
Central limit theorem for the principal eigenvalue and eigenvector of
Chung-Lu random graphs
Dionigi, P.; Garlaschelli, D.; Hollander, W.T.F. den; Hazra, R.S.; Mandjes, M.

Citation
Dionigi, P., Garlaschelli, D., Hollander, W. T. F. den, Hazra, R. S., & Mandjes, M. (2023).
Central limit theorem for the principal eigenvalue and eigenvector of Chung-Lu random
graphs. Journal Of Physics: Complexity, 4(1). doi:10.1088/2632-072X/acb8f7
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3589987
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3589987


Journal of Physics: Complexity

PAPER • OPEN ACCESS

Central limit theorem for the principal eigenvalue
and eigenvector of Chung–Lu random graphs
To cite this article: Pierfrancesco Dionigi et al 2023 J. Phys. Complex. 4 015008

 

View the article online for updates and enhancements.

You may also like
The main properties of random graphs
with a large number of vertices and edges
A D Korshunov

-

First-order zero-one law for the uniform
model of the random graph
M. E. Zhukovskii and N. M. Sveshnikov

-

A weighted eigenvalue problem of the
biased infinity Laplacian
Fang Liu and Xiao-Ping Yang

-

This content was downloaded from IP address 132.229.172.145 on 27/03/2023 at 10:33

https://doi.org/10.1088/2632-072X/acb8f7
https://iopscience.iop.org/article/10.1070/RM1985v040n01ABEH003529
https://iopscience.iop.org/article/10.1070/RM1985v040n01ABEH003529
https://iopscience.iop.org/article/10.1070/SM9321
https://iopscience.iop.org/article/10.1070/SM9321
https://iopscience.iop.org/article/10.1088/1361-6544/abd85d
https://iopscience.iop.org/article/10.1088/1361-6544/abd85d


J. Phys. Complex. 4 (2023) 015008 https://doi.org/10.1088/2632-072X/acb8f7

OPEN ACCESS

RECEIVED

31 August 2022

REVISED

6 December 2022

ACCEPTED FOR PUBLICATION

3 February 2023

PUBLISHED

22 February 2023

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Central limit theorem for the principal eigenvalue and eigenvector
of Chung–Lu random graphs
Pierfrancesco Dionigi1,∗, Diego Garlaschelli2,3,4, Rajat Subhra Hazra1, Frank den Hollander1
and Michel Mandjes5
1 Mathematical Institute, Leiden University, PO Box 9512, 2300 RA Leiden, The Netherlands
2 Lorentz Institute for Theoretical Physics, Leiden University, PO Box 9504, 2300 RA Leiden, The Netherlands
3 IMT School for Advanced Studies, Piazza S. Francesco 19, 55100 Lucca, Italy
4 INDAM-GNAMPA Istituto Nazionale di Alta Matematica ‘Francesco Severi’, Piazzale Aldo Moro 5, 00185 Roma, Italy
5 Korteweg–de Vries Institute, University of Amsterdam, PO Box 94248, 1090 GE Amsterdam, The Netherlands
∗ Author to whom any correspondence should be addressed.

E-mail: p.dionigi@math.leidenuniv.nl

Keywords: Chung–Lu random graph, adjacency matrix, principal eigenvalue and eigenvector, central limit theorem

Abstract
A Chung–Lu random graph is an inhomogeneous Erdős–Rényi random graph in which vertices
are assigned average degrees, and pairs of vertices are connected by an edge with a probability that
is proportional to the product of their average degrees, independently for different edges. We derive
a central limit theorem for the principal eigenvalue and the components of the principal
eigenvector of the adjacency matrix of a Chung–Lu random graph. Our derivation requires certain
assumptions on the average degrees that guarantee connectivity, sparsity and bounded
inhomogeneity of the graph.

1. Introduction, main results and discussion

1.1. Introduction
The spectral properties of adjacency matrices play an important role in various areas of network science. In
the present paper we consider an inhomogeneous version of the Erdős–Rényi random graph called the
Chung–Lu random graph and we derive a central limit theorem for the principal eigenvalue and eigenvector
of its adjacency matrix.

1.1.1. Setting
Recall that the homogeneous Erdős–Rényi random graph has vertex set [n] = {1, . . . ,n}, and each edge is
present with probability p and absent with probability 1− p, independently for different edges, where
p ∈ (0,1)may depend on n (in what follows we often suppress the dependence on n from the notation; the
reader is however warned that most quantities depend on n). The average degree is the same for every vertex
and equals (n− 1)p when self-loops are not allowed, and np when self-loops are allowed (and are considered
to contribute to the degrees of the vertices). In [15] the following generalisation of the Erdős–Rényi random
graph is considered, called the Chung–Lu random graph, with the goal to accommodate general degrees.
Given a sequence of degrees d⃗n = (di)i∈[n], consider the random graph Gn(⃗dn) in which to each pair i, j of
vertices an edge is assigned independently with probability pij = didj/m1, wherem1 =

∑n
i=1 di (for

computational simplicity we allow self-loops). Here, the degrees can act as vertex weights. Vertices with low
weights are more likely to have less neighbours than vertices with high weights which act as hubs (see [33,
chapter 6] for a general introduction to generalised random graphs). If d2↑ ⩽m1 with d↑ =maxi∈[n] di, then

pij ⩽ 1 for all i, j ∈ [n], and the sequence d⃗n is graphical. Note that in Gn(⃗dn) the expected degree of vertex
i is di. The classical Erdős–Rényi random graph (with self-loops) corresponds to di = np for all
i ∈ [n].
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1.1.2. Principal eigenvalue and eigenvector
The largest eigenvalue of the adjacency matrix A and its corresponding eigenvector, written as (λ1,v1),
contain important information about the random graph. Several community detection techniques depend
on a proper understanding of these quantities [1, 25, 32], which in turn play an important role for various
measures of network centrality [26, 27] and for the properties of dynamical processes (such as the spread of
an epidemic) taking place on networks [12, 28]. For Erdős–Rényi random graphs, it was shown in [24] that
with high probability (whp in the following) λ1 scales like

λ1 ∼max{
√
D∞,np}, n→∞, (1.1)

where D∞ is the maximum degree. This result was partially extended to Gn(⃗dn) in [16], and more recently to
a class of inhomogeneous Erdős–Rényi random graphs in [5, 6]. For a related discussion on the behaviour of
(λ1,v1) in real-world networks, see [12, 28]. In the present paper we analyse the fluctuations of (λ1,v1). We
will be interested specifically in the case where λ1 is detached from the bulk, which for Erdős–Rényi random
graphs occurs when λ1 ∼ np whp, and for Chung–Lu random graphs when λ1 ∼m2/m1, where
m2 =

∑
i∈[n] d

2
i . Note that the quotientm2/m1 arises from the fact that the average adjacency matrix is rank

one and that its only non-zero eigenvalue ism2/m1. Such rank-one perturbations of a symmetric matrix
with independent entries became prominent after the work in [4]. Later studies extended this work to
finite-rank perturbations [3, 7, 10, 11, 20, 21]. Erdős–Rényi random graphs differ, in the sense that
perturbations live on a scale different from

√
n. For Chung–Lu random graphs we assume thatm2/m1 →∞.

In the setting of inhomogeneous Erdős–Rényi random graphs, finite-rank perturbations were studied in
[13]. In that paper the connection probability between between i and j is given by pij = εnf(i/n, j/n), where
f : [0,1]2 → [0,1] is almost everywhere continuous and of finite rank, εn ∈ [0,1] and nεn ≫ (logn)8.
However, for a Chung–Lu random graph with a given degree sequence it is not always possible to construct
an almost everywhere continuous function f independent of n such that εnf(i/n, j/n) = didj/m1. In the
present paper we extend the analysis in [13] to Chung–Lu random graphs by focussing on (λ1,v1). For
Erdős–Rényi random graphs it was shown in [18, 19] that λ1 satisfies a central limit theorem (CLT) and that
v1 aligns with the unit vector. These papers extend the seminal work carried out in [22].

1.1.3. Chung–Lu random graphs
In the present paper, subject to mild assumptions on d⃗n, we extend the CLT for λ1 from Erdős–Rényi random
graphs to Chung–Lu random graphs, and derive a pointwise CLT for v1 as well. It was shown in [16] that if
m2/m1 ≫

√
d↑ (logn), then λ1 ∼m2/m1 whp, while if

√
d↑ ≫ (m2/m1)(logn)2, then λ1 = d↑ whp. In fact,

examples show that a result similar to (1.1) does not hold, and that λ1 does not scale like max{m2/m1,√
d↑}. These facts clearly show that the behaviour of λ1 is controlled by subtle assumptions on the degree

sequence. In what follows we stick to a bounded inhomogeneity regime wherem2/m1 ≍ d↑.
The behaviour of v1 is interesting and challenging, and is of major interest for applications. One of the

crucial properties to look for in eigenvectors is the phenomenon of localization versus delocalization. An
eigenvector is called localized when its mass concentrates on a small number of vertices, and delocalized
when its mass is approximately uniformly distributed on the vertices. The complete delocalization picture for
Erdős–Rényi random graphs was given in [19]. In fact, it was proved that λ1 is close to the scaled unit vector
in the ℓ∞-norm. In the present paper we do not study localization versus delocalization for Chung–Lu
random graphs in detail, but we do show that in a certain regime there is strong evidence for delocalization
because v1 is close to the scaled unit vector. In [9, corollary 1.3 ] the authors found that the eigenvectors of a
Wigner matrix with independent standard Gaussian entries are distributed according to a Haar measure on
the orthogonal group, and the coordinates have Gaussian fluctuations after appropriate scaling. Our work
shows that the coordinate-wise fluctuations hold as well for the principal eigenvector of the non-centered
Chung–Lu adjacency matrix and that they are Gaussian after appropriate centering and scaling.

1.1.4. Outline
In section 1.2 we define the Chung–Lu random graph, state our assumption on the degree sequence, and
formulate two main theorems: a CLT for the largest eigenvalue and a CLT for its associated eigenvector. In
section 1.3 we discuss these theorems and place them in their proper context. Section 2 includes simulations
for different graph sizes and degree sequences. Section 3 contains the proof of the CLT of the eigenvalue and
section 4 studies the properties of the principal eigenvector.
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1.2. Main results
1.2.1. Set-up
LetGn be the set of simple graphs with n vertices. Let d⃗n = (di)i∈[n] be a sequence of degrees, such that di ∈ N
for all i ∈ [n] and abbreviate

mk =
∑
i∈[n]

(di)
k, d↑ =max

i∈[n]
di, d↓ =min

i∈[n]
di.

Note that these numbers depend on n, but in the sequel we will suppress this dependence. For each pair of
vertices i, j (not necessarily distinct), we add an edge independently with probability

pij =
didj
m1

. (1.2)

The resulting random graph, which we denote by Gn(⃗dn), is referred to in the literature as the Chung–Lu
random graph. In [15] it was assumed that d2↑ ⩽m1 to ensure that pij ⩽ 1. In the present paper we need
sharper restrictions.

Assumption 1.1. Throughout the paper we need two assumptions on d⃗n as n→∞:

(D1) Connectivity and sparsity: There exists a ξ > 2 such that

(logn)2ξ ≪ d↑ ≪ n1/2.

(D2) Bounded inhomogeneity: d↓ ≍ d↑.

♠

The lower bound in assumption 1.1(D1) guarantees that the random graph is connected whp and that it is
not too sparse. The upper bound is needed in order to have d↑ = o(

√
m1), which implies that (1.2) is well

defined. Assumption 1.1(D2) is a restriction on the inhomogeneity of the model and requires that the
smallest and the largest degree are comparable.

Remark 1.2. The lower bound on d↑ in assumption 1.1(D1) can be seen as an adaptation to our setting of
the main condition in [16, theorem 2.1] for the asymptotics of λ1. As mentioned in section 1.1, under the
assumption

m2

m1
≫
√

d↑ (logn)
ξ,

[16] shows that λ1 = [1+ o(1)]m2/m1 whp. It is easy to see that the above condition together with assumption
1.1(D2) gives the lower bound in assumption 1.1(D1). ♠

Remark 1.3. When d↑ ≪ n1/6, [33, theorem 6.19] implies that our results also hold for the Generalized Ran-
dom Graph (GRG) model with the same average degrees. This model is defined by choosing connection prob-
abilities of the form

pij =
didj

m1 + didj
,

and arises in statistical physics as the canonical ensemble constrained on the expected degrees, which is also
called the canonical configuration model. Note that in the above connection probability, di plays the role of a
hidden variable, or a Lagrange multiplier controlling the expected degree of vertex i, but does not in general
coincide with the expected degree itself. However, under the assumptions considered here, di does coincide
with the expected degree asymptotically. The reader can find more about GRG and their use in [33, Chapter
6], and about their role in statistical physics in [31]. In the correspondingmicrocanonical ensemble the degrees
are not only fixed in their expectation but they take a precise deterministic value, which corresponds to the
microcanonical configuration model. The two ensembles were found to be nonequivalent in the limit as n→∞
[30]. This result was shown to imply a finite difference between the expected values of the largest eigenvalue λ1

in the twomodels [17] when the degree sequence was chosen to be constant (di = d for all i ∈ [n]). In this latter
case the canonical ensemble reduces to the Erdős–Rényi randomgraphwith p= d/n, while themicrocanonical
ensemble reduces to the d-regular random graph model. Although ensemble nonequivalence is not our main
focus here, we will briefly relate some of our results to this phenomenon. ♠

3
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1.2.2. Notation
Let A be the adjacency matrix of Gn(⃗dn) and E[A] its expectation. The (i, j)th entry of E[A] equals to pij
in (1.2). The (i, j)th entry of A−E[A] is an independent centered Bernoulli random variable with parameter
pij. Let λ1 ⩾ . . .⩾ λn be the eigenvalues of A and let v1, . . . ,vn be the corresponding eigenvectors. The vector
e will be the n-dimensional column vector

e=
1

√
m1

(d1, . . . ,dn)
t, (1.3)

where t stands for transpose. It is easy to see that E[A] = eet.

Definition 1.4. Following [19], we say that an event E holds with (ξ,ν)-high probability (written (ξ,ν)-hp)
when there exist ξ > 2 and ν > 0 such that

P(E c)⩽ e−ν(logn)ξ . (1.4)

♠
Note that this is different from the classical notion of whp, because it comes with a specific rate.

Remark 1.5. Our results hold for any ν > 0 as soon as ξ > 2 (think of ν= 1). The role of ν becomes important
when we consider specific subsets S of the event space and split into S ∩E and S ∩E c (see e.g. [19]). ♠

We write
w−→ to denote weak convergence as n→∞, and use the symbols o,O to denote asymptotic order

for sequences of real numbers.

1.2.3. CLT for the principal eigenvalue
Our first theorem identifies two terms in the expectation of the largest eigenvalue, and shows that the largest
eigenvalue follows a central limit theorem.

Theorem 1.6. Under assumption 1.1, the following hold:

(I)

E[λ1] =
m2

m1
+

m1m3

m2
2

+ o(1), n→∞.

(II)

m2

m1

(
λ1 −E[λ1]

σ1

)
w−→N (0,2), n→∞,

where

σ2
1 =

∑
i,j

(pij)
3(1− pij)∼

m2
3

m3
1

, n→∞.

1.2.4. CLT for the principal eigenvector
Our second theorem shows that the principal eigenvector is parallel to the normalised degree vector, and is
close to this vector in ℓ∞-norm. It also identifies the expected value of the components of the principal
eigenvector, and shows that the components follow a central limit theorem.

Theorem 1.7. Let ẽ= e
√

m1/m2 be the ℓ2-nomalized degree vector. Let v1 be the eigenvector corresponding to
λ1 and let v1(i) denote the ith coordinate of v1. Under assumption 1.1, the following hold:

(I) ⟨v1, ẽ⟩= 1+ o(1) as n→∞ with (ξ,ν)-hp .

(II) ∥v1 − ẽ∥∞ ⩽O

(
(logn)ξ√

nd↑

)
as n→∞ with (ξ,ν)-hp .

(III) E[v1(i)] = di√
m2

+O
(

(logn)2ξ√
m2

)
as n→∞.

Moreover, if the lower bound in assumption 1.1(D1) is strengthened to (logn)4ξ ≪ d↑, then for all i ∈ [n],

(IV)

m3/2
2

m1

(
v1(i)− di/

√
m2

s1(i)

)
w−→N (0,1), n→∞,

4
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where

s21(i) =
∑
j

d2j pij(1− pij)∼ di
m3

m1
, n→∞.

1.3. Discussion
We place the theorems in their proper context.

(a) Theorems 1.6 and 1.7 provide a CLT for λ1,v1. We note thatm2/m1 is the leading order term in the
expansion of λ1, whilem1m3/m2

2 is a correction term. We observe that theorem 1.6(I) does not follow
from the results in [16], because the largest eigenvalue need not be uniformly integrable and also the
second order expansion is not considered there. We also note that in theorem 1.6(II) the centering of the
largest eigenvalue, E[λ1], cannot be replaced by its asymptotic value as the error term is not compatible
with the required variance.

(b) The lower bound in assumption 1.1(D1) is needed to ensure that the random graph is connected, and is
crucial because the largest eigenvalue is very sensitive to connectivity properties. Assumption 1.1(D2) is
needed to control the inhomogeneity of the random graph. It plays a crucial role in deriving
concentration bounds on the central moments ⟨e,(A−E[A])ke⟩, k ∈ N, with the help of a result from
[19]. Further refinements may come from different tools, such as the non-backtracking matrices used in
[5, 6]. While assumption 1.1(D1) appears to be close to optimal, assumption 1.1(D2) is far from
optimal. It would be interesting to allow for empirical degree distributions that converge to a limiting
degree distribution with a power law tail.

(c) As already noted, if the expected degrees are all equal to each other, i.e. di = d for all i ∈ [n], then the
Chung–Lu random graph, or canonical configuration model, reduces to the homogeneous Erdős–Rényi
random graph with p= d/n, while the corresponding microcanonical configuration model reduces to
the homogeneous d-regular random graph model (here, all models allow for self-loops). This implies
that, for the homogeneous Erdős–Rényi random graph with connection probability p≫ (logn)2ξ/n,
ξ > 2, theorem 1.6(I) reduces to

E[λ1] = np+ 1+ o(1), n→∞,

while theorem 1.6(II) reduces to

1
√
p
(λ1 −E[λ1])

w−→N (0,2), n→∞.

Both these properties were derived in [18] for homogeneous Erdős–Rényi random graphs and also for
rank-1 perturbations of Wigner matrices. In [17], the fact that E[λ1] in the canonical ensemble differs
by a finite amount from the corresponding expected value (here, d= np) in the microcanonical
ensemble (d-regular random graph) was shown to be a signature of ensemble nonequivalence.

(d) In case di = d for all i ∈ [n], theorem 1.7(III) reduces to the following CLT, which was not covered by
[18] and [17].

Corollary 1.8. For the Erdős–Rényi random graph with (logn)4ξ/n≪ p≪ n−1/2 for some ξ > 2,

n

√
p

1− p

(
v1(i)−

1√
n

)
w−→N (0,1), n→∞.

Note that, in the corresponding microcanonical ensemble (d-regular random graph), v1 coincides with the
constant vector where v1(i) = 1/

√
n for all i ∈ [n]. Therefore in the canonical ensemble each coordinate v1(i)

has Gaussian fluctuations around the corresponding deterministic value for the microcanonical ensemble.
This behaviour is similar to the degrees having, in the canonical configuration model, either Gaussian (in the
dense setting) or Poisson (in the sparse setting) fluctuations around the corresponding deterministic degrees
for the microcanonical configuration model [23].

(e) One way to satisfy assumption 1.1 is to specify functions ω, c1, . . . , cn, satisfying (logn)2ξ ≪ ω(n)≪
√
n

and c⩽ c1(n)⩽ . . .⩽ cn(n)⩽ C with c,C⩾ 0, such that

di(n) = ci(n)ω(n), pij =
cicj

1
n

∑
k ck

ω

n
.

5
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The reason why we avoid such a description is that our setting is potentially broader. The concentration
estimate in lemma 3.4 requires us to assume homogeneous degree sequences as above, while theorem
1.6(I) holds for much more general degree sequences. A further refinement of lemma 3.4 may be
possible. The advantage of the above description is that it makes the scale ω(n) on which the degrees live
explicit. However, most of the bounds in our proofs depend on some power of d↑, up to some
multiplicative constant. This means that, in the bounded inhomogeneity setting, expressing the
asymptotics through ω(n) or d↑ are equivalent. Bounds expressed through ω(n) would cease to be
meaningful as soon as we manage to push beyond the bounded inhomogeneity setting of our model,
while the skeleton of our proof would still hold.

(f) In [14] the empirical spectral distribution of A was considered under the assumption that

(d↑)
2/m1 ≪ 1≪ n(d↑)

2/m1,

which is weaker than assumption 1.1. It was shown that if µn
w−→ µ with µn = n−1

∑n
i=1 δdi/d↑ and µ

some probability distribution on R, then

ESD

(
A√

n(d↑)2/m1

)
w−→ µ⊠µsc

with µsc the Wigner semicircle law and⊠ the free multiplicative convolution. Since µ⊠µsc is compactly
supported, this shows that the scaling for the largest eigenvalue and the spectral distribution are
different.

2. Simulations

Theorems 1.6 and 1.7 show that, after proper scaling and under certain conditions of sparsity and
homogeneity, the largest eigenvalue and the components of the largest eigenvector exhibit Gaussian
behaviour in the limit as n→∞. A natural question is how these quantities behave for finite n. Indeed,
real-world networks have sizes that range from n= 102 to n= 109. Another question is computational
feasibility. Indeed, our CLTs require the degrees to lie between (logn)4 (respectively, (logn)8) and

√
n. In

order to make this possible, nmust be at least 1011 (respectively, 1029), which is unrealistic. Let us therefore
see what simulations have to say6.

2.1. Largest eigenvalue
In figure 1 we show histograms for the quantity

λ̄1 =
m2

m1σ1
(λ1 −E[λ1]),

which should be close to normal with mean 0 and variance 2 (for E[λ1] the correction term o(1) is
neglected). The convergence is fast: already for n= 500 the Gaussian shape emerges and represents an
excellent fit: the sample mean µ is close to 0 and the sample standard deviation σ is close to

√
2.

2.2. Largest eigenvector
In figure 2 we show histograms for the quantity

v̄1(i) =
m3/2

2

m1s1(i)
(v1(i)− di/

√
m2 ) ,

which should be close to normal with mean 0 and variance 1. The fit is again excellent.

2.3. Degrees of order log n and
√
n

What happens when the degrees are of order logn? As can be seen in figure 3, in that range the Gaussian
approximation for the largest eigenvalue is visibly worse, especially for the centering. The same happens for
the components of the largest eigenvector, as can be seen in figure 4, where the Gaussian shape is lost and two
peaks appear.

6 This work was performed using the compute resources from the Academic Leiden Interdisciplinary Cluster Environment (ALICE)
provided by Leiden University.

6
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Figure 1. Histograms of λ̄1 for different graph sizes n and degree sequences d⃗. The sample size for each regime is 104. Each
element specified in the degree sequence appears n

5
times. In red is plotted the Gaussian fit; µ is the sample mean (represented by

a dashed line in the histogram), σ is the sample standard deviation. We expect µ≈ 0 and σ ≈
√
2.

3. Proof of theorem 1.6

In what follows we use the well-known method of writing the largest eigenvalue of a matrix as a rank-1
perturbation of the centered matrix. This method was previously successfully employed in [19, 22, 29].

Given the adjacency matrix A of our graph G, we can write A=H+E[A] with H= A−E[A]. Let v1 be
the eigenvector associated with the eigenvalue λ1. Then

Av1 = λ1v1, (H+E[A])v1 = λ1v1, (λ1I−H)v1 = E[A]v1.

Using that E[A] = eet, we have (λ1I−H)v1 = ⟨e,v1⟩e, where I is the n× n identity matrix. It follows that if
λ1 is not an eigenvalue of H, then the matrix (λ1I−H) is invertible, and so

v1 = ⟨e,v1⟩(λ1I−H)−1e. (3.1)

Eliminating the eigenvector v1 from the above equation, we get

1=
〈
e,(λ1I−H)−1e

〉
,

where we use that ⟨e,v1⟩ ̸= 0 (since λ1 is not an eigenvalue of H). Note that this can be expressed as

λ1 =

〈
e,

(
I− H

λ1

)−1

e

〉
=

∞∑
k=0

〈
e,

(
H

λ1

)k

e

〉
with (ξ,ν)− hp, (3.2)

7
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Figure 2. Histograms of v̄1(i) for different graph sizes n and degree sequences d⃗. For each of the images, i is chosen to be the last
i such that di is equal to the 4th element of the corresponding degree sequence (e.g. for n= 500, v1(400) was analysed with
d400 = 20. The sample size for each regime is 104. Each element in the degree sequence appears n

5
times. In red is plotted the

gaussian fit; µ is the sample mean (represented by a dashed line in the histogram), σ is the sample standard deviation. We expect
µ≈ 0 and σ≈ 1.

Figure 3. Histograms of λ̄1 for different graph sizes n and degree sequences d⃗ of order logn. The sample size for each regime is
104. Each element specified in the degree sequence appears n

4
times. In red is plotted the Gaussian fit; µ is the sample mean

(represented by a dashed line in the histogram), σ is the sample standard deviation. If theorem 1.6 would hold, then we would
expect µ≈ 0 and σ ≈

√
2.

8
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Figure 4. Histograms of v̄1(i) for different graph sizes n and degree sequences d⃗ of order logn. For each of the images, i has been
chosen to be the last i such that di is equal to the 3rd element of the specified degree sequence (e.g. for n= 500, v1(375) was
analysed with d375 = 8. The sample size for each regime is 104. Each element specified in the degree sequence appears n

4
; µ is the

sample mean (represented by a dashed line in the histogram), σ is the sample standard deviation. If theorem 1.7 would hold, then
we would expect µ≈ 0 and σ≈ 1.

where the validity of the series expansion will be an immediate consequence of lemma 3.2 below.
Section 3.1 derives bounds on the spectral norm of H. Section 3.2 analyses the expansion in (3.2) and

prove the scaling of E[λ1]. Section 3.3 is devoted to the proof of the CLT for λ1, section 4 to the proof of the
CLT for v1. In the expansion we distinguish three ranges: (a) k= 0,1,2; (b) 3⩽ k⩽ L; (c) L< k<∞, where

L= ⌊logn⌋.

We will show that (a) controls the mean and the variance in both CLTs, while (b)–(c) are negligible error
terms.

3.1. The spectral norm
In order to study λ1, we need good bounds on the spectral norm of H. The spectral norm of matrices with
inhomogeneous entries has been studied in a series of papers [2, 5, 6] for different density regimes.

An important role is played by λ1(E[A]). In recent literature this quantity has been shown to play a
prominent role in the so-called BBP-transition [4]. Given our setting (1.2), it is easy to see that

λ1(E[A]) =
m2

m1
, (3.3)

while all other eigenvalues of E[A] are zero.

Remark 3.1. Since d↓ ⩽ m2
m1

⩽ d↑, assumption 1.1(D2) implies that

m2

m1
≍ d↑. (3.4)

♠
We start with the following lemma, which ensures concentration of λ1 and is a direct consequence of the
results in [6] (which matches assumption 1.1). In particular, we use [6, theorem 3.2] to check that the
boundaries of the bulk of the spectral distribution live on a scale smaller than the scale of λ1.

Lemma 3.2. Under assumption 1.1, with (ξ,ν)-hp∣∣∣∣λ1(A)−λ1(E[A])
λ1(E[A])

∣∣∣∣=O

(
1√
d↑

)
, n→∞,

and consequently

λ1(A)

λ1 (E[A])
P→ 1, n→∞.

9
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Proof. In the proof it is understood that all statements hold with (ξ,ν)-hp in the sense of (1.4). Let A=
H+E[A]. Due to Weyl’s inequality, we have that

λ1(E[A])−∥H∥⩽ λ1(A)⩽ λ1(E[A])+ ∥H∥.

From [6, theorem 3.2] we know that there is a universal constant C> 0 such that

E [∥A−E[A]∥] = E [∥H∥]⩽
√

d↑

2+
C

q

√√√√√ logn

1∨ log

(√
logn

q

)
 ,

where

q=
√

d↑ ∧ n1/10κ−1/9

with κ defined by

κ=max
ij

pij
d↑/n

=
nd↑
m1

.

Thanks to assumption 1.1(D2), we have κ=O(1). By remark 3.1 of [6, Remark 3.1] (which gives us that
q=

√
d↑ for n large enough) and assumption 1.1, we get that

E [∥H∥]⩽


√

d↑

(
2+

C
√

logn√
d↑

)
, (logn)2ξ ⩽

√
d↑ ⩽ n1/10κ−1/9,

√
d↑

(
2+

C ′
√

logn

n1/10

)
,

√
d↑ ⩾ n1/10κ−1/9.

(3.5)

Using [8, example 8.7] or [6, equation 2.4] (the Talagrand inequality), we know that there exists a universal
constant c> 0 such that

P(|∥H∥−E[∥H∥]|> t)⩽ 2e−ct2 .

For t=
√
ν(logn)ξ ,

E[∥H∥]−
√
ν(logn)ξ/2 ⩽ ∥H∥⩽ E[∥H∥] +

√
ν(logn)ξ/2. (3.6)

Thus, we have

|λ1(A)−λ1(E[A])|⩽ ∥H∥⩽
√

d↑(2+ o(1))+
√
ν(logn)ξ/2. (3.7)

Using that λ1(E[A]) =m2/m1, we have that with (ξ,ν)-hp the following bound holds:∣∣∣∣λ1(A)−λ1(E[A])
λ1(E[A])

∣∣∣∣⩽
√

d↑
m2/m1

(2+ o(1))+

√
ν(logn)ξ/2

m2/m1
=O

( √
d↑

m2/m1

)
.

Via assumption 1.1 and (3.4) the claim follows.

Remark 3.3. (a) The proof of lemma 3.2 works well if we replace assumption 1.1(D2) by a milder
condition. Indeed, the former is directly linked to the parameter κ that appears in the proof of lemma
3.2 and in the proof of [6, theorem 3.2], which contains a more general condition on the inhomogeneity
of the degrees.

(b) Note that a consequence of proof of lemma 3.2 is that with (ξ,ν)-hp

∥H∥
λ1(A)

⩽ 1−C0 (3.8)

for some C0 ∈ (0,1). This allows us to claim that with (ξ,ν)-hp the inverse(
I− H

λ1(A)

)−1

(3.9)

exists.

♠

10
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Lemma 3.4. Let 1⩽ k⩽ L. Then, under assumption 1.1, with (ξ,ν)-hp

∣∣〈e,Hke
〉
−E

[〈
e,Hke

〉]∣∣⩽ C
m2

m1

d
k
2
↑ (logn)

kξ

√
n

,

i.e.

max
1⩽k⩽L

P

∣∣〈e,Hke
〉
−E

[〈
e,Hke

〉]∣∣> C(logn)kξd
k
2
↑√

n

m2

m1

⩽ e−ν(logn)ξ , n⩾ n1(ν,ξ).

Lemma 3.4 is a generalization to the inhomogeneous setting of [19, lemma 6.5]. We skip the proof because it
requires a straightforward modification of the arguments in [19].

Lemma 3.5. Under assumption 1.1, for 2⩽ k⩽ L, there exists a constant C> 0 such that

E
[〈
e,Hke

〉]
⩽ m2

m1
(Cd↑)

k/2. (3.10)

Proof. Let E be the high probability event defined by (3.6), i.e.

∥H∥⩽ E[∥H∥] +
√
ν(logn)ξ/2 ⩽ d↑

(
1+O

(
(logn)ξ/2

d↑

))
.

Due to assumption 1.1(D1) we can bound the right-hand side by Cd↑. Since ∥e∥22 =m2/m1, on this event we
have

E
[(〈

e,Hke
〉)

1E
]
⩽ ∥e∥22E[∥H∥k1E ]⩽

m2

m1
(Cd↑)

k/2.

We show that the expectation when evaluated on the complementary event is negligible. Indeed, observe that

E
[〈
e,Hke

〉]
= E

 n∑
i1,...,ik+1=1

ei1eik+1

k∏
j=1

H(ij, ij+1)

2

⩽
(
nk+1d2↑
m1

)2

⩽ Ce(2k+2) logn ⩽ e2(logn)
2

,

where in the last inequality we use that d↑ = o(
√
m1). This, combined with the exponential decay of the event

E c, gives

E
[〈
e,Hke

〉
1Ac

]
⩽ Ce−ν(logn)ξ ,

and so the claim follows.

3.2. Expansion for the principal eigenvalue
We denote the event in lemma 3.2 by E , which has high probability. As noted in remark 3.3(b), I− H

λ1
is

invertible on E . Hence, expanding on E , we get

λ1 =
∞∑
k=0

〈
e,
Hk

λk
1

e

〉
.

We split the sum into two parts:

λ1 =
L∑

k=0

〈
e,Hke

〉
λk
1

+
∞∑

k=L+1

〈
e,Hke

〉
λk
1

. (3.11)

First we show that we may ignore the second sum. To that end we observe that, by assumption 1.1 (D1),
on the event E we can estimate

11
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∣∣∣∣∣
∞∑

k=L+1

〈
e,Hke

〉
λk
1

∣∣∣∣∣⩽
∞∑

k=L+1

∥e∥22∥H∥k

λk
1

⩽
∞∑

k=L+1

m2

m1

dk/2↑

(Cm2/m1)k

⩽
∞∑

k=L+1

C ′

dk/2−1
↑

=O
(
e−c log

√
n
)
. (3.12)

Because of (3.12) and the fact that E(⟨e,He⟩) = 0, (3.11) reduces to

λ1 =
L∑

k=3

E
[〈
e,Hke

〉]
λk
1

+
L∑

k=3

〈
e,Hke

〉
−E

[〈
e,Hke

〉]
λk
1

+ ⟨e,e⟩+ 1

λ1
⟨e,He⟩+ 1

λ2
1

〈
e,H2e

〉
+ o(1).

Next, we estimate the second sum in the above equation. Using lemma 3.2, we get

∣∣∣∣∣
L∑

k=3

〈
e,Hke

〉
−E

[〈
e,Hke

〉]
λk
1

∣∣∣∣∣⩽
L∑

k=3

Cd
k
2
↑ (logn)

kξ

√
n(m2/m1)k−1

⩽
L∑

k=3

C(logn)kξ
√
ndk/2−1

↑

⩽O

(
C(logn)ξ+1√

nd↑

)
= o(1).

From lemma 3.5 we have

L∑
k=3

E
〈
e,Hke

〉
λk
1

⩽
L∑

k=3

m2
m1
(Cd↑)k/2

(m2/m1)
k

=O

(
1√
d↑

)
= o(1),

where the last estimate follows from assumption 1.1(D1). Hence, on E ,

λ1 = ⟨e,e⟩+ 1

λ1
⟨e,He⟩+

〈
e,H2e

〉
λ2
1

+ o(1).

Iterating the expression for λ1 in the right-hand side, we get

λ1 = ⟨e,e⟩+ ⟨e,He⟩
(
⟨e,e⟩+ 1

λ1
⟨e,He⟩+ 1

λ2
1

〈
e,H2e

〉
+ o(1)

)−1

+
〈
e,H2e

〉(
⟨e,e⟩+ 1

λ1
⟨e,He⟩+ 1

λ2
1

〈
e,H2e

〉
+ o(1)

)−2

+ o(1).

Expanding the second and third term we get,

λ1 = ⟨e,e⟩+ ⟨e,He⟩
⟨e,e⟩

(
1− ⟨e,He⟩

λ1 ⟨e,e⟩
−
〈
e,H2e

〉
λ2
1 ⟨e,e⟩

+ o(1)

)

+

〈
e,H2e

〉
(⟨e,e⟩)2

(
1− 2⟨e,He⟩

λ1 ⟨e,e⟩
−

2
〈
e,H2e

〉
λ2
1 ⟨e,e⟩

+ o(1)

)
+ o(1),

= ⟨e,e⟩+ ⟨e,He⟩
⟨e,e⟩

− ⟨e,He⟩2

λ1 ⟨e,e⟩2
+

〈
e,H2e

〉
⟨e,e⟩2

+ o(1).

Here we use that ⟨e,e⟩=m2/m1 →∞, and we ignore several other terms because they are small with
(ξ,ν)-hp , for example,

⟨e,He⟩
〈
e,H2e

〉
λ2
1 ⟨e,e⟩

2 =O

(
d3/2↑

(m2/m1)4

)
= o(1).

One more iteration gives

12
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λ1 = ⟨e,e⟩+ ⟨e,He⟩
⟨e,e⟩

+

〈
e,H2e

〉
⟨e,e⟩2

− ⟨e,He⟩2

⟨e,e⟩2

(
⟨e,e⟩+ 1

λ1
⟨e,He⟩+ 1

λ2
1

〈
e,H2e

〉
+ o(1)

)−1

+ o(1)

= ⟨e,e⟩+ ⟨e,He⟩
⟨e,e⟩

+

〈
e,H2e

〉
⟨e,e⟩2

− ⟨e,He⟩2

⟨e,e⟩3
+

〈
e,H2e

〉2 ⟨e,He⟩
λ1 ⟨e,e⟩3

+

〈
e,H2e

〉3
λ2
1 ⟨e,e⟩

3 + o(1).

Proof of theorem 1.6 (I). Since the probability of E c decays exponentially with n, taking the expectation of
the above term and using that E[⟨e,He⟩] = 0, we obtain

E[λ1] = ⟨e,e⟩+
E[
〈
e,H2e

〉
]

⟨e,e⟩2
− E[⟨e,He⟩2]

⟨e,e⟩3
+ o(1) =

m2

m1
+

m1m3

m2
2

− m2
3

m3
2

+ o(1).

Note that

m2
3

m2
2

⩽
d2↑
n

= o(1),
m1m3

m2
2

⩽
(
d↑
d↓

)4

=O(1),

and so we can write

E[λ1] =
m2

m1
+

m1m3

m2
2

+ o(1). (3.13)

3.3. CLT for the principal eigenvalue
Again consider the high probability event on which (3.9) holds. Recall that from the series decomposition
in (3.11) we have

λ1 =
⟨e,He⟩
λ1

+
L∑

k=0

E
〈
e,Hke

〉
λk
1

+
L∑

k=2

〈
e,Hke

〉
−E

〈
e,Hke

〉
λk
1

+
∑
k>L

〈
e,Hke

〉
λk
1

. (3.14)

Lemma 3.6. The equation

x=
L∑

k=0

E
〈
e,Hke

〉
xk

(3.15)

has a solution x0 satisfying

lim
n→∞

x0
m2/m1

= 1.

Proof. Define the function h : (0,∞)→ R by

h(x) =

logn∑
k=0

E
〈
e,Hke

〉
xk

.

Since E[e ′He] = 0, we have

h

(
xm2

m1

)
=

m2

m1
+

logn∑
k=2

E
〈
e,Hke

〉
(xm2/m1)k

.

For x> 0, ∣∣∣∣∣∣
logn∑
k=2

E[
〈
e,Hke

〉
]

(xm2/m1)k

∣∣∣∣∣∣⩽
∞∑
k=2

1

(xm2/m1)k
m2

m1
(Cd↑)

k/2

= o

(
m2

m1

∞∑
k=2

1

xk(logn)kξ

)
= o

(
m2

m1
x−2

)
.

13
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This shows that

lim
n→∞

1

m2/m1

logn∑
k=0

E
〈
e,Hke

〉
(xm2/m1)k

= 1.

Hence, for any 0< δ < 1,

lim
n→∞

1

m2/m1

[
m2

m1
(1+ δ)− h

(
(1+ δ)

m2

m1

)]
= δ.

So, for large enough n,

h

(
(1+ δ)

m2

m1

)
<

m2

m1
(1+ δ).

Similarly, for any 0< δ < 1,

h

(
(1− δ)

m2

m1

)
>

m2

m1
(1− δ).

This shows that there is a solution for (3.15), which lies in the interval [m2
m1
(1− δ), m2

m1
(1− δ)].

Lemma 3.7. Let x0 be a solution for (3.15). Define

Rn = λ1 − x0 −
⟨e,He⟩
m2/m1

.

Then

Rn = oP

(
m3

m2
√
m1

)
, E [|Rn|] = o

(
m3

m2
√
m1

)
.

Proof of theorem 1.6 (II). From the previous lemmas we have

λ1 = x0 +
⟨e,He⟩
m2/m1

+Rn.

Therefore

E[λ1] = x0 +E[Rn]

and

λ1 −E[λ1] =
⟨e,He⟩
m2/m1

+ o

(
m3

m2
√
m1

)
.

Hence

m2

m1
(λ1 −E[λ1]) = ⟨e,H,e⟩+ o

(
m3

m3/2
1

)
. (3.16)

Observe that

⟨e,He⟩=
N∑

i,j=1

hi,j
didj
m1

= 2
∑
i⩽j

hi,j
didj
m1

.

Let

σ2
1 =

∑
i⩽j

Var

(
2

m1
hi,jdidj

)
=
∑
i⩽j

4d3i d
3
j

m3
1

(
1−

didj
m1

)
∼ 2

m2
3

m3
1

(
1+O

(
d2↑
n

))
,

14
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where we use the symmetry of the expression in the last equality. We can apply Lyapunov’s central limit the-
orem, because {hi,j : i⩽ j} is an independent collection of random variables and Lyapunov’s condition is sat-
isfied, i.e.

lim
n→∞

1

σ3
n

∑
i>j

E
[∣∣H(i, j)didj

∣∣3]⩽ K lim
n→∞

m3/2
1

m3
3

m2
4

m1
= 0,

where K is a constant that does not depend on n. Hence

m3/2
1 ⟨e,He⟩√

2m3

w−→ N(0,1).

Returning to the eigenvalue equation in (3.16) and dividing by σ1, we have

√
m1m2

m3
(λ1 − E[λ1]) =

m3/2
1 ⟨e,He⟩

m3
+ o(1)

w−→ N(0,2).

We next prove lemma 3.7, on which the proof of the central limit theorem relied.

Proof. Note that by (3.14) and (3.15) we can write

λ1 − x0 =
⟨e,He⟩
λ1

+
L∑

k=2

E
〈
e,Hke

〉( 1

λk
1

− 1

xk0

)
+ Ln, (3.17)

where

Ln =
L∑

k=2

〈
e,Hke

〉
−E

〈
e,Hke

〉
λk
1

+
∑
k>L

〈
e,Hke

〉
λk
1

.

Thanks to lemma 3.2, 3.4 and (3.12) we have

Ln =O

(
d↑(logn)2ξ√
nm2/m1

)
.

Note that Ln = o( m3
m2

√
m1
). Indeed, usingm3 ⩾ nd3↓ and assumption 1.1(D1), we get

d↑(logn)2ξm2
√
m1√

n(m2/m1)m3
⩽

d5/2↑ n3/2(logn)2ξ
√
nd↓nd3↓(logn)

ξ
=

d5/2↑ (logn)ξ

d4↓
=O

(
(logn)ξ

d3/2↓

)
.

Observe that (3.17) can be rearranged as

(λ1 − x0) =
⟨e,He⟩
λ1

−
L∑

k=2

(λ1 − x0)E
〈
e,Hke

〉
λ−k
1 x−k

0

k−1∑
j=0

xk−1−j
0 + Ln.

Hence, bringing the second term from the right to the left, we have

(λ1 − x0)

1+ L∑
k=2

E
〈
e,Hke

〉
λ−k
1 x−k

0

k−1∑
j=0

xk−1−j
0

=
⟨e,He⟩
λ1

+ Ln.

Using the bounds on λ1 and x0, we get∣∣∣∣∣∣
L∑

k=2

E
〈
e,Hke

〉
λ−k
1 x−k

0

k−1∑
j=0

xk−1−j
0

∣∣∣∣∣∣⩽
L∑

k=2

k

(m2/m1)k+1
E
〈
e,Hke

〉
⩽

L∑
k=2

k

(m2/m1)k+1

m2

m1
(Cd↑)

k/2 =O

(
d↑

(m2/m1)2(logn)2ξ−1

)
= o(1).
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We can therefore write

λ1 − x0 =
⟨e,He⟩
λ1

+ Ln,

where Ln = oP(
m3

m2
√
m1
). Finally, to go to Rn, note that

Rn = λ1 − x0 −
⟨e,He⟩
m2/m1

= ⟨e,He⟩
(

1

λ1
− 1

m2/m1

)
+ Ln. (3.18)

To bound Rn, it is enough to show that the first term on the right-hand side is with (ξ,ν)-hp bounded by
m3

m2
√
m1
. Using lemma 3.4 (for k= 1) and (3.7), we have with (ξ,ν)-hp

|⟨e,He⟩| |λ1 −m2/m1|
λ1m2/m1

⩽
√

d↑(logn)ξ√
n

√
d↑

(m2/m1)
. (3.19)

Using again assumption 1.1(D1),m3 ⩾ nd3↓,m1 ⩽ nd↑ andm2 ⩽ nd2↑, we get that

d↑(logn)ξ√
n(m2/m1)

m2
√
m1

m3
⩽
(
d↑
d↓

)3 c√
d↑

= o(1).

This controls the right-hand side of (3.19), and hence Rn = o( m3
m2

√
m1
) with (ξ,ν)-hp .

We want to show that the latter is negligible both pointwise and in expectation. We already have that this
is so with (ξ,ν)-hp on Rn. We want to show that the same bound holds in expectation. Let A be the high
probability event of lemmas 3.2 and 3.4, and write

E[|Rn|] = E[|Rn|1Ac ] +E[|Rn|1A],

where 1A is the indicator function of the eventA. Since all the bounds hold on the high probability eventA,
it is immediate that

E[|Rn|1A] = o

(
m3√
m1m2

)
.

The remainder can be bounded via the Cauchy–Schwarz inequality, namely,

E[|Rn|1Ac ]⩽
(
E[|Rn|2]E[1Ac ]

) 1
2 ⩽

(
E
[
|Rn|2

]
e−ν(logn)ξ

) 1
2
.

We see that if E[|Rn|2] = o(e−ν(logn)ξ), then we are done. Expanding, we see that

E[|Rn|2] = E

[∣∣∣∣λ1 − x0 −
⟨e,He⟩
m2/m1

∣∣∣∣2
]
⩽ nC

for some C> 0, where we use that

E[(λ2
1)]⩽ E[TrA2] =

N∑
i,j=1

E[(A(i, j))2]⩽ d↑n

and the trivial bound | ⟨e,He⟩ |⩽ nC∗ for some C∗ < C. Hence we have
(
E[|Rn|2]E[1Ac ]

) 1
2 ⩽ e−ν(logn)ξ and

E[|Rn|] = o

(
m3√
m1m2

)
.
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4. Proof of theorem 1.7

In this section we study the properties of the principal eigenvector. Let v1 be the normalized principal
eigenvector, i.e. ∥v1∥= 1, and let e be as defined in (1.3). Recall from (3.1) that

λ1

(
1− H

λ1

)
v1 = e⟨e,v1⟩,

and after inversion (which is possible on the high probability event) we have

v1 =
⟨e,v1⟩
λ1

(1−H/λ1)
−1e.

If K denotes the normalization factor, then we can rewrite the above equation with (ξ,ν)-hp as the series

v1 =
K

λ1

∞∑
k=0

Hke

λk
1

. (4.1)

Our first step is to determine the value of K in (4.1). We adapt the results from [19] to derive a
component-wise central limit theorem in the inhomogeneous setting described by (1.2) under assumption
1.1. By the normalization of v,

1= ⟨v1,v1⟩=
K2

λ2
1

〈 ∞∑
k=0

Hk

λk
1

e,
∞∑
ℓ=0

Hℓ

λℓ
1

e

〉
=

K2

λ2
1

∞∑
k=0

(k+ 1)
〈
e,Hke

〉
λk
1

, (4.2)

where we use the symmetry of H.
The following lemma settles theorem 1.7(I).

Lemma 4.1. Under assumption 1.1, and with ẽ= e
√

m1
m2
, with (ξ,ν)-hp

⟨ẽ,v1⟩= 1+ o(1). (4.3)

Proof. Recall that L= ⌊logn⌋. We rewrite (4.2) as

(
λ1

K

)2

=
L∑

k=0

(k+ 1)

λk
1

E
[〈
e,Hke

〉]
+

L∑
k=1

(k+ 1)

λk
1

∣∣〈e,Hke
〉
−E

[〈
e,Hke

〉]∣∣
+

∞∑
k=L+1

(k+ 1)

λk
1

〈
e,Hke

〉
.

(4.4)

We first show that the last two parts are negligible and then show that the main term of the first part is the
term with k= 0, i.e. ⟨e,e⟩=m2/m1.

The last term in (4.4) is dealt with as follows. Using (3.8), we have with (ξ,ν)-hp

∞∑
k=L+1

(k+ 1)

λk

〈
e,Hke

〉
⩽

∞∑
k=L+1

(k+ 1)
∥e∥2∥H∥k

(m2/m1)k
⩽ m2

m1

∞∑
k=L+1

(k+ 1)(1−C0)
k

⩽ m2

m1
(logn+ 2)e−c′ logn 1

C2
0

with c ′ =− log(1−C0), where we use that
∑∞

k=0(k+ 1)(1− c)k = 1/c2 for |1− c|< 1.
We tackle the second sum in (4.4) by using lemma 3.4. Indeed, with (ξ,ν)-hp we have

L∑
k=1

(k+ 1)

λk
1

∣∣〈e,Hke
〉
−E

[〈
e,Hke

〉]∣∣⩽ L∑
k=1

(k+ 1)
Cdk/2↑ (logn)kξ

√
n

(
m2

m1

)1−k

⩽
C′√d↑(logn)ξ(logn+ 1)

√
n

⩽
C′√d↑(logn)2ξ√

n
,

where the constant varies in each step. By assumption 1.1(D1), the last term goes to zero.
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As to the first term, note that by (3.5) for k⩾ 3 we have

L∑
k=3

(k+ 1)

λk
1

E
[〈
e,Hke

〉]
⩽

L∑
k=3

(k+ 1)

(
m2

m1

)−k+1

(Cd↑)
k/2

⩽
L∑

k=3

Cdk/2↑

(m2/m1)(k−1)
=O

(
1√
d↑

)
.

The term with k= 1 is zero, while for k= 2 we have

3
E⟨e,H2e⟩

λ2
1

⩽ c
m1m3

m2
2

=O(1)

for some constant c. After substituting these results into (4.4), we find(
λ1

K

)2

=
m2

m1

(
1+O

(
1

m2/m1

))
(4.5)

and the proof follows by normalizing the vector e and using (4.1).

The following lemma is an immediate consequence of (4.1) and lemma 4.1.

Lemma 4.2. Under assumptions 1.1, with (ξ,ν)-hp

v1 =

(
1+O

(
m1

m2

))√
m1

m2

∞∑
k=0

Hk

λk
1

e. (4.6)

In order to estimate how the components of v1 concentrate, we need the following lemma.

Lemma 4.3. For 1⩽ k⩽ L, with (ξ,ν)-hp

|Hke(i)|=

∣∣∣∣∣∣ 1
√
m1

∑
i1,...,ik

hii1hi1i2 . . .hik−1ikdik

∣∣∣∣∣∣⩽ d↑√
m1

(
(logn)ξ

√
d↑
)k

.

The proof of this lemma is a direct consequence of lemma 3.4, is similar to [19, lemma 7.10] and therefore we
skip it. An immediate corollary of the above estimate is the delocalized behaviour of the largest eigenvector
stated in theorem 1.7(II).

Lemma 4.4. Let v1 be the normalized principal eigenvector, and ẽ= e
√

m1
m2
. Then with (ξ,ν)-hp

∥v1 − ẽ∥∞ ⩽O

(
(logn)ξ√

nd↑

)
.

Proof. Recall from (4.4) that

v1(i) =
K

λ1

∞∑
k=0

Hke(i)

λk
1

=
K

λ1
e(i)+

K

λ1

L∑
k=1

Hke(i)

λk
1

+
K

λ1

∞∑
k=L+1

Hke(i)

λk
1

.

The last term is negligible with (ξ,ν)-hp , because it is the tail sum of a geometrically decreasing sequence.

For the sum over 1⩽ k⩽ L we can use lemma 4.3 and the fact that K/λ1 =
√

m1
m2

+ o(1) with (ξ,ν)-hp . So

we have

K

λ1

L∑
k=1

Hke(i)

λk
1

⩽ d↑√
nd↓

(logn)ξ√
d↑

⩽O

(
(logn)ξ√

nd↑

)
.

The first term with (ξ,ν)-hp is

K

λ1
e(i) = ẽ(i)+ o(1)
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and the error is uniform over all i. Indeed, with (ξ,ν)-hp∣∣∣∣ Kλ1
e(i)− K

m2/m1
e(i)

∣∣∣∣⩽ Kdi√
m1

|λ1 −m2/m1|
(m2/m1)2

⩽
√

m2

m1

cd3/2↑√
d↓n

c ′

d2↑
=O

(
1√
nd↑

)
, (4.7)

where we use assumption 1.1, remark 3.1 and (3.7). Since the detailed computations are similar to the previous
arguments, we skip the details.

We next prove the central limit theorem for the components of the eigenvector stated in theorem 1.7(IV).

Theorem 4.5. Under assumption 1.1, with the extra assumption d↑ ≫ (logn)4ξ ,√
m3

2

dim3m1

(
v1(i)−

di√
m2

)
w→N (0,1).

Proof. First we compute E[v1(i)], and afterwards we show that the CLT holds componentwise.
We use the law of total expectation. Conditioning on the high probability event E in lemma 3.2, we can

write the expectation of the normalized eigenvector v1 as

E[v1(i)] = E[v1(i)|E ]P(E)+E[v1(i)|E c]P(E c).

Because the components of a normalized n-dimensional vector are bounded, we know that

E[v1(i)] = E[v1(i)|E ]P(E)+O
(
e−cν(logn)

ξ
)

for some suitable constant cν > 0, dependent on ν and on the the bound on v1(i). On E , we can expand v1 as

v1(i) =
K

λ1

(
e(i)+

(He)(i)

λ1
+

(H2e)(i)

λ2
1

+
∞∑
k=3

(Hke)(i)

λk
1

)
.

Using the notation EE for the conditional expectation on the event E , we have

EE [v1(i)] = EE

[
K

λ1
e(i)

]
+EE

[
K

λ1

(He)(i)

λ1

]
++EE

[
K

λ1

∞∑
k=2

(Hke)(i)

λk
1

]
.

For the first term we have, using (4.5),

EE

[
K

λ1
ei

]
= EE

[
1√

m2/m1

ei

]
+O

(
di√

m1(m2/m1)3/2

)
=

di√
m2

+O

(
di√

m1(m2/m1)3/2

)
.

For the term corresponding to k= 1, we know that E[(He)(i)] = 0 by construction on the whole space. How-
ever, under the event E we can show that its contribution is exponentially negligible. We have

EE

[
K
λ1

(He)(i)
λ1

]
= EE

[
K
λ1

∑
j hijdj√
m1λ1

]
= EE


(
1+O

(
1

m2/m1

))
√

m2/m1

( ∑
j hijdj√

m1(m2/m1)
+

∑
j hijdj√
m1

|λ1 − (m2/m1)|
(m2/m1)2

) .
Sincem2/m1 →∞, there exists a constant C̃ such that

(1+O(1/(m2/m1)))√
m2/m1

⩽ C̃
1√

m2/m1

.

We can therefore write

EE

[
K

λ1

∑
j hijdj√
m1λ1

]
⩽ C̃

1√
m2/m1

EE

[ ∑
j hijdj√

m1(m2/m1)
+

∑
j hijdj√
m1

|λ1 − (m2/m1)|
(m2/m1)2

]

⩽ EE

[ ∑
j hijdj√

m1(m2/m1)

]
+EE

[∑
j hijdj√
m1

|λ1 − (m2/m1)|
(m2/m1)2

]

⩽ EE

∑
j

hijdj

( 1
√
m1(m2/m1)

+

√
d↑√

m1(m2/m1)

)
.
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Here we use (3.7) to bound the difference |λ1 − (m2/m1)|. Next, write

0= E

∑
j

hijdj

= EE

∑
j

hijdj

P(E)+EE c

∑
j

hijdj

P(E c)

⩽ EE

∑
j

hijdj

P(E)+m1P(E c) = EE

∑
j

hijdj

P(E)+O
(
e−cν(logn)

ξ
)
,

where cν is a constant depending on ν, and we use that |hij|⩽ 1 and m1 =O
(
e3/2 logn

)
. We can therefore

conclude that

EE

[
(He)(i)

λ1

]
=O

(
e−c′ν(logn)

ξ
)
,

where c ′ν > 0 is a suitable constant depending on ν, and possibly different from cν .
To bound the remaining expectation terms, we use lemma 4.3, which gives a bound on (Hke)(i) on the

event E . As before, we break up the sum into two contributions:

EE

[
K

λ1

∞∑
k=2

(Hke)(i)

λk
1

]
= EE

[
K

λ1

L∑
k=2

(Hke)(i)

λk
1

]
+EE

[
K

λ1

∞∑
k=L

(Hke)(i)

λk
1

]
.

For the second term we have

∞∑
k=L+1

(
Hke
)
(i)

λk
1

⩽ C

√
m2

m1
e−Cc logn, (4.8)

where we use (3.8) and Cc = | log(1−C0)|. The first term can be bounded via lemma 4.3, which gives

L∑
k=2

(Hke)(i)

λk
1

⩽
L∑

k=2

d↑
(
(logn)ξ

√
d↑
)k

√
m1(m2/m1)k

=O

(
(logn)2ξ
√
m1

)
. (4.9)

Using the above bounds, taking expectations and using (4.5), we get

EE

[
K

λ1

∞∑
k=2

(Hke)(i)

λk
1

]
=O

(
(logn)2ξ
√
m2

)
.

Thus, we have obtained that

E[v1(i)] =
di√
m2

+O

(
(logn)2ξ
√
m2

)
,

which settles theorem 1.7(III).
We can write

v1(i)−
di√
m2

=

(
1+O

(
1

m2/m1

))
e(i)√

m2/m1

− di√
m2

+
K

λ1

(He)(i)

λ1
+O

(
(logn)2ξ
√
m2

)
,

where we replace the last terms of the expansion of v1 by the bounds derived above (note that these bounds
are of the same order as the ones obtained for the same terms in expectation). The first term of the centered
quantity v1(i)− di/

√
m2 is given by(

1+O
(

1
m2/m1

))
e(i)√

m2/m1

=O

(
di√

m1(m2/m1)3/2

)
.

This last error can be easily seen to be o
(

(logn)2ξ√
m2

)
. We can therefore write

v1(i)−E[v1(i)] =
K

λ1

(He)(i)

λ1
+O

(
(logn)2ξ
√
m2

)
.
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We proceed to show that the first term on the right-hand side of the above equality gives a CLT when the
expression is rescaled by an appropriate quantity, and the error term goes to zero. It turns out that

s2n(i) = Var

∑
j

hijdj

=
∑
j

did3j
m1

(
1+O

(
1

d↓

))
∼ dim3

m1
.

Multiplying by
√

m3
2

dim3m1
, we have

√
m3

2

dim3m1

(
v1(i)−⟨ẽ,v1⟩ẽ(i)

)
=

1

sn

∑
j

hijdj +O

√m2
2(logn)

4ξ

dim3m1

 .

The error term is √
m2

2(logn)
4ξ

dim3m1
=O

(
(logn)2ξ√

d↓

)
= o(1),

where last inequality follows from the assumption that d↓ ≫ (logn)4ξ . We now apply Lindeberg’s CLT to the

term
∑

j hijdj
sn

. The Lindeberg condition for the CLT reads

lim
n→∞

1

s2n(i)

n∑
j

E
[
(hijdj)

2 1{|hijdj|⩾ϵsn(i)}
]
= 0. (4.10)

Defining σ2
j (i) = Var(hijdj), we note that

lim
n→∞

σ2
j (i)

s2n(i)
= lim

n→∞

did3j m1

m1m3di
⩽ lim

n→∞

d3↑
m3

⩽ lim
n→∞

d3↑
nd3↓

= 0.

Let us finally examine the event

|hijdj|⩾ ϵsn(i) = ϵ

√
dim3

m1
⇐⇒ |hij|⩾ ϵ

√
m3

m1

di
d2j

.

By definition, |hij|< 1. If we show that

lim
n→∞

√
m3

m1

di
d2j

=∞,

then for all ϵ> 0 there exists nϵ such that the event

ϵ

√
m3

m1

di
d2j

> 1> |hij|

has probability 1. Indeed,

lim
n→∞

ϵ

√
m3

m1

di
d2j

> lim
n→∞

ϵ

√
nd4↓
nd3↑

⩾ lim
n→∞

ϵC
√

d↓ =∞

for a suitable constant C. Thus, (4.10) holds.
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