determine the eventual
success of a drug. Although currently, MaOO is mostly
applied with weighted sums, an example of an explicit
many-objective algorithm, NSGA-III [18], has recently
been applied to compound optimisation. There is a
multitude of many-objective algorithms applied in other
domains that could be adopted for drug discovery [52].

Even though reinforcement learning dominates the field
of DNDD with MOO, mainly coupled with SMILES-
based RNNSs, some older approaches persist (e.g., GAs,
PSO, and SA), and new designs emanate in model ar-
chitecture as well as in molecular representation. Espe-
cially conditional models have emerged as a powerful tool
for multi-objective compound design and their potential
for MaOO should be further investigated.

The consolidation of the multi-objective compound
optimisation field leads to the increased need for
benchmarking. Many recent papers use Guacamol
benchmarks [53], MOSES [54] or compare their models
to state-of-the-art methods. Reeves etal. [55] also provide
a framework to structurally compare the different ele-
ments of de novo drug design algorithms. However, there
seems to be no real consensus on best practices. Moreover,
we noted that the code and data are often available, but
very few models have been experimentally validated so far.
Of the recent applications discussed in this review, only
one included experimental validation [24] and two
computational validation with molecular dynamics simu-
lations [14,50]. From our perspective, the field would
benefit strongly from standardisation of method bench-
marking and, perhaps most important, although difficult
and time-consuming, experimental validation.

The importance of synthesizability and retrosynthetic
planning in DNDD is often noted and sometimes done in
a post-processing step, e.g., in Refs. [14,34,50,15,16,22],
or rarely included as part of the MOO during training and
generation beyond the very approximate synthetic
accessibility score [51]. We expect recent advances in

www.sciencedirect.com

Current Opinion in Structural Biology 2023, 79:102537


www.sciencedirect.com/science/journal/0959440X

8 Atrtificial Intelligence (Al) Methodology in Structural Biology (2023)

ML-accelerated retrosynthetic design [56] to enable its
use in the MOO process in the future.

Other important developments in the broader field of Al
research are explainable Al [57] and the uncertainty
quantification of predictions which could be used in
bayesian multi-objective optimisation [58,59]. With the
increasing complexity and adoption of ML, there is a
growing need for more interpretable and transparent
models. In the context of chemoinformatics and DNDD,
it is essential that medicinal chemists are able to trust
and understand the model predictions so they will
consider the results in their decision-making process.
Only a few of the articles discussed here paid attention to
the explainability of their models. In Ref. [36], this issue
is addressed by initially identifying sub-structures linked
to desired properties before using reinforcement
learning to combine these into novel compounds. The
importance of uncertainty quantification in decision-
making and predictor quality in the DNDD process has
been noted, but is yet to be addressed by the community
[60]. Especially when exploring new chemical space,
there is a risk of falling outside the domain of applica-
bility of the predictors. Further research in QSAR
modelling with uncertainty estimation and how to
incorporate them in the MOO should be done to improve
multi-objective compound design.
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