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Introduction 

This report aims to provide a primer for CGE practitioners to understand the potential to link micro 

(i.e., Life Cycle Assessment (LCA) and Dynamic Material Flow Analysis (DMFA)) and CGE models to 

model circular economy strategies. The report offers an overview of the state-of-the-art of LCA/DMFA 

and CGE model linkages (including 8 archetypes), key lessons from LCA/DMFA studies to macro-

modelling approaches, and an example of substituting internal combustion engine vehicles with 

electric vehicles, considering the circularity potential of Li-ion batteries to illustrate the application of 

micro- and macro-modelling linkages towards circular economy scenarios.   

Macroeconomic models have emerged as an important tool to understand, manage, and forecast 

economy-wide effects of policy measures and scenarios. Computable General Equilibrium (CGE) models 

are the main tool used towards this end. CGE are commonly based on an economic social accounting 

matrix (SAM) with an input-output tables (IOTs) core. An example is the GTAP model built around the 

GTAP database, or EXIOMOD built around the EXIOBASE database. A CGE model consists of a set of 

equations describing responsive and dynamic relationships between economic processes (e.g., 

production, consumption, and trade) and production factors (e.g., labour, capital, investment). These 

sets of equations allow for calculation of economy-wide effects arising from, for instance, a significant 

price change of an imported product, a change in taxes, or the levy of a new tax such as a carbon tax.  

Long-run models try to ensure consistency over time – for instance that future capital stock and capital 

productivity depends on current capital investment. Although capable of assessing sector-wide 

outcomes of industrial policy and their associated environmental impacts, current CGEs are poorly 

suited to dynamically assess Circular Economy (CE) interventions.   

Since CGEs are based on SAMs and IOTs, they have two characteristics that make them difficult to use in 

dynamic analyses on CE interventions. First, the sector resolution of SAMs and IOTs is quite limited – at 

best 100 to 150 sectors. CE strategies are however highly product specific – re-use of mobile phones 

requires different technologies and will yield different secondary components or materials such as the 

re-use of washing machines. However, in a SAM or IOT one may find at best one product category, such 

as ‘Electrical and electronic products’, that aggregates all such products together. Second, SAMs and 

IOTs define flows and stocks in monetary units, whereas CE strategies require closing physical material 

loops. Although monetary information can often be considered a good proxy for physical production 

information, SAMs and IOTs are insufficiently detailed for processing of end-of-life product components 

or waste products.  
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These two reasons – the need for a higher granularity and the need for understanding physical flows – 

have led CE analysts to use Dynamic Material Flow Analysis (DMFA) to create consistent stock-flow 

information of specific products-in-use, production input, and end-of-life output per year over time, 

combined with (futurized or ex-ante) Life Cycle Assessment (LCA) that gives information on emissions 

and other environmental pressures of production and end-of-life management per year over time (see, 

for example, Li et al., 2022; Carlos Pablo Sigüenza et al., 2021; Zhong et al., 2021).  

While DMFA coupled with LCI data resolves the issues of granularity and the need for insight into 

physical material flows, it ignores the economy-wide effects of CE measures, such as economic 

consistency and behavioral responses that CGE models offer. In a CE modelling, new secondary 

products, components, and resources are made available for the market, but the databases underlying 

CGE models in most cases do not have information on their prices, potential available ‘production’ 

volumes, and substitution elasticities in relation to traditional production inputs. Moreover, there is the 

need to explore the connection between LCA/DMFA and CGE models in way that the detailed 

information from micro-modelling approaches can provide the kind of information that normally is used 

in CGE models (i.e., price elasticities, substitution curves, etc.). 

In this report, we aim to provide a quick start guide for CGE practitioners focusing on the linkages 

between micro- and macro- modelling approaches and illustrate the potential application of Life Cycle 

Assessment (LCA) and Dynamic Material Flow Analysis (DMFA) to CGE models for modelling CE 

strategies. The report is structured in four chapters as follows: 

• Chapter 1 focuses on the state-of-the-art of LCA/DMFA and CGE model linkages from a 

conceptual viewpoint. 

• Chapter 2 explores LCAs and DMFAs that analyze transport as a case study (owing to its key role 

in decarbonization, material resource reduction, and a transition to a circular economy), and 

identifies the key insights from micro models that can be useful for CGE modelling. 

• Chapter 3 proposes 8 linkages archetypes based on the existing literature that enable us to 

describe LCA/DMFA and CGE linkages in a systematic way. 

• Chapter 4 shows an example of replacing internal combustion engine vehicles (ICEVs) with EVs 

to illustrate the application of LCA/DMFA and CGE linkages for modelling circular economy 

strategies in transport systems.   
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Chapter 1: Linking LCA/(D)MFA and CGE models 

Several studies have developed linkages between LCA/(D)MFA and CGE models. In general, researchers 

refer to two types of links (or coupling) between the models: low-level, and high-level linkages.  

Low-level (or 'soft’) linkages are those where micro and macro models are run separately, and outputs 

from one model are used as data inputs in other models18. In most cases, CGE models are used to 

estimate economic outputs and are used as inputs for LCA-based models to calculate environmental 

impacts (Guo et al., 2022; Igos et al., 2015; Machado et al., 2020; Wang et al., 2018). For example, Lee 

(2018) investigated the development of CO2 emissions in the Japanese hydrogen production by 

combining the economic outcomes of a dynamic GTAP model with the emissions coefficients (e.g., CO2 

equivalent per unit dollars of production value) from an LCA model. This is also the case when coupling 

LCA/(D)MFA with MRIO. Another such example is presented by Pauliuk et al. (2017) where technical 

coefficients from MRIOTs are used as inputs for a DMFA that enables to trace the material use per 

sector through time.  

There are a few studies where soft linkages are established by using outputs from LCA/(D)MFA as inputs 

to CGE models. For example, Cao and colleagues (2019) studied the development of the Chinese 

building sector by connecting the outcomes of a DMFA into a recursive dynamic CGE model. A soft 

linkage between the models was made thought 6 steps (see textbox A). Similarly, Soderman et al. (2016) 

connects a dynamic CGE and an LCA-based model with multiple iterations to integrate the outcomes of 

the LCA model to the CGE, and vice versa.   

Textbox A. Example soft DMFA + CGE linkages using the 6 steps procedure from Cao et al.(2019) 

• Step 1: Run DMFA to estimate the newly built floor area.  

• Step 2: Estimate value added of construction sector based on newly built floor area. 

• Step 3: Iteratively run CGE by changing parameters of investment demand for the 

construction sector until value added is equates to DMFA results. 

• Step 4: Balance the change in investment demand for the construction sector and the 

demands of investment and consumers under the constraint of market balance. 

• Step 5: Re-run CGE model with the different sectoral outputs and changes in the distribution 

of capital and labor onto sectors under the constraint of given capital and labor supply. 

• Step 6: Chosen production functions capture the substitution of capital, labor, and energies in 

different sectors. 
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High-level (or 'hard') linkages are used when LCA/(D)MFA and CGE models are run together so that the 

behavioral changes from a CGE model are environmentally driven. For instance, hard linkages allow us 

to include environmental impacts as part of the production function or consider environmental assets as 

part of economic sectors in a CGE model (Beaussier et al., 2019). Gacia et at.(2018) developed an 

integrated CGE and LCA model that includes a set of equations that constrain the model to minimize 

environmental impact and production costs simultaneously. According to Beaussier et al.(2019), this 

type of linkage is useful when:  

a) environmental impacts have endogenous effects on the stock of capital and/or the production 

factors; 

b) economic agents incorporate environmental policies in their decision process; and  

c) comparing the environmental impacts of multiple environmental policy instruments. 

It is important to notice that in both (soft and hard) linkages the CGE model often drives the coupling of 

models (Beaussier et al., 2019). This is because CGE models provide constraints in terms of the level of 

sectoral, spatial, and temporal resolution. Furthermore, as micro and CGE models present different 

resolutions, a harmonization/matching between economic sectors and product categories is made 

before coupling CGE and LCA/DMFA models (see for example, Peng et al.(2019); and Steubing et 

al.(2022)). 

Developing models that link LCA/DMFA and CGE models depends on multiple aspects such as modelling 

skills, computational power, and data availability. The latter is particularly important to understand to 

what extent micro and macro models can be integrated. In Chapter 2, we synthesize the key lessons 

from LCA and (D)MFA studies on transport systems as case study, emphasizing what kind of insights can 

be learned from micro models that can be useful to create the linkages with CGE models. 
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Chapter 2: Lessons from linking LCA and (D)MFA to CGE modelling 

Textbox B. Three key lessons from micro-modelling to CGE modelling 

LCA and (D)MFA provide relevant information about the environmental impacts of products’ 

production methods and use, as well as material flows and stocks. Beyond the outcomes of those 

methods, we identify three key lessons that can be useful for macro-modelling practitioners:  

1. Supply and demand granularity: Both methods offer the capability to study determinants of 

material flows and stocks, from supply and demand perspectives, and how these vary 

spatially, sectorally, and temporally. For example, technology changes, production, and use 

costs, and future material demand. Table 1 shows the coverage of these factors in each 

method, qualitatively.  

2. Data compilation and standardization: LCA and MFA lend themself to the compilation of 

new, detailed datasets, known as Life Cycle Inventories and Material Flow Accounts, LCI, and 

MFA datasets where multiple parameters of resource use are recorded, as shown in table 2 

and 3. 

3. Uncertainty validation: LCA and (D)MFA data usually have a high level of uncertainty 

(especially for scenario analyses). Nevertheless, LCA and MFA researchers have managed to 

quantify the scale and nature of uncertainties from model and data by using statistical 

analyses that enable the identification of key parameters contributing to their uncertainty 

(e.g., sensitivity analysis), and providing probabilistic functions on model outcomes (e.g., by 

developing Monte-Carlo analysis). Notwithstanding their use by macro-modelling 

practitioners as well, probabilistic methods are critical in the linkage of macro- and micro-

modelling approaches where multiple macro-economic scenarios can relate to micro-

modelling data considering their probabilistic function due to additional variables and sources 

of uncertainties. 

Life Cycle Assessment (LCA) is a method for assessing the environmental impacts of a product’s life 

cycle (including extraction, production, transformation, use, and end-of-life). The LCA approach usually 

consists of 3 phases: 1) scope and definition, 2) inventory assessment, 3) impact assessment, and 4) 

interpretation. The advantage of LCAs is that it allows comparison of two or more products and 

determines which product is preferable from an environmental viewpoint. A few LCAs also consider the 

production and use costs, which provides insights into economic aspects of a product’s life cycle and its 

feasibility from a market and consumer perspective. 
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From a supply and demand side, LCA provides insights on: 

• Technology options: For example, LCA is used to assess the environmental impacts of internal 

combustion vehicles (fueled by diesel and petrol), plug-in hybrid vehicles, and electric vehicles 

(Cusenza et al., 2019; Nordelöf et al., 2014; Shafique et al., 2022; Yang et al., 2021). Some LCA 

studies that looked at technological changes consider the changes in the energy mix in different 

years (Shafique et al., 2022). Furthermore, comparisons between Li-ion battery technologies for 

e-mobility have been made extensively. A review paper showed over 79 available papers that 

study Li-ion batteries, mostly focusing on the production phase of the life cycle (Peters et al., 

2017). Regarding LCI, the study showed that there is a limited amount of LCIs, and researchers 

usually (re-) used existing LCIs (for more details about the LCIs for Li batteries, check out Fig 2 in 

Peter et al.(2017)). 

• Production and use cost: Regarding production and use cost, Khan and Onat (2022) found 41 

articles related to comparing different types of fuels or vehicles, where most of the studies 

focused on electrification of public transport. In general, life cycle costing (LCC) considers the 

impacts of new infrastructure (e.g., new charging stations for e-vehicles), price changes due to 

technological changes, and the cost of maintenance.  

• Circular strategies/activities: There is a growing body of literature that focuses on circular 

strategies, especially by considering different end-of-life strategies (e.g., with multiple recycling 

options) (Cusenza et al., 2019). Furthermore, other circular practices (such as impacts of sharing 

economy) have been evaluated from a LCA perspective, for example, Hollingworth et al. (2019) 

assessed the environmental impacts of e-scooters in a sharing economy scheme, having insights 

on the impacts of manufacturing, charging scooters, and transporting e-scooters to overnight 

stations. 

• Diffusion rates: Some LCA-based studies have employed technological diffusion rates to assess 

the temporal dynamics in environmental intensities of production based on adoption phases 

(i.e., replacing old technology and adopting the new technology). This type of model can be 

done by combining diffusion of innovations models with stock-flows dynamics linked to LCA 

(C.P. Sigüenza et al., 2020). 
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Table 1. Summary of insights from LCA and (D)MFA 

 Insights LCA* (D)MFA* 

Supply side 

Technology changes •••  

Production cost •  

Circular strategies ••  

Material use  ••• 

Supply risk  • 

Demand side 

Material/energy use ••• •• 

Future material demand  ••• 

Use cost •  

Circular strategies • ••• 

Product/material lifetimes •• ••• 

Diffusion rates • • 

• * Colors and ellipses indicate the degree of application of respective methods and the key 

insights, as follows:   

• •• ••• 

Low Medium High 

 

Material Flow Analysis (MFA) is a method that allows the quantification of flows and stocks of materials 

throughout multiple systems (e.g., within and between industries, and across multiple economic 

sectors). In contrast with LCA (which is implemented at the product level), MFA is used to assess 

industrial activities as well on a sectoral or economy-wide scale, considering national and global scales 

from bottom-up data. MFA method can be implemented in a static (i.e., as a screenshot in a specific 

period), or dynamic (i.e., quantifying flows and stock through time). In both cases, MFA approaches use 

mass balance principles to measure and attribute specific material flows/stocks.  

From supply and demand side, (D)MFA can provide insights: 

• Future material demand: Several DMFAs have developed scenarios for future material demand, 

considering multiple materials (e.g., lithium, cobalt, steel), and strategies (e.g., renewable 

energy mix, e-mobility, and other sustainability scenarios) (Carmona et al., 2021; Fischer-

Kowalski et al., 2006; Kamran et al., 2021; Tang et al., 2021). For example, Nurdiawati et al. 

(2022) developed stock-driven MFA to estimate the future volume of EV battery waste to be 

potentially generated in Sweden. These types of studies offer insights into future material 

demand that can inform how the production of goods will develop in the future. The time 

horizon varies between studies; however, it is usually mentioned scenarios towards 2030 and 

2050.  
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• Material use: DMFA researchers also assess the total material requirements for energy 

transition, and transport systems. For instance, Watari et al. (2019) applied a DMF to the 

International Energy Agency’s scenarios up to 2050, targeting 15 electricity generation and 5 

transport technologies. Recent interest in time-based evaluation of consumer carbon footprints 

has also become an emergent metric to better understand demand-side climate mitigation 

measures (Smetschka et al., 2019).  

• Product/material lifetime: Stock-driven DMFA uses lifetime distributions for 

materials/products, offering information about their lifespans and how different scenarios 

would influence material inflows-to- and outflows-from- stocks. 

• Circular strategies/activities: DMFA is used to determine the dynamic of material stocks 

through time and allows for measurement of how much and when materials from durable goods 

are disposed of as waste(C.P. Sigüenza et al., 2020; Tang et al., 2021). This is particularly 

important when considering circular strategies as it provides information about future material 

availability from secondary/recovery sources. 

• Supply chain resilience: Some MFA studies have been focused on assessing the flows and stocks 

of critical raw materials and evaluating multiple scenarios to improve supply chain resilience. For 

example, Bobba et al. (2020) developed a DMFA model to explore the future lithium demand 

based on 3 scenarios: extension of Lithium batteries through second use, recycling 

improvements on Li batteries from vehicles, and renewable energy for Li battery manufacturing. 

Considering the lessons from Chapters 1 and 2, we can now think of multiple ways to create linkages 

between micro and macro models. Each modelling development depends on the type of questions 

addressed by the modelers, and, thus, the need (or usefulness) of developing linkages between the 

models. Although modelling linkages are case dependent, we can use the lessons from Chapter 1 and 2 

to create a framework that allows to quickly identify linkages archetypes based on common practices in 

the literature. In Chapter 3, we propose a list of linkages archetypes that allow us to investigate the 

micro and macro linkages in a systematic way.    
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Chapter 3: Linkages archetypes 

Overall, we found several examples that offer the common practices of researchers for linking micro- 

and macro-modelling approaches. Here we propose 8 archetypes that synthesize the most common 

linkages between micro and macro models: four archetypes for LCA + CGE models and four archetypes 

(D)MFA + CGE models (see Figure 1). In general, each archetype is classified in terms of:  

• Low-level (soft), and high-level (hard): as mentioned above, the main difference between soft 

and hard linkages is that soft linkages are made by running each modelling approach individually 

and using data outputs of a model as an input for the other model, whereas hard linkages 

usually imply that models are integrated, and micro and macro models are co-dependent and 

run simultaneously. Low-level (or soft) linkages occur when data of one model is used and input 

for the other. For example, when a modeler uses the evolution of GDP from a CGE model as one 

of the parameters to estimate the evolution of GHG emissions of a product using a LCA model. 

High-level (or hard) linkages are more complex for modelers as it requires changing the 

structure of a model to merge both micro and macro models. For instance, the hard-linkage 

archetypes from LCA/DMFA to CGE models couple a micro-modelling component (e.g., impact 

assessment for LCA, or material flow/stocks for DMFA) with the endogenous variables of the 

CGE model (e.g., factor demand and factor supply, otherwise defined economically), which 

means that an equation (or a condition within the production function) should include the 

micro-modelling components (see example in Chapter 4).  

• Foreground, and background systems: this classification enables us to distinguish which 

approach is taken as the core model. For example, if an LCA-CGE linkage is developed with an 

LCA as a foreground system (i.e., CGE as a background), this means that the LCA is the core 

modelling approach, and CGE data/insights are selected and adapted to provide information for 

the LCA core model. The foreground /background classification is particularly important to 

identify soft linkages because defining a foreground (or background) system would indicate 

which model is used as a data input for the other model. Although foreground/background 

classification can be found within hard linkages, it is difficult to identify a 

foreground/background system in a hard-linked model because both micro, and macro models 

should be already integrated, ideally providing feedback links between both modelling 

approaches. 
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As in any other modelling development, the level of linkage depends on the research/policy questions 

that modelers aim to address with their models. In this report, we use an example of circular economy 

strategies in transport systems to describe how practitioners can use the linkages archetypes depending 

on their own research interest. Combining the lessons from Chapters 1-3, the following section 

illustrates an example of modelling CE strategies for transport systems using the proposed linkages 

archetypes. 

Figure 1. Linkages archetypes for LCA + CGE, and (D)MFA + CGE model 
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Chapter 4: Applying linkages archetypes - The case of replacing ICEVs 

with EVs   
This chapter shows an example of micro and macro modelling linkages within the context of circular 

economy strategies. We use the case of replacing internal combustion engine vehicles (ICEVs) with 

electric vehicles (EVs), considering the circularity potential of Li-ion batteries and the diffusion of such 

technologies. 

• Background: The EVs market is growing rapidly in response to the need to reduce GHG 

emissions, improv air quality, and satisfy consumers’ needs for sustainable transport options 

(Harper et al., 2019). At the same time, EV demand leads to increasing Li-ion batteries, creating 

growing demand for raw materials (e.g., lithium, cobalt, etc.) required in the production of EVs, 

and a challenge of dealing with end-of-life EVs and waste in a sustainable way (Baars et al., 

2021). As such, CE strategies play an important role in a transition of sustainable transport 

systems by replacing ICEVs with EVs. 

• Defining policy/research questions: As mentioned in Chapter 2 – 3, the selection of a linkage 

modelling approach depends on the policy/research question that modelers need to address. In 

this case, we provide two questions and associated linkages archetypes from Chapter 3: 

A. What are the changes in GHG emissions due to the replacement of ICEVs with EVs in a given 

country considering the circularity potential of Li-ion batteries?  

B. What are the changes in GHG emissions due to the replacement of ICEVs with EVs if a 

government establishes environmental policies based on the GHG lifetime emissions of 

ICEVs and EVs? 

• Model setting/assumptions: We assume the presence of a CGE model that contains a sector 

called ‘motor vehicle and transport equipment’. As in conventional CGE model, our model 

contains a set of exogenous and endogenous variables. Exogenous variables include fixed 

factors of supply, endowment, and demand that can be shocked through three parameters: 

tax/tariff rates, supply/demand elasticities, and shift/share parameters (Burfisher, 2020). 

Endogenous variables involve consumption and production values, as the solutions of the price 

equilibrium equations (Burfisher, 2020).  

Both questions require calculation of changes in GHG emissions at a national level. For this reason, a 

CGE model serves as the foreground system. For Question A, the circularity potential of Li-ion batteries 

requires modelling of the dynamics of Li-ion battery stocks and flows, thus, it is most suitable for a 
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linkage with DMFA. For Question B, life cycle emissions of ICEVs and EVs are required, lending itself to 

coupling with an LCA model. 

The subsequent sections illustrate how the modelling linkages would be achieved in each case, based on 

the insights of Chapters 1 -3.        

A. Replacing ICEVs with EVs considering the circularity potential of Li-ion batteries 

Lithium (Li) is the most common raw material used in the manufacture of batteries for electric vehicles 

and faces increasing demand against the backdrop of a wide-scale shift away from internal combustion 

engines (Ambrose & Kendall, 2019). However, the extraction and use of lithium poses significant adverse 

environmental and social impacts in mining sites, such as water over-exploitation and pollution, 

biodiversity loss, poor working conditions, and land grabbing from local communities (Agusdinata et al., 

2018; Petavratzi et al., 2022). The share of primary (i.e., virgin) and secondary lithium in Li-ion batteries 

will determine the scale of these impacts and the sustainability of electric vehicle use over the coming 

decades. The need for secondary lithium use has also become increasingly urgent due to the prospect of 

global lithium demand outstripping supply over the coming decades (Greim et al., 2022); between 2018 

and 2019 lithium consumption increased by 18% (Bae & Kim, 2021). The Critical Raw Materials Act of the 

European Commission exemplifies global concern about the long-term security and sustainability of 

lithium supply to satisfy growing appetite for renewable energy infrastructure (EC, 2022). 

The use of primary (i.e., virgin) or secondary lithium in the production of Li-ion batteries will be 

determined by their respective prices and availability, factors influenced inter alia by production 

technologies, procurement policy, and the scale of lithium mining operations. Intermediate Input 

Substitution Elasticity (𝜎𝐼𝑁𝑇) is a CGE parameter which quantitatively denotes the extent of 

substitutability between two inputs within a given production process for the same good or service. 

Within the context of Scenario A, MFA accounts offer data on the relative volume (i.e. tonnes) of both 

primary and secondary lithium. In combination with price per quantity data (e.g., from COMTRADE or 

BACI databases), MFA can be used to calculate the potential substitution of primary and secondary 

inputs within a conventional CGE production function, as follows: 

 𝜎𝐼𝑁𝑇 =
%∆ 

𝑄𝑡𝑦_𝐿𝑖_𝑟𝑒𝑐𝑦𝑐𝑙𝑒𝑑

𝑄𝑡𝑦_𝐿𝑖_𝑝𝑟𝑖𝑚𝑎𝑟𝑦

%∆ 
𝑃𝑟𝑖𝑐𝑒_𝐿𝑖_𝑟𝑒𝑐𝑦𝑐𝑙𝑒𝑑

𝑃𝑟𝑖𝑐𝑒_𝐿𝑖_𝑝𝑟𝑖𝑚𝑎𝑟𝑦

 ,        equation 1 

where 𝜎𝐼𝑁𝑇 denotes the scale (low to high) of factor substitution between primary and secondary 

lithium in the production of batteries for EVs. Within this equation, substitutability reflects the extent of 
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change in demand for primary and secondary materials arising from a change in their relative prices, a 

shift from one to the other. Increasing availability of secondary lithium will make lower its cost, which 

causes a decrease in its relative price compared to primary lithium. This leads to the replacement of 

primary lithium with secondary lithium for batteries, given the 𝜎𝐼𝑁𝑇from combining MFA and price data.  

Dynamic MFA (DMFA) offers a unifying methodological framework to assess changes in the availability 

and use of raw materials within production processes at an economy-wide scale (Ziemann et al., 2018), 

quantity components of  𝜎𝐼𝑁𝑇. Due to the use of lithium in other industries (e.g., ceramics, glass, and 

grid storage applications), the macroeconomic perspective of resource stocks offered by DMFA is 

advantageous to LCI/LCA. Enriched by price data on primary and second lithium, from 𝜎𝐼𝑁𝑇 ,DMFA can 

be used to assess the substitution elasticity between these intermediate inputs in electric vehicle 

batteries, as an input into a CGE model.  

Such a soft-coupled model can be used for scenario analysis to assess the environmental burden 

associated with circularity of lithium use in li-ion batteries for electric vehicles, within the context of 

large-scale and long-term economic and material trends. For example, Baars et al. (2021) developed an 

MFA model to assess the global cobalt flows for the future development of EVs. Furthermore, they 

developed circular economy scenarios by considering multiple factors relating to resource availability 

and use, such as batteries replaced before end-of-life vehicle, end-of-life vehicle collection, battery 

collection, recovery rate, and new chemistry adoption. In a similar way, Chen et al. (2021) assessed the 

economic and environmental impacts of adopting EVs in the US context using an upgraded version of a 

Computable General Equilibrium for the US economy. The authors estimated three key parameters for 

each type of passenger vehicle: purchase price, annual fuel equivalent cost, and annual CO2 emissions. 

Purchase price and fuel equivalent cost were determined through a consumer survey, while CO2 

emissions factors were retrieved from the CO2 emissions per year for each scenario, calculated using 

emissions from the US Environmental Protection Agency (EPA)’s annual Inventory of US Greenhouse Gas 

Emissions and Sinks. The latter can be replaced by more granular LCI data for specific countries 

depending on the modeling requirements. For example, LCIs can bring emission factors related to 

different car technologies, and energy mix (which important when considering life cycle emissions of 

EVs). Figure 2 depicts the nature and scope of these soft-coupled models.   
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Figure 2. Example of CGE foreground, soft linkage with DMFA for the case of replacing Li-ion batteries 

from primary (virgin) Li to recycled Li.  

In a soft-linked between CGE and Dynamic MFA, where the former serves as the foreground model, 

consumption and production of electric vehicles would be calculated by economic equilibrium of 

demand and supply factors, endogenous variables. However, the relative share of primary and 

secondary lithium in the production recipe (i.e., direct requirements matrix of an I-O table) would be 

determined by their substitution elasticity, as calculated by the DMFA, and recomputed each time step, 

based on changes in lithium availability, recycling and price. Satellite accounts connected to the CGE 

could be subsequently used to assess the greenhouse gas emissions footprint of electric vehicle use 

where the use and recyclability of secondary lithium varies in time. Relevant scenarios within this 

context, in which dynamic MFA studies and data can be directly utilized, include: changing consumption 

trends for electric vehicles (Baars et al., 2021); and studying of lithium availability based on the 

development time (approximately 16 years) of lithium mines, from discovery to first production (IEA, 

2022b).   

Although out of the scope of this report, other possible linkages between DMFA and CGE could be 

examined and better-suited to other research questions. For example, endogenisation of material stocks 

as production constraints, by combining DMFA with CGE (remaining as a foreground model) production 
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function, could give preferential selection of secondary lithium compared with primary lithium, until 

secondary reserves are depleted. Supposing DMFA functioned as a foreground model, material stocks 

and use could be generated using biophysical constraints (e.g., mass balance, recoverability, and 

resource quality), then soft-linked to a CGE model to equilibrate demand and supply for resources 

within the economy. A hard linkage between DMFA (foreground) and CGE (background) models within 

this context, could involve explicit traceability of waste flows (in intermediate and end-use stages) in a 

CGE model, within a waste input-output framework where the waste sector receives economic and 

physical representation (Nakamura & Kondo, 2018). Studying environmental rebound effects of 

production and consumption decisions also invites further integration of physical and financial models 

(Duarte, et al. 2018).  

B. Replacing ICEVs with EVs considering environmental regulations 

Environmental restrictions on life cycle impacts of ICEV and EV supply, in Scenario B, introduces a non-

price factor production constraint in the output of the automobile industry. The limited granularity of 

product-level information in CGE models prevents scenario modelling of ICEVs and EVs based on their 

respective production requirements and life-cycle impacts. Life-cycle inventories (LCIs) offer such 

information, for example: product-level input and output factors, market penetration rates, and 

purchase prices as the price per ICEV and EV unit (see table 2, Appendix, for further factors). The latter 

can be used to make changes in exogenous variables from the CGE model.  Commodity Output 

Transformation Elasticity (𝜎𝑄) is a CGE parameter which quantitatively captures the flexibility of a single 

industry to produce two different outputs given a set of production endowments and constraints. It is 

important to mention that 𝜎𝑄 is used as one of several variables that can be shocked within the CGE 

model. In practice, it should not matter whether the EVs are made by the same companies/plants; 

rather, it is crucial to consider which other inputs are needed for EV production as well as production 

costs (after price adjustments) and corresponding demand (which might depend on specific policies). 

Within the context of Scenario B, product-level price, and quantity data from LCIs can be used to 

calculate the potential substitution of IC and EV production within the output of the automobile 

industry, as follows:  

𝜎𝑄 =
%∆ 

𝑄𝑡𝑦_𝐸𝑉𝑠

𝑄𝑡𝑦_𝐼𝐶𝐸𝑉𝑠

%∆ 
𝑃𝑟𝑖𝑐𝑒_𝐸𝑉𝑠

𝑃𝑟𝑖𝑐𝑒_𝐼𝐶𝐸𝑉𝑠

 ,    equation 2 

where 𝜎𝑄 denotes the scale (low to high) of substitution between outputs of the automobile industry. 

Within this equation, the automobile industry will become able to better satisfy demand for EVs if their 
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price increases (e.g., due to increased consumer demand or rising fuel costs of ICEVs) or expectantly, if 

their quantity produced increases (e.g., due to new government subsidies and providing affordable 

prices for consumers). Traditionally, elasticity of substitution is measured by econometric techniques, 

such as Kmenta-approximation, Bayesian, and Generalized Maximum Entropy methods. However, those 

approaches are usually difficult to apply in the case EVs because of the lack of data (Guo et al., 2021). To 

resolve this issue, Guo et al. (2021) estimated a substitution elasticity that represents the willingness of 

consumers to replace ICEV for EV in China (in the same way as expressed equation 2). The authors used 

commercial databases to determine the EV price per quantity. 

From a CGE perspective, the propensity of ICEVs replacement with EVs is more likely if the latter attracts 

a lower market price (e.g., due to shifting transport habits or lower affordability of new cars) or its 

supply is limited (e.g., due to government quotas or in response to greater market opportunities for 

EVs). Such equation can be used to assess the rate of substitution between ICEVs and EVs over time in 

production of the automobile industry and represents a soft coupling between CGE (foreground) and 

LCA (background) models.  

Although not traditional factors in the price-based determination of industry output in a CGE model, 

environmental constraints, such as life-cycle greenhouse gas emissions of ICEVs and EVs from LCI can be 

endogenized to a CGE industry production function, as follows:  

min ∑[𝑐𝑓 ∙ 𝑑 ] , min ∑[𝑝𝑐],      equation 3 

where 𝑐𝑓= environmental characterization factors, and d = products inputs/outputs from LCA, and 𝑝𝑐 = 

production cost from equilibrium price functions. Figure 3 shows the integration of hard linkages for 

Scenario B based on the linkages archetypes. 
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Figure 3. Example of CGE foreground, hard linkage with LCA for the case of replacing ICEVs with EVs 

considering the life cycle environmental impacts.  

Within this context, the LCA model becomes hard-linked to the CGE model that provides the quantity 

and price information to determine the ICEVs and EV production factors in the output of automobile 

industry. Such information on the production technology of ICEVs and EVs can be used by CGE modelers 

to fill production data in CGE models and distinguish between ICEV and EV production. Karplus et al. 

(2013) developed a CGE model for analyzing the behaviour of passenger vehicle transport. The authors 

used engineering and fleet data to estimate multiple parameters such as the representation of 

alternative vehicles (e.g., ICEs vs. EVs), in which income and substitution elasticities, and adoption rates 

were embedded in the CGE model. In terms of data source and resolution, the engineering/fleet data is 

equivalent to the LCI data (in terms of sectoral resolution, which implies that hard-linkages between 

CGE-LCA are straightforward to undertake/perform.  

Further endogenization of environmental production constraints or policies could be made via inclusion 

of greenhouse gas emissions as a shadow price in the general equilibrium function, additional to 

traditional production costs (as shown in Fu et al., 2021):  

𝑄∗ = 𝐹(𝑃, 𝑌, 𝐸) = 𝐺(𝑃, 𝑃𝑂, 𝐸) ,      equation 4 

where 𝑄∗ = Equilibrium quantity of EVs and/or ICEVs, Y = income, P = Market price, PO = inputs price, 

and E = Environmental cost. Such a practice is already being adopted within the car industry with 
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manufacturers setting an internal carbon price to inform their production investments (Jessop et al., 

2021). It is important to notice that the internal carbon price should be paid by a specific sector in the 

CGE model (e.g., by government), a common practice in CGE models used for climate policy analysis.  

Final remarks 

To provide robust and actionable insights for decision makers, circular economy modelling must be 

based on an understanding of large-scale and long-term interactions between industries, products, and 

technologies, in both the economic and material world. Linkage of micro and macro modelling 

approaches is critical towards this end. This report examined the scope for and benefits of linking micro 

(i.e., Life Cycle Assessment (LCA) and Dynamic Material Flow Analysis (DMFA)) and CGE models to model 

circular economy strategies. Within this context, micro and macro models offer different vantage points 

on pathways of material extraction, use and circularity.  

Micro models, such as LCA and DMFA, capture fully changes in biophysical stocks and flows across a 

wide range of production and consumption systems. Macro models provide an insight into how 

pressures on these systems evolve over time based on economic drivers (e.g., household consumption, 

labour, investment, and resource prices). Within this report we show how connecting these two 

modelling frameworks and underlying data offers tremendous potential to study circular economy 

priorities and impacts, otherwise hidden by the coarse sectoral resolution of macro models and limited 

economic information in micro models.   

Using the example of transport (in Chapter 4), we illustrate various options for linking these models to 

assess replacement of internal combustion engine vehicles (ICEVs) with electric vehicles (EVs), applied to 

two relevant circularity strategies: use of recycled lithium in EV batteries (Scenario A) and shifting 

production of ICEVs to EVs in the automobile industry (Scenario B). In both cases, we identify how 

information from DMFA and LCA models contain important product- and sector-level data to calculate 

key CGE model components (input and output substitution) to model economy-wide environmental 

impacts of circular economy measures.  

Invariably, DMFA-LCA-CGE linkages rely on common methodological procedures, such as (i) sectoral 

concordance between models, (ii) temporal updating and communication between model parameters, 

and (iii) disaggregation of CGE sectors, their production recipes, and final outputs. The complexity of 

these procedures will be determined by the scale (soft or hard) of coupling between models and the 

research questions of interest. A further challenge is understanding and reconciling the unique (and 
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sometime contradictory) biophysical and economic principles and data which underpin macro and micro 

models. To this end, development of hybrid physical-financial models would help establish a unifying 

framework for micro-macro linked models.  

Although not covered in this report, various factors will also influence the impacts of circular economy 

measures and our ability to study them. First, the energy mix of countries is of major consequence to 

environmental burden of EV use and energy efficiency measures more generally  (Faria et al., 2013).  

Second, in addition to price, consumer and producer decisions emerge from a complex web of social, 

cultural, interpersonal interactions and feedbacks. Yet, large-scale models of pro-environmental 

consumption and production shifts remain limited to price-driven, rational, and homogenous models of 

behaviour change (e.g., CGEs and IAMs), or ignore their determinants entirely (e.g., LCA, (D)MFA, MRIOA 

scenarios). In contrast, Agent-based Models (ABMs) employ heterogeneous individuals and groups with 

imperfect information and multiple preferences, who are adaptive in a dynamic setting (Axtell & Farmer, 

2022). In exploring linkage of dynamic micro-models to CGE, ABMs deserve greater attention. 

Nevertheless, it is important to notice the challenge of providing a proper validation/calibration for CGE 

and ABMs due to the lack of data. 

Lastly, temporal mismatch between data and parameters which underpin micro and macro models 

invite careful sensitivity analysis and collaborative efforts to update databases on the economic and 

material basis of production and consumption systems. Although non-trivial, the environmental 

footprinting community is making significant inroads into tackling these challenges (Wiedmann & 

Lenzen, 2018), providing novel frameworks to connect data, models, and empirical insights to identify 

novel solutions to the urgent ecological crisis humanity faces.  
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List of abbreviations 
ABMs 
CE 
CGE 
DMFA 
EVs 
GDP 
GHG 
IAMs 
ICEVs 
IOT 
LCA 
LCC 
LCI 
MFA 
MRIOT 
SAMs 

Agent-based Models 
Circular Economy 
Computable General Equilibrium model 
Dynamic Material Flow Analysis 
Electric vehicles 
Gross domestic product 
Greenhouse gases 
Integrated Assessment Models 
Internal combustion engine vehicles 
Input-Output Table 
Life Cycle Assessment 
Life Cycle Costing 
Life Cycle Inventory 
Material Flow Analysis 
Multi-regional Input-Output Table 
Social Accounting Matrices 
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Appendix 
Table 2. Summary relevant parameters from LCA and MFA approaches useful for macro-modelling 

Supply side Demand side 

• Product-level production 

• Energy mix scenarios 

• Cost, e.g., 

− Vehicle purchase price 

− Infrastructure cost 

• Other general econometric data, e.g., 

discount rate, inflation, and inflation-

adjusted discount rate) 

• Market share and penetration rates 

• Energy production 

• Material intensity 

• Recycling rates 

 

• Total distance traveled by vehicles  

• Vehicle, batteries and other components 

lifetimes  

• Passenger car maintenance 

• Total energy use 

• Cost, e.g., 

− Vehicle (e.g., bus) purchase price 

− Fuel efficiency 

− Vehicle maintenance and repair 

− Battery replacement cost 

− Insurance 

• Energy consumption 

• Material intensity 

• Lifetime distribution 

• Time allocation 

Table 3. LCI and MFA data sources from the selected studies  

LCI accounts MFA source 

• Ecoinvent 

• For EV, Electric Vehicle Database, 2019 

• CATRC, MIIT, Sae-China (in Chinese, in 

Yang et al.(2021)) 
• For Li-ion batteries, see fig 2 in Peters et 

al.(2017) 

• Empirical data from disassembling 

products (see, for example, Hollingsworth 

et al. (2019)) 

• IEA database and reports (e.g., Global EV 

Outlook 2022(IEA, 2022a)) 
• For personal mobility, see table 2 in Virag 

et al. (2022) 

• Governmental agencies and statistical 

bureaus (e.g., RDW and CBS used by Tang 

et al. (2021)) 

 

 

 

 

 

 

 

 

https://ecoinvent.org/the-ecoinvent-database/
https://www.iea.org/data-and-statistics


24 | P a g e  
 

References 
Agusdinata, D. B., Liu, W., Eakin, H., & Romero, H. (2018). Socio-environmental impacts of lithium 

mineral extraction: towards a research agenda. Environmental Research Letters, 13(12), 123001. 

Ambrose, H., & Kendall, A. (2019). Understanding the future of lithium: Part 1, resource model. Journal 
of Industrial Ecology, 24(1), 80–89. https://doi.org/10.1111/jiec.12949 

Axtell, R. ., & Farmer, J. . (2022). Agent-Based Modeling in Economics and Finance: Past, Present, and 
Future. https://www.inet.ox.ac.uk/files/JEL-v2.0.pdf 

Baars, J., Domenech, T., Bleischwitz, R., Melin, H. E., & Heidrich, O. (2021). Circular economy strategies 
for electric vehicle batteries reduce reliance on raw materials. Nature Sustainability, 4(1), 71–79. 
https://doi.org/10.1038/s41893-020-00607-0 

Bae, H., & Kim, Y. (2021). Technologies of lithium recycling from waste lithium ion batteries: a review. 
Materials Advances. https://doi.org/https://doi.org/10.1039/d1ma00216c 

Beaussier, T., Caurla, S., Bellon-Maurel, V., & Loiseau, E. (2019). Coupling economic models and 
environmental assessment methods to support regional policies: A critical review. In Journal of 
Cleaner Production (Vol. 216, pp. 408–421). Elsevier Ltd. 
https://doi.org/10.1016/j.jclepro.2019.01.020 

Bobba, S., Bianco, I., Eynard, U., Carrara, S., Mathieux, F., & Blengini, G. A. (2020). Bridging tools to 
better understand environmental performances and raw materials supply of traction batteries in 
the future EU fleet. Energies, 13(10). https://doi.org/10.3390/en13102513 

Burfisher, M. (2020). Introduction to Computable General Equilibrium Models. Cambridge University 
Press. https://doi-org.ezproxy.leidenuniv.nl/10.1017/9781108780063 

Cao, Z., Liu, G., Zhong, S., Dai, H., & Pauliuk, S. (2019). Integrating Dynamic Material Flow Analysis and 
Computable General Equilibrium Models for Both Mass and Monetary Balances in Prospective 
Modeling: A Case for the Chinese Building Sector. Environmental Science and Technology, 53(1). 
https://doi.org/10.1021/acs.est.8b03633 

Carmona, L. G., Whiting, K., Haberl, H., & Sousa, T. (2021). The use of steel in the United Kingdom’s 
transport sector: A stock–flow–service nexus case study. Journal of Industrial Ecology, 25(1), 125–
143. https://doi.org/10.1111/jiec.13055 

Chen, Z., Carrel, A. L., Gore, C., & Shi, W. (2021). Environmental and economic impact of electric vehicle 
adoption in the U.S. Environmental Research Letters, 16(4). https://doi.org/10.1088/1748-
9326/abe2d0 

Cusenza, M. A., Bobba, S., Ardente, F., Cellura, M., & Di Persio, F. (2019). Energy and environmental 
assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles. Journal of 
Cleaner Production, 215, 634–649. https://doi.org/10.1016/j.jclepro.2019.01.056 

EC. (2022). Critical Raw Materials Act: securing the new gas & oil at the heart of our economy I Blog of 
Commissioner Thierry Breton. 
https://ec.europa.eu/commission/presscorner/detail/en/STATEMENT_22_5523 

Faria, R., Marques, P., Moura, P., Freire, F., Delgado, J., & de Almeida, A. T. (2013). Impact of the 
electricity mix and use profile in the life-cycle assessment of electric vehicles. Renewable and 



25 | P a g e  
 

Sustainable Energy Reviews, 24, 271–287. 
https://doi.org/https://doi.org/10.1016/j.rser.2013.03.063 

Fischer-Kowalski, M., Gaube, V., & Rainer, G. (2006). F O R U M MEFASPACE A Model Predicting Freight 
Transport from Materials Flows, and Transport Activity in Europe (Vol. 10, Issue 4). 
www.mitpressjournals.org/jie 

Fu, Y., Huang, G., Liu, L., & Zhai, M. (2021). A factorial CGE model for analyzing the impacts of stepped 
carbon tax on Chinese economy and carbon emission. Science of the Total Environment, 759, 
143512. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.143512 

Garcia, D. J., & You, F. (2018). Addressing global environmental impacts including land use change in life 
cycle optimization: Studies on biofuels. Journal of Cleaner Production, 182, 313–330. 
https://doi.org/10.1016/j.jclepro.2018.02.012 

Greim, P., Solomon, A. A., & Breyer, C. (2022). Assessment of lithium criticality in the global energy 
transition and addressing policy gaps in transportation. Nature Communications, 11(1). 
https://doi.org/https://doi.org/10.1038/s41467-020-18402-y 

Guo, Z., Li, T., Peng, S., & Zhang, H. (2021). Environmental and economic consequences of the incentive 
policy on electric vehicle industry: A CGE based study in China. Resources, Conservation and 
Recycling, 169. https://doi.org/10.1016/j.resconrec.2021.105542 

Guo, Z., Li, T., Shi, B., & Zhang, H. (2022). Economic impacts and carbon emissions of electric vehicles 
roll-out towards 2025 goal of China: An integrated input-output and computable general 
equilibrium study. Sustainable Production and Consumption, 31, 165–174. 
https://doi.org/10.1016/j.spc.2022.02.009 

Harper, G., Sommerville, R., Kendrick, E., Driscoll, L., Slater, P., Stolkin, R., Walton, A., Christensen, P., 
Heidrich, O., Lambert, S., Abbott, A., Ryder, K., Gaines, L., & Anderson, P. (2019). Recycling lithium-
ion batteries from electric vehicles. In Nature (Vol. 575, Issue 7781, pp. 75–86). Nature Publishing 
Group. https://doi.org/10.1038/s41586-019-1682-5 

Hollingsworth, J., Copeland, B., & Johnson, J. X. (2019). Are e-scooters polluters? the environmental 
impacts of shared dockless electric scooters. Environmental Research Letters, 14(8). 
https://doi.org/10.1088/1748-9326/ab2da8 

IEA. (2022a). Global EV Outlook 2022 Securing supplies for an electric future. www.iea.org/t&c/ 

IEA. (2022b). The Role of Critical World Energy Outlook Special Report Minerals in Clean Energy 
Transitions. https://iea.blob.core.windows.net/assets/ffd2a83b-8c30-4e9d-980a-
52b6d9a86fdc/TheRoleofCriticalMineralsinCleanEnergyTransitions.pdf 

Igos, E., Rugani, B., Rege, S., Benetto, E., Drouet, L., & Zachary, D. S. (2015). Combination of equilibrium 
models and hybrid life cycle-input-output analysis to predict the environmental impacts of energy 
policy scenarios. Applied Energy, 145, 234–245. https://doi.org/10.1016/j.apenergy.2015.02.007 

Jessop, S., James, W., & Nasralla, S. (2021). Volvo Cars sets carbon price to assess sustainability of new 
projects. Reuters. https://www.reuters.com/business/cop/volvo-sets-carbon-price-assess-
sustainability-new-projects-2021-11-10/ 

Kamran, M., Raugei, M., & Hutchinson, A. (2021). A dynamic material flow analysis of lithium-ion battery 
metals for electric vehicles and grid storage in the UK: Assessing the impact of shared mobility and 



26 | P a g e  
 

end-of-life strategies. Resources, Conservation and Recycling, 167. 
https://doi.org/10.1016/j.resconrec.2021.105412 

Karplus, V. J., Paltsev, S., Babiker, M., & Reilly, J. M. (2013). Applying engineering and fleet detail to 
represent passenger vehicle transport in a computable general equilibrium model. Economic 
Modelling, 30(1), 295–305. https://doi.org/10.1016/j.econmod.2012.08.019 

Khan, M. J. A., & Onat, N. C. (2022). Comprehensive Total Cost of Ownership Framework for Alternative 
Fuel Public Transportation Buses. Transportation Research Record: Journal of the Transportation 
Research Board, 036119812211227. https://doi.org/10.1177/03611981221122783 

Lee, D. (2018). Building evaluation model of biohydrogen industry with circular economy in Asian 
countries. International Journal of Hydrogen Energy, 1–12. 
https://doi.org/10.1016/j.ijhydene.2018.09.069 

Li, C., Mogollón, J. M., Tukker, A., Dong, J., von Terzi, D., Zhang, C., & Steubing, B. (2022). Future material 
requirements for global sustainable offshore wind energy development. Renewable and 
Sustainable Energy Reviews, 164(May). https://doi.org/10.1016/j.rser.2022.112603 

Machado, P. G., Cunha, M., Walter, A., Faaij, A., & Guilhoto, J. J. M. (2020). The potential of a 
bioeconomy to reduce Brazilian GHG emissions towards 2030: a CGE-based life cycle analysis. 
Biofuels, Bioproducts and Biorefining, 14(2), 265–285. https://doi.org/10.1002/bbb.2064 

Nakamura, S., & Kondo, Y. (2018). Toward an integrated model of the circular economy: Dynamic waste 
input–output. Resources, Conservation and Recycling, 139, 326–332. 
https://doi.org/https://doi.org/10.1016/j.resconrec.2018.07.016 

Nordelöf, A., Messagie, M., Tillman, A. M., Ljunggren Söderman, M., & Van Mierlo, J. (2014). 
Environmental impacts of hybrid, plug-in hybrid, and battery electric vehicles—what can we learn 
from life cycle assessment? In International Journal of Life Cycle Assessment (Vol. 19, Issue 11, pp. 
1866–1890). Springer Verlag. https://doi.org/10.1007/s11367-014-0788-0 

Nurdiawati, A., & Agrawal, T. K. (2022). Creating a circular EV battery value chain: End-of-life strategies 
and future perspective. Resources, Conservation and Recycling, 185. 
https://doi.org/10.1016/j.resconrec.2022.106484 

Pauliuk, S., Kondo, Y., Nakamura, S., & Nakajima, K. (2017). Regional distribution and losses of end-of-life 
steel throughout multiple product life cycles—Insights from the global multiregional MaTrace 
model. Resources, Conservation and Recycling, 116, 84–93. 
https://doi.org/10.1016/j.resconrec.2016.09.029 

Peng, S., Yang, Y., Li, T., Smith, T. M., Tan, G. Z., & Zhang, H. C. (2019). Environmental Benefits of Engine 
Remanufacture in China’s Circular Economy Development. Environmental Science and Technology, 
53(19), 11294–11301. https://doi.org/10.1021/acs.est.9b02973 

Petavratzi, E., Sanchez-Lopez, D., Hughes, A., Stacey, J., Ford, J., & Butcher, A. (2022). The impacts of 
environmental, social and governance (ESG) issues in achieving sustainable lithium supply in the 
Lithium Triangle. Mineral Economics, 35(3–4), 673–699. https://doi.org/10.1007/s13563-022-
00332-4 

Peters, J. F., Baumann, M., Zimmermann, B., Braun, J., & Weil, M. (2017). The environmental impact of 
Li-Ion batteries and the role of key parameters – A review. In Renewable and Sustainable Energy 
Reviews (Vol. 67, pp. 491–506). Elsevier Ltd. https://doi.org/10.1016/j.rser.2016.08.039 



27 | P a g e  
 

Shafique, M., Azam, A., Rafiq, M., & Luo, X. (2022). Life cycle assessment of electric vehicles and internal 
combustion engine vehicles: A case study of Hong Kong. Research in Transportation Economics, 91. 
https://doi.org/10.1016/j.retrec.2021.101112 

Sigüenza, C.P., Steubing, B., Tukker, A., & Aguilar-Hernández, G. A. (2020). The environmental and 
material implications of circular transitions: A diffusion and product-life-cycle-based modeling 
framework. Journal of Industrial Ecology, 1–17. https://doi.org/10.1111/jiec.13072 

Sigüenza, Carlos Pablo, Cucurachi, S., & Tukker, A. (2021). Circular business models of washing machines 
in the Netherlands: Material and climate change implications toward 2050. Sustainable Production 
and Consumption, 26, 1084–1098. https://doi.org/10.1016/j.spc.2021.01.011 

Smetschka, B., Wiedenhofer, D., Egger, C., Haselsteiner, E., Moran, D., & Gaube, V. (2019). Time 
Matters: The Carbon Footprint of Everyday Activities in Austria. Ecological Economics, 164. 
https://doi.org/10.1016/j.ecolecon.2019.106357 

Söderman, M. L., Eriksson, O., Björklund, A., Östblom, G., Ekvall, T., Finnveden, G., Arushanyan, Y., & 
Sundqvist, J. (2016). Integrated Economic and Environmental Assessment of Waste Policy 
Instruments. Sustainability, 8(411), 1–21. https://doi.org/10.3390/su8050411 

Steubing, B., de Koning, A., Merciai, S., & Tukker, A. (2022). How do carbon footprints from LCA and 
EEIOA databases compare? A comparison of ecoinvent and EXIOBASE. Journal of Industrial Ecology, 
26(4), 1406–1422. https://doi.org/10.1111/jiec.13271 

Tang, C., Sprecher, B., Tukker, A., & Mogollón, J. M. (2021). The impact of climate policy implementation 
on lithium, cobalt and nickel demand: The case of the Dutch automotive sector up to 2040. 
Resources Policy, 74. https://doi.org/10.1016/j.resourpol.2021.102351 

Virág, D., Wiedenhofer, D., Haas, W., Haberl, H., Kalt, G., & Krausmann, F. (2022). The stock-flow-service 
nexus of personal mobility in an urban context: Vienna, Austria. Environmental Development, 41. 
https://doi.org/10.1016/j.envdev.2021.100628 

Wang, H., Dai, H., Dong, L., Xie, Y., Geng, Y., Yue, Q., Ma, F., Wang, J., & Du, T. (2018). Co-benefit of 
carbon mitigation on resource use in China. Journal of Cleaner Production, 174, 1096–1113. 
https://doi.org/10.1016/j.jclepro.2017.11.070 

Watari, T., McLellan, B. C., Giurco, D., Dominish, E., Yamasue, E., & Nansai, K. (2019). Total material 
requirement for the global energy transition to 2050: A focus on transport and electricity. 
Resources, Conservation and Recycling, 148. https://doi.org/10.1016/j.resconrec.2019.05.015 

Wiedmann, T., & Lenzen, M. (2018). Environmental and social footprints of international trade. Nature 
Geoscience, 11(5), 314–321. https://doi.org/10.1038/s41561-018-0113-9%0A 

Yang, L., Yu, B., Yang, B., Chen, H., Malima, G., & Wei, Y. M. (2021). Life cycle environmental assessment 
of electric and internal combustion engine vehicles in China. Journal of Cleaner Production, 285. 
https://doi.org/10.1016/j.jclepro.2020.124899 

Zhong, X., Hu, M., Deetman, S., Steubing, B., Lin, H. X., Hernandez, G. A., Harpprecht, C., Zhang, C., 
Tukker, A., & Behrens, P. (2021). Global greenhouse gas emissions from residential and commercial 
building materials and mitigation strategies to 2060. Nature Communications, 12(1), 1–10. 
https://doi.org/10.1038/s41467-021-26212-z 

Ziemann, S., Müller, D. B., Schebek, L., & Weil, M. (2018). Modeling the potential impact of lithium 



28 | P a g e  
 

recycling from EV batteries on lithium demand: A dynamic MFA approach. Resources, Conservation 
and Recycling, 133, 76–85. https://doi.org/10.1016/j.resconrec.2018.01.031%0A 

 

 


