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In this paper, we study the performance of a bipartite network in which
customers arrive at the nodes of the network, but not all nodes are able to
serve their customers at all times. Each node can be either active or inactive,
and two nodes connected by a bond cannot be active simultaneously. This
situation arises in wireless random-access networks where, due to destruc-
tive interference, stations that are close to each other cannot use the same
frequency band.

We consider a model where the network is bipartite, the active nodes
switch themselves off at rate 1 and the inactive nodes switch themselves on
at a rate that depends on time and on which half of the bipartite network they
are in. An inactive node cannot become active when one of the nodes it is
connected to by a bond is active. The switching protocol allows the nodes to
share activity among each other. In the limit as the activation rate becomes
large, we compute the crossover time between the two states where one-half
of the network is active and the other half is inactive. This allows us to as-
sess the overall activity of the network depending on the switching protocol.
Our results make use of the metastability analysis for hard-core interacting
particle models on finite bipartite graphs derived in an earlier paper. They
are valid for a large class of bipartite networks, subject to certain assump-
tions. Proofs rely on a comparison with switching protocols that are not time
varying, through coupling techniques.

1. Introduction. Section 1.1 provides the motivation and background for our paper. Sec-
tion 1.2 contains the mathematical formulation of the problem. Section 1.3 identifies the
choices of the activation and deactivation rates in the switching protocol and formulates our
main theorem for the crossover time.

1.1. Motivation and background.

Switching rates. In the present paper, we investigate metastability effects and hitting times
for hard-core interaction dynamics with time-varying rates. Specifically, we consider a finite
graph G in which vertices (= nodes) can be either active or inactive, subject to the con-
straint that vertices connected by an edge (= bond) cannot be active simultaneously. Thus,
the feasible joint activity states correspond to (the incidence vectors of) the independent sets
of G, also called hard-core configurations. We denote by X(t) ∈ {0,1}V (G) (with V (G) the
vertex set of G) the joint activity state at time t , with Xi(t) indicating whether vertex i is
inactive or active at time t . When vertex i is inactive at time t , and none of its neighbours are
active, it activates at a time-dependent exponential rate λi(t). Activity durations are exponen-
tially distributed with unit mean, that is, when a vertex is active it deactivates at exponential
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rate 1. Thus, (X(t))t≥0 evolves as a time-inhomogeneous Markov process with state space
X ⊆ {0,1}V (G), with X the set of hard-core configurations.

We will examine the metastable behaviour of (X(t))t≥0 in an asymptotic regime where the
activation rates λi(t) grow large in a suitable sense. Metastable behaviour is different from
mixing behaviour, which concerns typical hitting times. Analyzing metastability on random
graphs is challenging, because complex geometric issues arise that require heavy mathe-
matical machinery (see, e.g., the monograph [5]). Our specific interest is in time-dependent
transition rates, a setting that has not been considered in the literature.

Random-access algorithms. The above-described problem is not only interesting from a
methodological perspective, it is also relevant in analysing the performance of random-access
algorithms in wireless networks, in particular, so-called queue-based Carrier Sense Multiple
Access (CSMA) policies. The activity periods in the hard-core interaction model correspond
to the transmission times of data packets in the wireless network. The graph G corresponds to
the interference graph of the wireless network, specifying which pairs of nodes are prevented
from simultaneous transmission because of interference. In conventional CSMA policies, the
various nodes activate at fixed rates, which gives rise to classical hard-core interactions mod-
els. Metastability characteristics and mixing properties of such models provide fundamental
insight into starvation issues and performance characteristics in wireless networks. In partic-
ular, for high activation rates, the stationary distribution of the activity process concentrates
on states where the maximum number of nodes is simultaneously active, with extremely slow
transitions between them. This ensures high overall efficiency, but from the perspective of an
individual node it induces prolonged periods of starvation, possibly interspersed with long
sequences of transmissions in rapid succession, resulting in severe build-up of queues and
long delays. We refer to [16, 21] and [20] for further background and a more comprehensive
discussion of how the spatiotemporal dynamics of the activity process in wireless random-
access networks can be represented in terms of hard-core interaction models. We refer to [10]
for a study of mixing times under CSMA scheduling.

In queue-based CSMA policies, the activation rates are chosen to be functions of the queue
lengths at the various nodes, with the aim to provide greater transmission opportunities to
nodes with longer queues. Specifically, the activation rate typically increases as a function
of the queue length at a node, and possibly decreases as a function of the queue lengths at
neighbouring nodes. The activation rate would thus vary over time as queues build up or drain
when packets are generated or transmitted. For suitable activation rate functions, queue-based
CSMA policies have been shown to achieve maximum stability, that is, provide stable queues
whenever feasible at all (see [8, 11, 17–19] and reference therein). Hence, these policies
have the capability to match the optimal throughput performance of centralised scheduling
strategies, while requiring less computation and operating in a mostly distributed fashion. On
the downside, the very activation rate functions required for ensuring maximum stability tend
to result in long queues and poor delay performance (see [4, 7] and references therein). As
alluded to above, metastability effects play a pivotal role in that regard, and analysing hitting
times for the activity process (X(t))t≥0 is critical in understanding, and possibly improving,
the delay performance of queue-based CSMA policies.

Bipartite inference graphs. In the present paper, we focus on a finite bipartite graph G,
whose vertex set can be partitioned into two sets U and V such that each edge connects one
vertex in U with one vertex in V (and no two vertices within U or within V ). Metastable be-
haviour of hard-core dynamics is most pronounced in bipartite graphs, is more amenable to
a comprehensive analysis and captures the essence of the metastability phenomenon. There-
fore, the case of bipartite graphs provides a natural initial stepping stone towards the analysis
of more general graph structures. As a crucial special case, the class of bipartite graphs in-
cludes grid graphs that have emerged as a canonical testing ground for exploring the delay
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performance of CSMA policies. Denote by u ∈X and v ∈X the joint activity states where
all the vertices in either U or V are active, respectively. We will assume that the activation
rates are of the form λi(t)= λU(t) for all i ∈ U and λi(t)= λV (t) for all i ∈ V , where both
λU and λV depend on a parameter λ controlling the typical length of the queues (see (1.14)
and (1.15) for the choice of dependence to be considered). We are specifically interested in
the asymptotic regime λ→∞ (which corresponds to a scenario with large queue lengths).
We examine the distribution of the time Tv = inf{t ≥ 0 : X(t)= v} until state v is reached for
the first time when the system starts from state u at time 0.1

Even though in the above setting the activation rates do not explicitly depend on the queue
lengths, the time-dependent rates λU(t) and λV (t) properly capture the relevant qualita-
tive behaviour. Indeed, the joint activity states u and v will be asymptotically dominant as
λ→∞, that is, most of the time either all the nodes in U or all the nodes in V will be active.
As a result, the queues of the nodes in U and the queues of the nodes in V will tend to either
all increase or all decrease simultaneously. While the arrivals and transmissions of packets
are governed by random processes, the trajectories of the queue lengths will be roughly linear
when viewed on the long time scales of interest.2 Hence, under the assumption of identical
arrival rates and initial queue lengths within the sets U and V , queue-dependent activation
rates can approximately be represented in terms of time-dependent activation rates, as speci-
fied above. Since the initial state is X(0)= u, the queues of the nodes in U and the queues of
the nodes in V will initially tend to go down and up, respectively, and we therefore assume
that λU(·) and λV (·) are decreasing and increasing functions, respectively (see Figure 2).

1.2. Mathematical formulation of the problem.

The general model. Let us now formulate the problem in more detail. As before, we consider
a finite bipartite graph G as the underlying graph of the servers, consisting of two finite
subsets of vertices U and V . Whether a vertex i ∈ U ∪ V is inactive or active at time t is
specified by a Bernoulli random variable Xi(t) ∈ {0,1}. For each vertex i and each time
t , we also have a random variable Qi(t) ∈ N0 := {0,1,2, . . .} that denotes the length of the
queue behind server i at time t . The messages at server i are served only during the periods in
which i is active. An active server turns inactive at rate 1, while an inactive server i attempts
to become active at the ticks of an inhomogeneous Poisson process with rate λi(t). An attempt
at time t is successful if none of the neighbours of i are active at time t− (see Figure 1). All
activation/inactivation attempts are independent. A random-access algorithm uses the queue
length of server i, and possibly the queue lengths at its set of neighbours N(i), to decide
the activation rate λi(t), so that λi(t) := A[Qi(t),QN(i)(t)] for some function A. Each such
algorithm leads to a Markov process (X(t),Q(t))t≥0 containing the activity state and the
queue length of every server.

First and second approximations. Our paper is motivated by random-access schemes that
are assumed to be totally distributed, that is, nodes do not have access to aggregate informa-
tion about other nodes. In a first stage of approximation, we ignore the randomness of the
queue lengths and assume that Qi(t) ∈ [0,∞) increases with constant rate when i is inactive
and decreases with another constant rate when i is active. In a second stage of approximation,
we assume that Qi(t) is approximately the same for all vertices in the set U or V that i lies
in. If we focus on the evolution of the Markov process starting from one of the two maximal
packing configurations until the hitting time of the other maximal packing configuration, then

1The metastable behaviour and asymptotic distribution of Tv when λi(t) = λ1+αU+o(1) for all i ∈ U and

λi(t)= λ1+αV+o(1) for all i ∈ V were characterised by den Hollander, Nardi and Taati [9].
2For the time-homogeneous setting, this was proved in [2].
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FIG. 1. An example of a network with a bipartite underlying graph. The dots indicate the active servers. At the
current state, the server in the middle cannot become active because its upper right neighbour is already active.

we can assume that the functions λi(t) are nonrandom and are the same for all servers i that
are in U or in V . In other words, our time-dependent activation rates may be interpreted as a
proxy for queue-dependent activation rates.

The time-inhomogeneous Markov process. The approximated system can be thought of as
a time-inhomogeneous Markov process (X(t))t≥0 constructed as follows. (We use a similar
representation as in the time-homogeneous setting.) The state space is the set X of hard-
core configurations on G. The process (X(t))t≥0 is a càdlag̀ process defined as follows. The
transitions are triggered by a Poisson clock ξξξ , that is, a Poisson point process on [0,∞) with
time-varying rate

(1.1) γ (t)= (
1+ λU(t)

)|U | + (
1+ λV (t)

)|V |.
This clock is the union of the birth clocks (rate λU(t) or λV (t) at each site in U or V ,
respectively) and the death clocks (rate 1 at each site) for addition and removal of particles.
A transition at time s ∈ ξξξ is governed by a discrete transition kernel K(s)(·, ·), which is essen-
tially the transition matrix of the discrete hard-core dynamics studied in [9] with parameters
λU(s) and λV (s). Namely, for distinct hard-core configurations x and y, we have

(1.2) K(s)(x, y) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λU(s)

γ (s)
if xi = 0, yi = 1, x(U∪V )\{i} = y(U∪V )\{i}
for some i ∈U,

λV (s)

γ (s)
if xi = 0, yi = 1, x(U∪V )\{i} = y(U∪V )\{i}
for some i ∈ V,

1

γ (s)
if xi = 1, yi = 0, x(U∪V )\{i} = y(U∪V )\{i}
for some i ∈U ∪ V,

0 otherwise,

and K(s)(x, x) is defined so as to turn K(s) into a stochastic matrix. At every tick s ∈ ξξξ of the
clock, the process jumps into a new state X(s) distributed according to K(s)(X(s−), ·).

Here is a more formal construction, which we need for coupling arguments. Let ξξξ be a
Poisson process as above, and let Z(x, t), x ∈X , t ∈ [0,∞), be a collection of independent
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random variables in X , and independent of ξξξ , with distribution K(t)(x, ·). Given an initial
configuration x(0) ∈X , the process (X(t))t≥0 is constructed recursively by setting X(s) :=
Z(X(s−), s) at each s ∈ ξξξ .

As before, we write u and v for the configurations in which U and V are fully active,
respectively. We are interested in the distribution of the hitting time Tv := inf{t ≥ 0 : X(t)=
v} conditional on starting at X(0)= u. Our goal will be to analyse the distribution of Tv .

The regenerative structure of the process. In the time-homogeneous setting, we know that
the hitting time Tv starting from u is approximately exponential in the asymptotic regime
where λU and λV are large. The intuition comes from considering the return times to u of the
discrete-time embedded Markov chain as regeneration times, and imagining a Bernoulli trial
at each regeneration time. The trial is successful if the Markov chain visits v before returning
to u, and is unsuccessful otherwise. In the asymptotic regime, the probability of success in
each trial is small and the expected duration of a single trial (successful or not) is negligible
compared to the expected transition time Eu[Tv]. The first success time of a large number of
trials each having a small probability of success is approximately exponentially distributed
(see, e.g., [9, 12]).

In the time-inhomogeneous setting, we would like to follow a similar reasoning in order
to show that, under appropriate conditions, the transition time Tv from u is approximately
exponential with a nonconstant rate. We can still use the returns to u as regeneration times, but
the success probability and the duration of the trials now depend on the starting times of the
trials. One difficulty is that in [9] we only obtained information on the success probability and
the duration of the trials in a time-homogeneous setting. We need to overcome this obstacle.

To be more specific, let ξ̄ξξ := {0} ∪ ξξξ . The times s ∈ ξ̄ξξ at which X(s)= u are considered as
inhomogeneous regeneration times. We denote the set of regeneration times by ηηη, so that ηηη :=
{s ∈ ξ̄ξξ : X(s) = u}. A Bernoulli trial is made at each regeneration time s ∈ ηηη with indicator
random variable B(s). For t ∈ [0,∞), we write

(1.3)
Tv(t) := inf

{
s ≥ t : X(s)= v

}
,

T �
u (t) := inf{s > t : X(s)= u and ξξξ((t, s]) > 0},

to denote the first hitting time of v and the first return time of u after time t . The Bernoulli
random variable B(s) is defined to be 1 if Tv(s) < T �

u (s) and to be 0 otherwise. The success
probability of the trial at s ∈ ηηη is

(1.4) ε(s) := P
(
B(s)= 1

)= P
(
Tv(s) < T �

u (s)|X(s)= u
)
.

The duration of the trial at s ∈ ηηη is the random variable δT (s) := min{Tv(s), T
�
u (s)} − s.

This duration can also be measured in clock ticks by the discrete random variable L(s) :=
ξξξ((s, s + δT (s)]) that counts the number of clock ticks from s until the next regeneration
time. Let

(1.5) S := inf
{
s ∈ ηηη : B(s)= 1

}
be the starting point of the first successful trial. The first hitting time of v is the end point of
the first successful trial, that is, Tv = S + δT (S). Our goal will be to analyse the distribution
of S. Note that we expect δT (S) to be negligible compared to S, as is the case in the time-
homogeneous setting.

Notation. Throughout this paper, we use the following notation:

• f (x)≺ g(x) means f (x)= o(g(x)) as x→∞,
• f (x)	 g(x) means f (x)=O(g(x)) as x→∞,
• f (x)
 g(x) means f (x)	 g(x) and g(x)	 f (x) as x→∞.
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Our analysis relies on various auxiliary random variables and couplings. To avoid technical
distractions, we describe these in an informal fashion and use the same symbol P for the
associated probability measures, even when a formal definition would require distinct under-
lying probability spaces. The notation Pu is used to indicate the law of the Markov chain
(homogeneous or inhomogeneous, depending on the context) starting from configuration u.

Review of some results from time-homogeneous setting. The results of this paper are heav-
ily based on comparison with the time-homogeneous version of the above Markov process in
which the rates λU and λV are constant. The time-homogeneous process was studied in [9],
where detailed results were obtained on the mean and asymptotic distribution of the crossover
time as well as the trajectory of the process close to its bottleneck (the formation of the “crit-
ical droplet”). The results of the latter paper were obtained for general finite bipartite graphs
subject to certain hypotheses on the isoperimetric properties of the graph. These hypotheses
were verified for a few interesting classes of bipartite graphs, including the complete bipartite
graph and the two-dimensional torus. For the sake of comparison as well as future reference,
we now briefly recall some relevant results from [9].

As before, let

ε := Pu

(
Tv < T �

u

)
(1.6)

and let γ denote the rate of the Poisson clock triggering the transitions given by the time-
homogeneous version of (1.2). Let

α := logλV

logλU

− 1.(1.7)

For a large family of bipartite graphs satisfying a mild isoperimetric property (including the
complete bipartite graph and the even torus), it was shown that, starting from u, the crossover
time Tv is asymptotically exponentially distributed, in the sense that

lim
λ→∞Pu

(
Tv/Eu[Tv]> t

)= e−t ,(1.8)

provided α > 0 and |U |< (1+ α)|V |. Under the same assumptions,

εγ Eu[Tv] = 1+ o(1), λ→∞,(1.9)

(see equation (A.5), Corollary B.4 and Corollary 3.5 in [9]). Furthermore,

Eu[Tv] 
 λ
	(k∗)+k∗−1
U

λk∗−1
V

, λ→∞,(1.10)

(see Theorem 1.1 in [9]), where 	 : N→N denotes the (bipartite) isoperimetric cost function
of the graph (see Section 2.3 in [9]) and k∗ is the critical size, defined as the smallest positive
integer maximising 	(k)− α(s)(k − 1).

The case of a complete bipartite graph is relatively simple, and one can do direct calcula-
tions to obtain a sharp estimate

Eu[Tv] = 1

|U |λ
|U |−1
U

[
1− o(1)

]
, λ→∞(1.11)

(see Example 2.1 in [9]). For more general bipartite graphs, under more elaborate assump-
tions on the isoperimetric properties of the graph, one can obtain similar sharp estimates for
the mean crossover time as well as detailed information about the trajectory of the process
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near its bottleneck, in particular, the shape of the “critical droplet” (Theorem 1.3 and Propo-
sition 1.4 in [9]). As a prototypical example, in the case of a torus Zm × Zn (with m,n even
and nearest-neighbour edges), when 0 < α < 1, one finds that

Eu[Tv] = 1

4mn
∗
λ


∗(
∗+1)+1
U

λ

∗(
∗−1)
V

[
1+ o(1)

]
, λ→∞,(1.12)

where 
∗ := �1/α is the size of the critical droplet.

Stochastic ordering and monotonicity. In [9], we strongly exploited an appropriate ordering
on the configuration space X and couplings respecting this ordering. This ordering will also
be crucial in the arguments of the current paper.

Let us define a partial order on X by declaring x � x′ if xU ⊇ x′U and xV ⊆ x′V . It is easy
to verify that the Markov process (time homogeneous or time inhomogeneous) is monotonic
with respect to this partial order in the following sense: given x, x′ ∈X with x � x′, one
can construct a coupling ((X(t),X′(t)))t≥0 of two copies of the process with X(0)= x and
X′(0)= x′ such that with probability 1, X(t)�X′(t) for every t ≥ 0.

In fact, a more general statement is true. Let (λU ,λV ) and (λ′U,λ′V ) be two choices of the
parameters, each possibly varying with time, and assume that λU ≥ λ′U and λV ≤ λ′V . Then,
given x, x′ ∈X with x � x′, one can construct a coupling ((X(t),X′(t)))t≥0 of the process
with parameters (λU ,λV ) and the process with parameters (λ′U,λ′V ) such that X(0)= x and
X′(0)= x′ and almost surely X(t)�X′(t) for every t ≥ 0. It follows that for every increasing
event E (i.e., an event such that (y(t))t≥0 ∈ E whenever (x(t))t≥0 ∈ E and x(t) � y(t) for
all t ≥ 0), it holds

P
((

X(t)
)
t≥0 ∈E

)≤ P
((

X′(t)
)
t≥0 ∈E

)
.(1.13)

A frequent example of an increasing event in the present paper is the event that the process
hits v before returning to u.

1.3. Choices of the activation rates and main theorems. Given the above description, and
in line with the follow-up paper [2], we assume that the activation rates are of the form

λU(t) := gU

([cUλ−μUt]+), λV (t) := gV (cV λ+μV t),(1.14)

where cU , cV ,μU,μV are positive parameters, and both gU(x) and gV (x) are increasing with
gV (x)� gU(x)� 1 as x→∞ (see Figure 2). The terms cUλ and cV λ represent approximate
queue lengths of the servers in U and V , respectively, at time 0. The term μV represents the
rate of arrival of new messages at servers in V (which are inactive), while μU accounts for
the service rate minus the rate of arrival of new messages at servers in U (which are active).
In [2], the model with these choices of parameters is referred to as the external model, and a
comparison is made between this model and the internal model, which is the general model
described at the beginning of Section 1.2.

FIG. 2. A schematic graph of the activation rates as functions of time.
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Target. For concreteness, as in [2], we focus on the case in which

gU(x)
 xβU , gV (x)
 xβV ,(1.15)

where βV > βU > 0. (Other choices for the functions gU,gV would certainly be relevant for
applications. Nonetheless, to limit the complexity of our analysis we restrict to polynomials.)

We are concerned with the time scale at which the transition from u to v occurs when λ

is large, and with the limiting distribution of the transition time on this time scale. Recall-
ing (1.1) and (1.4), we let ν(s) := ε(s)γ (s). In light of the regeneration structure described
above, it is natural to expect that, for every time scale M =M(λ) and every τ ∈ [0,∞),

lim
λ→∞Pu

(
Tv

M
> τ

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if Mν(Mτ)� 1,

exp
(
−
∫ τ

0
ψ(σ)dσ

)
if Mν(Mτ)
 1,

1 if Mν(Mτ)≺ 1,

(1.16)

where in the middle case, ψ(σ) := limλ→∞Mν(Mσ). We assume that the limit exists. So,
roughly speaking, if we let Mc =Mc(λ) be the “solution” of Mν(M)
 1 (which is expected
to be unique up to asymptotic equivalence 
), then the transition occurs almost surely on the
time scale Mc, in the sense that Pu(Tv > t)≈ 1 for t ≺Mc and Pu(Tv > t)≈ 0 for t �Mc.
On the time scale Mc, the transition time follows an exponential law with a time-varying rate.
In [2], the equality Mν(M)
 1 is solved under the assumption that G is a complete bipartite
graph and it is shown that the asymptotic behaviour of the system follows distinct patterns
depending on whether βU < 1

|U |−1 , βU = 1
|U |−1 or βU > 1

|U |−1 , which are referred to as the
subcritical, the critical and the supercritical regime, respectively.

The main goal of the present paper is to show that, under suitable conditions, a variant
of the equality in (1.16) indeed holds. Throughout the sequel, we make the following key
assumptions.

ASSUMPTION 1.1 (Isoperimetric properties). Either of the following two conditions
holds:

(a) G is a complete bipartite graph with |U |> 1.
(b) G satisfies hypothesis (H2) in [9] and βU |U |< βV |V |.
ASSUMPTION 1.2 (Energy barriers). �̌(0) ≺√�(0).

Hypothesis (H2) in [9] says that for every i ∈ V there exists an isoperimetric numbering of V

starting with i that is sufficiently long. The condition βU |U | < βV |V | is a restatement of
hypothesis (H0) in [9] and guarantees that u is metastable and v is stable, which is the setting
considered in the present paper. The quantities �(s) and �̌(s) are introduced in Section 4.2
below. Intuitively, for each s ≥ 0, �(s) is the height of the hill that the time-homogeneous
process with parameters λU(s) and λV (s) needs to climb in order to go from u to v, whereas
�̌(s) is the depth of the deepest well whose bottom is not u or v (the process may get stuck
in this well on its way from u to v). Under Assumption 1.1, the identification of �(s) boils
down to the identification of the (bipartite) isoperimetric cost function (see Section 1.2). The
quantity �̌(s) has not been studied before. Assumption 1.2 is technical and presumably can be
weakened. In Example 1.4 below, we show that for a complete bipartite graph it is redundant.

In practice, it will be more convenient to replace ε(s) in (1.4) by

(1.17) ε̌(s) := P
(s)
u

(
Tv < T �

u

)
,

where P(s) is the law of a time-homogeneous Markov chain with parameters λU(s) and λV (s).
The two quantities are expected to be close to each other, but the advantage of ε̌(s) is that it
is more tractable than ε(s), and can be sharply estimated in various cases. Let

(1.18) ν̌(s) := ε̌(s)γ (s).



CROSSOVER TIMES IN BIPARTITE NETWORKS 4287

Main theorem. The main theorem of the present paper is the following result identifying the
asymptotic law of the crossover time.

THEOREM 1.3 (Law of crossover time). Suppose that Assumptions 1.1–1.2 are satisfied.
Let M =M(λ) > 0 be a given time scale such that M(λ)→∞ as λ→∞.

(i) If M ≺ λ as λ→∞, then

Pu

(
Tv

M
> τ

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

o(1) if Mν̌(0)� 1,[
1± o(1)

]
exp

(
−
∫ τ

0
Mν̌(Mσ)dσ

)
if Mν̌(0)
 1,

1− o(1) if Mν̌(0)≺ 1,

(1.19)

for every τ ∈ (0,∞) as λ→∞.
(ii) If M 
 λ, then the identity (1.19) still holds for every 0 < τ < cU

μU

λ
M

, while

limλ→∞Pu(Tv/M > τ)= 0 when τ ≥ cU

μU

λ
M

.
(iii) If M � λ, then limλ→∞ Pu(Tv/M > τ)= 0 for every τ > 0.

In fact, Assumption 1.2 is only needed for the middle case of (1.19) in scenarios (i) and (ii).

The distinction between the three scenarios M ≺ λ, M 
 λ and M � λ is simply due to
the fact that, according to (1.14), λU(s)= 0 for s ≥ cU

μU
λ. Note that the conditions in (1.19)

are in terms of Mν̌(0) rather than Mν̌(Mτ), as suggested by (1.16). As we will see in Propo-
sition 4.3, the two quantities have the same order of magnitude when Mτ < cU

μU
λ. We have

written (1.19) in the asymptotic form rather than the limit form appearing in (1.16) to allow
for the possibility in the middle case that Mν̌(Mσ)
 1 as λ→∞ even when Mν̌(Mσ) does
not converge to a function ψ(σ). We will refer to the top, middle and bottom cases in (1.19) as
the supercritical, critical and subcritical regime, respectively. It turns out that the subcritical
and supercritical regime can be handled by direct comparison with the time-homogeneous
setting. We prove the identity for the critical regime by establishing tight lower and upper
bounds for Pu(Tv > t).

The time inhomogeneity of the system makes it difficult to verify the conditions of The-
orem 1.3 in full generality. Nevertheless, we show that the conditions are indeed satisfied in
two special cases: when G is a complete bipartite graph (i.e., the setting of [2]) and when G

is an even torus Zm ×Zn (two examples studied in [9]).

EXAMPLE 1.4 (Complete bipartite graph). When G is a complete bipartite graph, As-
sumption 1.1 is trivially satisfied. In Section 4.2 (proof of Lemma 4.4), we will verify that,
for any s ≥ 0,

�(s) 
 γ (s)λ
|U |−1
U (s), �̌(s) 
 γ (s)/λU(s), λ→∞.(1.20)

For the choice of the functions λU(t) and λV (t) in (1.14) and (1.15), we have λU(0)
 λβU ,
λV (0) 
 λβV and γ (0) 
 λβU∨βV = λβV (recall that βV > βU ), and so Assumption 1.2 is
satisfied if and only if

βV <
(|U | + 1

)
βU .(1.21)

However, we can remove this restriction by the following argument. When the system starts
from u, Tv is with high probability close to T∅, that is, the first hitting time of the config-
uration ∅ in which all the vertices are inactive. Note that in the trajectory from u to ∅ no
vertex in V ever gets an opportunity to become active. As a result, the asymptotic distribu-
tion of Tv/M as λ→∞ (which is the same as the distribution T∅/M) is independent of βV .
Therefore, without loss of generality, we can lower βV so that it satisfies (1.21).
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Let us now examine the quantity ν̌(s) = ε̌(s)γ (s). As we will see in Section 4.2, ε̌(s) 

1/�(s). It follows that ν̌(s) = (cUλ− μUs)−(|U |−1)βU . Therefore, in the scenario in which
M ≺ λ and τ ∈ (0,∞) or M 
 λ and τ ≤ cU

μU

λ
M

,

lim
λ→∞Pu

(
Tv

M
> τ

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if M � λ(|U |−1)βU ,

exp
(
−
∫ τ

0
ψ(σ)dσ

)
if M 
 λ(|U |−1)βU ,

1 if M ≺ λ(|U |−1)βU .

(1.22)

where in the critical case, ψ(σ) := limλ→∞M(cUλ − μUMσ)−(|U |−1)βU . We assume that
the limit exists.

The choice of complete bipartite graph simplifies the geometry, because the metastable
crossover is global rather than local. In [3], the results for this example are used to analyse
the case of general bipartite graphs. It turns out that the metastable crossover consists of
a succession of transitions on complete bipartite subgraphs. To identify which sequence of
subgraphs the dynamics follows requires the use of a certain greedy algorithm that captures
the underlying geometric complexity.

EXAMPLE 1.5 (Even torus). Let us now consider the case in which G is the torus Zm ×
Zn with m,n ∈ N even and nearest-neighbour edges. Assume that βU |U | < βV |V |. In [9],
Section 6.1, it was verified that G satisfies hypothesis (H2), thus Assumption 1.1 is satisfied.
It follows from the results of that paper that

�(0) 
 λ

∗(
∗+1)+1
U (0)

λ

∗(
∗−1)
V (0)


 λβU [
∗(
∗+1)+1]−βV [
∗(
∗−1)].(1.23)

This can also be seen by combining the fact that ε̌(s)
 1/�(s) (see Section 4.2) with (1.9)
and (1.12). We leave it as an open question to identify the order of magnitude of �̌(0) in
this case. Once such an estimate is available, one can identify the range of the parameters in
which Assumption 1.2 is satisfied.

From (1.9) and (1.12), we get

ν̌(s)= 4mn
∗
λ


∗(
∗−1)
V (s)

λ

∗(
∗+1)+1
U (s)

[
1+ o(1)

]
, λ→∞.(1.24)

Thus, in the parameter regime in which Assumption 1.2 is satisfied, Theorem 1.3 provides
an explicit characterization of the asymptotic law of the crossover time for all choices of the
time scale M .

Outline of remainder. In Section 2, we explain strategies to derive lower and upper bounds
for the success time in a sequence of Bernoulli trials. In Section 3, we use the latter to derive
lower and upper bounds for the transition times in our network model in terms of certain key
quantities. These quantities are further analysed in Section 4, and lead to explicit conditions
on the model parameters under which Theorem 1.3 can be proved.

2. Exploiting the regenerative structure. In Section 2.1, we reformulate the problem in
terms of a sequence of Bernoulli trials and look at a simple case, formulated in Proposition 2.1
below. In Sections 2.2 and 2.3, we derive lower and upper bound for the probability that the
success time exceeds t , formulated in Propositions 2.2 and 2.3 below. In Section 3, we will
use the latter to formulate concrete bounds.
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2.1. Reformulation. We begin by rephrasing the problem in abstract terms without refer-
ring to the underlying Markov process.

General scenario. We generate a sequence of Bernoulli trials, one after the other. Each trial
has a random duration, so that the starting point of the n’th trial is random. The success prob-
ability and the length of each trial depend on its starting time, but are otherwise independent
of the other trials. The outcome of a trial starting at time s is indicated by a Bernoulli random
variable B(s), and its duration is denoted by δT (s). So, if 0= S0, S1, S2, . . . are the starting
times of the trials, then Sn+1 = Sn+ δT (Sn). Let S be the starting time of the first successful
trial. What can we say about the distribution of S?

We are interested in an asymptotic regime where the success probabilities of the Bernoulli
trials are small and the duration of each trial conditioned on its failure is approximately
exponential with small mean. If ε(s) := P(B(s) = 1) is the success probability of the trial
starting at time s and γ (s) is the approximate exponential rate of δT (s) given B(s) = 0,
then we expect the success time S to approximately have an inhomogeneous exponential
distribution with rate ε(s)γ (s), that is,

(2.1) P(S > t)≈ e−
∫ t

0 ε(s)γ (s)ds .

In the concrete setting explained above, we have a parameter λ, and as λ→∞ we expect
ε(s)= o(1) to be close to the time-homogeneous setting with parameters λU(s) and λV (s).
Conditional on B(s)= 0, we also expect δT (s) to be bounded from below by an exponential
random variable with rate γ (s), and to have expected value [1+ o(1)]/γ (s).

Scenario with underlying Poisson process. We next concentrate on a more restricted setting
that contains the concrete setting above. Let ξξξ be a Poisson point process on [0,∞) with
time-varying rate function γ (t) and set ξ̄ξξ := {0} ∪ ξξξ . We assume that t �→ γ (t) is integrable
over any finite interval. For s ∈ ξ̄ξξ , let B(s) be a Bernoulli random variable with parameter
ε(s) > 0, where ε : [0,∞)→ (0,1) is a sufficiently smooth and increasing function. For
s ∈ ξξξ , consider also a positive integer-valued random variable L(s) that counts the duration
of a potential trial at time s in clock ticks. The random objects ξξξ and B(s), L(s) for s ∈ ξξξ do
not need to be independent. However, we assume that conditional on ξξξ the pairs (B(s),L(s))

for different values of s ∈ ξξξ are independent.
The starting times of the trials can be identified recursively as follows. The first trial is

made at time S0 := 0. The (n + 1)st trial is made at time Sn+1 := σξξξ (Sn,L(Sn)), where
σξξξ (s, k) is the k’th tick of the clock ξξξ after time s. Let ηηη := {S0, S1, S2, . . .} ⊆ ξ̄ξξ be the
random set of trial times. The first success time is S := inf{s ∈ ηηη : B(s)= 1}.
The simplest case. The special case where L(s) = 1 for every s corresponds to having an
exponential distribution with rate γ (s) for the duration of each trial. If B(s) is also indepen-
dent of the Poisson process ξξξ , then the distribution of the first hitting time is very close to an
inhomogeneous exponential distribution.

PROPOSITION 2.1 (Exponential duration). Suppose that P(L(s) = 1|B(s) = 0) = 1 for
each s ∈ ξ̄ξξ , and that the Bernoulli random variables B(s) are independent of the Poisson
process ξξξ . Then

(2.2) P(S > t)= (
1− ε(0)

)
e−

∫ t
0 ε(s)γ (s)ds .

PROOF I (VIA COLORING). This is immediate from the colouring theorem of the Poisson
processes. Namely, let us colour each point s ∈ ξξξ blue if B(s)= 1 and red otherwise. Since
different points are coloured independently, the set of blue points in ξξξ is itself a Poisson
process with rate function ε(s)γ (s). �
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PROOF II (VIA CAMPBELL’S THEOREM). Conditioning on ξξξ , we can write

(2.3)

P(S > t |ξξξ)= ∏
s∈ξ̄ξξ∩[0,t]

(
1− ε(s)

)

= (
1− ε(0)

)
e
∑

s∈ξξξ∩[0,t] log(1−ε(s)) = (
1− ε(0)

)
e�,

where � :=∑
s∈ξξξ∩[0,t] f (s) with f (s) := log(1− ε(s)). According to Campbell’s theorem

(see Kingman [13], Section 3.2), we have

E
[
e�]= exp

{∫ t

0

(
ef (s) − 1

)
γ (s)ds

}
=−

∫ t

0
ε(s)γ (s)ds ∈ (−∞,0].

The latter integral is finite because γ (s) is integrable on [0, t] and 0≤ ε(s)≤ 1. In summary,
we obtain

(2.4)
P(S > t)= E

[
P(S > t |ξξξ)

]
= (

1− ε(0)
)
E
[
e�]= (

1− ε(0)
)
e−

∫ t
0 ε(s)γ (s)ds,

which proves the claim. �

Making B(s) and L(s) independent. Since all the trials whose durations are counted in S

are unsuccessful (B(S) is the first successful trial), we can use the following trick to remove
the dependence between B(s) and L(s). For s ∈ ξ̄ξξ , we construct a new random variable
L̃(s) as follows. For B(s) = 0, set L̃(s) := L(s). Otherwise, choose L̃(s) independently of
L(s) according to the distribution P(L(s) ∈ ·|B(s) = 0). The new random variable L̃(s) is
independent of B(s). Nevertheless, when using L̃(s) instead of L(s) we get the same value
for the first success time S.

2.2. A strategy to find lower bounds. Without the simplifying assumptions used above,
we can still try to use Campbell’s theorem to find lower bounds for P(S > t). To start, we can
condition on both ξξξ and the collection L̃(·), and write

(2.5)

P
(
S > t |ξξξ, L̃(·))= ∏

s∈ηηη∩[0,t]

(
1− P

(
B(s)= 1|ξξξ ))

= e
∑

s∈ηηη∩[0,t] log(1−P(B(s)=1|ξξξ))

≥ e
∑

s∈ξ̄ξξ∩[0,t] log(1−P(B(s)=1|ξξξ))
.

The last expression is independent of L̃(·), and so we get

(2.6) P(S > t |ξξξ)≥ e
∑

s∈ξ̄ξξ∩[0,t] log(1−P(B(s)=1|ξξξ))
.

The latter expression looks like it can be integrated with the help of Campbell’s theorem,
except that P(B(s)= 1|ξξξ) depends on ξξξ . However, in our application the dependence is weak.

One idea is to use an upper bound for P(B(s)= 1|ξξξ) that is independent of ξξξ . This gives
a lower bound for P(S > t |ξξξ) in a form that is integrable by Campbell’s theorem. However,
in our application there does not seem to be any useful upper bound for P(B(s)= 1|ξξξ) that is
valid almost surely. Namely, if ξξξ happens to have an unlikely large gap from s onwards, then
the probability P(B(s)= 1|ξξξ) can be significant.

A more careful approach is to use an upper bound for P(B(s) = 1|ξξξ) that holds most of
the time. To be more specific, let ε̂(s) be a sufficiently smooth nonnegative function, and let
Nt be the number of points s ∈ ξ̄ξξ ∩ [0, t] for which P(B(s) = 1|ξξξ) > ε̂(s). Assuming that
δt (n) := P(Nt > n) decays rapidly, we hope to get a lower bound for P(S > t) of the form

(2.7) P(S > t)≥ (1− α)e−
∫ t

0 ε̂(s)γ (s)ds

for some 0 < α� 1.
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Suppose that when P(B(s) = 1|ξξξ) > ε̂(s) we have a (possibly worse) universal bound
P(B(s)= 1|ξξξ) < E, where E < 1 may depend on t but not on s, at least when ξξξ is in a highly
probable set �t . Then

(2.8)
∑

s∈ξ̄ξξ∩[0,t]
log

(
1− P

(
B(s)= 1|ξξξ ))≥ ∑

s∈ξ̄ξξ∩[0,t]
log

(
1− ε̂(s)

)+Nt log(1−E)

when ξξξ ∈�t , which implies that

(2.9) P(S > t)≥ E
[
(1−E)Nt e

∑
s∈ξ̄ξξ∩[0,t] log(1−ε̂(s))]− P(ξξξ /∈�t).

The first term on the right-hand side has the form E[Z(1 − E)Nt ] for a random variable
0 < Z ≤ 1 and a nonnegative integer-valued random variable Nt with a rapidly decaying tail
δt (n)= P(Nt > n). Campbell’s theorem can be used to integrate Z alone, but it is not clear
how we can integrate the product of Z and (1−E)Nt .

We split E[Z(1−E)Nt ] based on whether Nt is larger or smaller than a constant m ≥ 0,
which we will need to choose later:

(2.10)

E
[
Z(1−E)Nt

]≥ E
[
Z(1−E)m1Nt≤m

]+E
[
Z(1−E)Nt 1Nt>m

]
= E

[
Z(1−E)m

]−E
[
Z
(
(1−E)m − (1−E)Nt

)︸ ︷︷ ︸
≤1

1Nt>m

]

≥ (1−E)mE[Z] −E[Z1Nt>m].
Applying the Cauchy–Schwarz inequality to the second term, we have

(2.11) E[Z1Nt>m] ≤ E
[
Z2]1/2

E[1Nt>m]1/2 =√
δt (m)E

[
Z2]1/2

.

Now Campbell’s theorem allows us to calculate

(2.12) E[Z] = (
1− ε̂(0)

)
e−

∫ t
0 ε̂(s)γ (s)ds

and

(2.13)
E
[
Z2]= (

1− ε̂(0)
)2e−

∫ t
0 ([1−ε̂(s)]2−1)γ (s)ds

= (
1− ε̂(0)

)2e−2
∫ t

0 ε̂(s)[1− 1
2 ε̂(s)]γ (s)ds .

Combining (2.10)–(2.13), we get

(2.14)

E
[
Z(1−E)Nt

]≥ (1−E)m
(
1− ε̂(0)

)
e−

∫ t
0 ε̂(s)γ (s)ds

−√
δt (m)

(
1− ε̂(0)

)
e−

∫ t
0 ε̂(s)[1− 1

2 ε̂(s)]γ (s)ds

= (
1− ε̂(0)

)︸ ︷︷ ︸
≈1

[
(1−E)m︸ ︷︷ ︸
≈1

−√δt (m)︸ ︷︷ ︸
�1

e
1
2

∫ t
0 ε̂(s)2γ (s)ds︸ ︷︷ ︸
≈1

]
e−

∫ t
0 ε̂(s)γ (s)ds,

which has the desired form. In summary, we have the following proposition.

PROPOSITION 2.2 (Lower bound). Let ε̂(s) be a positive measurable function, and let
Nt be the number of points s ∈ ξ̄ξξ ∩ [0, t] for which the inequality P(B(s)= 1|ξξξ)≤ ε̂(s) fails.
Let 0 < E < 1 be a constant such that P(B(s)= 1|ξξξ)≤E whenever ξξξ is in a measurable set
�t and s ∈ ξ̄ξξ ∩ [0, t]. Then, for every m≥ 0,

P(S > t)≥ Ǩ(m)e−
∫ t

0 ε̂(s)γ (s)ds − P(ξξξ /∈�t),(2.15)

where

Ǩ(m) := (
1− ε̂(0)

)[
(1−E)m −√

δt (m)e
1
2

∫ t
0 ε̂(s)2γ (s)ds](2.16)

and δt (m) := P(Nt > m).

Think of ε̂(s) as a good typical bound and of E as a rough universal bound.
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2.3. A strategy to find upper bounds. We can try a similar approach via Campbell’s the-
orem to find an upper bound for P(S > t). Conditioning on ξξξ and L̃(·) as before, we write

(2.17)

P
(
S > t |ξξξ, L̃(·))= ∏

s∈ηηη∩[0,t]

(
1− P

(
B(s)= 1|ξξξ ))

= e
∑

s∈ηηη∩[0,t] log(1−P(B(s)=1|ξξξ)).

We have P(B(s) = 1|ξξξ) ≥ ε̌(s), which holds independently of ξξξ . Namely, ε̌(s), which is a
positive measurable function, is the probability of B(s)= 1 when we freeze the parameters
λU and λV at time s. Using this bound, we have

(2.18) P
(
S > t |ξξξ, L̃(·))≤ e

∑
s∈ηηη∩[0,t] log(1−ε̌(s)).

We can bound the sum on the right-hand side, noting that all the terms are negative, as

(2.19)

�
(
ξξξ, L̃(·)) := ∑

s∈ηηη∩[0,t]
log

(
1− ε̌(s)

)

≤ ∑
s∈ξ̄ξξ∩[0,t]

log
(
1− ε̌(s)

)− ∑
s∈ξ̄ξξ∩[0,t]

∑
r∈ξ̄ξξ∩[0,t]

s<r<σξξξ (s,L̃(s))

log
(
1− ε̌(r)

)
,

where, as before, σξξξ (s, k) denotes the k’th element of the clock ξξξ after time s. Suppose
that 0 < E′ < 1 (possibly dependent on t) is such that ε̌(s) ≤ E′ for each s ∈ [0, t]. In our
concrete setting, ε̌(s) is nondecreasing and we can choose E′ := ε̌(t). Replacing ε̌(r) by E′
in the above inequality, we get

(2.20) �
(
ξξξ, L̃(·))≤ ∑

s∈ξ̄ξξ∩[0,t]
log

(
1− ε̌(s)

)− ∑
s∈ξ̄ξξ∩[0,t]

(
L̃(s)− 1

)
log

(
1−E′

)
.

Integrating with respect to L̃(·), we get

(2.21)

P(S > t |ξξξ)= E
[
P
(
S > t |ξξξ, L̃(·))|ξξξ ]≤ E

[
e�(ξξξ,L̃(·))|ξξξ ]

≤ e
∑

s∈ξ̄ξξ∩[0,t] log(1−ε̌(s))
E

[ ∏
s∈ξ̄ξξ∩[0,t]

(
1−E′

)−(L̃(s)−1)|ξξξ
]
.

Recall that, conditional on ξξξ , the random variables L̃(s) for different values of s ∈ ξ̄ξξ are
independent. Therefore, we can take the product out of the expectation and write

(2.22) P(S > t |ξξξ)≤ e
∑

s∈ξ̄ξξ∩[0,t] log(1−ε̌(s))
∏

s∈ξ̄ξξ∩[0,t]
E
[(

1−E′
)−(L̃(s)−1)|ξξξ ].

Suppose that we can find a good bound E[(1−E′)−(L̃(s)−1)|ξξξ ] ≤ ρ(s) that holds whenever ξξξ

is in a highly probably set �t , where ρ(s) is a measurable function not depending on ξξξ . (In
particular, we would like to have ρ(s)− 1� ε̌(s) or at least ρ(s)− 1� E′. The existence
of such a bound is plausible, because E′ � 1 and L̃(s) is expected to be close to 1 with high
probability and in expectation.) Then we obtain the bound

P(S > t |ξξξ)≤ e
∑

s∈ξ̄ξξ∩[0,t][log(1−ε̌(s))+logρ(s)] + 1�c
t
(ξξξ),(2.23)

which is integrable via Campbell’s theorem. Namely, we get

(2.24)
P(S > t)≤ ρ(0)

(
1− ε̌(0)

)
e
∫ t

0 (ρ(s)[1−ε̌(s)]−1)γ (s)ds + P(ξξξ /∈�t)

≤ [
ρ(0)

(
1− ε̌(0)

)
e
∫ t

0 (ρ(s)−1)γ (s)ds]e− ∫ t
0 ε̌(s)γ (s)ds + P(ξξξ /∈�t).

Note that if ρ(s)− 1� ε̌(s), then the factor in the bracket is close to 1. In summary, we have
the following proposition.
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PROPOSITION 2.3 (Upper bound). Let ε̌(s) be a positive measurable function such that
P(B(s) = 1|ξξξ = ξ) ≥ ε̌(s) almost surely for all s ∈ ξ̄ξξ ∩ [0, t]. Let 0 < E′ < 1 be a constant
such that ε̌(s) ≤ E′ for each s ∈ [0, t]. Moreover, let ρ(s) ≥ 1 be a measurable function
such that E[(1 − E′)−(L̃(s)−1)|ξξξ = ξ ] ≤ ρ(s) for every ξ in a measurable set �t and all
s ∈ ξ̄ ∩ [0, t]. Then

P(S > t)≤ K̂e−
∫ t

0 ε̌(s)γ (s)ds + P(ξξξ /∈�t),(2.25)

where

K̂ := ρ(0)
(
1− ε̌(0)

)
e
∫ t

0 (ρ(s)−1)γ (s)ds .(2.26)

3. Back to hard-core dynamics. Throughout this section, we consider a time scaling
of the form t =M(λ)τ , where M =M(λ) is a positive function that tends to∞ as λ→∞
and τ ≥ 0 is the scaled time. In the concrete setting of the time-inhomogeneous hard-core
dynamics, we wish to use Propositions 2.2 and 2.3 to find sharp bounds for the probability
P(S > t). Two questions arise.

QUESTION 3.1. How should we choose ε̂(s), E and m? In particular, we want ε̂(s) =
ε(s)[1+ o(1)] as λ→∞, E = o(1) as λ→∞, and 0 < δt(m)� 1, preferably δt (m)= o(1)

as λ→∞.

QUESTION 3.2. Can we find a good upper bound for E[rL̃(s)−1|ξξξ ] ≤ ρ(s) for r :=
1

1−E′ > 1?

In Sections 3.1 and 3.2, we answer these questions, in the form of Propositions 3.4 and
3.3 below. In Section 3.3, this leads to a set of further tasks, summarized in Proposition 3.7
below, which we address in Section 4.

Freezing the parameters at time t =Mτ . Observe that the event Tv > Mτ depends only
on the state of the process up until time Mτ . Therefore, the probability Pu(Tv > Mτ) is
independent of the value of the parameters λU(s) and λV (s) for s > Mτ . In the remainder
of the paper, we consider a modified version of the process in which λU(s) and λV (s) are
truncated at time s =Mτ , thus assuming{

λU(s)= λU(Mτ)

λV (s)= λV (Mτ)
∀s ≥M.(3.1)

This assumption does not affect the validity of Theorem 1.3 but will simplify the presentation
of its proof.

3.1. Simplified condition for the lower bound. In order to apply Proposition 2.2, we need
a good typical upper bound ε̂(s) for P(B(s)= 1|ξξξ = ξ), where “typical” means for most ξ .
We also need a rough upper bound E for P(B(s)= 1|ξξξ = ξ) that holds uniformly in ξ , in a
highly probable set �t , and uniformly in s ∈ ξ̄ ∩ [0, t].

To obtain a typical upper bound ε̂(s), we choose a value δs > 0 (depending on λ), that is,
small compared to the overal duration t , but large enough such that typically the clock ξξξ has
at least k ticks within the interval (s, s + δs) for some k ∈ Z

+. The parameter k is chosen
large enough so that the Markov chain typically takes less than k steps to reach either u or v,
that is, a trial starting at s would typically end before time s + δs, and so we can bound its
probability by coupling the process with the one having frozen parameters λU(s + δs) and
λV (s + δs).

To make this idea precise, let δT̂v(s) denote the number of ticks of ξ from time s until the
first time the discrete Markov chain arrives at v, and define δT̂ �

u (s) similarly.
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PROPOSITION 3.3 (Simplified lower bound). Let t =M(λ)τ , where M =M(λ)→∞
as λ→∞ and τ ≥ 0 is a constant. Let δs > 0 and k ∈ Z+ (each possibly depending on λ).
Suppose that, uniformly in ξ and s ∈ ξ̄ ∩ [0, t],

P
(
δT̂v(s) > k| ξξξ = ξ,X(s)= u, δT̂v(s) < δT̂ �

u (s)
)= o(1), λ→∞.(3.2)

Then

P
(
B(s)= 1|ξξξ = ξ

)= P
(s+δs)
u

(
Tv < T �

u

)[
1+ o(1)

]
, λ→∞(3.3)

uniformly in ξ and s ∈ ξ̄ ∩ [0, t] satisfying ξ(s, s + δs)≥ k.

PROOF. Let ξ be fixed and consider a point s ∈ ξ̄ ∩ [0, t]. The success probability of the
trial starting at s can be bounded as follows. Note that

P
(
B(s)= 1|ξξξ = ξ

)= P
(
Tv(s) < T �

u (s)|ξξξ = ξ,X(s)= u
)

= P
(
Tv(s) < T �

u (s), Tv(s)≤ s + δs|ξξξ = ξ,X(s)= u
)

(3.4)

+ P
(
s + δs < Tv(s) < T �

u (s)|ξξξ = ξ,X(s)= u
)
.

For the first term, using the coupling argument discussed at the end of Section 1.2, we can
show that

P
(
Tv(s) < T �

u (s), Tv(s) < s + δs|ξξξ = ξ,X(s)= u
)

≤ P
(s+δs)
u

(
Tv < T �

u , Tv ≤ δs
)

(3.5)

≤ P
(s+δs)
u

(
Tv < T �

u

)
,

where P
(s) denotes the probability law for the time-homogeneous version of the process

having parameters λU(s) and λV (s), and P
(s)
u stands for P(s)(·|X(0)= u). For the other term,

we can write

P
(
s + δs < Tv(s) < T �

u (s)|ξξξ = ξ,X(s)= u
)

= P
(
Tv(s) < T �

u (s)|ξξξ = ξ,X(s)= u
)

× P
(
Tv(s) > s + δs|ξξξ = ξ,X(s)= u,Tv(s) < T �

u (s)
)

= P
(
B(s)= 1|ξξξ = ξ

)
P
(
Tv(s) > s + δs|ξξξ = ξ,X(s)= u,Tv(s) < T �

u (s)
)
.

(3.6)

We get a suitable bound if

P
(
Tv(s) > s + δs|ξξξ = ξ,X(s)= uTv(s) < T �

u (s)
)= o(1)(3.7)

as λ→∞, as long as ξ has at least k ticks in (s, s+δs). But if the condition ξ((s, s+δs))≥ k

is satisfied, then we can estimate

P
(
Tv(s) > s + δs|ξξξ = ξ,X(s)= u,Tv(s) < T �

u (s)
)

≤ P
(
δT̂v(s) > k|ξξξ = ξ,X(s)= u, δT̂v(s) < δT̂ �

u (s)
)
,

(3.8)

which is assumed to be o(1) as λ→∞. �
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3.2. Simplified condition for the upper bound. In order to apply Proposition 2.3 effec-
tively, we need a bound E[(1− E′)−(L̃(s)−1)|ξξξ ] ≤ 1+ E′o(1) as λ→∞, whenever ξξξ is in
a highly probable set �t . Recall that in our setting, ε̌(s) can be chosen to be the success
probability of the trial at time s if we freeze the parameters λU and λV at time s, and E′ can
be chosen to be ε̌(t). So, we have E′ = o(1) as λ→∞. The variable L̃(s) is distributed as
the discrete return time to u of the (time-inhomogeneous) Markov chain conditioned on the
event T �

u < Tv . If we would not have the time-inhomogeneity, then our study of the time-
homogeneous setting in [9] would imply that Eu[L̃(s)] = 1+o(1) as λ→∞. We expect that
time-inhomogeneity does not really affect this estimate and that L̃(s) remains close to 1 with
high probability and in expectation, even if conditioned on ξξξ . In the following proposition, ε

can be chosen to be E′ from Proposition 2.3.

PROPOSITION 3.4 (Simplified upper bound). Let t =M(λ)τ , where M(λ)→∞ as λ→
∞ and τ ≥ 0 is a constant. Let ε > 0 (depending on λ) be such that ε = o(1) as λ→∞, and
set r := 1

1−ε
. Suppose that C ≥ 1 is an integer (possibly depending on λ) and �t =�t(λ) is

a measurable set such that:

(a) εC = o(1) as λ→∞,
(b) Eu[L̃(s)1

L̃(s)≤C+1|ξξξ = ξ ] = 1+ o(1) as λ→∞,

(c) C Pu(L̃(s) > C + 1|ξξξ = ξ)= o(1) as λ→∞,
(d) supx /∈{u,v}Px(L̃(s) > C|ξξξ = ξ)= o(1) as λ→∞,

uniformly in ξ ∈ �t and s ∈ ξ̄ ∩ [0, t]. Then Eu[rL̃(s)−1|ξξξ = ξ ] ≤ 1 + εo(1) as λ→∞,
uniformly in ξ ∈�t and s ∈ ξ̄ ∩ [0, t].

PROOF. Throughout the proof, we assume that ξξξ ∈ �t . Abbreviate 	(s) := L̃(s) − 1.
The idea is to break down the possibilities according to whether 	 is small or large:

• For 	 small, we have r	 = ( 1
1−ε

)	 ≈ 1+ ε	, which on average is 1+ εo(1).
• For 	 large, the exponential tail of the distribution of 	 cancels the exponential r	.

To make this rigorous, we write

(3.9) Eu

[
r	(s)|ξξξ ]= Eu

[
r	(s)1	(s)≤C |ξξξ ]+Eu

[
r	(s)1	(s)>C |ξξξ ]

and estimate each term separately.

LEMMA 3.5 (	 small). Eu[r	(s)1	(s)≤C |ξξξ ] ≤ Pu(	(s)≤ C|ξξξ)+ εo(1) as λ→∞.

PROOF. [Proof of Lemma 3.5] For x ≥ −1 and k ≥ 1, we have (1 + x)k ≥ 1 + kx.
Therefore,

(3.10) (1− ε)−	(s) ≤ 1

1− ε	(s)
= 1+ ε	(s)

[
1+ o(1)

]
.

So,

(3.11)

Eu

[
r	(s)1	(s)≤C |ξξξ ]≤ C∑


=0

Pu

(
	(s)= 
|ξξξ )(1+ ε


[
1+ o(1)

])
≤ Pu

(
	(s)≤ C|ξξξ )+ εEu

[
	(s)1	(s)≤C |ξξξ ][1+ o(1)

]
= Pu

(
	(s)≤ C|ξξξ )+ εo(1), λ→∞. �

LEMMA 3.6 (	 large). Eu[r	(s)1	(s)>C |ξξξ ] ≤ Pu(	(s) > C|ξξξ)+ εo(1) as λ→∞.
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PROOF OF LEMMA 3.6. We start with

(3.12) Eu

[
r	(s)1	(s)>C |ξξξ ]=∑


>C

Pu

(
	(s)= 
|ξξξ )r
.

Writing r
 telescopically as

(3.13) r
 = rC +

−1∑
k=C

(
rk+1 − rk)= rC + (r − 1)


−1∑
k=C

rk,

we get

(3.14)

Eu

[
r	(s)1	(s)>C |ξξξ ]= Pu

(
	(s) > C|ξξξ )rC +∑


>C

Pu

(
	(s)= 
|ξξξ )(r − 1)


−1∑
k=C

rk

= Pu

(
	(s) > C|ξξξ )rC + (r − 1)

∑
k≥C

rk
∑

>k

Pu

(
	(s)= 
|ξξξ )

= Pu

(
	(s) > C|ξξξ )rC + (r − 1)

∑
k≥C

Pu

(
	(s) > k|ξξξ )rk.

For the first term, by the argument for the previous claim, rC = (1− ε)−C ≤ 1/(1− εC)=
1+ εC[1+ o(1)]. Therefore,

(3.15)
Pu

(
	(s) > C|ξξξ )rC ≤ Pu

(
	(s) > C|ξξξ )+ εC Pu

(
	(s) > C|ξξξ )[1+ o(1)

]
= Pu

(
	(s) > C|ξξξ )+ εo(1), λ→∞.

Since r − 1= ε[1+ o(1)], it remains to show that
∑

k≥C Pu(	(s) > k|ξξξ)rk = o(1). To this
end, note that

δ := sup
ξ∈�t

sup
s∈ξ̄∩[0,t]

sup
x /∈{u,v}

Px

(
L̃(s) > C|ξξξ = ξ

)= o(1), λ→∞.(3.16)

Slicing time into intervals of length C and using the Markov property, we get

(3.17) Pu

(
	(s) > C + iC + j |ξξξ )≤ Pu

(
	(s) > C|ξξξ )δi

for every i, j ≥ 0. Therefore,

(3.18)

∑
k≥C

Pu

(
	(s) > k|ξξξ )rk = ∑

i∈N0

C−1∑
j=0

Pu

(
	(s) > C + iC + j |ξξξ )rC+iC+j

≤ Pu

(
	(s) > C|ξξξ )rC

∑
i∈N0

δiriC
C−1∑
j=0

rj

≤ C Pu

(
	(s) > C|ξξξ )r2C

∑
i∈N0

δiriC.

Since rC = 1+ εC[1+ o(1)] = 1+ o(1) and δ = o(1), it follows that

(3.19)
∑
i∈N0

δiriC = 1

1− δrC
= 1+ o(1), λ→∞.

We also have r2C = 1+ o(1). Finally, recall that

C Pu

(
	(s) > C|ξξξ )= o(1), λ→∞.(3.20)
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Altogether, we find that

(3.21)
∑
k≥C

Pu

(
	(s) > k|ξξξ )rk = o(1), λ→∞.

�

Lemmas 3.5–3.6 complete the proof of Proposition 3.4. �

3.3. Summary and conditions. In this section, we put together the results obtained so far
to prove the middle case of identity (1.19) subject to the validity of certain hypotheses. These
hypotheses will be evaluated in Section 4, and lead to the proof of Theorem 1.3.

Short-time regularity conditions and choice of the parameters. Recall the notation δT̂v(s)

for the number of ticks of ξξξ from time s until the first hitting time of v, that is, δT̂v(s) :=
ξξξ((s, Tv(s)]), and similarly δT̂ �

u (s) := ξξξ((s, T �
u (s)]). With a similar notation, the random

variable L(s) introduced earlier is the same as δT̂ �
{u,v}(s), and its modified version satisfies

P
(
L̃(s) ∈ ·|ξξξ )= Pu

(
δT̂ �

u ∈ ·|ξξξ, δT̂ �
u (s) < δT̂v(s)

)
.(3.22)

Let

ε̌(s) := P
(s)
u

(
Tv < T �

u

)
(3.23)

be the probability that the time-homogeneous Markov chain with parameters λU(s) and
λV (s) starting from u hits v before returning to u.

As before, we consider the time scaling t =M(λ)τ , where M(λ)→∞ as λ→∞ and
τ ≥ 0. Combining Propositions 2.2, 2.3, 3.3 and 3.4, we see that it remains to verify the
following conditions for suitable choices of the parameters C = C(λ) ∈ Z+, k = k(λ) ∈ Z+,
m=m(λ) ∈ Z+ and δs = δs(λ) ∈R+ and a measurable set �Mτ satisfying P(ξξξ ∈�Mτ )→ 1
as λ→∞:

Short-time regularity conditions:

(I) E[δT̂ �
u (s)1

δT̂
�
u (s)≤C+1|ξξξ = ξ,X(s) = u, δT̂ �

u (s) < δT̂v(s)] = 1 + o(1) as λ→∞,

uniformly in ξ ∈�Mτ and s ∈ ξ̄ ∩ [0,Mτ ].
(II) C P(δT̂ �

u (s) > C + 1|ξξξ = ξ,X(s) = u, δT̂ �
u (s) < δT̂v(s)) = o(1) as λ→∞, uni-

formly in ξ ∈�Mτ and s ∈ ξ̄ ∩ [0,Mτ ].
(III) supx /∈{u,v} P(δT̂u(s) > C|ξξξ = ξ,X(s)= x, δT̂u(s) < δT̂v(s))= o(1) as λ→∞, uni-

formly in ξ ∈�Mτ and s ∈ ξ̄ ∩ [0,Mτ ].
(IV) P(δT̂v(s) > k|ξξξ = ξ,X(s)= u, δT̂v(s) < δT̂ �

u (s))= o(1) as λ→∞, uniformly in ξ

and s ∈ ξ̄ ∩ [0,Mτ ] satisfying ξ((s, s + δs))≥ k,
(V) For every sequence (λn)n∈N going to infinity, there exists a subsequence (λn(i))i∈N

such that, for all but at most countably many values τ ∈ [0,∞), Pu(S ≤Mτ < Tv) = o(1)

when λ := λn(i) and i→∞.

Choice of the parameters:

(i) ε̌(t)C = o(1).
(ii) γ (s + δs)= γ (s)[1+ o(1)] uniformly in s ∈ [0,Mτ ].

(iii) γ (Mτ)ε̌(Mτ + δs)δs = o(1)
∫Mτ

0 ε̌(s)γ (s)ds.
(iv) δMτ (m) := P(NMτ > m)= o(1), where Nt is the number of points s ∈ ξ̄ξξ ∩ [0, t] for

which ξξξ((s, s + δs)) < k.
(v) (1− ε̌(t))m = 1− o(1).
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Summary. The following proposition summarizes our results so far.

PROPOSITION 3.7 (Law of crossover time). Let M(λ) be a time scale with M(λ)→∞
as λ→∞. Suppose that C,k,m ∈ Z

+, δs ∈ R
+ and a measurable set �Mτ with P(ξξξ ∈

�Mτ )= o(1) as λ→∞ can be chosen (each possibly depending on λ) such that the above
Conditions (i)–(v) and (I)–(V) are satisfied. Then, for every sequence (λn)n∈N going to infin-
ity, there exists a subsequence (λn(i))i∈N such that, for λ := λn(i) and all but at most countably
many values τ ∈ [0,∞) satisfying ε̌(Mτ)

∫Mτ
0 γ (s)ds =O(1),

(3.24)
Pu(Tv > Mτ)≤ [

1− o(1)
]
e−

∫Mτ
0 ε̌(s)γ (s)ds + o(1), i→∞,

Pu(Tv > Mτ)≥ [
1− o(1)

]
e−

∫Mτ
0 ε̌(s)γ (s)ds, i→∞.

PROOF. We establish the upper and the lower bounds separately. The restriction to a
subsequence (λn(i))i∈N and a co-countable set of values τ ∈ [0,∞) is needed only for the
upper bound, which relies on (V). The lower bound holds for every τ ∈ [0,∞) as λ→∞.

Upper bound. By (V), for every sequence (λn)n∈N going to infinity, there exists a subse-
quence (λn(i))i∈N such that as i→∞, for all but countably many values τ ∈ [0,∞),

Pu(Tv > Mτ)= P(S > Mτ)+ Pu(S ≤Mτ < Tv)= P(S > Mτ)+ o(1).(3.25)

To bound P(S > Mτ), we apply Propositions 2.3 and 3.4. We choose E′ := ε̌(t). The condi-
tion ε̌(s)≤E′ will then be satisfied for each 0≤ s ≤ t by monotonicity (see the paragraph at
the end of Section 1.2). By (i), (I), (II) and (III), the conditions of Proposition 3.4 are satisfied
with ε := ε̌(t), and thus Eu[rL̃(s)−1|ξξξ = ξ ] ≤ ρ(s) := 1+ ε̌(t)o(1) uniformly for ξ ∈�t and
s ∈ ξ̄ ∩ [0, t], where r := 1

1−E′ . Therefore, the conditions of Proposition 2.3 are satisfied.
Observe that

K̂ = ρ(0)
(
1− ε̌(0)

)
e
∫ t

0 (ρ(s)−1)γ (s)ds

= [
1+ ε̌(t)o(1)

][
1− o(1)

]
eo(1)ε̌(t)

∫ t
0 γ (s)ds(3.26)

= 1− o(1), λ→∞,

where the last equality uses the hypothesis ε̌(t)
∫ t

0 γ (s)ds =O(1).

Lower bound. Recall that Tv = S + δT (S), and hence Pu(Tv > t) ≥ P(S > t). We apply
Propositions 2.2 and 3.3. Choose E := ε̌(t). The condition P(B(s)= 1|ξξξ = ξ)≤E for every
ξ and s ∈ ξ̄ ∩ [0, t] follows from monotonicity, thanks to the assumption made in (3.1).

By Proposition 3.3 and (IV), there exists a function v(λ)= o(1) such that

P
(
B(s)= 1|ξξξ = ξ

)≤ P
(s+δs)
u

(
Tv < T �

u

)[
1+ v(λ)

]= ε̌(s + δs)
[
1+ v(λ)

]
(3.27)

for every ξ and s ∈ ξ̄ ∩ [0, t] satisfying ξ((s, s + δs)) ≥ k. Thus, the conditions of Proposi-
tion 2.2 are satisfied with E = ε̌(t) and ε̂(s) := ε̌(s + δs)[1+ v(λ)], with �t being the set of
all point configurations ξ . Hence, we get

Pu(Tv > t)≥ P(S > t)

≥ Ǩ(m)e−
∫ t

0 ε̂(s)γ (s)ds −
0

�����
P(ξξξ /∈�t)

= Ǩ(m)e−[1+v(λ)]∫ t
0 ε̌(s+δs)γ (s)ds(3.28)

= Ǩ(m)
[
1− o(1)

]
e−

∫ t+δs
δs ε̌(s)γ (s−δs)ds

≥ Ǩ(m)
[
1− o(1)

]
e−[1−o(1)]∫ t

0 ε̌(s)γ (s)ds,
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where

Ǩ(m) := (
1− ε̂(0)

)[(
1− ε̌(t)

)m −√
δt (m)e

1
2

∫ t
0 ε̂(s)2γ (s)ds]

= [
1− o(1)

][[
1− o(1)

]− o(1)
]

(3.29)

= 1− o(1).

In (3.28), we have used (ii) and (iii). The equality in (3.29) follows from (i), (iii), (iv) and (v),
and the fact that∫ t

0
ε̂(s)2γ (s)ds = [

1+ v(λ)
]2 ∫ t

0
ε̌(s + δs)2γ (s)ds



∫ t+δs

δs
ε̌(s)2γ (s − δs)ds

	
∫ t

δs
ε̌(s)2γ (s − δs)ds + ε̌(t + δs)2γ (t)δs

	 ε̌(t)

∫ t

0
ε̌(s)γ (s)ds + ε̌(t + δs)γ (t)δs(3.30)

	 o(1)

∫ t

0
ε̌(s)γ (s)ds + o(1)

∫ t

0
ε̌(s)γ (s)ds

	 o(1)ε̌(t)

∫ t

0
γ (s)ds

= o(1),

where we use the monotonicity of ε̌(s). �

Let us point out that Proposition 3.7 is valid for any choice of the underlying bipartite
graph G, and any choice of the functions gU(·) and gV (·) satisfying gV (x) � gV (x) � 1 as
x→∞.

4. Proof of the conditions. In this section, we establish (I)–(V) for suitable choices of
the parameters C, k, m and δs satisfying (i)–(v). In Section 4.1 we simplify Conditions (i)–
(v), obtaining more explicit conditions for C, k, m and δs. In Section 4.2, we explain why (I)–
(V) are expected to be true for suitable choices of C, k, m and δs by examining similar state-
ments (I’)–(V’) in the time-homogeneous setting. In Section 4.3, we use a coupling argument
to show that, with regard to these statements (which all concern short time intervals), the time-
inhomogeneous setting behaves similarly as the time-homogeneous setting. In Section 4.4,
we put the pieces together and prove Theorem 1.3.

4.1. Choice of the parameters. In this section, we specialize to the particular form of the
functions gU(·) and gV (·) chosen in Section 1.3. The choice of the underlying bipartite graph
remains completely arbitrary.

Let us start by recalling the choices

λU(s)=
⎧⎨
⎩(cUλ−μUs)βU if s <

cU

μU

λ,

0 otherwise,
λV (s)= (cV λ+μV s)βV ,(4.1)

for s ≤Mτ , where βV > βU > 0. Note that when s ≥ cU

μU
λ, we have λU(s)= 0 and λV (s)→

∞ as λ→∞. If the crossover has not occurred by time s = cU

μU
λ, then it will happen in a time

of order O(1). Namely, it will take an exponential time with rate 1 for each vertex in U to
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become inactive, independently for different vertices, and once U is completely inactive, the
complete activation of V happens in time o(1). Let us therefore focus on the case s < cU

μU
λ.

LEMMA 4.1 (Choice of parameters). Let s ≤Mτ , and let λU(s) and λV (s) be as in (4.1).
Consider the time scaling s =Mσ with M =M(λ) > 0 and σ ∈ [0,∞), and suppose that
either 1	M ≺ λ, or M 
 λ and Mσ < cU

μU
λ. Then Conditions (i)–(v) are met when

C = o(1)

ε̌(M)
, m= o(1)

ε̌(M)
, δs = o(M),

k ≤ 1

2

[
inf
u

γ (u)
]
δs, mδs �M,

(4.2)

as λ→∞.

PROOF. We consider the two scaling regimes separately.

Regime 1	M ≺ λ. We begin with some observations. In this case,

λU(Mσ)= c
βU

U λβU
[
1+ o(1)

]
, λV (Mσ)= c

βV

V λβV
[
1+ o(1)

]
,(4.3)

for every σ ≥ 0. This means that the orders of magnitude of λU(Mσ) and λV (Mσ) (up to
their pre-factors) do not change with the scaled time σ . Clearly, for fixed τ ≥ 0, the o(1)

terms in the above asymptotics are uniform in σ ∈ [0, τ ]. It follows that

γ (Mσ)= (
1+ λU(Mσ)

)|U | + (
1+ λV (Mσ)

)|V | = |V |cβV

V λβV
[
1+ o(1)

]
,(4.4)

where the o(1) term is again uniform in σ ∈ [0, τ ]. Recall that

ε̌(s)= P
(s)
u

(
Tv < T �

u

)= 1

π(s)(u)R(s)(u↔ v)
,(4.5)

where π(s) is the stationary probability of the Markov chain with parameters λU(s) and
λV (s), and R(s)(u↔ v) is the effective resistance between u and v in the same Markov
chain (see [14], Proposition 9.5). Note that both π(s)(u) and R(s)(u↔ v) are rational func-
tions of λU(s) and λV (s). Namely, the stationary distribution π(s) is the solution of a system
of linear equations whose coefficients are rational in λU(s) and λV (s). Likewise, the effective
conductance 1/R(s)(u↔ v) is the strength of the current flow from u to v when we put a
unit battery between u and v, and hence is a linear combination of the voltage values with
coefficients that are rational in λU(s) and λV (s). The voltage associated with the unit battery
between u and v (i.e., a harmonic function with boundary conditions 0 and 1 at u and v, re-
spectively) is itself the solution of a linear system of equations whose coefficients are rational
in λU(s) and λV (s). It follows that

ε̌(Mσ)= ε̌(0)
[
1+ o(1)

]
,(4.6)

where the o(1) term is uniform in σ ∈ [0, τ ].
Next, we discuss the choice of parameters C, k, m and δs in order for Conditions (i)–

(v) to be fulfilled. In order to satisfy (i) and (v), we choose C = o(1)
ε̌(M)

and m = o(1)
ε̌(M)

as
λ→∞. In light of the above discussion, Condition (ii) is automatically satisfied because
of (4.4). By (4.4) and (4.6), Condition (iii) is satisfied as long as δs = o(M). To simplify
Condition (iv), we use the following lemma.
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LEMMA 4.2. Let Nt denote the number of points s ∈ ξ̄ξξ ∩ [0, t] such that ξ̄ξξ((s, s+ δs)) <

k, and δt (m) := P(Nt > m). Then

δMτ (m)	 M

mδs
, λ→∞,(4.7)

provided k ≤ 1
2 [inf

u
γ (u)]δs.

PROOF. [Proof of Lemma 4.2] We start by writing

E[Nt ] = E

[ ∑
s∈ξ̄ξξ∩[0,t]

1
ξ̄ξξ
(
(s,s+δs)

)
<k

]

= P
(
ξξξ
(
(0, δs)

)
< k

)+E

[ ∑
s∈ξξξ∩[0,t]

1
ξ̄ξξ
(
(s,s+δs)

)
<k

]
(4.8)

= P
(
ξξξ
(
(0, δs)

)
< k

)+ ∫ t

0
P
(
ξξξ
(
(r, r + δs)

)
< k

)
γ (r)dr,

where the last equality follows from the Campbell–Mecke formula (see [1], Theorems 1.11
and 1.13). Note that Wr := ξξξ((r, r + δs)) is a Poisson random variable with parameter∫ r+δs
r γ (u)du. Therefore, choosing

k ≤ 1

2

[
inf
u

γ (u)
]
δs ≤ 1

2

∫ r+δs

r
γ (u)du= 1

2
E[Wr ],(4.9)

we can use the Chebyshev inequality to get

P(Wr < k)≤ Var[Wr ]
(E[Wr ] − k)2 =

∫ r+δs
r γ (u)du

(
∫ r+δs
r γ (u)du− k)2

≤ γ (r + δs)δs

(γ (r)δs − 1
2 [infu γ (u)]δs)2

[
1+ o(1)

]
(4.10)

≤ γ (r)δs
1
4(γ (r)δs)2

[
1+ o(1)

]≤ 4

γ (r)δs

[
1+ o(1)

]
.

Therefore, by the Markov inequality,

δt (m)≤ E[Nt ]
m
≤ 1

m

[
O(1)

[infu γ (u)]δs +
∫ t

0

O(1)

γ (r)δs
γ (r)dr

]

≤ O(1)

mδs

[
1

infu γ (u)
+ t

]
,

(4.11)

which proves the claim because infu γ (u)→∞ as λ→∞ and t =Mτ with τ ≥ 0 a constant.
�

We continue with the proof of Lemma 4.1. It follows from Lemma 4.2 that, in order to
satisfy Condition (iv), we can choose k ≤ 1

2γ (0)δs and make sure that mδs �M as λ→∞.
Regime M 
 λ. Let Mτ < cU

μU
λ. It is still the case that the orders of magnitude of

λU(Mσ), λV (Mσ), γ (Mσ) and ε̌(Mσ) do not change for σ ∈ [0, τ ]. Hence C = o(1)
ε̌(M)

and

m= o(1)
ε̌(M)

still guarantee Conditions (i) and (v). In order to satisfy Condition (ii), it is enough
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that δs = o(M). Indeed, if δs = o(M), then

γ (Mσ + δs)= |V |λV (Mσ + δs)
[
1+ o(1)

]
= |V |(cV λ+μV Mσ +μV δs)βV

[
1+ o(1)

]
= |V |(cV λ+μV Mσ)βV

[
1+ o(1)

]
= γ (Mσ)

[
1+ o(1)

]
.

(4.12)

Furthermore, δs = o(M) still ensures (iii). Finally, Lemma 4.2 remains valid when in the last
two lines of (4.10) we change [1 + o(1)] to O(1). Hence k ≤ 1

2γ (0)δs and mδs �M still
ensure that Condition (iv) is satisfied. �

In the proof of Lemma 4.1, we made that important observation that, with the choices of
parameters in (4.1), the orders of magnitude of λU(s), λV (s), γ (s) and ε̌(s) do not change as
long as s < cU

μU
λ. For future reference, we state this as a separate proposition.

PROPOSITION 4.3 (Orders of magnitude). Consider the time scaling s =Mσ with M =
M(λ) > 0 and σ ∈ [0, τ ]. If either 1	M ≺ λ, or M 
 λ and Mσ < cU

μU
λ, then

λU(Mσ)
 λU(0), λV (Mσ)
 λV (0),

ε̌(Mσ)
 ε̌(0), γ (Mσ)
 γ (0),
(4.13)

as λ→∞.

4.2. Short-time regularity in the time-homogeneous setting. We have extensively ex-
ploited the monotonicity of the hard-core model in the parameters λU and λV . Unfortunately,
this monotonicity does not provide us with any meaningful information about the conditional
probabilities involved in the short-time regularity Conditions (I)–(V). This lack of mono-
tonicity makes the evaluation of these conditions challenging. It is helpful to first examine
conditions similar to (I)–(V) in a time-homogeneous setting. In order to apply the results
of [9], we will need to impose mild conditions on the isoperimetric properties of the under-
lying bipartite graph.

Simpler conditions. In the time-homogeneous setting, Conditions (I)–(V) reduce to the fol-
lowing simpler conditions:

(I’) E
(s)
u [T̂ �

u 1
T̂
�
u ≤C+1|T̂ �

u < T̂v] = 1+ o(1) as λ→∞.

(II’) C P
(s)
u (T̂ �

u > C + 1|T̂ �
u < δT̂v)= o(1) as λ→∞.

(III’) supx /∈{u,v} P(s)
x (T̂u > C|T̂u < δT̂v)= o(1) as λ→∞.

(IV’) P
(s)
u (T̂v > k|T̂v < T̂ �

u )= o(1) as λ→∞.
(V’) P

(s)
u (S ≤Mτ < Tv)= o(1) as λ→∞.

We require these conditions to be satisfied uniformly in s ∈ [0,Mτ ]. Before we proceed, let
us mark a slight difference in notation compared to [9]. In the present paper, T �

u and Tv are
the continuous-time return and hitting times, while T̂ �

u and T̂v are the discrete-time versions
of the return and hitting times (i.e., obtained by counting the number of ticks of the Poisson
clock). The notation used in [9] was the opposite, because all the analysis in that paper was
based on the discrete time.

Notation. To establish (I’)–(V’), we can follow different approaches. Here, we use the tools
developed in [9] based on ideas from [15], Section B.4. Let us briefly recall some relevant
concepts and notation from [9]. For brevity, we drop the superscript (s) from P

(s), E(s), K(s),
π(s), etc. whenever there is no chance of confusion. Similarly, we write γ , ε, �, etc. instead
of γ (s), ε̌(s), �(s), etc.
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Energy barriers and stability levels. Given two distinct configurations a, b ∈X , we write
a ∼ b if K(a, b) > 0 (or equivalently, K(b, a) > 0). We consider a simple undirected graph
on the configuration space X in which two points a, b ∈X are connected if and only if
a ∼ b. The conductance of an edge (a, b) is denoted by c(a, b) := π(a)K(a, b), and its
resistance by r(a, b)= 1/c(a, b). The critical resistance between two subsets A,B ⊆X is
defined as

�(A,B) := inf
ω:A�B

sup
e∈ω

r(e),(4.14)

where the infimum runs over all paths ω :A � B from A to B . The logarithm of �(A,B) is
often referred to as the communication height A and B . It can be thought of as the (absolute)
height of the smallest hill that the process needs to climb in order to go from A to B or
vice versa. Recall that as λ→∞, �(A,B) has the same order of magnitude as the effective
resistance R(A↔ B) between A and B .

For a state x ∈X , we write

J−(x) := {y ∈X : π(y)� π(x) as λ→∞}(4.15)

for the set of states y that have asymptotically larger stationary probability than x. The bound-
ary of a set A⊆X is defined as

∂A := {b ∈X \A : a ∼ b for some a ∈A}.(4.16)

For A⊆X , define

�(A) := sup
a∈A

π(a)�
(
a, J−1(a)

)
.(4.17)

The logarithm of �({x}) (for x ∈ X ) is often referred to as the stability level of a, and
can be thought of as the “energy barrier” when going from a to states with higher station-
ary probability, or the (relative) height of the shortest hill that the process starting from
a needs to climb in order to reach a state with higher stationary probability. Recall that
Ex[T̂J−(x)] 
 π(x)�(x, J−(x)) for every x (see [9], Proposition B.2) and, in particular, that
supx∈AEx[T̂Ac] 	 �(A) as λ→∞.

Let

� := π(u)�(u, v),(4.18)

�̌ := �
(
X \ {u, v})= sup

x∈X \{u,v}
π(x)�

(
x, {u, v}).(4.19)

We know that ε := Pu(T̂v < T̂ �
u )
 1/�. From the above remarks, we also get that Eu[Ťv] 


� provided �̌ 	 �. Furthermore, if �̌ ≺ � (which is the no-deep-well property), then the
transition time from u to v is asymptotically exponentially distributed ([9], Corollary B.7).

LEMMA 4.4 (No deep well property). Subject to Assumption 1.1, � � �̌ logγ � logγ .

PROOF. Let x ∈X \ {u, v}. Note that every path ω : x � J−(x) contains a transition

y
+−→ z where a particle is added to either U or V , so that π(y)	 π(x)≺ π(z). Then

�(ω)� r(y, z)= 1

π(y)K(y, z)
=
⎧⎪⎨
⎪⎩

γ

π(y)λU

if y
+U−−→ z,

γ

π(y)λV

if y
+V−−→ z,

(4.20)

which is � 1/π(y). Therefore, π(x)�(x, J−(x)) � 1. It follows that �̌ � 1. In the special
case in which G is a complete bipartite graph, every configuration x ∈X \ {u, v} has itself
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a missing particle and, therefore, there exists a configuration z such that x
+−→ z. It follows

that, in this case, �̌ 
 γ /λU .
Let us next argue that � � �̌ under Assumption 1.1. According to [9], Corollary 3.5,

�̌ ≺ � as long as hypothesis (H0) and (H2) in [9] are satisfied. Hypothesis (H0) says that
|U |< (1+ α)|V |, where

α := lim
λ→∞

logλV

logλU

− 1= lim
λ→∞

log(cV λ+μV s)βV

log(cUλ−μUs)βU
− 1= βV

βU

− 1.(4.21)

On the other hand, it can be verified that if G is a complete bipartite graph, then � 
 γ λ
|U |−1
U

(see [9], Example 2.1), which is of higher order of magnitude than �̌ 
 γ /λU .
Lastly, note that � and �̌ are increasing rational functions of λ, while logγ 
 logλ. Since

�̌ ≺ �, we in fact have �̌ logγ ≺ �. �

Verificiation of Conditions (I’)–(V’). The validity of Conditions (I’) and (II’) follows from
part (i) of the following proposition (with the help of the Markov inequality).

PROPOSITION 4.5. Subject to Assumption 1.1:

(i) E
(s)
u [T̂ �

u |T̂ �
u < T̂v] = 1+ o(1) as λ→∞.

(ii) E
(s)
u [T̂v|T̂v < T̂ �

u ] = E
(s)
u [T̂v]o(1) as λ→∞.

PROOF. The estimate on Eu[T̂ �
u |T̂ �

u < T̂v] in the time-homogeneous setting is implicit
in the proof of [9], Theorem 1.2. Let:

• ε := Pu(T̂v < T̂ �
u )= P(B = 1),

• μ := Eu[T̂ �
u |T̂ �

u < T̂v] = E[δT |B = 0],
• η := Eu[T̂v|T̂v < T̂ �

u ] = E[δT |B = 1],
• M := Eu[T̂v].
We know that

ε = 1

π(u)R(u↔ v)

 1

�
= o(1), as λ→∞.(4.22)

The first equality is [9], equation (A.5), which is standard. The second equality follows
from the fact that R(u↔ v) 
 �(u, v) (Proposition A.2 of [9]), and the last equality is
by Lemma 4.4. Furthermore, we know that

M = π(u)R(u↔ v)[1+ o(1)], as λ→∞.(4.23)

Under Assumption 1.1(b), (4.23) is the same as [9], equation (4.1). Note that in our setting,
hypothesis (H0) of [9] follows from βU |U |< βV |V |. Under Assumption 1.1(a), (4.23) is the
same as [9], equation (2.5) in Example 2.1.

Now note that M = (1/ε − 1)μ+ η. Since μ ≥ 1, it follows that μ = 1+ o(1) and η =
o(M) as λ→∞. �

For Conditions (III’) and (IV’), we use an asymptotic result on conditional tail probabilities
of exit times established in [9].

PROPOSITION 4.6. Conditions (III’) and (IV’) are satisfied provided C � �̌ logγ .
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PROOF. That (III’) is satisfied follows from [9], Proposition B.9, if we set A :=X \
{u, v}, B1 := {u} and B2 := {v}. Namely, note that for this case κ 
 1/γ . Set ρ := C/�̌.
Then, by the above-mentioned proposition, there exists a constant α < 1 such that

(4.24)

sup
x /∈{u,v}

P
(s)
x (T̂u > C|T̂u < δT̂v)	 αρκ−|X \{u,v}|

= αC/�̌γ |X |−2 = e(C/�̌) logα+(|X |−2) logγ ,

which tends to 0 as λ→∞.
The argument for (IV’) is similar. First, condition on the state of the Markov chain after

one step. The state of the chain after one step is x /∈ {u, v}. Now apply [9], Proposition B.9,
with A :=X \ {u, v}, B1 := {v} and B2 := {u} and note that κ 
 1/γ . �

PROPOSITION 4.7. Subject to Assumption 1.1, Condition (V’) is satisfied.

PROOF. Let Q=Q(λ) be such that

E
(s)
u

[
Tv|Tv < T �

u

]≺Q≺ E
(s)
u [Tv], λ→∞.(4.25)

By Proposition 4.5(ii), such a function Q can be chosen. Let δT := Tv − S, and note that δT

has distribution Pu(Tv ∈ ·|Tv < T �
u ) and is independent of S. Hence

Pu(S ≤Mτ < Tv)= Pu(Mτ − δT ≤ S < Mτ)

≤ P(δT ≥Q)Pu(Mτ − δT ≤ S < Mτ |δT ≥Q)

+ P(δT < Q)Pu(Mτ −Q≤ S < Mτ).

By the Markov inequality, P(δT ≥ Q) = o(1). To bound the second term, recall from [9],
Theorem 2.1, that the distribution of S/E[S] converges weakly as λ→∞ to an exponential
distribution with rate 1. Hence

Pu(Mτ −Q≤ S < Mτ)= Pu

(
Mτ

E[S] −
Q

E[S] ≤
S

E[S] <
Mτ

E[S]
)
.(4.26)

Since Q ≺ E[S] and the exponential distribution has no atom, we find that Pu(Mτ −Q ≤
S < Mτ)= o(1). �

In summary, we have the following solution for the parameters ensuring that the time-
homogeneous Conditions (I’)–(V’) of the short-time regularity conditions are satisfied.

PROPOSITION 4.8 (Short-time regularity: time-homogeneous setting). Subject to As-
sumption 1.1 and the constraints

logγ

γ
�̌ ≺M ≺ logγ

γ
�̌�, λ→∞,(4.27)

there is a choice of the parameters C, m, δs, k for which Conditions (i)–(v) and (I’)–(V’) are
satisfied. In particular, a proper choice is

C := k :=A1�̌ logγ, δs :=A1A2
logγ

γ
�̌, m := A3Mγ

A1A2�̌ logγ
,(4.28)

for any choices of A1 =A1(λ), A2 =A2(λ) and A3 =A3(λ) that tend to infinity sufficiently
slowly as λ→∞.
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PROOF. Conditions (I’), (II’) and (V’) are guaranteed by Proposition 4.5 and Proposi-
tion 4.7. According to Proposition 4.6, Conditions (III’) and (IV’) are satisfied if C � �̌ logγ

and k � �̌ logγ . So, set C := k :=A1�̌ logγ for some A1 � 1 to be chosen later.
By Lemma 4.1, Conditions (i)–(v) are guaranteed if

(4.29) C = �o(1), m= �o(1), δs = o(M), k ≤ 1
2γ δs, mδs �M.

The first condition in (4.29) is satisfied if A1�̌ logγ ≺ �. By Lemma 4.4, the latter condition
is satisfied as long as A1→∞ sufficiently slowly as λ→∞.

In order to satisfy the third and the fourth condition in (4.29), we must be able to choose
δs such that 2A1

logγ
γ

�̌ ≤ δs ≺M . Set δs :=A1A2
logγ

γ
�̌, for some A2 � 1 to be chosen later

such that A1A2
logγ

γ
�̌ ≺M .

In order to satisfy the second and the fifth condition in (4.29), we must be able to choose
m such that m≺ � and mA1A2

logγ
γ

�̌ �M . This can be done if M ≺A1A2
logγ

γ
�̌�, in which

case we can set m := A3M/A1A2
logγ

γ
�̌ with A3 tending to infinity sufficiently slowly as

λ→∞.
Finally, if logγ

γ
�̌ ≺M ≺ logγ

γ
�̌�, then we are able to choose A1,A2 � 1 such that all five

conditions in (4.29) are satisfied. �

In conclusion, in the time-homogeneous setting we have proved that Conditions (i)–(v)
and (I’)–(V’) can be simultaneously met subject to mild conditions on the time scale M .
These conditions capture the critical regime. Indeed, since ν = εγ 
 γ /�, the critical regime
corresponds to M 
 �/γ . Since �̌ logγ � 1 as λ→∞, the upper bound in (4.27) is matched.
Since � � �̌ logγ and (logγ )/γ → 0 as γ →∞, also the lower bound is matched.

4.3. Short-time regularity in the time-inhomogeneous setting. In this section, we estab-
lish the short-time regularity Conditions (I)–(V). We focus on the critical regime Mν(0)
 1
when M ≺ λ, or M 
 λ and Mτ < cU

μU
λ. Inspired by Proposition 4.8, we choose

C := k :=A1�̌
(0) logγ (0), δs :=A1A2

logγ (0)

γ (0)
�̌(0),

m := A3Mγ(0)

A1A2�̌(0) logγ (0)
,

(4.30)

where A1 = A1(λ), A2 = A2(λ) and A3 = A3(λ) tend to infinity as λ→∞ sufficiently
slowly. By Proposition 4.8 and Proposition 4.3, we already know that these choices sat-
isfy (i)–(v) provided that

logγ (0)

γ (0)
�̌(0) ≺M ≺ logγ (0)

γ (0)
�̌(0)�(0), λ→∞.(4.31)

In the critical regime Mγ(0)ε̌(0) 
 1, the latter condition is satisfied since Mγ(0) 
 �(0)

and �(0) � �̌(0) logγ (0).

Comparison. Conditions (I) and (II) will be handled by direct comparison with the time-
homogeneous process analysed previously.

LEMMA 4.9 (Short-term comparison of probabilities of events). Let (Xi)i∈N and
(X′i )i∈N be two discrete-time Markov chains with the same finite state space X and (possibly
time-inhomogeneous) transition probabilities Ki(x, y) and K ′i (x, y) for x, y ∈X . Suppose
that β > 0 is such that Ki(x, y) ≤ (1 + β)K ′i (x, y) for all i ∈ N and x, y ∈X . Then, for
every state u ∈X and every event E ∈X n (with n ∈N),

P
(
(X1, . . . ,Xn) ∈E|X0 = u

)≤ (1+ β)n P
((

X′1, . . . ,X′n
) ∈E|X′0 = u

)
.(4.32)
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LEMMA 4.10 (Comparison of transition probabilities at different times). For the time-
inhomogeneous process under consideration, the transition matrices K(s) and K(s′) at times
0≤ s, s ′ < cU

μU
λ satisfy K(s)(x, y)≤ (1+ βs,s′)K(s′)(x, y) for every x, y ∈X , where βs,s′ 


|s − s′|/λ as λ→∞. The time instants s, s′ are allowed to depend on λ, but must satisfy
|s − s′| = o(λ) and cUλ−μUs, cUλ−μUs′ � λ as λ→∞.

PROOF. Recall that K(s)(x, y) is either 0 or is of the form λU(s)/γ (s), λV (s)/γ (s) or
1/γ (s). We show that, for every 0≤ s, s ′ ≤ cU

μU
λ,

1

1+ θs,s′
≤ λU(s)

λU(s′)
≤ 1+ θs,s′,

1

1+ θs,s′
≤ λV (s)

λV (s′)
≤ 1+ θs,s′,(4.33)

where θs,s′ 
 |s − s′|/λ. Indeed,

λU(s)

λU(s′)
= (cUλ−μUs)βU

(cUλ−μUs′)βU
=
[
1+ μU(s′ − s)

cUλ−μUs′
]βU

,(4.34)

which is ≤ 1+ θs,s′ when θs,s′ ≥ 2βUμU |s′−s|
cUλ−μUs′ 
 |s − s′|/λ. The opposite inequality follows

by symmetry. The inequality for λV follows similarly.
Since γ (s) has the same order of magnitude as λV (s), it follows that

1

1+ θs,s′
≤ γ (s)

γ (s′)
≤ 1+ θs,s′,(4.35)

and hence

1

(1+ θs,s′)2 ≤
K(s)(x, y)

K(s)(x, y)
≤ (1+ θs,s′)

2(4.36)

for every x, y ∈X . Thus, the claim holds with βs,s′ = 2θs,s′ + θ2
s,s′ 
 θs,s′ 
 |s − s′|/λ. �

The combination of Lemma 4.9 and Lemma 4.10 leads us to the following proposition.

PROPOSITION 4.11 (Short-term comparison with time-homogeneous process). Let N =
N(λ) be a nonnegative integer such that N � 1 as λ→∞. Consider the time scaling t =
Mτ with M =M(λ) and τ ∈ [0,∞), and suppose that either 1 	M ≺ λ, or M 
 λ and
τ < cU

μU

λ
M

. Set T0 := s, and let T1, T2, . . . be the consecutive points of the Poisson process ξξξ

after time s. Then, for every state x ∈X and every event E ∈X N , there exists a constant
DN such that

P
([

X(T0),X(T1), . . . ,X(TN)
] ∈E|X(s)= x,ξξξ = ξ

)
≤DN P

(s)([X̂(0), X̂(1), . . . , X̂(N)
] ∈E|X̂(0)= x

)(4.37)

as λ→∞, uniformly in s ∈ [0,Mτ ] and ξ satisfying ξ([s, s + λ/N])≥N .

PROOF. Let 	 := λ/N and note that 	= o(λ). By Lemma 4.10, there exists a constant
B such that K(s′)(x, y) ≤ (1 + B/N)K(s)(x, y) for every s′ satisfying s ≤ s′ ≤ s +	 and
every x, y ∈X . Therefore, by Lemma 4.9, on the event {ξξξ([s, s +	])≥N},

P
([

X(T0),X(T1), . . . ,X(TN)
] ∈E|ξξξ,X(s)= x

)
≤DN P

(s)([X̂(0), X̂(1), . . . , X̂(N)
] ∈E|X̂(0)= x

)(4.38)

where DN := (1+B/N)N ≤ eB . �
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LEMMA 4.12. Consider the time scaling t =Mτ with M =M(λ) and τ ∈ [0,∞), and
suppose that either 1 	M ≺ λ, or M 
 λ and τ < cU

μU

λ
M

. Let N = N(λ) be a nonnegative

integer such that N2 ≺ γ (0)λ. Then, with probability 1− o(1) as λ→∞, ξξξ([s, s+ λ/N])≥
N for every s ∈ [0,Mτ ].

PROOF. Let 	 := λ/N . Note that X := ξξξ([s, s+	/2]) is a Poisson random variable with
parameter

∫ s+	/2
s γ (u)du
 γ (0)	/2, where the last asymptotic equality holds by Proposi-

tion 4.3. By the Chebyshev inequality, uniformly in s ∈ [0,Mτ ],
P
(
ξξξ
([s, s +	/2])< N

)= P
(
E[X] −X ≥ E[X] −N

)≤ Var[X]
(E[X] −N)2


 γ (0)	/2

(γ (0)	/2−N)2 =
2γ (0)	

(γ (0)	)2(1− 4N2

γ (0)λ
)2

(4.39)


 1

γ (0)	
.

Partition the interval [0,Mτ ] into segments of length 	/2. Note that if ξξξ has at least N points
in each of these segments, then ξξξ([s, s +	])≥N for every s ∈ [0,Mτ ]. Hence

P
(
ξξξ
([s, s +	])< N for some s ∈ [0,Mτ ])
	
⌈

Mτ

	/2

⌉
× 1

γ (0)	
	 λN2

γ (0)λ2 = o(1),
(4.40)

as claimed. �

Verification of (I)–(V). In what follows, we assume the following:

(∗) Suppose that Assumptions 1.1–1.2 are satisfied. Consider the time scaling s =Mσ

with M =M(λ) and σ ∈ [0,∞), and suppose that either 1 	M ≺ λ, or M 
 λ and σ <
cU

μU

λ
M

. Suppose further that Mν̌(0)
 1.

Applying Proposition 4.11 and Lemma 4.12, we can now establish the short-time regular-
ity Conditions (I) and (II) by comparison with the time-homogeneous setting.

PROPOSITION 4.13. Let C be as in (4.30). Subject to (∗), Conditions (I) and (II) are
satisfied.

PROOF. First recall, from monotonicity and assumption (3.1), that almost surely

P
(
δT̂ �

u > δT̂v|ξξξ,X(s)= u
)≤ ε̌(Mτ)
 ε̌(0)= o(1).(4.41)

Therefore, it is enough to show that

(4.42)
E
[
δT̂ �

u (s)1
δT̂

�
u (s)≤C+1|ξξξ = ξ,X(s)= u

]= 1+ o(1),

C P
(
δT̂ �

u (s) > C + 1|ξξξ = ξ,X(s)= u
)= o(1),

uniformly in s ∈ [0,Mτ ] and in ξ belonging to a set �Mτ satisfying P(ξξξ ∈�Mτ )= 1− o(1).
Note that both these statements concern events that depend on no more than N := C+1 ticks
of the Poisson clock starting from s. Thus, applying Proposition 4.11, we get

(4.43)
E
[
δT̂ �

u (s)1
δT̂

�
u (s)≤C+1|ξξξ = ξ,X(s)= u

]≤DN ×E
(s)
u

[
T̂ �

u 1
T̂
�
u ≤C+1

]
,

C P
(
δT̂ �

u (s) > C + 1|ξξξ = ξ,X(s)= u
)≤DN ×C P

(s)
u

(
T̂ �

u > C + 1
)
,

uniformly in s ∈ [0,Mτ ] and in ξ satisfying ξ([s, s + λ/N])≥N .
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Next, note that

N2 = (C + 1)2 
A2
1
(
�̌(0))2(logγ (0)

)2
.(4.44)

Let us first argue that, if A1 is chosen to grow sufficiently slowly, then the right-hand side
of (4.44) is ≺ �(0), which in turn is 	 γ (0)λ. To see the first inequality, note that �(0) and
�̌(0) are rational function of λU 
 λβU and λV 
 λβV (see the proof of Lemma 4.4). Since
(�̌(0))2 is assumed to be of smaller order than �(0), it follows that (�̌(0))2(logγ (0))2 

(�̌(0))2(logλ)2 is of smaller order than �(0) as well. To see the second inequality, note
that �(0) 
 1/ε̌(0) = γ (0)/ν(0) 
 γ (0)M 	 γ (0)λ. Thus, applying Lemma 4.12, we find
that the equalities in (4.43) hold uniformly in s ∈ [0,Mτ ] and in ξ in a set �Mτ satisfying
P(ξξξ ∈�Mτ )= 1− o(1) as λ→∞.

To prove the claim, it remains to show that

E
(s)
u

[
T̂ �

u 1
T̂
�
u ≤C+1

]= 1+ o(1), C P
(s)
u

(
T̂ �

u > C + 1
)= o(1),(4.45)

uniformly in s ∈ [0,Mτ ]. But these follow from Proposition 4.5(i) and the fact that
P

(s)
u (T̂ � < T̂v)= 1− ε̌(s)= 1− o(1) uniformly in s ∈ [0,Mτ ]. �

A similar approach establishes (III) and (IV). In this case, we cannot directly apply Propo-
sition 4.6. Instead, we need to redo the proof of Proposition B.9 of [9].

PROPOSITION 4.14. Let C be as in (4.30). Subject to Condition (∗), Condition (III) is
satisfied.

PROOF. Following the proof of [9], Proposition B.9, we can write

�© := sup
x /∈{u,v}

P
(
δT̂u(s) > C|ξξξ = ξ,X(s)= x, δT̂u(s) < δT̂v(s)

)

= sup
x /∈{u,v}

P(δT̂v(s) > δT̂u(s) > C|ξξξ = ξ,X(s)= x)

P(δT̂v(s) > δT̂u(s)|ξξξ = ξ,X(s)= x)

≤ sup
x /∈{u,v}

P(δT̂{u,v}(s) > C|ξξξ = ξ,X(s)= x)

P(δT̂v(s) > T̂u(s)|ξξξ = ξ,X(s)= x)
.

(4.46)

Applying Proposition 4.11, we see that the numerator in the right-hand side of (4.46) is
bounded from above by DC P

(s)
x (T̂{u,v} > C) uniformly in ξ and s ∈ [0,Mτ ] satisfying

ξ([s, s+λ/C])≥ C. Lemma 4.12 together with the assumption �̌(0) ≺√�(0) implies that for
ξ in a set �Mτ satisfying P(ξξξ ∈�Mτ )= 1− o(1), the inequality ξ([s, s + λ/C])≥ C holds
for every s ∈ [0,Mτ ] (see the proof of Proposition 4.13). The denominator in the right-hand
side of (4.46) is by monotonicity bounded from below by P

(s)
x (T̂v > T̂u). Hence

�©≤ sup
x /∈{u,v}

DC P
(s)
x (T̂{u,v} > C)

P
(s)
x (T̂v > T̂u)

(4.47)

uniformly in ξ ∈�Mτ and s ∈ [0,Mτ ]. By [9], Proposition B.8, P(s)
x (T̂{u,v} > C) is bounded

from above by αρ where α < 1 is a constant and ρ := C/�̌(s) = A1 logγ (s). Let κ(s) :=
min{K(s)(a, b) : a, b ∈X ,K(a, b) > 0} = 1/γ (s). Let w be a simple path from x to u that
does not pass through v. The length of w is no larger than |X | − 2. Therefore, P(s)

x (T̂v >

T̂u)≥ P
(s)
x (X̂ follows w)≥ κ(s)|X |−2. Hence

�©≤DCαA1 logγ (s)γ (s)|X |−2 =DCeA1 logγ (s) logα+(|X |−2) logγ (s)(4.48)

uniformly in ξ ∈ �Mτ and s ∈ [0,Mτ ]. Now recall from Proposition 4.3 that γ (0) 
 γ (s)

for every 0 ≤ s ≤Mτ . Since A1 � 1, it follows that �©= o(1) uniformly in ξ ∈ �Mτ and
s ∈ ξ̄ ∩ [0,Mτ ]. �
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PROPOSITION 4.15. Let k and δs be as in (4.30). Subject to (∗), Condition (IV) is sat-
isfied.

PROOF. As in the proof of Proposition 4.14 above, we start with observing that

�© := P(δT̂v(s) > k|ξξξ = ξ,X(s)= u, δT̂v(s) < δT̂ �
u (s))

= P(δT̂ �
u (s) > δT̂v(s) > k|ξξξ = ξ,X(s)= u)

P(δT̂ �
u (s) > δT̂v(s)|ξξξ = ξ,X(s)= u)

≤ P(δT̂{u,v}(s) > k|ξξξ = ξ,X(s)= u)

P(δT̂ �
u (s) > δT̂v(s)|ξξξ = ξ,X(s)= u)

.

(4.49)

By monotonicity and assumption (3.1), the denominator can be bounded from below by
P

(Mτ)
u (T̂ �

u > T̂v). Applying Lemma 4.9 and Lemma 4.10, we see that, for s satisfying
ξ((s, s + δs)) ≥ k, the numerator of the right-hand side of (4.49) is bounded from above
by (1+ δs

λ
)k P(s)

u (T̂ �
{u,v} > k). By the choice of k and δs, and the assumption �̌(0) ≺√�(0),

we have

δs

λ
k = A2A

2
1(�̌

(0))2(logγ (0))2

γ (0)λ
=O(1)(4.50)

as long as A1 and A2 grow sufficiently slowly (see the proof of Proposition 4.13). Therefore,

�©≤O(1)
P

(s)
u (T̂ �

{u,v} > k)

P
(s)
u (T̂ �

u > T̂v)
(4.51)

uniformly in ξ and s ∈ [0,Mτ ] satisfying ξ((s, s+ δs))≥ k, where we have used the fact that
P

(Mτ)
u (T̂ �

u > T̂v)
 P
(s)
u (T̂ �

u > T̂v) by Proposition 4.3. To bound the right-hand side of (4.51),
we first condition on the first step of the Markov chain in the numerator and then proceed as
in the proof of Proposition 4.14. We find that �© = o(1) uniformly in ξ and s ∈ [0,Mτ ]
satisfying ξ((s, s + δs))≥ k. �

PROPOSITION 4.16. Subject to (∗), Condition (V) is satisfied.

PROOF. We loosely follow the argument in the proof of Proposition 4.7. Since a priori
we do not know if S/E[S] (or Tv/Eu[Tv]) converges in distribution to a continuous random
variable, we use a more abstract argument.

Let (λn)n∈N be a sequence going to infinity. By Helly’s selection theorem (see, e.g., [6],
Theorem 3.2.6), there exists a subsequence (λn(i))i∈N and a right-continuous, nonincreasing
function H : [0,∞)→[0,1] such that

lim
λ:=λn(i)

i→∞
Pu(Tv/M > τ)=H(τ)(4.52)

for every τ ∈ [0,∞) that is a continuity point of H . As H is nonincreasing, it has at most
countably many discontinuity points. It is therefore enough to show that

lim
λ:=λn(i)

i→∞
Pu(S ≤Mτ < Tv)= 0(4.53)

for every continuity point τ ∈ [0,∞) of H .
Let δT := Tv − S. Fix ε > 0 and choose Q=Q(λ) such that

Pu(δT > Q)≤ ε+ o(1) and Q≺M.(4.54)
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Namely, let k and δs be as in (4.30). We claim that Q := δs satisfies (4.54). Indeed, by the
discussion after (4.30), δs ≺M . By monotonicity and (1.9), Eu[S] ≤ Eu[Tv] 	 E

(0)
u [Tv] 


1/ν̌(0)
M . Let τ0 ∈ [0,∞) be large enough such that Pu(S > Mτ0) < ε. Then

Pu(Tv − S > δs)≤ P(S > Mτ0)+ P
(
ξξξ
(
(S, S + δs)

)
< k|S ≤Mτ0

)
+ Pu

(
Tv − S > δs|S ≤Mτ0,ξξξ

(
(S, S + δs)

)≥ k
)
.

(4.55)

The first term on the right-hand side is bounded by ε. The second term is o(1) because, given
S = s with s ≤Mτ0, ξξξ((S, S + δs)) is a Poisson random variable with mean

∫ s+δs
s γ (x)dx,

which is
 γ (0)δs � k uniformly in s ∈ [0,Mτ0]. To estimate the third term on the right-hand
side of (4.55), note that

Pu

(
Tv − S > δs|S = s,ξξξ

(
(s, s + δs)

)≥ k
)

≤ P
(
δT̂v(s) > k|ξξξ ((s, s + δs)

)≥ k,X(s)= u, δT̂v(s) < δT̂ �
u (s)

)
.

(4.56)

According to (IV), the latter is o(1) uniformly in s ∈ [0,Mτ0].
Now we have

Pu(S ≤Mτ < Tv)= Pu(Mτ < Tv ≤Mτ + δT )

≤ P(δT > Q)Pu(Mτ < Tv ≤Mτ + δT |δT > Q)

+ P(δT ≤Q)Pu(Mτ < Tv ≤Mτ +Q|δT ≤Q)

≤ ε+ o(1)+ Pu(Mτ < Tv ≤Mτ +Q).

(4.57)

To estimate the latter, we write

Pu(Mτ < Tv ≤Mτ +Q)= Pu(τ < Tv/M ≤ τ +Q/M),(4.58)

and note that Q/M = o(1). Since H is right continuous, it follows that for every continuity
point τ ∈ [0,∞) of H ,

lim
λ:=λn(i)

i→∞
Pu(Mτ < Tv ≤Mτ +Q)=H(τ)−H(τ+)= 0.(4.59)

Consequently, when τ ∈ [0,∞) is a continuity point of H ,

lim sup
λ:=λn(i)

i→∞
Pu(S ≤Mτ < Tv)≤ ε.(4.60)

Since ε > 0 is arbitrary, the limit exists and is zero, as it was claimed. �

4.4. Proof of the main theorem. PROOF OF THEOREM 1.3. We consider the different
scenarios and regimes separately.

(i) Scenario M ≺ λ:
Supercritical regime: Mε̌(0)γ (0)� 1.
From (1.9), we have E

(0)
u [Tv] 
 1

ε̌(0)γ (0)
≺M as λ→∞. Applying monotonicity and the

Markov inequality, we obtain

Pu(Tv > Mτ)≤ P
(0)
u (Tv > Mτ)≤ 1

Mτ
E

(0)
u [Tv] = o(1)(4.61)

for every τ > 0 as claimed.
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Critical regime: Mε̌(0)γ (0)
 1.
Since convergence in distribution comes from a metric, it is enough to show that for every

sequence (λn)n∈N going to infinity, there exists a subsequence (λn(i))i∈N such that for every
τ ∈ [0,∞),

lim
λ:=λn(i)

i→∞
Pu

(
Tv

M
> τ

)
exp

(∫ τ

0
Mν̌(Mσ)dσ

)
= 1.(4.62)

Furthermore, in order to show the latter, it is enough to show that (4.62) holds for a dense set
of values τ ∈ [0,∞).

We apply Proposition 3.7. First note that, by Proposition 4.3,

ε̌(Mτ)

∫ Mτ

0
γ (s)ds = ε̌(Mτ)

∫ τ

0
γ (Mσ)M dσ 
Mε̌(0)γ (0)
 1.(4.63)

Therefore, it remains to verify that C,k,m ∈ Z+, δs ∈R+ and �Mτ with P(ξξξ ∈�Mτ )= o(1)

can be chosen such that Conditions (i)–(v) and (I)–(V) are satisfied. We choose C, k, m and
δs according to (4.30). By the discussion after (4.30), these choices satisfy (i)–(v) at the
critical regime. The short-term regularity Conditions (I)–(V) in turn are shown to be satisfied
in Propositions 4.13–4.16.

Subcritical regime: Mε̌(0)γ (0)≺ 1.
According to Proposition 4.3, ε̌(Mτ) 
 ε̌(0) and γ (Mτ) 
 γ (0) as λ→∞. Recall that

under the measure P(Mτ)
u (·), the scaled hitting time Tv/E

(Mτ)
u [Tv] is asymptotically exponen-

tially distributed as λ→∞ (see the review of the time-homogeneous results in Section 1.2).
From (1.9), we have E

(Mτ)
u [Tv] 
 1

ε̌(Mτ)γ (Mτ)
�M as λ→∞. Applying monotonicity, for

every x > 0, we get

lim
λ→∞Pu(Tv > Mτ)≥ lim

λ→∞P
(Mτ)
u (Tv > Mτ)

≥ lim
λ→∞P

(Mτ)
u

(
Tv > xE(Mτ)

u [Tv])= e−x.
(4.64)

Sending x→ 0, we find that limλ→∞ Pu(Tv > Mτ)= 1 as claimed.
(ii) Scenario M 
 λ:

Case 1: 0 < τ < cU

μU

λ
M

.
This case is similar to the scenario in which M ≺ λ (see above).

Case 2: τ ≥ cU

μU

λ
M

.
This case is similar to the scenario in which M � λ (see below).
(iii) Scenario M � λ:
Note that in this scenario, for every σ > 0, λU(Mσ)= 0 for all sufficiently large λ while

λV (Mσ)→∞ as λ→∞. Therefore, when λ is sufficiently large, in order for the process to
reach state v, it suffices that every particle on U is removed and a particle is placed at each
site in V . To be specific, let us consider the process starting from u, and let RU denote the
first time that every particle on U is removed. Note that RU is distributed as the maximum of
|U | independent exponentially distributed random variables with rate 1, and in particular, the
distribution of RU is independent of λ. For each b ∈ V , let S′b and R′b denote respectively the
first time after R at which the birth clock or the death clock at site b tick. Note that S′b −RU

and R′b − RU (for b ∈ V ) are all independent and exponentially distributed, with S′b − RU

having rate λV and R′b −RU having rate 1. Let ε > 0 be arbitrary. Then the probability that
maxb∈V (S′b−RU) < min(minb∈V (R′b−RU), ε) approaches 1 as λ→∞. On the latter event,
we clearly have Tv < RU + ε. It follow that

Pu(Tv > Mτ)≤ Pu(RU + ε > Mτ)+ o(1)= o(1),(4.65)

proving the claim. �
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