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A B S T R A C T

Purpose: Genome-wide sequencing is increasingly being performed during pregnancy to
identify the genetic cause of congenital anomalies. The interpretation of prenatally identified
variants can be challenging and is hampered by our often limited knowledge of prenatal phe-
notypes. To better delineate the prenatal phenotype of Coffin-Siris syndrome (CSS), we
collected clinical data from patients with a prenatal phenotype and a pathogenic variant in
one of the CSS-associated genes.
Methods: Clinical data was collected through an extensive web-based survey.
Results: We included 44 patients with a variant in a CSS-associated gene and a prenatal
phenotype; 9 of these patients have been reported before. Prenatal anomalies that were
frequently observed in our cohort include hydrocephalus, agenesis of the corpus callosum,
hypoplastic left heart syndrome, persistent left vena cava, diaphragmatic hernia, renal
agenesis, and intrauterine growth restriction. Anal anomalies were frequently identified after
birth in patients with ARID1A variants (6/14, 43%). Interestingly, pathogenic ARID1A
variants were much more frequently identified in the current prenatal cohort (16/44, 36%)
than in postnatal CSS cohorts (5%-9%).
Conclusion: Our data shed new light on the prenatal phenotype of patients with pathogenic
variants in CSS genes.
© 2022 The Authors. Published by Elsevier Inc. on behalf of American College of Medical

Genetics and Genomics. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

Coffin-Siris syndrome (CSS) (OMIM 135900 and others) is
characterized by neurodevelopmental delay and may be
accompanied by hypoplasia of the fifth digit and/or nail,
distinct facial features, hypertrichosis, and a varying degree of
congenital anomalies.1-6 In the current literature, most pa-
tients present with no prenatal ultrasound (US) anomalies.
Congenital diaphragmatic hernia,7 hypoplastic left heart
syndrome (HLHS),8 and intrauterine growth restriction
(IUGR)9 have been occasionally described, whereas agenesis
of the corpus callosum (ACC)10 is observed more frequently.
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Application of prenatal genome-wide sequencing is rapidly
becoming standard care.11-15 The interpretation of prenatally
identified variants can be challenging because of the limited
knowledge of prenatal phenotypes, because most genome-
wide sequencing in diagnostics and research has focused on
postnatal phenotypes. CSS is no exception to this rule. For
example, we recently detected a novel de novo missense
variant in SMARCA4 (OMIM 614609) in a fetus with HLHS.
HLHS had been described in 1 patient with ARID1A-CSS8

before. With this little information, it was difficult to be
certain about the pathogenicity of the variant, showing a typical
difficulty encountered in current genetic practice.
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This study aimed to increase knowledge of the prenatal
phenotype of CSS by presenting a detailed description of the
prenatal features in a cohort of patients with 1 or more
prenatal US anomalies and a pathogenic variant in one of
the CSS-related genes.
Materials and Methods

Patient collection

Patients were collected through our outpatient CSS expertise
center in the Leiden University Medical Center, Leiden, the
Netherlands. Additional patients were included through in-
ternational contacts, from physicians contacting us for sec-
ond opinions, through contacts with the Baylor Genetics
Laboratory, and through laboratories who reported patho-
genic variants in LOVD16 and ClinVar.17 We also included
patients who were presented at conferences and via the fetal
sequencing consortium, which consists of an international
group of medical professionals who discuss results of pre-
natal diagnostics in a biweekly case meeting.

Patient selection

Inclusion criteria were (1) the presence of any anomaly that
was mentioned in US reports, excluding so called soft-
markers (eg, echogenic focus in the left ventricle) and (2) a
pathogenic or likely pathogenic genetic variant in a CSS-
associated gene (ARID1A, ARID1B, ARID2, BICRA,
DPF2, SMARCA2 duplication, SMARCA4, SMARCB1,
SMARCC2, SMARCD1, SMARCE1, SOX11, SOX4). The
exclusion criterium was the ACC as the sole prenatal US
anomaly in combination with a pathogenic ARID1B variant,
because the association between the ACC and pathogenic
ARID1B variants is well established.10,18

Timing of the identification of the genetic variant could
be prenatal, postnatal, or postmortem.

Data collection

Data were collected through an online questionnaire. If
required, genetic data were completed using Alamut version
2.11.

A patient was considered to have IUGR if it was reported
as such by the contributing clinician.
Results

Genetic variants

In total, 44 patients with variants in ARID1A (n = 16, 36%),
ARID1B (n = 19, 43%), SMARCA4 (n = 3, 7%), and
SMARCB1 (n = 6, 14%) and a prenatal phenotype detected
by US were identified (Supplemental Table 1). Variants were
classified using the American College of Medical Genetics
and Genomics/Association for Molecular Pathology criteria.

Phenotype

The clinical features are summarized in Tables 1 and 2. The
median time in weeks of gestation at which the first US
anomalies were detected tends to be lowest among patients
with ARID1A variants (14+5 weeks), followed by ARID1B
(20+0 weeks), SMARCA4 (20+0 weeks), and SMARCB1
(24+0 weeks) (Supplemental Figure 1). Unless stated
otherwise, frequencies in the text refer to anomalies that
were detected prenatally. The total prevalence of features
(detected prenatally or by postnatal assessment) in this
cohort is shown in Table 1.

Genotype-phenotype correlation
ARID1A
Of the 16 ARID1A pregnancies, 11 (69%) were terminated
on request of the parents because the anomalies diagnosed
by US carried a poor prognosis. One pregnancy led to an
intrauterine fetal death, and one resulted in a child who died
shortly after birth. Brain anomalies were most frequently
present (10/15, 73%), especially hydrocephalus (n = 7) and
ACC (n = 5). Cardiac anomalies were reported in 60% (9/
15). HLHS was detected in 2 fetuses and hypoplastic right
heart in 1 fetus. Persistent left vena cava (n = 3) and double
outlet right ventricle (n = 3) were cardiovascular anomalies
reported in a subset of fetuses. In one case, the ventricular
septal defect and patent ductus arteriosus spontaneously
resolved at 4 months of age. Renal anomalies were observed
in 27% (4/15) of cases, including 1 case with unilateral renal
agenesis who received a peritoneal dialysis catheter at the
age of 1 year and a renal transplant 6 years later. Dia-
phragmatic hernia was detected in 13% (2/15) of fetuses,
and in 3 cases, a diaphragmatic hernia was identified during
postnatal investigation (34%, 5/15). Postnatal investigation
also revealed supernumerary ribs in 2 patients and anal
anomalies in 43% (6/14); 4 patients had anal atresia and 2
patients had an anteriorly placed anus.

ARID1B
Despite excluding isolated ACC cases for ARID1B, brain
anomalies were detected in 76% (13/17) of ARID1B cases,
but only in a subset during pregnancy (29.4%, 5/17). Most
often, ACC was not detected prenatally. Cardiac anomalies
were present in 19% (3/16), including 1 fetus with HLHS.
Fetus 18 with a complex cardiac defect also had a 22q11
deletion. This patient died during her first day of life
because of respiratory insufficiency. Another fetus had
unilateral renal agenesis.

SMARCA4
Of the 3 fetuses with a SMARCA4 variant, 2 had a severe
cardiac anomaly (ie, HLHS). One of these patients died



Table 1 Clinical characteristics of included patients

Clinical Features

ARID1A ARID1B SMARCA4 SMARCB1

(n = 16a)
Detected
by USb

Detected by
Postnatal

Investigation
Total

Affected
%

Total (n = 19)
Detected
by USb

Detected by
Postnatal

Investigation
Total

Affected
%

Total (n = 3)
Detected
by USb

Detected by
Postnatal

Investigation
Total

Affected
%

Total (n = 6)
Detected
by USb

Detected by
Postnatal

Investigation
Total

Affected
%

Total

Sex, female 15 — — 9 60% 19 — — 5 26% 3 — — 2 67% 6 — — 4 67%
First US anomaly, time of AD in days,

n (min-max, median)
12 — — (84-224, 103) 14 — — (60-259, 140) 3 — — (82-145, 140) 6 — — (140-231, 168)

Anomalies
Placenta anomaly 15 1 — 1 7% 19 — — — — 3 — — — — 6 — — — —

Single umbilical artery 15 7 — 7 47% 19 3 1 4 21% 3 — — — — 6 — — — —

Oligohydramnios 15 3 — 3 20% 19 3 — 3 16% 3 — — — — 6 — — — —

Polyhydramnios 15 — — — — 19 3 — 3 16% 3 — — — — 6 1 — 1 17%
IUGR 15 2 — 2 13% 19 4 — 4 21% 3 — — — — 6 3 — 3 50%
Short femur 15 2 — 2 13% 19 — — — — 3 — — — — 6 — — — —

Brain anomaly 15 1- 1 11 73% 17 5 8 13 76% 3 — — — — 6 3 1 4 67%
Hydrocephalus 15 7 — 7 47% 17 1 — 1 6% 3 — — — — 6 — — — —

ACC 14 5 1 6 43% 17 — 7 7 41% 3 — — — — 5 2 — 2 40%
Ventriculomegaly 14 4 — 4 29% 17 2 — 2 12% 3 — — — — 5 1 1 2 40%
Dandy Walker malformation 14 1 2 3 21% 17 — — — — 3 — — — — 5 — — — —

intracranial cysts 14 2 2 4 29% 17 1 — 1 6% 3 — — — — 5 1 — — —

Enlarged cisterna magna 14 — 1 1 7% 17 2 — 2 12% 3 — — — — 5 1 1 2 40%
Cerebellar vermis atrophy or hypoplasia 14 2 3 5 36% 17 1 1 2 12% 3 — — — — 5 — 1 1 20%

Increased NT 15 7 — 7 47% 19 3 — 3 16% 3 1 — 1 33% 6 — — — —

Cardiovascular anomaly 15 9 3 12 80% 16 3 3 6 38% 3 2 — 2 67% 6 1 1 2 33%
Vascular anomaly 15 — — 8 53% 15 2 2 4 27% 3 1 — 1 33% 6 1 — 1 17%

Aortic arch anomaly 15 2 1 3 20% 14 2 — 2 14% 3 1 — 1 33% 6 1 — 1 17%
Involving the vena cava 15 3 1 4 27% 14 — — — — 3 — — — — 6 — — — —

Patent ductus arteriosusc 15 n.a. 1 1 7% 14 1 — 1 7% 3 n.a. — — — 6 n.a. — — —

Cardiac anomaly 15 9 1 10 67% 15 3 — 3 20% 3 2 — 2 67% 6 1 1 2 33%
Hypoplastic left heart 15 2 — 2 13% 16 1 — 1 6% 3 2 — 2 67% 6 — — — —

Hypoplastic right heart 15 1 — 1 7% 16 — — — — 3 — — — — 6 — — — —

Atrioventricular canal 15 1 1 2 13% 14 — — — — 3 — — — — 6 — — — —

DORV 15 3 — 3 20% 14 — — — — 3 — — — — 6 — — — —

Septal defect (isolated or in combination
with other structural cardiac anomalies)

15 4 5 9 60% 14 — 2 2 14% 3 1 — 1 33% 6 — 1 1 17%

Valve defect 15 — — 3 20% 14 — — — — 3 2 — 2 67% 6 — — — —

Cardiac position/Dextrocardia 15 1 — 1 7% 14 — — — — 3 — — — — 6 1 — 1 17%
Cardiovascular intervention 4 — — — — 14 — — 1 7% 3 — — 1 33% 6 — — — —

Diaphragmatic hernia 15 2 3 5 33% 16 1 — 1 6% 3 2 — 2 67% 6 — — — —

Anal anomaly 14 n.a. 6 6 43% 15 n.a. — — — 3 n.a. — — — 6 n.a. — — —

Renal anomaly 15 4 3 7 47% 16 1 1 2 13% 3 1 — 1 33% 6 3 — 1 17%
Renal dysplasia 14 — 3 3 21% 15 — 1 1 7% 3 — — — — 6 — — — —

Renal agenesis 14 3 — 2-3 13-20% 15 — — — — 3 — — — — 6 — — — —

Hydronephrosisc 4 — — — — 15 1 — 1 7% 3 — — — — 6 2 — 1 17%
Genitourinary anomaly 12 — 5 5 42% 15 — 8 8 53% 3 — — — — 6 — 3 3 50%
Urinary anomaly 14 — 2 2 14% 15 — 3 3 20% 3 — — — — 6 — 1 1 17%
Genital anomaly 14 — 2 2 14% 15 — 3 3 20% 3 — — — — 3 — 2 2 67%

Cryptorchidismc 6 n.a. — — — 14 n.a. 10 10 71% 1 n.a. n.a. n.a. — 2 n.a. 2 2 100%
Hypospadia 6 n.a. 1 1 17% 14 — — — — 1 n.a. n.a. n.a. — 2 n.a. 1 1 50%

Digit anomaly 14 n.a. 10 10 71% 11 — 4 4 36% 2 — 2 2 100% 4 — 3 3 75%
Nail anomaly 11 n.a. 6 6 55% 11 n.a. 5 5 45% 2 n.a. 2 2 100% 2 n.a. 1 1 50%
TOP 11I — — — — — — — — —

Mean time AD, days 10 — — (101-161, 132.1) 67% 1 — — (144) 5% — — — — — 1 — — (159) 17%
IUFD

Mean time AD, days 1 1 — (126-126, 126) 7% 19 — — — — 3 — — — — 6 — — — —

Died 17 — — 13 87% 19 — 2 11% 3 — — 1 33% 6 — — 1 17%

ACC, agenesis of the corpus callosum; AD, amenorrhea duration; DORV, double outlet right ventricle; IUFD, intrauterine fetal death; IUGR, intrauterine growth restriction; n.a., not applicable, NT, nuchal
translucency; TOP, termination of pregnancy; US, ultrasound.
aOne fetal case/TOP no additional information available.
bSeparately reported as US anomaly.
cOnly data of non-TOP and IUFD cases.
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Table 2 Distribution of genetic variants per gene within our cohort and within published CSS cohorts

Gene Total %
CSS cohort

Santen et ala,b
CSS cohort

Wieczorek et ala,b

CSS cohort
Tsurusaki/

Sekiguchi et ala,b

Cumulative
Frequency of CSS

Cohorts
Combineda,b

P-value
Fisher’s exact

ARID1A 16/44 36.4% 4/45 8.9% 1/21 4.8% 6/78 7.7% 11/144 7.6% <.01
ARID1B 19/44 43.2% 28/45 62.2% 14/21 76.2% 48/78 61.5% 90/144 62.5% .04
SMARCA4 3/44 6.8% 4/45 8.9% 0/21 0.0% 7/78 9.0% 11/144 7.6% 1.00
SMARCB1 6/44 13.6% 4/45 8.9% 1/21 4.8% 8/78 10.3% 13/144 9.0% .40

CSS, Coffin-Siris syndrome.
aOnly patients with pathogenic variants in a CSS-associated gene were taken into account.
bNumbers may not add up to 100%, because pathogenic variants in other CSS-associated genes were detected.
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postnatally as a result of her congenital anomalies. The fetus
without a severe cardiac anomaly had hydrops, diaphrag-
matic hernia, double renal collecting system, and abnormal
feet position. Parents decided to continue this pregnancy
after they received the genetic results at 19+4 weeks of
gestation.

SMARCB1
IUGR was reported for 50% (3/6) of fetuses with a
SMARCB1 variant. Brain anomalies were reported for 2
fetuses. One fetus had an abnormal cardiac position (ie,
ventricular axis and apex to the right of the midline) with
biventricular hypertrophy and a minor size discrepancy of
the great arteries, and 1 fetus had a cardiac septal defect that
was detected postnatally. Two fetuses had hydronephrosis
on prenatal US, of which 1 case resolved postnatally. Dur-
ing postnatal assessment, it appeared that both males with
SMARCB1 variants had cryptorchidism.
Discussion

Genotype

In total, we identified 44 CSS cases with prenatal US
anomalies, making this the largest case series to date.
ARID1A (n = 16) or ARID1B (n = 19) variants were most
frequent in this prenatal cohort. The frequency of ARID1A
variants in particular was remarkable. ARID1A variants were
overrepresented among the cases that did not survive into
the neonatal period (76.5%, n = 13 for ARID1A vs 23.5%,
n = 4 for the non-ARID1A group, P < .001). Furthermore,
the median gestational age at which the anomalies were
detected was earlier (14+5 weeks for ARID1A vs 20+0
weeks for the non-ARID1A group) (Supplemental Figure 1),
although the difference was not significant (P = .17). This
may fit with our previous finding that ARID1A variants in
postnatal cases are frequently present in a mosaic state,1

which suggests that nonmosaic pathogenic ARID1A vari-
ants may lead to an embryonically severe or lethal pheno-
type. The likely explanation for the relative lack of postnatal
ARID1A variants (Table 2) is that most fetuses with full
pathogenic variants display severe congenital anomalies,
leading to a large proportion of pregnancy terminations as
well as fetal and neonatal demise. Thus far, such cases were
less likely to undergo extensive diagnostic sequencing.
Contrary to our previous findings where all 4 patients with
ARID1A variants appeared mosaic in lymphocytes,1 all pa-
tients in this cohort appear to have the pathogenic variant in
50% of sequence reads.

Phenotype

Frequent findings in fetal cases with pathogenic ARID1A
variants, such as hydrocephalus, hypoplastic left or right
heart syndrome, renal agenesis, diaphragmatic hernia, and
postnatally detected anal anomalies, have not been previ-
ously recognized as part of the CSS phenotypic spectrum.
Sporadically, patients have been reported with one of these
anomalies and a pathogenic variant in a CSS-associated
gene.6,7,18-20 Unilateral renal agenesis was reported among
patients with clinically diagnosed CSS in the era before
identification of CSS genes.21,22

Pregnancies were terminated in 68.8% (11/16) of the
ARID1A cases, which makes it impossible to assess severity
of developmental delay or treatment response postnatally.
Compared with reported congenital and/or structural
anomalies among ARID1A patients,1-4,23 the severity of the
congenital anomalies in our ARID1A cases appears to be
more severe (Table 1).

The postnatal ARID1B phenotype has been extensively
reported on by our group and others.10,18,24,25 Although we
excluded patients with ACC as the sole prenatal presenting
feature, 29.4% (5/17) had 1 or more brain anomalies. IUGR
was detected more frequently in our cohort compared with
previously reported frequencies in patients18 (Fisher’s exact,
P = .04), which might indicate that it is more common in the
subset of patients with congenital anomalies. The frequency
of cardiac anomalies in the fetal series does not differ
significantly from previously reported frequencies in pa-
tients18 (Fisher’s exact, P = 1.00).

It is remarkable that all SMARCA4 fetuses had severe
congenital anomalies, which have not previously been re-
ported among patients with SMARCA4 variants. Li et al9 do
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report other prenatal findings in 6 of 13 patients with
SMARCA4 variants (ie, IUGR [n = 4], cardiac anomaly [n =
2], and ACC [n = 1]).

The most frequent US anomaly in SMARCB1 variants
was IUGR, which is a frequent, nonspecific prenatal US
finding. Where the postnatal SMARCB1 patient group usu-
ally presents with a phenotype considered at the severe end
of the CSS spectrum,1,6,25 there does not to appear to be a
more severe prenatal presentation for this gene compared
with patients with ARID1A, ARID1B, or SMARCA4 variants.
However, we show here that growth delay,1,4 which is a
prevalent feature among reported patients with CSS and is
often more extreme in SMARCB1 patients, is detected pre-
natally as IUGR in several patients.

We did not identify patients with a prenatal presentation
and a pathogenic variant in the other CSS-related genes
(ARID2, BICRA, DPF2, SMARCA2 duplication, SMARCC2,
SMARCD1, SMARCE1, SOX11, SOX4) during this study. It
is possible that prenatal US anomalies are less prevalent
among these patients. The number of patients known with
pathogenic variants in these genes is, however, still rela-
tively small, so a prenatal phenotype may be identified in the
future.

Not all cases in this cohort underwent a similar US ex-
amination, which is reflected by the fact that not all anom-
alies were detected prenatally. Table 1, however, gives an
overview of the potential for prenatal detection if every fetus
would have been examined on the level of a tertiary referral
center. Because not every case underwent extensive US
examination, this may be an underestimation.

Conclusion

This study highlights the prenatal phenotypic spectrum of
CSS in a prenatal cohort with a molecularly confirmed
pathogenic variant in a CSS-associated gene. Pathogenic
variants in ARID1A were identified much more frequently
in this group than in cohorts of postnatal patients with
CSS. Frequently observed prenatal anomalies include
hydrocephalus, ACC, HLHS, double outlet right
ventricle, persistent left vena cava, congenital diaphrag-
matic hernia, renal agenesis, and IUGR, indicating that
the prenatal phenotype of CSS significantly differs from
the postnatal phenotype. This difference may be
explained by an increased rate of pregnancy termination
for fetuses at the severe end of the spectrum and in
increased chance of fetal or postnatal demise. Genome-
wide sequencing has been less frequently applied in
such cases until now, leaving this part of the CSS spec-
trum undiscovered.
Data Availability

De-identified patient data will be made available on request
to the corresponding author.
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