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Abstract
In denHollander et al. (The parabolicAndersonmodel on aGalton-Watson tree, to appear in in
and out of equilibrium3: celebratingVladas Sidoravicius. Progress in probability, Birkhäuser,
Basel, 2021) a detailed analysis was given of the large-time asymptotics of the total mass of
the solution to the parabolic Anderson model on a supercritical Galton–Watson random tree
with an i.i.d. random potential whose marginal distribution is double-exponential. Under the
assumption that the degree distribution has bounded support, two terms in the asymptotic
expansion were identified under the quenched law, i.e., conditional on the realisation of
the random tree and the random potential. The second term contains a variational formula
indicating that the solution concentrates on a subtree with minimal degree according to
a computable profile. The present paper extends the analysis to degree distributions with
unbounded support. We identify the weakest condition on the tail of the degree distribution
under which the arguments in den Hollander et al. (The parabolic Anderson model on a
Galton-Watson tree, to appear in in and out of equilibrium 3: celebrating Vladas Sidoravicius.
Progress in probability, Birkhäuser, Basel, 2021) can be pushed through. To do so we need
to control the occurrence of large degrees uniformly in large subtrees of the Galton–Watson
tree.
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1 Introduction andMain Results

Section 1.1 provides a brief introduction to the parabolic Anderson model. Section 1.2 intro-
duces basic notation and key assumptions. Section 1.3 states the main theorem and gives an
outline of the remainder of the paper.

1.1 The PAM and Intermittency

The parabolic Anderson model (PAM) is the Cauchy problem

∂t u(x, t) = �X u(x, t) + ξ(x)u(x, t), t > 0, x ∈ X , (1.1)

whereX is an ambient space, �X is a Laplace operator acting on functions onX , and ξ is
a random potential on X . Most of the literature considers the setting where X is either Z

d

or R
d with d ≥ 1 (for mathematical surveys we refer the reader to [1, 13]). More recently,

other choices for X have been considered as well: the complete graph [8], the hypercube
[3], Galton–Watson trees [7], and random graphs with prescribed degrees [7].

Themain target for the PAM is a description of intermittency: for large t the solution u(·, t)
of (1.1) concentrates on well-separated regions in X , called intermittent islands. Much of
the literature has focussed on a detailed description of the size, shape and location of these
islands, and the profiles of the potential ξ(·) and the solution u(·, t) on them. A special role is
played by the case where ξ is an i.i.d. random potential with a double-exponential marginal
distribution

P(ξ(0) > u) = e−eu/�

, u ∈ R, (1.2)

where � ∈ (0,∞) is a parameter. This distribution turns out to be critical, in the sense that
the intermittent islands neither grow nor shrink with time, and therefore represents a class of
its own.

The analysis of intermittency typically starts with a computation of the large-time asymp-
totics of the total mass, encapsulated in what are called Lyapunov exponents. There is an
important distinction between the annealed setting (i.e., averaged over the random potential)
and the quenched setting (i.e., almost surely with respect to the random potential). Often
both types of Lyapunov exponents admit explicit descriptions in terms of characteristic vari-
ational formulas that contain information about where and how the mass concentrates in
X . These variational formulas contain a spatial part (identifying where the concentration
on islands takes place) and a profile part (identifying what the size and shape of both the
potential and the solution are on the islands).

In the present paperwe focus on the casewhereX is aGalton–Watson tree, in the quenched
setting (i.e., almost surely with respect to the random tree and the random potential). In [7]
the large-time asymptotics of the total mass was derived under the assumption that the degree
distribution has bounded support. The goal of the present paper is to relax this assumption
to unbounded degree distributions. In particular, we identify the weakest condition on the
tail of the degree distribution under which the arguments in [7] can be pushed through. To
do so we need to control the occurrence of large degrees uniformly in large subtrees of the
Galton–Watson tree.
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1.2 The PAM on a Graph

We begin with some basic definitions and notations (and refer the reader to [1, 13] for more
background).

LetG = (V , E) be a simple connected undirected graph, either finite or countably infinite.
Let �G be the Laplacian on G, i.e.,

(�G f )(x) :=
∑

y∈V :
{x,y}∈E

[ f (y) − f (x)], x ∈ V , f : V → R. (1.3)

Our object of interest is the non-negative solution of the Cauchy problem with localised
initial condition,

∂t u(x, t) = (�Gu)(x, t) + ξ(x)u(x, t), x ∈ V , t > 0,
u(x, 0) = δO(x), x ∈ V ,

(1.4)

where O ∈ V is referred to as the root of G. We say that G is rooted at O and call G =
(V , E,O) a rooted graph. The quantity u(x, t) can be interpreted as the amount of mass
present at time t at site x when initially there is unit mass at O.

Criteria for existence and uniqueness of the non-negative solution to (1.4) are well known
(see [9, 10] for the case G = Z

d ), and the solution is given by the Feynman-Kac formula

u(x, t) = EO
[
e
∫ t
0 ξ(Xs )ds 1l{Xt = x}

]
, (1.5)

where X = (Xt )t≥0 is the continuous-time random walk on the vertices V with jump rate
1 along the edges E , and PO denotes the law of X given X0 = O. We are interested in the
total mass of the solution,

U (t) :=
∑

x∈V
u(x, t) = EO

[
e
∫ t
0 ξ(Xs )ds

]
. (1.6)

Often we suppress the dependence on G, ξ from the notation. Note that, by time reversal
and the linearity of (1.4), U (t) = û(0, t) with û the solution of (1.4) with a different initial
condition, namely, û(x, 0) = 1 for all x ∈ V .

As in [7], throughout the paper we assume that the random potential ξ = (ξ(x))x∈V
consists of i.i.d. random variables with marginal distribution satisfying:

Assumption 1.1 (Asymptotic double-exponential potential)
For some � ∈ (0,∞),

P (ξ(0) ≥ 0) = 1, P (ξ(0) > u) = e−eu/�

for u large enough. (1.7)

The restrictions in (1.7) are helpful to avoid certain technicalities that require no new ideas. In
particular, (1.7) is enough to guarantee existence and uniqueness of the non-negative solution
to (1.4) on any graph whose largest degrees grow modestly with the size of the graph (as can
be inferred from the proof in [10] for the case G = Z

d ; see Appendix C for more details).
All our results remain valid under milder restrictions (e.g. [10, Assumption (F)] plus an
integrability condition on the lower tail of ξ(0)).

The following characteristic variational formula is important for the description of the
asymptotics of U (t) when ξ has a double-exponential tail. Denote by P(V ) the set of prob-
ability measures on V . For p ∈ P(V ), define

IE (p) :=
∑

{x,y}∈E

(√
p(x) −√

p(y)
)2

, JV (p) := −
∑

x∈V
p(x) log p(x), (1.8)
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8 Page 4 of 30 F. Hollander, D. Wang

and set

χG(�) := inf
p∈P(V )

[IE (p) + �JV (p)], � ∈ (0,∞). (1.9)

The first term in (1.9) is the quadratic form associated with the Laplacian, describing the
solution u(·, t) in the intermittent islands, while the second term in (1.9) is the Legendre
transform of the rate function for the potential, describing the highest peaks of ξ(·) in the
intermittent islands.

1.3 The PAM on a Galton–Watson Tree

Let D be a random variable taking values in N. Start with a root vertex O, and attach edges
from O to D first-generation vertices. Proceed recursively: after having attached the n-th
generation of vertices, attach to each one of them independently a number of vertices having
the same distribution as D, and declare the union of these vertices to be the (n + 1)-th
generation of vertices. Denote by GW = (V , E) the graph thus obtained and by P its
probability law and E the expectation. Write P and E to denote probability and expectation
for D, and supp(D) to denote the support of P . The law of D can be veiwed as the offspring
distribution of GW , and the law of D + 1 the degree distribution of GW .

Throughout the paper, we assume that the degree distribution satisfies:

Assumption 1.2 (Exponential tails)

(1) dmin := min supp(D) ≥ 2 and E[D] ∈ (2,∞).
(2) E

[
eaD

]
< ∞ for all a ∈ (0,∞).

Under this assumption, GW is P-a.s. an infinite tree. Moreover,

lim
r→∞

log |Br (O)|
r

= log E[D] =: ϑ ∈ (0,∞) P − a.s., (1.10)

where Br (O) ⊂ V is the ball of radius r around O in the graph distance (see e.g. [14,
pp. 134–135]). Note that this ball depends on GW and therefore is random. For our main
result we need an assumption that is much stronger than Assumption 1.2(2).

Assumption 1.3 (Super-double-exponential tails) There exists a function f : (0,∞) →
(0,∞) satisfying lims→∞ f (s) = 0 and lims→∞ f ′(s) = 0 such that

lim sup
s→∞

e−s logP(D > s f (s)) < −2ϑ. (1.11)

To state our main result, we define the constant

χ̃(�) := inf
{
χT (�) : T is an infinite tree with degrees in supp(D)

}
, (1.12)

with χG(�) defined in (1.9), and abbreviate

rt = �t

log log t
. (1.13)

Theorem 1.4 (Quenched Lyapunov exponent) Subject to Assumptions 1.1–1.3,

1

t
logU (t) = � log(ϑrt ) − � − χ̃(�) + o(1), t → ∞, (P × P)-a.s. (1.14)
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With Theorem 1.4 we have completed our task to relax the main result in [7] to degree
distributions with unbounded support. The extension comes at the price of having to assume
a tail that decays faster than double-exponential as shown in (1.11). This property is needed
to control the occurrence of large degrees uniformly in large subtrees of GW . No doubt
Assumption 1.3 is stronger than is needed, but to go beyond would require a major overhaul
of the methods developed in [7], which remains a challenge.

In (1.4) the initial mass is located at the root. The asymptotics in (1.14) is robust against
different choices. A heuristic explanation where the terms in (1.14) come from was given in
[7, Sect. 1.5]. The asymptotics ofU (t) is controlled by random walk paths in the Feynman-
Kac formula in (1.6) that run within time rt/� log rt to an intermittent island at distance rt
from O, and afterwards stay near that island for the rest of the time. The intermittent island
turns out to consist of a subtree with degree dmin where the potential has a height � log(ϑrt )
and a shape that is the solution of a variational formula restricted to that subtree. The first
and third term in (1.14) are the contribution of the path after it has reached the island, the
second term is the cost for reaching the island.

For d ∈ N\{1}, let Td be the infinite homogeneous tree in which every node has downward
degree d . It was shown in [7] that if � ≥ 1/ log(dmin + 1), then

χ̃(�) = χTdmin
(�). (1.15)

Presumably Tdmin is the uniqueminimizer of (1.12), but proving so would require more work.
Outline.The remainder of the paper is organised as follows. Section 2 collects some structural
properties of Galton–Watson trees. Section 3 contains several preparatory lemmas, which
identify the maximum size of the islands where the potential is suitably high, estimate the
contribution to the total mass in (1.6) by the randomwalk until it exits a subset of GW , bound
the principal eigenvalue associated with the islands, and estimate the number of locations
where the potential is intermediate. Section 4 uses these preparatory lemmas to find the
contribution to the Feynman-Kac formula in (1.6) coming fromvarious sets of paths. Section 5
uses these contributions to prove Theorem 1.4. Appendices A–B contain some facts about
variational formulas and largest eigenvalues that are needed in Sect. 3. Appendix C provides
a proof that the Feynman-Kac formula in (1.5) holds as soon as Assumptions 1.1-1.2 are in
force.

Assumptions 1.1–1.2 are needed throughout the paper. Only in Sects. 4–5 do we need
Assumption 1.3.

2 Structural Properties of the Galton–Watson Tree

In the section we collect a few structural properties of GW that play an important role
throughout the paper. None of these properties were needed in [7]. Section 2.1 looks at
volumes, Sect. 2.2 at degrees, Sect. 2.3 at tree animals.

2.1 Volumes

Let Zk be the number of offspring in generation k, i.e.,

Zk = |{x ∈ V : d(x,O) = k}|, (2.1)
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8 Page 6 of 30 F. Hollander, D. Wang

where d(x,O) is the distance from O to x . Let μ = E[D]. Then there exists a random
variable W ∈ (0,∞) such that

Wk := e−kϑ Zk = μ−k Zk → W P-a.s. as k → ∞. (2.2)

It is shown in [2, Theorem 5] that

∃C < ∞, c > 0 : P(|Wk − W | ≥ ε) ≤ Ce−c ε2/3μk/3 ∀ ε > 0, k ∈ N. (2.3)

In addition, it is shown in [4, Theorems 2–3] that if D is bounded, then

− logP(W ≥ x) = xγ +/(γ +−1) [L+(x) + o(1)], x → ∞, (2.4)

− logP(W ≤ x) = x−γ −/(1−γ −) [L−(x) + o(1)], x ↓ 0, (2.5)

where γ + ∈ (1,∞) and γ − ∈ (0, 1) are the unique solutions of the equations

μγ + = dmax, μγ − = dmin, (2.6)

with L+, L− : (0,∞) → (0,∞) real-analytic functions that are multiplicatively periodic
with period μγ +−1, respectively, μ1−γ −

. Note that Assumption 1.2(1) guarantees that γ − �=
1.

The tail behaviour in (2.4) requires that dmax < ∞. In our setting we have dmax = ∞,
which corresponds to γ + = ∞, and so we expect exponential tail behaviour. The following
lemma provides a rough bound.

Lemma 2.1 (Exponential tail for generation sizes) If there exists an a > 0 such that E[eaD] <

∞, then there exists an a∗ > 0 such that E[ea∗W ] < ∞.

Proof First note that if there exists an a > 0 such that E[eaD] < ∞, then there exist b > 0
large and c > 0 small such that

ϕ(a) := E[eaD] ≤ eμa+ba2 ∀ 0 < a < c. (2.7)

Hence

E[eaZn+1 ] = E[ϕ(a)Zn ] ≤ E[e(μa+ba2)Zn ] (2.8)

and consequently, because μ > 1,

E
[
eaWn+1

]
≤ E

[
e(a+ba2μ−(n+2))Wn

]
≤ E

[
ea exp(bcμ

−(n+2))Wn
]
. (2.9)

Put an := c exp(−bc
∑n−1

k=0 μ−(k+2)), which satisfies 0 < an ≤ c. From the last inequality
in (2.9) it follows that

E
[
ean+1Wn+1

]
≤ E

[
eanWn

]
. (2.10)

Since n �→ an is decreasing with limn→∞ an = a∗ > 0, Fatou’s lemma gives

E
[
ea∗W

]
≤ E

[
ea0W0

]
. (2.11)

Because E[ea0W0 ] = ea0 < ∞, we get the claim. ��
The following lemma says thatP-a.s. a ball of radius Rr centred anywhere in Br (O) has

volume eϑRr+o(Rr ) as r → ∞, provided Rr is large compared to log r .
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Lemma 2.2 (Volumes of large balls) Subject to Assumption 1.2(1), if there exists an a > 0
such that E[eaD] < ∞, then for any Rr satisfying limr→∞ Rr/ log r = ∞,

lim inf
r→∞

1

Rr
log

(
inf

x∈Br (O)
|BRr (x)|

)
= lim sup

r→∞
1

Rr
log

(
sup

x∈Br (O)

|BRr (x)|
)

= ϑ P − a.s.

(2.12)

Proof For y ∈ GW that lies k generations below O, let y[−i], 0 ≤ i ≤ k be the vertex that
lies i generations above y. Define the lower ball of radius around y as

B↓
r (y) := {x ∈ V : ∃ 0 ≤ i ≤ r with x[−i] = y}. (2.13)

Note that B↓
r (O) = Br (O).

We first prove the claim for lower balls. Afterwards we use a sandwich argument to get
the claim for balls.

Let Zk denote the vertices in the k-th generation. To get the upper bound, pick δ > 0 and
estimate

P
(

sup
x∈Br (O)

|B↓
Rr

(x)| ≥ e(1+δ)ϑRr
)

≤
r∑

k=0

P
(
sup
x∈Zk

|B↓
Rr

(x)| ≥ e(1+δ)ϑRr
)

=
r∑

k=0

∑

l∈N
P
(
sup
x∈Zk

|B↓
Rr

(x)| ≥ e(1+δ)ϑRr
∣∣∣ Zk = l

)
P(Zk = l)

≤
r∑

k=0

∑

l∈N
l P

(
|B↓

Rr
(O)| ≥ e(1+δ)ϑRr

)
P(Zk = l)

= P
(
|B↓

Rr
(O)| ≥ e(1+δ)ϑRr

) r∑

k=0

E(Zk).

(2.14)

By (1.10),
∑r

k=0 E(Zk) = eϑ(r+1)−1
eϑ−1

= O(eϑr ), and so in order to be able to apply the
Borel-Cantelli lemma, it suffices to show that the probability in the last line decays faster
than exponentially in r for any δ > 0. To that end, estimate

P
(
|B↓

Rr
(O)| ≥ e(1+δ)ϑRr

)
= P

( Rr∑

k=0

Zk ≥ e(1+δ)ϑRr
)

= P
( Rr∑

k=0

Wk ≥ eδϑRr eϑ(Rr−k)
)

≤
Rr∑

k=0

P
(
Wk ≥ 1

Rr + 1
eδϑRr eϑ(Rr−k)

)

=
Rr∑

k=0

P
(
W + (Wk − W ) ≥ 1

Rr + 1
eδϑRr eϑ(Rr−k)

)

≤
Rr∑

k=0

P
(
W ≥ 1

2(Rr + 1)
eδϑRr eϑ(Rr−k)

)

+
Rr∑

k=0

P
(
|Wk − W | ≥ 1

2(Rr + 1)
eδϑRr eϑ(Rr−k)

)

≤ E[ea∗W ]
Rr∑

k=0

exp
(

− a∗
1

2(Rr + 1)
eδϑRr eϑ(Rr−k)

)
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+
Rr∑

k=0

C exp
(

− c
[ 1

2(Rr + 1)
eδϑRr eϑ(Rr−k)

]2/3
(eϑ)k/3

)

≤ E[ea∗W ](Rr + 1) exp
(

− a∗
1

2(Rr + 1)
eδϑRr

)

+C(Rr + 1) exp
(

− c
[ 1

2(Rr + 1)
eδϑRr

]2/3)
, (2.15)

where we use (2.3) with μ = eϑ . This produces the desired estimate.
To get the lower bound, pick 0 < δ < 1 and estimate

P
(

inf
x∈Br (O)

|B↓
Rr

(x)| ≤ e(1−δ)ϑRr
)

≤
r∑

k=0

P
(

inf
x∈Zk

|B↓
Rr

(x)| ≤ e(1−δ)ϑRr
)

=
r∑

k=0

∑

l∈N
P
(

inf
x∈Zk

|B↓
Rr

(x)| ≤ e(1−δ)ϑRr
∣∣∣ Zk = l

)
P(Zk = l)

≤
r∑

k=0

∑

l∈N
lP
(
|B↓

Rr
(O)| ≤ e(1−δ)ϑRr

)
P(Zk = l)

= P
(
|B↓

Rr
(O)| ≤ e(1−δ)ϑRr

) r∑

k=0

E(Zk).

(2.16)

It again suffices to show that the probability in the last line decays faster than exponentially
in r for any δ > 0. To that end, estimate

P
(
|B↓

Rr
(O)| ≤ e(1−δ)ϑRr

)
= P

(
e−ϑRr

Rr∑

k=0

Zk ≤ e−δϑRr
)

≤ P
(
WRr ≤ e−δϑRr

)
≤ P(W ≤ 2 e−δϑRr ) + P(W − WRr ≥ e−δϑRr )

≤ exp
(

− c−(2eδϑRr )
γ−

1−γ− [1 + o(1)]
)

+ C exp
(

− c [e− 2
3 δϑ (eϑ)

1
3 ]Rr

)
,

(2.17)

where we use (2.5), (2.3) with μ = eϑ , and put c− := inf L− ∈ (0,∞). For δ small enough
this produces the desired estimate. This completes the proof of (2.12) for lower balls.

To get the claim for balls, we observe that

B↓
r (x) ⊆ Br (x) ⊆

r⋃

k=0

B↓
r (x[−k]), (2.18)

and therefore

|B↓
r (x)| ≤ |Br (x)| ≤

r∑

k=0

|B↓
r (x[−k])|. (2.19)

It follows from (2.19) that

inf
x∈Br (O)

|B↓
r (x)| ≤ inf

x∈Br (O)
|Br (x)| ≤ sup

x∈Br (O)

|Br (x)| ≤ (r + 1) sup
x∈Br (O)

|B↓
r (x)|.(2.20)

Hence we get (2.12). ��
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2.2 Degrees

Write Dx to denote the degree of vertex x . The following lemma implies that,P-a.s. and for
r → ∞, Dx is bounded by a vanishing power of log r for all x ∈ B2r (O).

Lemma 2.3 (Maximal degree in a ball around the root)

(a) Subject to Assumption 1.2(2), for every δ > 0,
∑

r∈N
P
(∃ x ∈ B2r (O) : Dx > δr

)
< ∞. (2.21)

(b) Subject to Assumption 1.3, there exists a function δr : (0,∞) → (0,∞) satisfying
limr→∞ δr = 0 and limr→∞ r d

dr δr = 0 such that
∑

r∈N
P
(∃ x ∈ B2r (O) : Dx > (log r)δr

)
< ∞. (2.22)

Proof (a) Estimate

P
(∃ x ∈ B↓

2r (O) : Dx > δr
) ≤

2r∑

k=0

P
(∃ x ∈ Zk : Dx > δr

)

=
2r∑

k=0

∑

l∈N
P
(∃ x ∈ Zk : Dx > δr | Zk = l

)
P(Zk = l)

≤ P(D > δr)
2r∑

k=0

∑

l∈N
lP
(
Zk = l) = P(D > δr)

2r∑

k=0

E(Zk).

(2.23)

Since
∑2r

k=0 E(Zk) = e(2r+1)ϑ−1
eϑ−1

= O(e2rϑ), it suffices to show that P(D > δr) =
O(e−cr ) for some c > 2ϑ . Since P(D > δr) ≤ e−aδrE(eaD), the latter is immediate
from Assumption 1.2(2) when we choose a > 2ϑ/δ.

(b) The only change is that in the last lineP(D > δr)must be replaced byP(D > (log r)δr ).
To see that the latter is O(e−cr ) for some c > 2ϑ , we use the tail condition in (1.11) with
δr = f (s) and s = log r .

��

2.3 Tree Animals

For n ∈ N0 and x ∈ Br (O), let

An(x) = {� ⊂ Bn(x) : � is connected,� � x, |�| = n + 1} (2.24)

be the set of tree animals of size n + 1 that contain x . Put an(x) = |An(x)|.
Lemma 2.4 (Number of tree animals) Subject to Assumption 1.2(2), P-a.s. there exists an
r0 ∈ N such that an(x) ≤ rn for all r ≥ r0, x ∈ Br (O) and 0 ≤ n ≤ r .

Proof For n ∈ N0 and x ∈ B↓
r (O), let

A↓
n (x) = {� ⊂ B↓

n (x) : � is connected,� � x, |�| = n + 1} (2.25)
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be the set of lower tree animals of size n + 1 that contain x . Put a↓
n (x) = |A↓

n (x)|.
We first prove the claim for lower tree animals. Afterwards we use a sandwich argument

to get the claim for tree animals.
Fix δ > 0. By Lemma 2.3(a) and the Borel-Cantelli lemma, P-a.s. there exists an r0 =

r0(δ) ∈ N such that Dx ≤ δr for all x ∈ B↓
2r (O). Any lower tree animal of size n + 1

containing a vertex in B↓
r (O) is contained in B↓

r+n(O). Any lower tree animal of size n + 1
can be created by adding a vertex to the outer boundary of a lower tree animal of size n. This
leads to the recursive inequality

a↓
n (x) ≤ (δr)a↓

n−1(x) ∀ x ∈ B↓
r (O), 1 ≤ n ≤ r . (2.26)

Since a↓
0 (x) = 1, it follows that

a↓
n (x) ≤ (δr)n ∀ x ∈ B↓

r (O), 0 ≤ n ≤ r . (2.27)

Pick δ = 1 to get the claim for lower tree animals.
To get the claim for tree animals, note that an(x) ≤ ∑n

k=0 a
↓
n (x[−k]) (compare with

(2.19)), and so an(x) ≤ (n + 1)rn for all x ∈ Br (O) and all 0 ≤ n ≤ r . ��

3 Preliminaries

In this section we extend the lemmas in [7, Sect. 2]. Section 3.1 identifies the maximum size
of the islands where the potential is suitably high. Section 3.2 estimates the contribution to
the total mass in (1.6) by the random walk until it exits a subset of GW . Section 3.3 gives
a bound on the principal eigenvalue associated with the islands. Section 3.5 estimates the
number of locations where the potential is intermediate.

Abbreviate Lr = Lr (GW) = |Br (O)| and put
Sr := (log r)α, α ∈ (0, 1). (3.1)

3.1 Maximum Size of the Islands

For every r ∈ N there is a unique ar such that

P(ξ(0) > ar ) = 1

r
. (3.2)

By Assumption 1.1, for r large enough

ar = � log log r . (3.3)

For r ∈ N and A > 0, let

�r ,A = �r ,A(ξ) := {z ∈ Br (O) : ξ(z) > aLr − 2A} (3.4)

be the set of vertices in Br (O) where the potential is close to maximal,

Dr ,A = Dr ,A(ξ) := {z ∈ Br (O) : dist(z,�r ,A) ≤ Sr } (3.5)

be the Sr -neighbourhood of �r ,A, and Cr ,A be the set of connected components of Dr ,A in
GW , which we think of as islands. For MA ∈ N, define the event

Br ,A := {∃ C ∈ Cr ,A : |C ∩ �r ,A| > MA
}
. (3.6)
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Note that �r ,A, Dr ,A,Br ,A depend on GW and therefore are random.

Lemma 3.1 (Maximum size of the islands) Subject to Assumptions 1.1–1.2, for every A > 0
there exists an MA ∈ N such that

∑

r∈N
P(Br ,A) < ∞ P − a.s. (3.7)

Proof We follow [5, Lemma 6.6]. By Assumption 1.1, for every x ∈ V and r large enough,

P(x ∈ �r ,A) = P(ξ(x) > aLr − 2A) = L−cA
r (3.8)

with cA = e−2A/�. By Lemma 2.2, P-a.s. for every y ∈ Br (O) and r large enough,

|BSr (y)| ≤ |Bo(r)(O)| = Lo(r) = Lo(1)
r , (3.9)

where we use that Sr = o(log r) = o(r), and hence for every m ∈ N,

P(|BSr (y) ∩ �r ,A| ≥ m) ≤
(|BSr (y)|

m

)
L−cAm
r ≤ (|BSr (y)|L−cA

r )m ≤ L−cAm[1+o(1)]
r .

(3.10)

Consequently, P-a.s.

P(∃ C ∈ Cr ,A : |C ∩ �r ,A| ≥ m) ≤ P(∃ y ∈ Br (O) : |BSr (y) ∩ �r ,A| ≥ m)

≤ |Br (O)|Lr = L(1−cAm)[1+o(1)]
r .

(3.11)

By choosing m > 1/cA, we see that the above probability becomes summable in r , and so
we have proved the claim with MA = �1/cA�. ��

Lemma 3.1 implies that (P×P)-a.s. Br ,A does not occur eventually as r → ∞. Note that
P-a.s. on the event [Br ,A]c,

∀ C ∈ Cr ,A : |C ∩ �r ,A| ≤ MA, diamGW (C) ≤ 2MASr , |C| ≤ e2ϑMASr , (3.12)

where the last inequality follows from Lemma 2.2.

3.2 Mass Up to an Exit Time

Lemma 3.2 (Mass up to an exit time) Subject to Assumption 1.2(2), P-a.s. for any δ > 0,
r ≥ r0, y ∈ � ⊂ Br (O), ξ ∈ [0,∞)V and γ > λ� = λ�(ξ,GW),

Ey

[
e
∫ τ�c
0 (ξ(Xs )−γ ) ds

]
≤ 1 + (δr) |�|

γ − λ�

. (3.13)

Proof We follow the proof of [10, Lemma 2.18] and [11, Lemma 4.2]. Define

u(x) := Ex

[
e
∫ τ�c
0 (ξ(Xs )−γ ) ds

]
. (3.14)

This is the solution to the boundary value problem

(� + ξ − γ )u = 0 on �

u = 1 on �c.
(3.15)
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Via the substitution u =: 1 + v, this turns into

(� + ξ − γ )v = γ − ξ on �

v = 0 on �c.
(3.16)

It is readily checked that for γ > λ� the solution exists and is given by

v = Rγ (ξ − γ ), (3.17)

whereRγ denotes the resolvent of�+ξ in �2(�)with Dirichlet boundary condition. Hence

v(x) ≤ (δr) (Rγ1)(x) ≤ (δr) 〈Rγ1,1〉� ≤ (δr) |�|
γ − λ�

, x ∈ �, (3.18)

where 1 denotes the constant function equal to 1, and 〈·, ·〉� denotes the inner product in
�2(�). To get the first inequality, we combine Lemma 2.3(a) with the lower bound in (B.2)
from Lemma B.1, to get ξ − γ ≤ λ� + δr − γ ≤ δr on �. The positivity of the resolvent
gives

0 ≤ [Rγ (δr − (ξ − γ ))](x) = (δr) [Rγ1](x) − [Rγ (ξ − γ )](x). (3.19)

To get the second inequality, we write

(δr) (Rγ1)(x) ≤ (δr)
∑

x∈�

(Rγ1)(x) = (δr)
∑

x∈�

(Rγ1)(x)1(x) = (δr) 〈Rγ1,1〉�.(3.20)

To get the third inequality, we use the Fourier expansion of the resolvent with respect to the
orthonormal basis of eigenfunctions of � + ξ in �2(�). ��

3.3 Principal Eigenvalue of the Islands

The following lemma provides a spectral bound.

Lemma 3.3 (Principal eigenvalues of the islands) Subject to Assumptions 1.1 and 1.2(2), for
any ε > 0, (P × P)-a.s. eventually as r → ∞,

all C ∈ Cr ,A satisfy : λC(ξ ;GW) ≤ aLr − χ̂C(GW) + ε. (3.21)

Proof We follow the proof of [7, Lemma 2.6]. For ε > 0 and A > 0, define the event

B̄r ,A:=
{
there exists a connected subset �⊂V with �∩Br (O)�=∅,

|�|≤e2ϑMASr , λ�(ξ ;GW)>aLr −χ̂�(GW)+ε

}
(3.22)

with MA as in Lemma 3.1. Note that, by (1.1), eξ(x)/� is stochastically dominated by Z ∨ N ,
where Z is an Exp(1) random variable and N > 0 is a constant. Thus, for any � ⊂ V , using
[7, Eq. (2.17)], putting γ = √

eε/� > 1 and applying Markov’s inequality, we may estimate

P
(
λ�(ξ ;GW) > aLr − χ̂�(GW) + ε

) ≤ P
(
L�(ξ − aLr − ε) > 1

)

= P
(
γ −1L�(ξ) > γ log Lr

) ≤ e−γ log LrE[eγ −1L�(ξ)] ≤ e−γ log Lr K |�|
γ

(3.23)

with Kγ = E[eγ −1(Z∨N )] ∈ (1,∞). Next, by Lemma 2.4, for any x ∈ Br (O) and 1 ≤ n ≤ r ,
the number of connected subsets � ⊂ V with x ∈ � and |�| = n + 1 is P-a.s. at most

123



The Parabolic Anderson Model... Page 13 of 30 8

(n + 1)rn ≤ e2n log r for r ≥ r0. Noting that eSr ≤ r , we use a union bound and that by
Lemma 2.2 log Lr = ϑr + o(r) as r → ∞ P-a.s., to estimate for r large enough,

P(B̄r ,A) ≤ e−(γ−1) log Lr
�e2ϑMASr �∑

n=1

e2n log r K n
γ

≤ e2ϑMASr exp
{
−ϑ(γ − 1)r + o(r) + (2 log r + log Kγ ) e2ϑMASr

}

= ro(1) exp
{
−ϑ(γ − 1)r + o(r) + (log r) ro(1)

}
≤ e− 1

2ϑ(γ−1)r
.

(3.24)

Via the Borel-Cantelli lemma this implies that (P × P)-a.s. B̄r ,A does not occur eventually
as r → ∞. The proof is completed by invoking Lemma 3.1. ��
Corollary 3.4 (Uniform bound on principal eigenvalue of the islands) Subject to Assump-
tions 1.1–1.2, for ϑ as in (1.10), and any ε > 0, (P × P)-a.s. eventually as r → ∞,

max
C∈Cr,A

λ
(1)
C (ξ ;G) ≤ aLr − χ̃(�) + ε. (3.25)

Proof See [7, Corollary 2.8]. The proof carries over verbatim because the degrees play no
role. ��

3.4 Maximum of the Potential

The next lemma shows that aLr is the leading order of the maximum of ξ in Br (O).

Lemma 3.5 (Maximum of the potential) Subject to Assumptions 1.1–1.2, for any ϑ > 0,
(P × P)-a.s. eventually as r → ∞,

∣∣∣∣ max
x∈Br (O)

ξ(x) − aLr

∣∣∣∣ ≤ 2� log r

ϑr
. (3.26)

Proof See [7, Lemma 2.4]. The proof carries over verbatim and uses Lemma 2.2. ��

3.5 Number of Intermediate Peaks of the Potential

We recall the following Chernoff bound for a binomial random variable with parameters n
and p (see e.g. [6, Lemma 5.9]):

P (Bin(n, p) ≥ u) ≤ e−u[log( u
np )−1]

, u > 0. (3.27)

Lemma 3.6 (Number of intermediate peaks of the potential) Subject to Assumptions 1.1 and
1.2(2), for any β ∈ (0, 1) and ε ∈ (0, 1

2β) the following holds. For a self-avoiding path π in
GW , set

Nπ = Nπ (ξ) := |{z ∈ supp(π) : ξ(z) > (1 − ε)aLr }|. (3.28)

Define the event

Br :=
{ there exists a self-avoiding path π in GW with

supp(π)∩Br �=∅, | supp(π)|≥(log Lr )β and Nπ>
| supp(π)|
(log Lr )ε

}
. (3.29)

Then
∑

r∈N0

P(Br ) < ∞ P − a.s. (3.30)
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Proof We follow the proof of [7, Lemma 2.9]. Fix β ∈ (0, 1) and ε ∈ (0, 1
2β). (1.7) implies

pr := P(ξ(0) > (1 − ε)aLr ) = exp
{−(log Lr )

1−ε
}
. (3.31)

Fix x ∈ Br (O) and k ∈ N. The number of self-avoiding pathsπ in Br (O)with | supp(π)| = k
and π0 = x is at most ek log r by Lemma 2.4 for r sufficiently large. For such a π , the random
variable Nπ has a Bin(k, pr )-distribution. Using (3.27), we obtain

P
(
∃ self-avoiding π with | supp(π)| = k, π0 = x and Nπ > k/(log Lr )

ε
)

≤ exp
{

− k
(
(log Lr )

1−2ε − log r − 1 + ε log log Lr

(log Lr )ε

)}
. (3.32)

By the definition of ε, togetherwith the fact that Lr > r and x �→ (log log x)/(log x)ε is even-
tually decreasing, the expression in parentheses above is at least 1

2 (log Lr )
1−2ε . Summing

over k ≥ (log Lr )
β and x ∈ Br (O), we get P − a.s.

P (Br ) ≤ 2Lr exp
{

− 1
2 (log Lr )

1+β−2ε
}

≤ c1 exp
{

− c2(log Lr )
1+δ
}

(3.33)

for some c1, c2, δ > 0. Since Lr > r , (3.33) is summable in r . ��
Lemma 3.6 implies that (P ×P)-a.s. for r large enough, all self-avoiding paths π in GW

with supp(π) ∩ Br �= ∅ and | supp(π)| ≥ (log Lr )
β satisfy Nπ ≤ | supp(π)|

(log Lr )ε
.

Lemma 3.7 (Number of high exceedances of the potential) Subject to Assumptions 1.1 and
1.2(2), for any A > 0 there is a C ≥ 1 such that, for all δ ∈ (0, 1), the following holds. For
a self-avoiding path π in GW , let

Nπ := |{x ∈ supp(π) : ξ(x) > aLr − 2A}|. (3.34)

Define the event

Br :=
{

there exists a self-avoiding path π in G with

supp(π)∩Br �=∅, | supp(π)|≥C(log Lr )δ and Nπ>
| supp(π)|
(log Lr )δ

}
. (3.35)

Then
∑

r∈N0
supG∈Gr

P(Br ) < ∞. In particular, (P × P)-a.s. for r large enough, all self-
avoiding paths π in GW with supp(π) ∩ Br �= ∅ and | supp(π)| ≥ C(log Lr )

δ satisfy

Nπ = |{x ∈ supp(π) : ξ(x) > aLr − 2A}| ≤ | supp(π)|
(log Lr )δ

. (3.36)

Proof Proceed as for Lemma 3.6, noting that this time

pr := P
(
ξ(0) > aLr − 2A

) = L−ε
r (3.37)

where ε = e−2A/�, and taking C > 2/ε. ��

4 Path Expansions

In this section we extend [7, Sect. 3]. Section 4.1 proves three lemmas that concern the
contribution to the total mass in (1.6) coming from various sets of paths. Section 4.2 proves
a key proposition that controls the entropy associated with a key set of paths. The proof is
based on the three lemmas in Sect. 4.1.
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We need various sets of nearest-neighbour paths in GW = (V , E,O), defined in [7]. For
� ∈ N0 and subsets �,�′ ⊂ V , put

P�(�,�′) :=
{
(π0, . . . , π�) ∈ V �+1 : π0 ∈ �,π� ∈ �′,

{πi , πi−1} ∈ E ∀ 1 ≤ i ≤ �

}
,

P(�,�′) :=
⋃

�∈N0

P�(�,�′),
(4.1)

and set

P� := P�(V , V ), P := P(V , V ). (4.2)

When � or �′ consists of a single point, write x instead of {x}. For π ∈ P�, set |π | := �.
Write supp(π) := {π0, . . . , π|π |} to denote the set of points visited by π .

Let X = (Xt )t≥0 be the continuous-time randomwalk onG that jumps from x ∈ V to any
neighbour y ∼ x at rate 1. Denote by (Tk)k∈N0 the sequence of jump times (with T0 := 0).
For � ∈ N0, let

π(�)(X) := (X0, . . . , XT�
) (4.3)

be the path in P� consisting of the first � steps of X . For t ≥ 0, let

π(X[0,t]) = π(�t )(X), with �t ∈ N0 satisfying T�t ≤ t < T�t+1, (4.4)

denote the path in P consisting of all the steps taken by X between times 0 and t .
Recall the definitions from Sect. 3.1. For π ∈ P and A > 0, define

λr ,A(π) := sup
{
λ

(1)
C (ξ ;G) : C ∈ Cr ,A, supp(π) ∩ C ∩ �r ,A �= ∅}, (4.5)

with the convention sup∅ = −∞. This is the largest principal eigenvalue among the com-
ponents of Cr ,A in GW that have a point of high exceedance visited by the path π .

Lemma 4.1 (Mass up to an exit time) Subject to Assumption 1.3, P-a.s. for any r ≥ r0,
y ∈ � ⊂ Br (O), ξ ∈ [0,∞)V and γ > λ� = λ�(ξ,GW),

Ey

[
e
∫ τ�c
0 (ξ(Xs )−γ ) ds

]
≤ 1 + (log r)δr |�|

γ − λ�

. (4.6)

Proof The proof is identical to that of Lemma 3.2, with δr replaced by (log r)δr (recall
Lemma 2.3). ��

4.1 Mass of the Solution Along Excursions

Lemma 4.2 (Path evaluation) For � ∈ N0, π ∈ P� and γ > max0≤i<|π |{ξ(πi ) − Dπi },

Eπ0

[
e
∫ T�
0 (ξ(Xs )−γ ) ds

∣∣∣ π(�)(X) = π

]
=

�−1∏

i=0

Dπi

γ − [ξ(πi ) − Dπi ]
. (4.7)

Proof The proof is identical to that of [7, Lemma 3.2]. The left-hand side of (4.7) can be
evaluated by using the fact that T� is the sum of � independent Exp(deg(πi )) random variables
that are independent of π(�)(X). The condition on γ ensures that all � integrals are finite. ��
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For a path π ∈ P and ε ∈ (0, 1), we write

Mr ,ε
π := ∣∣{0 ≤ i < |π | : ξ(πi ) ≤ (1 − ε)aLr

}∣∣, (4.8)

with the interpretation that Mr ,ε
π = 0 if |π | = 0.

Lemma 4.3 (Mass of excursions) Subject to Assumptions 1.1–1.3, for every A, ε > 0,
(P × P)-a.s. there exists an r0 ∈ N such that, for all r ≥ r0, all γ > aLr − A and all
π ∈ P(Br (O), Br (O)) satisfying πi /∈ �r ,A for all 0 ≤ i < � := |π |,

Eπ0

[
e
∫ T�
0 (ξ(Xs )−γ ) ds

∣∣∣ π(�)(X) = π

]
≤ q�

r ,Ae
Mr,ε

π log[(log r)δr /aLr ,A,εqr,A], (4.9)

where

aLr ,A,ε := εaLr − A, qr ,A :=
(
1 + A

(log r)δr

)−1

. (4.10)

Note that π� ∈ �r ,A is allowed.

Proof The proof is identical to that of [7, Lemma 3.3], with dmax replaced by (log r)δr (recall
Lemma 2.3). ��

We follow [7, Definition 3.4] and [6, Sect. 6.2]. Note that the distance between �r ,A and
Dc
r ,A in GW is at least Sr = (log Lr )

α (recall (3.4)–(3.5)).

Definition 4.4 (Concatenation of paths) (a) When π and π ′ are two paths inP with π|π | =
π ′
0, we define their concatenation as

π ◦ π ′ := (π0, . . . , π|π |, π ′
1, . . . , π

′
|π ′|) ∈ P. (4.11)

Note that |π ◦ π ′| = |π | + |π ′|.
(b) When π|π | �= π ′

0, we can still define the shifted concatenation of π and π ′ as π ◦ π̂ ′,
where π̂ ′ := (π|π |, π|π | + π ′

1 − π ′
0, . . . , π|π | + π ′

|π ′| − π ′
0). The shifted concatenation of

multiple paths is defined inductively via associativity.

Now, if a path π ∈ P intersects �r ,A, then it can be decomposed into an initial path, a
sequence of excursions between �r ,A and Dc

r ,A, and a terminal path. More precisely, there
exists mπ ∈ N such that

π = π̌ (1) ◦ π̂ (1) ◦ · · · ◦ π̌ (mπ ) ◦ π̂ (mπ ) ◦ π̄ , (4.12)

where the paths in (4.12) satisfy

π̌ (1) ∈ P(V ,�r ,A) with π̌
(1)
i /∈ �r ,A, 0 ≤ i < |π̌ (1)|,

π̂ (k) ∈ P(�r ,A, Dc
r ,A) with π̂

(k)
i ∈ Dr ,A, 0 ≤ i < |π̂ (k)|, 1 ≤ k ≤ mπ − 1,

π̌ (k) ∈ P(Dc
r ,A,�r ,A) with π̌

(k)
i /∈ �r ,A, 0 ≤ i < |π̌ (k)|, 2 ≤ k ≤ mπ ,

π̂ (mπ ) ∈ P(�r ,A, V ) with π̂
(mπ )

i ∈ Dr ,A, 0 ≤ i < |π̂ (mπ )|,

(4.13)

while

π̄ ∈ P(Dc
r ,A, V ) and π̄i /∈ �r ,A ∀ i ≥ 0 if π̂ (mπ ) ∈ P(�r ,A, Dc

r ,A),

π̄0 ∈ Dr ,A, |π̄ | = 0 otherwise.
(4.14)
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Note that the decomposition in (4.12)–(4.14) is unique, and that the paths π̌ (1), π̂ (mπ ) and π̄

can have zero length. Ifπ is contained in Br (O), then so are all the paths in the decomposition.
Whenever supp(π) ∩ �r ,A �= ∅ and ε > 0, we define

sπ :=
mπ∑

i=1

|π̌ (i)| + |π̄ |, kr ,επ :=
mπ∑

i=1

Mr ,ε
π̌ (i) + Mr ,ε

π̄ (4.15)

to be the total time spent in exterior excursions, respectively, on moderately low points of
the potential visited by exterior excursions (without their last point).

In case supp(π) ∩ �r ,A = ∅, we set mπ := 0, sπ := |π | and kr ,επ := Mr ,ε
π . Recall from

(4.5) that, in this case, λr ,A(π) = −∞.
We say that π, π ′ ∈ P are equivalent, written π ′ ∼ π , if mπ = mπ ′ , π̌ ′(i) = π̌ (i) for

all i = 1, . . . ,mπ , and π̄ ′ = π̄ . If π ′ ∼ π , then sπ ′ , kr ,ε
π ′ and λr ,A(π ′) are all equal to the

counterparts for π .
To state our key lemma, we define, for m, s ∈ N0,

P(m,s) = {π ∈ P : mπ = m, sπ = s} , (4.16)

and denote by

Cr ,A := max{|C| : C ∈ Cr ,A} (4.17)

the maximal size of the islands in Cr ,A.

Lemma 4.5 (Mass of an equivalence class) Subject to Assumptions 1.1 and 1.3, for every
A, ε > 0, (P × P)-a.s. there exists an r0 ∈ N such that, for all r ≥ r0, all m, s ∈ N0, all
π ∈ P(m,s) with supp(π) ⊂ Br (O), all γ > λr ,A(π) ∨ (aLr − A) and all t ≥ 0,

Eπ0

[
e
∫ t
0 (ξ(Xu )−γ ) du 1l{π(X[0,t])∼π}

]

≤
(
C1/2
r ,A

)1l{m>0}
(
1 + (log r)δr Cr ,A

γ − λr ,A(π)

)m (
qr ,A
dmin

)s

ek
r,ε
π log[(log r)δr /aLr ,A,εqr,A].(4.18)

Proof The proof is identical to that of [7, Lemma 3.5], with dmax is replaced by (log r)δr

(recall Lemma 2.3). ��

4.2 Key Proposition

The main result of this section is the following proposition.

Proposition 4.6 (Entropy reduction) Let α ∈ (0, 1) and κ ∈ (α, 1). Subject to Assump-
tion 1.3, there exists an A0(r) such that, for all A ≥ A0(r), with P-probability tending to
one as r → ∞, the following statement is true. For each x ∈ Br (O), eachN ⊂ P(x, Br (O))

satisfying supp(π) ⊂ Br (O) and max1≤�≤|π | distG(π�, x) ≥ (log Lr )
κ for all π ∈ N , and

each assignment π �→ (γπ , zπ ) ∈ R × V satisfying

γπ ≥
(
λr ,A(π) + e−Sr

)
∨ (aLr − A) ∀ π ∈ N (4.19)

and

zπ ∈ supp(π) ∪
⋃

C∈Cr,A :
supp(π)∩C∩�r,A �=∅

C ∀ π ∈ N , (4.20)
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the following inequality holds for all t ≥ 0:

logEx

[
e
∫ t
0 ξ(Xs )ds1l{π(X[0,t])∈N }

]
≤ sup

π∈N

{
tγπ + distG(x, zπ ) log[(log r)δr /aLr ,A,εqr ,A]

}
.

(4.21)

Proof The proof is based on [7, Sect. 3.4]. First fix c0 > 2 and define

A0(r) = (log r)δr
(
e4c0(log r)

1−α − 1
)

. (4.22)

Fix A ≥ A0(r), β ∈ (0, α) and ε ∈ (0, 1
2β) as in Lemma 3.6. Let r0 ∈ N be as given in

Lemma 4.5, and take r ≥ r0 so large that the conclusions of Lemmas 2.3, 3.1, 3.3 and 3.6
hold, i.e., assume that the events Br and Br ,A in these lemmas do not occur. Fix x ∈ Br (O).
Recall the definitions of Cr ,A andP(m,s). Note that the relation ∼ is an equivalence relation
in P(m,s), and define

P̃(m,s)
x := {

equivalence classes of the paths in P(x, V ) ∩ P(m,s)}. (4.23)

The following bounded on the cardinality of this set is needed.

Lemma 4.7 (Bound equivalence classes) Subject to Assumption 1.3, P-a.s.,|P̃(m,s)
x | ≤

(2Cr ,A)m(log r)δr (m+s) for all m, s ∈ N0.

Proof We can copy the proof of [7, Lemma 3.6], replacing dmax by (log r)δr .
The estimate is clear when m = 0. To prove that it holds for m ≥ 1, write ∂� := {z /∈

� : distG(z,�) = 1} for � ⊂ V . Then |∂C ∪ C| ≤ ((log r)δr + 1)|C| ≤ 2(log r)δr Cr ,A

by Lemma 2.3. Define the map � : P̃(m,s)
x → Ps(x, V ) × {1, . . . , 2(log r)δr Cr ,A}m as

follows. For each � ⊂ V with 1 ≤ |�| ≤ 2(log r)δr Cr ,A, fix an injection f� : � →
{1, . . . , 2(log r)δr Cr ,A}. Given a path π ∈ P(m,s) ∩P(x, V ), decompose π , and denote by
π̃ ∈ Ps(x, V ) the shifted concatenation of π̌ (1), . . . , π̌ (m), π̄ . Note that, for 2 ≤ k ≤ m, the
point π̌ (k)

0 lies in ∂Ck for some Ck ∈ Cr ,A, while π̄0 ∈ ∂C ∪ C for some C ∈ Cr ,A. Thus, it is
possible to set

�(π) := (
π̃ , f∂C2(π̌

(2)
0 ), . . . , f∂Cm (π̌

(m)

0 ), f∂C̄∪C̄(π̄0)
)
. (4.24)

It is readily checked that�(π)depends only on the equivalence class ofπ and,when restricted
to equivalence classes, � is injective. Hence the claim follows. ��

Now take N ⊂ P(x, V ) as in the statement, and set

Ñ (m,s) := {
equivalence classes of paths in N ∩ P(m,s)} ⊂ P̃(m,s)

x . (4.25)

For each M ∈ Ñ (m,s), choose a representative πM ∈ M, and use Lemma 4.7 to write

Ex

[
e
∫ t
0 ξ(Xu )du1l{π(X[0,t])∈N }

]
=

∑

m,s∈N0

∑

M∈Ñ (m,s)

Ex

[
e
∫ t
0 ξ(Xu )du1l{π(X[0,t])∼πM}

]

≤
∑

m,s∈N0

(2(log r)δr Cr ,A)m((log r)δr )s sup
π∈N (m,s)

Ex

[
e
∫ t
0 ξ(Xu )du1l{π(X[0,t])∼π}

]
(4.26)

with the convention sup∅ = 0. For fixed π ∈ N (m,s), by (4.19), apply (4.18) and Lemma 3.1
to obtain, for all r large enough and with c0 > 2 ,

(2(c log r)δr )m(log r)δr s Ex

[
e
∫ t
0 ξ(Xu )du1l{π(X[0,t])∼π}

]

≤ etγπ ec0m log r [qr ,A(log r)δr ]s ekr,επ log[(log r)δr /aLr ,A,εqr,A].
(4.27)
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We next claim that, for r large enough and π ∈ N (m,s),

s ≥ [(m − 1) ∨ 1] Sr . (4.28)

Indeed, when m ≥ 2, | supp(π̌ (i))| ≥ Sr for all 2 ≤ i ≤ m. When m = 0, | supp(π)| ≥
max1≤�≤|π | |π� − x | ≥ (log Lr )

κ " Sr by assumption. When m = 1, the latter assumption
and Lemma 3.1 together imply that supp(π) ∩ Dc

r ,A �= ∅, and so either | supp(π̌ (1))| ≥ Sr or
| supp(π̄)| ≥ Sr . Thus, (4.28) holds by the definition of Sr and s.

Note that qSr
r ,A < e−4c0 log r , so

∑

m≥0

∑

s≥[(m−1)∨1]Sr
ec0m log r [qr ,A(log r)δr ]s

= [qr ,A(log r)δr ]Sr + ec0 log r [qr ,A(log r)δr ]Sr +∑
m≥2 e

mc0 log r [qr ,A(log r)δr ](m−1)Sr

1 − qr ,A(log r)δr

≤ 3e−c0 log r

1 − qr ,A(log r)δr
< 1 (4.29)

for r large enough. Inserting this back into (4.26), we obtain

logEx

[
e
∫ t
0 ξ(Xs )ds1l{π(X0,t )∈N }

]
≤ sup

π∈N

{
tγπ + kr ,επ log[(log r)δr /aLr ,A,εqr ,A]

}
. (4.30)

Thus the proof will be finished once we show that, for some ε′ > 0 and whp, respectively,
a.s. eventually as r → ∞,

kr ,επ ≥ distG(x, zπ )(1 − 2(log Lr )
−ε′

) ∀ π ∈ N . (4.31)

We can copy the argument at the end of [7, Sect. 3.4]. For each π ∈ N define an
auxiliary path π� as follows. First note that by using our assumptions we can find points
z′, z′′ ∈ supp(π) (not necessarily distinct) such that

distG(x, z′) ≥ (log Lr )
κ , distG(z′′, zπ ) ≤ 2MASr , (4.32)

where the latter holds by (3.12). Write {z1, z2} = {z′, z′′} with z1, z2 ordered according
to their hitting times by π , i.e., inf{� : π� = z1} ≤ inf{� : π� = z2}. Define πe as the
concatenation of the loop erasure of π between x and z1 and the loop erasure of π between
z1 and z2. Since πe is the concatenation of two self-avoiding paths, it visits each point at
most twice. Finally, define π� ∼ πe by replacing the excursions of πe from �r ,A to Dc

r ,A

by direct paths between the corresponding endpoints, i.e., replace each π̂
(i)
e by |π̂ (i)

e | = �i ,
(π̂

(i)
e )0 = xi ∈ �r ,A, and (π̂

(i)
e )�i = yi ∈ Dc

r ,A by a shortest-distance path π̃
(i)
� with the same

endpoints and |π̃ (i)
� | = distG(xi , yi ). Since π� visits each x ∈ �r ,A at most 2 times,

kr ,επ ≥ kr ,επ�
≥ Mr ,ε

π�
− 2| supp(π�) ∩ �r ,A|(Sr + 1) ≥ Mr ,ε

π�
− 4| supp(π�) ∩ �r ,A|Sr .(4.33)

Note that Mr ,ε
π�

≥ ∣∣{x ∈ supp(π�) : ξ(x) ≤ (1 − ε)aLr }
∣∣ − 1 and, by (4.32), | supp(π�)| ≥

distG(x, z′) ≥ (log Lr )
κ " (log Lr )

α+2ε′
for some 0 < ε′ < ε. Applying Lemmas 3.6–3.7

and using (3.1) and Lr > r , we obtain, for r large enough,

kr ,επ ≥ | supp(π�)|
(
1 − 2

(log Lr )ε
− 4Sr

(log Lr )α+2ε′

)
≥ | supp(π�)|

(
1 − 1

(log Lr )ε
′

)
.(4.34)
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On the other hand, since | supp(π�)| ≥ (log Lr )
κ , by (4.32) we have

|supp(π�)| = ( |supp(π�)| + 2MASr
)− 2MASr

= ( |supp(π�)| + 2MASr
) (

1 − 2MASr
|supp(π�)| + 2MASr

)

≥ (
distG(x, z′′) + 2MASr

) (
1 − 2MASr

(log Lr )κ

)

≥ distG(x, zπ )

(
1 − 1

(log Lr )ε
′

)
,

(4.35)

where the first inequality uses that the distance between two points on π� is less than the total
length of π�. Now (4.31) follows from (4.34)–(4.35). ��

5 Proof of theMain Theorem

Define

U∗(t) := et[� log(ϑrt )−�−χ̃ (�)], (5.1)

where we recall (1.13). To prove Theorem 1.4 we show that

1

t
logU (t) − 1

t
logU∗(t) = o(1), t → ∞, (P × P)-a.s. (5.2)

The proof proceeds via upper and lower bound, proved in Sects. 5.1 and 5.2, respectively.
Throughout this section, Assumptions 1.1, 1.2(1) and 1.3 are in force.

5.1 Upper Bound

We follow [7, Sect. 4.2]. The proof of the upper bound in (5.2) relies on two lemmas showing
that paths staying inside a ball of radius �tγ � for some γ ∈ (0, 1) or leaving a ball of radius
t log t have a negligible contribution to (1.6), the total mass of the solution.

Lemma 5.1 (No long paths) For any �t ≥ t log t ,

lim
t→∞

1

U∗(t)
EO

[
e
∫ t
0 ξ(Xs )ds1l{τ[B�t ]c<t}

]
= 0 (P × P) − a.s. (5.3)

Proof We follow [7, Lemma 4.2]. For r ≥ �t , let

Br :=
{

max
x∈Br (O)

ξ(x) ≥ aLr + 2�

}
. (5.4)

Since limt→∞ �t = ∞, Lemma 3.5 gives that P-a.s.
⋃

r≥�t

Br does not occur eventually as t → ∞. (5.5)

Therefore we can work on the event
⋂

r≥�t
[Br ]c. On this event, we write

EO
[
e
∫ t
0 ξ(Xs )ds1l{τ[B�t ]c<t}

]
=
∑

r≥�t

EO
[
e
∫ t
0 ξ(Xs )ds1l{sups∈[0,t] |Xs |=r}

]
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≤ e2�t
∑

r≥�t

e�t log r+log(δr log log r) PO (Jt ≥ r) , (5.6)

where Jt is the number of jumps of X up to time t , and we use that |Br (O)| ≤ (log r)δr r .
Next, Jt is stochastically dominated by a Poisson random variable with parameter t(log r)δr .
Hence

PO (Jt ≥ r) ≤ [et (log r)δr ]r
rr

≤ exp

{
−r log

(
r

et (log r)δr

)}
(5.7)

for large r . Using that �t ≥ t log t , we can easily check that, for r ≥ �t and t large enough,

�t log r − r log

(
r

et (log r)δr

)
< −3r , r ≥ �t . (5.8)

Thus (5.6) is at most

e2�t
∑

r≥�t

e−3r+log(δr log log r) ≤ e2�t
∑

r≥�t

e−2r ≤ 2 e2�t e−2�t ≤ e−�t . (5.9)

Since limt→∞ �t = ∞ and limt→∞ U∗(t) = ∞, this settles the claim. ��
Lemma 5.2 (No short paths) For any γ ∈ (0, 1),

lim
t→∞

1

U∗(t)
EO

[
e
∫ t
0 ξ(Xs )ds1l{τ[B�tγ �]c>t}

]
= 0 (P × P) − a.s. (5.10)

Proof We follow [7, Lemma 4.3]. By Lemma 3.5 with r = �tγ �, we may assume that

max
x∈B�tγ �

ξ(x) ≤ � log log L�tγ � + 2� log�tγ �
ϑ�tγ � ≤ γ � log t + O(1), t → ∞, (5.11)

where the second inequality uses that log L�tγ � ∼ log |B�tγ �(O)| ∼ ϑ�tγ �. Hence
1

U∗(t)
EO

[
e
∫ t
0 ξ(Xs )ds1l{τ[B�tγ �]c>t}

]
≤ 1

U∗(t)
eγ �t log t+O(1)

≤ e(1−γ )�t log t+C log log log t , t → ∞, (5.12)

for any constant C > 1. ��
The proof of the upper bound in (5.2) also relies on a third lemma estimating the contri-

bution of paths leaving a ball of radius �tγ � for some γ ∈ (0, 1) but staying inside a ball of
radius t log t . We slice to annulus between these two balls into layers, and derive an estimate
for paths that reach a given layer but do not reach the next layer. To that end, fix γ ∈ (α, 1)
with α as in (3.1), and let

Kt := �t1−γ log t�, r (k)
t := k�tγ �, 1 ≤ k ≤ Kt , �t := Kt�tγ � ≥ t log t . (5.13)

For 1 ≤ k ≤ Kt , define (recall (4.1))

N (k)
t :=

{
π ∈ P(O, V ) : supp(π) ⊂ B

r (k+1)
t

(O), supp(π) ∩ Bc
r (k)
t

(O) �= ∅
}

(5.14)

and set

U (k)(t) := EO
[
e
∫ t
0 ξ(Xs )ds1l{π[0,t](X)∈N (k)

t }
]
. (5.15)
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Lemma 5.3 (Upper bound on U (k)(t)) For any ε > 0, (P × P)-a.s. eventually as t → ∞,

sup
1≤k≤Kt

1

t
logU (k)

t ≤ 1

t
logU∗(t) + ε. (5.16)

Proof We follow [7, Lemma 4.4] Fix k ∈ {1, . . . , Kt }. For π ∈ N (k)
t , let

γπ := λ
r (k+1)
t ,A

(π) + e−S�tγ � , zπ ∈ supp(π), |zπ | > r (k)
t , (5.17)

chosen such that (4.19)–(4.20) are satisfied. By Proposition 4.6 and (4.10), (P × P)-a.s.
eventually as t → ∞,

1

t
logU (k)

t ≤ γπ − |zπ |
t

(
log[ε� log(ϑr (k+1)

t )] − δr log[log(r (k+1)
t )] + o(1)

)
. (5.18)

Using Corollary 3.4 and log Lr ∼ ϑr , we bound

γπ ≤ � log(ϑr (k+1)
t ) − χ̃ (�) + 1

2ε + o(1). (5.19)

Moreover, |zπ | > r (k+1)
t − �tγ � and
�tγ �
t

(
log[ε� log(ϑr (k+1)

t )] − δr log[log(r (k+1)
t )]

)

≤ 1

t1−γ
log log(2t log t) = o(1).

(5.20)

Hence

γπ ≤ Ft (r
(k+1)
t ) − χ̃ (�) + 1

2ε + o(1) (5.21)

with

Ft (r) := � log(ϑr) − r

t

[
log(ε� log(ϑr)) − δr log(log r)

]
, r > 0. (5.22)

The function Ft is maximized at any point rt satisfying

�t = rt

[
log(ε� log(ϑrt )) − (δr + r d

dr δr ) log log r + 1

log(ϑrt )
− δr

log rt

]
. (5.23)

In particular, rt = rt [1 + o(1)], which implies that

sup
r>0

Ft (r) ≤ � log(ϑrt ) − � + o(1), t → ∞. (5.24)

Inserting (5.24) into (5.21), we obtain
1

t
logU (k)

t < � log(ϑrt ) − � − χ̃(�) + ε, which is the

desired upper bound because ε > 0 is arbitrary. ��
Proof of the upper bound in (5.2) To avoid repetition, all statements hold (P × P)-a.s. even-
tually as t → ∞. Set

U (0)(t) := EO
[
e
∫ t
0 ξ(Xs )ds1l{τ[B�tγ �]c>t}

]
,

U (∞)(t) := EO
[
e
∫ t
0 ξ(Xs )ds1l{τ[B�t log t�]c≤t}

]
. (5.25)

Then

U (t) ≤ U (0)(t) +U (∞)(t) + Kt max
1≤k≤Kt

U (k)(t). (5.26)
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From Lemmas 5.1–5.3 and the fact that Kt = o(t), we get

lim sup
t→∞

{
1

t
logU (t) − 1

t
logU∗(t)

}
≤ ε. (5.27)

Since ε > 0 is arbitrary, this completes the proof of the upper bound in (1.14). ��

5.2 Lower Bound

We follow [7, Sect. 4.1]. Fix ε > 0. By the definition of χ̃ , there exists an infinite rooted tree
T = (V ′, E ′,Y) with degrees in supp(Dg) such that χT (�) < χ̃(�)+ 1

4ε. Let Qr = BT
r (Y)

be the ball of radius r around Y in T . By Proposition A.1 and (A.2), there exist a radius
R ∈ N and a potential profile q : BT

R → R with LQR (q; �) < 1 (in particular, q ≤ 0) such
that

λQR (q; T ) ≥ −χ̂QR (�; T ) − 1
2ε > −χ̃ (�) − ε. (5.28)

For � ∈ N, let B� = B�(O) denote the ball of radius � around O in GW . We will show
next that, (P × P)-a.s. eventually as � → ∞, B� contains a copy of the ball QR where the
potentail ξ is bounded from below by � log log |B�| + q .

Proposition 5.4 (Balls with high exceedances) (P×P)-almost surely eventually as � → ∞,
there exists a vertex z ∈ B� with BR+1(z) ⊂ B� and an isomorphism ϕ : BR+1(z) → QR+1

such that ξ ≥ � log log |B�| + q ◦ ϕ in BR(z). In particular,

λBR(z)(ξ ;GW) > � log log |B�| − χ̃ (�) − ε. (5.29)

Any such z necessarily satisfies |z| ≥ c� (P×P)-a.s. eventually as � → ∞ for some constant
c = c(�, ϑ, χ̃(�), ε) > 0.

Proof See [7, Proposition 4.1]. The proof carries over verbatim because the degrees play no
role. ��
Proof of the lower bound in (1.14) Let z be as in Proposition 5.4. Write τz for the hitting time
of z by the random walk X . For s ∈ (0, t), we estimate

U (t) ≥ EO
[
e
∫ t
0 ξ(Xu ) du 1l{τz≤s} 1l{Xu∈BR(z) ∀u∈[τz ,t]}

]

= EO
[
e
∫ τz
0 ξ(Xu ) du 1l{τz≤s} Ez

[
e
∫ v
0 ξ(Xu ) du 1l{Xu∈BR(z) ∀u∈[0,v]}

]∣∣∣
v=t−τz

]
,

(5.30)

where we use the strong Markov property at time τz . We first bound the last term in the
integrand in (5.30). Since ξ ≥ � log log |B�| + q in BR(z),

Ez

[
e
∫ v
0 ξ(Xu ) du1l{Xu∈BR(z) ∀u∈[0,v]}

]
≥ ev� log log |B�|EY

[
e
∫ v
0 q(Xu) du1l{Xu∈QR ∀u∈[0,v]}

]

≥ ev� log log |B�|evλQR (q;T )φ
(1)
QR

(Y)2

> exp
{
v (� log log |B�| − χ̃(�) − ε)

}
(5.31)

for large v, where we used that BR+1(z) is isomorphic to QR+1 for the indicators in the first
inequality, and applied Lemma B.2 and (5.28) to obtain the second and third inequalities,
respectively. On the other hand, since ξ ≥ 0,

EO
[
e
∫ τz
0 ξ(Xu ) du1l{τz ≤ s}

]
≥ PO(τz ≤ s), (5.32)
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and we can bound the latter probability from below by the probability that the random walk
runs along a shortest path from the root O to z within a time at most s. Such a path (yi )

|z|
i=0

has y0 = O, y|z| = z, yi ∼ yi−1 for i = 1, . . . , |z|, has at each step from yi precisely deg(yi )
choices for the next step with equal probability, and the step is carried out after an exponential
time Ei with parameter deg(yi ). This gives

PO(τz ≤ s) ≥
( |z|∏

i=1

1

deg(yi )

)
P
( |z|∑

i=1

Ei ≤ s
)

≥ ((log |z|)δ� )−|z|Poidmins([|z|,∞)),(5.33)

where Poiγ is the Poisson distribution with parameter γ , and P is the generic symbol for
probability. Summarising, we obtain

U (t) ≥ ((log |z|)δl )−|z|e−dmins (dmins)|z|

|z|! e(t−s)[� log log |B�|−χ̃ (�)−ε]

≥ exp

{
−dmins+(t − s)

[
� log log |B�|−χ̃ (�) − ε

]−|z| log
(

(log |z|)δ�

dmin

|z|
s

)}

≥ exp

{
−dmins+(t − s)

[
� log log |B�| − χ̃ (�) − ε

]−� log

(
(log �)δ�

dmin

�

s

)}
, (5.34)

where in the last inequality we use that s ≤ |z| and � ≥ |z|. Further assuming that � = o(t),
we see that the optimum over s is obtained at

s = �

dmin + � log log |B�| − χ̃(�) − ε
= o(t). (5.35)

Note that, by Proposition 5.4, this s indeed satisfies s ≤ |z|. Applying (1.10) we get, after a
straightforward computation, (P × P)-a.s. eventually as t → ∞,

1

t
logU (t) ≥ � log log |B�| − �

t
log log � − �

t
δ� log log � − χ̃(�) − ε + O

(
�

t

)
. (5.36)

Inserting log |B�| ∼ ϑ�, we get

1

t
logU (t) ≥ F� − χ̃ (�) − ε + o(1) + O

(
�

t

)
(5.37)

with

F� = � log(ϑ�) − �

t
log log � − �

t
δ� log log �. (5.38)

The optimal � for F� satisfies

�t = �
[
1 + (δ� + � d

d� δ�)] log log � + �δ�

log �
+ �

log �
, (5.39)

i.e., � = rt [1 + o(1)]. For this choice we obtain
1

t
logU (t) ≥ � log(ϑrt ) − � − χ̃ (�) − ε + o(1). (5.40)

Hence (P × P)-a.s.

lim inf
t→∞

{
1

t
logU (t) − 1

t
logU∗(t)

}
≥ −ε. (5.41)

Since ε > 0 is arbitrary, this completes the proof of the lower bound in (1.14). ��
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Remark It is clear from (5.23) and (5.39) that, in order to get the correct asymptotics, it is
crucial that both δr and r d

dr δr tend to zero as r → ∞. This is why Assumption 1.3 is the
weakest condition on the tail of the degree distribution under which the arguments in [7] can
be pushed through.
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ADual Variational Formula

We introduce alternative representations forχ in (1.9) in terms of a ‘dual’ variational formula.
Fix � ∈ (0,∞) and a graph G = (V , E). The functional

L(q;G) :=
∑

x∈V
eq(x)/� ∈ [0,∞], q : V → [−∞,∞), (A.1)

plays the role of a large deviation rate function for the potential ξ in V (compare with (1.7)).
For � ⊂ V , define

χ̂�(G) := − sup
q : V→[−∞,∞),

L(q;G)≤1

λ�(q;G) ∈ [0,∞). (A.2)

The condition L(q;G) ≤ 1 under the supremum ensures that the potentials q have a fair
probability under the i.i.d. double-exponential distribution. Write χ̂(G) = χ̂V (G).

Proposition A.1 (Alternative representations for χ ) For any graph G = (V , E) and any
� ⊂ V ,

χ̂�(�;G) ≥ χ̂V (�;G) = χ̂G(�) = χG(�). (A.3)

Proof See [7, Sect. A.1] ��

B Largest Eigenvalue

We recall the Rayleigh-Ritz formula for the principal eigenvalue of the Anderson Hamilto-
nian. For � ⊂ V and q : V → [−∞,∞), let λ�(q;G) denote the largest eigenvalue of the
operator �G + q in � with Dirichlet boundary conditions on V \ �, i.e.,

λ�(q;G) := sup
{〈(�G + q)φ, φ〉�2(V ) : φ ∈ R

V , suppφ ⊂ �, ‖φ‖�2(V ) = 1
}
. (B.1)
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Lemma B.1 (Spectral bounds)

(1) For any � ⊂ � ⊂ V ,

max
z∈�

q(z) − Dz̄ ≤ λ�(q;G) ≤ λ�(q;G) ≤ max
z∈�

q(z) (B.2)

with z̄ = argmaxz∈� q(z) and Dz̄ the degree of z̄.
(2) The eigenfunction corresponding to λ�(q;G) can be taken to be non-negative.
(3) If q is real-valued and � � � is finite and connected in G, then the second inequality in

(B.2) is strict and the eigenfunction corresponding to λ�(q;G) is strictly positive.

Proof Write

〈(�G + q)φ, φ〉�2(V ) =
∑

x∈�

[(�Gφ)(x) + q(x)φ(x)]φ(x)

=
∑

x∈�

∑

y∈�:
{x,y}∈E�

[φ(y) − φ(x)]φ(x) +
∑

x∈�

q(x)φ(x)2

= − 1
2

∑

x,y∈�:
{x,y}∈E�

[φ(x) − φ(y)]2 +
∑

x∈�

q(x)φ(x)2,

(B.3)

where the first sum in the last line runs over all ordered pairs (x, y) with (x, y) �= (y, x),
which gives rise to the factor 1

2 . The upper bound in (B.2) follows from the estimate

〈(�G + q)φ, φ〉 ≤
∑

x∈�

q(x)φ(x)2 ≤ max
z∈�

q(z)
∑

x∈�

φ(x)2 = max
z∈�

q(z). (B.4)

To get the lower bound in (B.2), we use the fact that λ� is non-decreasing in q . Hence,
replacing q(z) by −∞ for every z �= z̄ and taking as test function φ = φ̄ = δz̄ , we get from
(B.3) that

λ�(q;G) ≥ − 1
2

∑

x,y∈�:
{x,y}∈E�

[
φ̄(x) − φ̄(y)

]2 +
∑

x∈�

q(x)φ̄(x)2

= − 1
2

∑

y∈�:
{z̄,y}∈E�

1 + q(z̄) = −Dz̄ + max
z∈�

q(z),
(B.5)

which settles the claim in (1). The claims in (2) and (3) are standard. ��

Inside GW , fix a finite connected subset � ⊂ V , and let H� denote the Anderson Hamil-
tonian in � with zero Dirichlet boundary conditions on �c = V \� (i.e., the restriction of
the operator HG = �G + ξ to the class of functions supported on �). For y ∈ �, let uy

� be
the solution of

∂t u(x, t) = (H�u)(x, t), x ∈ �, t > 0,
u(x, 0) = δy(x), x ∈ �,

(B.6)

and set U y
�(t) := ∑

x∈� uy
�(x, t). The solution admits the Feynman-Kac representation

uy
�(x, t) = Ey

[
exp

{∫ t

0
ξ(Xs)ds

}
1l{τ�c > t, Xt = x}

]
, (B.7)
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where τ�c is the hitting time of �c. It also admits the spectral representation

uy
�(x, t) =

|�|∑

k=1

etλ
(k)
� φ

(k)
� (y)φ(k)

� (x), (B.8)

where λ
(1)
� ≥ λ

(2)
� ≥ · · · ≥ λ

(|�|)
� and φ

(1)
� , φ

(2)
� , . . . , φ

(|�|)
� are, respectively, the eigenvalues

and the corresponding orthonormal eigenfunctions of H�. These two representations may be
exploited to obtain bounds for one in terms of the other, as shown by the following lemma.

Lemma B.2 (Bounds on the solution) For any y ∈ � and any t > 0,

etλ
(1)
� φ

(1)
� (y)2 ≤ Ey

[
e
∫ t
0 ξ(Xs )ds1l{τ�c>t,Xt=y}

]

≤ Ey

[
e
∫ t
0 ξ(Xs )ds1l{τ�c>t}

]
≤ etλ

(1)
� |�|1/2. (B.9)

Proof The first and third inequalities follow from (B.7)–(B.8) after a suitable application of
Parseval’s identity. The second inequality is elementary. ��

C Existence and Uniqueness of the Feynman-Kac Formula

We follow the argument in [9, Sect. 2], where existence and uniqueness of the Feynman-Kac
formula in (1.5) was shown for G = Z

d .

Theorem C.1 Subject to Assumptions 1.1 and 1.2, (1.4) has a unique nonnegative solution
(P × P)-almost surely. This solution admits the Feynman-Kac representation in (1.5).

We note that, due to the exponential growth of the Galton–Watson tree, the condition on the
potential needed here is stronger than the one required in [9] on Z

d .
The proof of Theorem C.1 requires several preparatory results. Lemmas C.2 and C.3

below show the existence and uniqueness, respectively, of the Feynman-Kac solution for a
deterministic potential. Lemma C.4 extends this to a random potential.

Consider the problem

∂t u(x, t) = (�Gu)(x, t) + q(x)u(x, t), x ∈ V , t > 0,
u(x, 0) = δO(x), x ∈ V ,

(C.1)

where q is a deterministic potential that is bounded from below. Without loss of generality,
we may assume that q is nonnegative.

Define

v(x, t) = EO
[
e
∫ t
0 q(Xs )ds 1l{Xt = x}

]
. (C.2)

Lemma C.2 (Existence) (C.1) admits at least one nonnegative solution if and only if

v(x, t) < ∞ ∀ (t, x) ∈ R+ × V . (C.3)

If (C.3) is fulfilled, then v is the minimal nonnegative solution of (C.1).

Proof See [7, Lemma 2.2]. The proof relies on restricting the Feynman-Kac functional in
(C.3) to cubes of length 2N around the origin and letting N → ∞. On the tree we restrict
to balls of radius R around the root and let R → ∞. The arguments carry over with this
change. ��
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Lemma C.3 (Uniqueness) If q is bounded from below, then (C.1) admits at most one non-
negative solution P-almost surely.

Proof It suffices to show that (C.1) with initial condition u(x, 0) = 0, x ∈ V , only has the
0 solution. We follow the proof of [9, Lemma 2.3]. For R ∈ N, define �R to be the set of
paths

γ : O = x0 → x1 → · · · → xn (C.4)

consisting of neighbouring vertices in V such that x0, · · · , xn−1 ∈ BR(O) and xn ∈ ZR+1.
Furthermore, define

γ+ = {x ∈ γ : q(x) > 0}. (C.5)

Let τR be the first time when the random walk hits ZR+1, and let v be a solution of (C.1).
The Feynman-Kac representation of v reads

v(t, 0) = EO

[
e
∫ τR
0 q(Xs )dsv

(
t − τR, X(τR)

)
1{τR ≤ t}

]
. (C.6)

We are done once we show that

v(T , 0) ≥
(
T

t

)R−1

e−(log R)(T−t)v(t, 0) (C.7)

for all 0 < t ≤ T and all R ∈ N. Indeed, in that case the right-hand side tends to infinity as
R → ∞, and therefore so does the left-hand side, which leaves v(t, 0) = 0 for all t ∈ (0, T ]
as the only possibile solution.

To prove (C.7), fix an arbitrary path γ ∈ �R . The contribution of the randomwalk moving
along the path γ equals χγ (t) with

χγ (t) =
(
n−1∏

i=0

1

Di

)
EO

(
exp

{
n−1∑

i=0

qiσi

}
v

(
t −

n−1∑

i=0

σi , xn

)
1

{
n−1∑

i=0

σi ≤ t

})
, (C.8)

where qi = q(xi ) and the σi are the successive waiting times of the random walk, which
are independent and exponentially distributed with parameter Di . Letting m be such that
q(xm) = min

x∈γ
q(x), we can rewrite (C.8) as

χγ (T ) =
∫

· · ·
∫

∑n−1
i=0 si≤T

n−1∑

i=0

dsi exp

{
n−1∑

i=0

si (qm − Di )

}

v

(
T −

n−1∑

i=0

si , xn

)
exp

{
n−1∑

i=0

si (qi − qm)

}

≥
∫

· · ·
∫

∑n−1
i=0 si≤T

n−1∑

i=0

dsi exp

{
n−1∑

i=0

si (qm − log R)

}

v

(
T −

n−1∑

i=0

si , xn

)
exp

{
n−1∑

i=0

si (qi − qm)

}
,

(C.9)
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where the inequality uses Lemma 2.3(a), which shows that the maximal degree is o(R) as
R → ∞. After some straightforward manipulations and making a change of integration
variables (for full details see [9, (2.14)–(2.15)]), we arrive at (C.7). ��
Lemma C.4 For each t > 0,

PO

(
max
s∈[0,t] |Xs | = R

)
≤ e−[1+o(1)]R log R, R → ∞, P − a.s., (C.10)

where, for x ∈ V , |x | = dist(O, x) denotes the distance between x and the root O.

Proof For fixed R, let (X̃t )t≥0 be the random walk on the regular tree with offspring o(R),
and define (N (t))t≥0 to be the Poisson process with rate log R, associated with the jumps of
X̃ . We estimate

PO

(
max
s∈[0,t] |Xs | = R

)
≤ PO

(
max
s∈[0,t] |X̃s | = R

)
≤ PO(N (t) = R).

Since

PO(N (t) = R) = (o(R))R

R! e−to(R),

(C.10) follows from Stirling’s formula. ��
Proof of Theorem C.1 We follow the proof of [9, Theorem 2.1 a)]. We need to check that the
expression in (1.5) is finite for arbitrary (t, x) ∈ R+ × V . To that end we estimate

EO
[
e
∫ t
0 q(Xs )ds 1l{Xt = x}

]
≤
∑

R∈N
PO

(
max
s∈[0,t] |Xs | = R

)
exp

{
t max
y∈BR(O)

ξ(y)

}
.

We know from Lemma 3.5 that max
y∈BR(O)

ξ(y) ∼ � log(θR) as R → ∞, (P × P)-a.s. (recall

(1.10) and (3.3)). Applying Lemma C.4, we see that the sum on the right-hand side is indeed
finite. ��
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