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1 AIMS OF THIS THESIS
In this thesis, we explored epidemiological applications and methodological challenges of 
genomics, proteomics, and metabolomics. Metabolomics, one of the more recent OMICs fields, 
was the main focus of our research. Metabolites are thought to reflect integrated genomic and 
proteomic influences in metabolism as well as the environmental and external effects from the 
individuals’ exposures. Hence, metabolomics may provide novel insight in the pathophysiology 
of complex multifactorial diseases. Indeed, in our research, metabolomics shed light on the 
associations between metabolites and non-alcoholic fatty liver disease (NAFLD), metabolites 
and short sequence repeats in the huntingtin gene, and the associations of per-/polyfluoroalkyl 
substances (PFAS) chemicals in the general population with metabolites. However, methodo-
logical, technological, and statistical challenges remain in this infant field. Therefore, we explored 
the issues of handling missing values in metabolomic data using a simulation study based on real 
data. This resulted in a publicly available R script to streamline the imputation of missing values 
of metabolites. In addition, we showed the importance of examining the agreement between 
clinical measurements with protein measurements from high throughput platforms. This thesis 
provides tools for and perspectives of the current status and future directions of OMICs research 
in epidemiology.

2 MEASUREMENT METHODOLOGY AND HIGH DIMENSIONALITY 
Platforms such as SOMAscan and Metabolon provide quantification of more than a 1000 proteins 
and metabolites, respectively. However, these platforms come with their own specific short-
comings. First, the specificity and sensitivity of the metabolite or protein measurement differs 
depending on the chemical properties and nature of the biomolecule. For example, binding affinity 
of SOMAscan’s aptamers are reportedly poor with proteins with a neutral charge or those with 
large sizes. Second, comparing and validating measurements with “golden” standard methods 
have been, at least partially, neglected as is evident from chapter 2. The appealing prospect of 
measuring a large number of metabolites and proteins should not detract from validating those 
measurements. Third, data should be double checked for post-processing errors during the 
annotation of the metabolites or proteins. The possibility of human errors and software errors 
occurring during this process is frequently ignored. Internal validations and simulations should 
be an essential element of the data integration and analysis process. In addition, improvement 
in measurement technology and methodology are needed to enable consistent measurements 
of complex metabolites or proteins. Furthermore, the number of detectable metabolites and 
proteins is projected to increase substantially. Therefore, in addition to validating the data using 
golden standard methods, researchers should validate findings use their own knowledge of the 
chemical properties and biochemical pathways of the metabolites and proteins related to their 
research question. Moreover, they must keep in mind the characteristics of the population of 
interest used in the study, since these may confound or affect the OMICs measurements. In 
conclusion, researchers must be aware of the strengths and weaknesses of the selected OMICs 
platforms used to produce their data and consider these when interpreting the results. 
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3 STATISTICAL CHALLENGES AND SOLUTIONS

3.1 The N<P problem

The merit of large-scale data from high throughput OMICs acts as a double-edged sword during 
the statistical analysis due to the multiple testing problem. For example, if 1000 comparisons 
are made between metabolites and a trait, the number of false positive results given a P-value 
threshold of 0.05 is 50 associations. This issue is commonly addressed by reducing the P-value 
threshold. For example, the Bonferroni method divides the nominal P-value by the number of 
independent measurements. Thus, studies must have an appropriately large sample size to 
assess associations between traits and a large number of measurements. Ideally the number of 
individuals in a study should be larger than the number biochemical variables. Otherwise, the 
analysis would suffer from N<P problem, wherein the number of individuals (N) in the study is 
less than the number of predictors (P). N<P leads to bias in the analysis results as well as reduced 
reliability and reproducibility of the results. In the case of epidemiological studies, it is essential 
to have a sufficient number of individuals per outcome event. Otherwise, etiological results may 
lack the necessary power to confidently report any findings and prediction models may be poor, 
overfitted, and not generalizable (1). Therefore, sample size considerations are crucial when 
conducting epidemiological studies using large OMICs data. The number of cohorts with OMICs 
measurements across the globe has increased greatly in recent years. To name a few notable 
examples, Nightingale measurements are available in the UK biobank cohort (n ~ 500,000) (2) 
and Metabolon is planned for the Million Veteran Program (n ~ 900,000) (3). Several consortia 
focusing on OMICs have also been established such as the biomolecular resources and research 
infrastructure (BBMRI) consortium (4, 5), BBMRI-ERIC (6), and the Cohorts for Heart and Aging 
Research in Genomic Epidemiology (CHARGE) consortium (7, 8). These large studies and collab-
orative efforts provide several advantages to overcome the limitations of large OMICs data. 
They provide a solution for the N<P issues by combining their data and results to achieve larger 
power, similar to the work in chapter 6. Collaborative studies provide an additional benefit by 
enabling the reproduction and validation of findings in different populations. Meta-analyses of 
genome-wide association studies at the beginning of this century were in that sense pioneering, 
as they performed rigorous replication and validation studies. Lack of reproducibility in scien-
tific research remains a persistent issue and OMICs research is no different. Thus, validation 
of prediction models and performing meta-analyses, increases the confidence in the research 
findings far more than single studies (9) as demonstrated in chapter 7. In addition, even signif-
icant findings in a specific population or ethnicity may not be generalizable to different popula-
tions and ethnicities. Hence, OMICs research should aim for the identification, comprehension, 
and dissolution of these disparities. To summarize, sample size considerations are critical for 
OMICs studies and collaborative research is crucial to not only overcome the N>P limitations but 
also to improve the quality and reproducibility of the findings. 

3.2 Imputation of Missing Data 

As we have shown in chapter 3, missing values are common and remain an issue in OMICs data. 
Complete case analysis, in which analysis is conducted on only individuals without any missing 
values, can be an appropriate method but also has its disadvantages (10). As discussed earlier, 
maximizing the sample size for analysis in OMICs is crucial. Thus, imputing missing values is 
an important method to reach full sample size. However, handling missing values in metabo-
lomic studies requires careful consideration (11) as popular methods tend to be inadequate as 
they may lead to biased results (12, 13). This is the case for a common method for dealing with 
missing values in which metabolites with missingness above a certain percentage are excluded. 
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Alternatively, metabolites with missing values are imputed with a single numerical value, such 
as the mean or half the minimum value for each respective metabolite. However, this removes 
valuable data, and does not consider the various reasons for missingness in metabolomic data 
or the different characteristics of the measured metabolite groups (12, 13). For example, we 
recommend in chapter 3 that xenobiotics should be imputed with zero as they are likely truly 
missing. For other metabolite groups, multiple imputation and k-nearest neighbor imputation 
demonstrated better performance with reduced bias in the analysis (12, 13). These methods 
are not perfect, and their performance dwindles if the sample sizes are small with high level of 
missingness. Overall, all these factors must be considered for metabolomics studies.  

Another issue with handling missing values in metabolomic studies is that metabolomics research 
lacks a uniform guideline for imputation methodologies. Thus, selecting and applying appropriate 
imputation methods can be challenging. Multiple imputation may be most appropriate because 
of reduced potential bias but are thought to be computationally and statistically challenging 
(13). However, recent developments have overcome many of the issues associated with multiple 
imputation methods. Programing packages and plugins have become readily available with full 
tutorials on their usage, making it easier for researchers to apply. These include resources tailored 
for imputing missing values in metabolomic data (for example the script presented in chapter 
3). These software tools coupled with the rapid evolution of computer processors and hardware 
have facilitated the application of imputation methods on large data. Further recommendations 
to reduce the complexity and computational time of multiple imputation methods is selecting 
a reasonable number of imputations for the study at hand. For example, 5 to 10 imputed sets 
can be sufficient in the presence of a moderate degree of missingness (14). Another recommen-
dation is the selection of a small number of biologically relevant “auxiliary” variables (i.e., age, 
sex, body mass index, etc.) to impute the missing values for the metabolites instead of using the 
full dataset (13). 

Moving forward, guidelines—such as the Metabolomics Standards Initiative (15)—should be 
expanded upon to provide a uniform primer for imputing missing data using optimized method-
ologies for metabolomics. Achieving this would require the collaboration and agreement of the 
metabolomics research community and is definitely something worth pursuing.

4 REPRESENTING AND INTERPRETING METABOLOMICS AND 
PROTEOMICS RESULTS

The amount of data measured by OMICs platforms raises another question: how do we represent 
and interpret the vast amount of data from the analysis? Typical results of epidemiological studies 
are provided in tables and static figures within the main body of the manuscript. However, when 
reporting large numbers of tests for every measured metabolite, protein, or genetic variation, 
it becomes challenging to include all the results in a single table or figure. Moreover, scientific 
journals typically limit the number of tables and figures allowed in the main text. Providing these 
results as supplementary materials creates dozens of large, sometimes overwhelming tables and 
figures, which are often overlooked. This leads to selecting and reporting a handful of metabo-
lites, proteins, or single nucleotide polymorphisms (SNPs) in the main body of scientific papers. 
Moreover, OMICs measurements, especially metabolites and proteins, are highly correlated and 
interconnected by common chemical pathways. Therefore, reporting on a select few compounds 
fails to capture the true depth of their biological implications, which subsequently can lead to 
bias in reporting. 
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Reporting of OMICs data can be improved in a number of ways. First, the full analysis results can 
be published on an online website, such as an accessible online database or interactive webpage 
viewed directly from an internet browser. This enables easy viewing and interaction with large 
tables and complex figures. In addition, a website dedicated to the results enables the inclusion 
of all the statistical estimates from the analysis. Examples of these sites already exist, such as the 
Metabolomics GWAS Server (16, 17), the Metabolome website for metabolites correlated with 
age (18, 19), and our website for the results regarding metabolites associated with hepatic triglyc-
eride content, described in chapter 5. Other alternatives are central web databases and online 
analysis suites for uploading OMICs data and performing additional analyses. Examples of these 
resources include MetaboLights (20) and OpenGWAS (21). Second, analytical methods should be 
available that capture the extent of correlations and association within OMICs data. As demon-
strated in chapter 5, methods such as gaussian graphical modeling (GGM) and genome-scale 
metabolic models (GSMM) provide unique insight into pathways and reactions connecting the 
OMICs data and the analysis results (22). Third, dynamic web figures and plots can be generated 
to be interactive instead of static images. This facilitates the navigation and interaction with 
complex results while providing the ability for both wide and pinpoint visualization.

With software and programming advancements, the tools to enable the production of such 
interactive figures and websites have become available for use by researchers. In addition, some 
tools have been designed specifically for the online representation of OMICs data. One such tool 
is PheWeb for the visualization and exploration of genomic study results (23). Moreover, inter-
active GGM and GSMM networks can be produced by common and free software. Thus, it is now 
feasible for researchers to create interactive figures and networks that allow full and thorough 
exploration and investigation of OMICs studies. 

5 XENOBIOTICS, A KEY FOR EXPOSOME RESEARCH?
Exposome, the study of the effects of external environmental and lifestyle exposures on 
individuals’ health, has gained steady momentum in recent years. Indeed, large consortia 
have been founded dedicated to exposome research, such as the exposome-NL consortium 
(24) in the Netherlands. However, one persistent limitation of these studies is the poor avail-
ability of real-life exposome measurements for the general population. Metabolomics can be 
a solution for this issue. Indeed, some interesting exposome variables can be detected in the 
xenobiotic metabolite measurements found in metabolomic platforms such as Metabolon. For 
example, some environmental contaminants such as pollutants in the air, soil, or water may be 
measured in body fluids, such as the forever chemicals (PFAS) exposure levels as demonstrated 
in chapter 7. In addition, xenobiotic metabolites such as cotinine metabolites reflect smoke 
exposure and other lifestyle habits. Besides environmental exposures, xenobiotic metabolites 
may reflect components from diet, cosmetics, and medications. Diet related metabolites can 
be used in unique ways in epidemiological studies. For example, some metabolites have been 
linked with dietary patterns such as the intake of fish and bread. Several studies have explored 
such biomarkers as quantitative information for dietary intake and the validation of food 
frequency questionnaires (FFQs) (25, 26). These FFQs can be affected by participants misre-
membering what they ate over short or long periods of time. This issue is called differential 
measurement error bias and is commonly referred to as “recall bias” (27). Therefore, quanti-
tative diet information via metabolite measurements can address recall bias and complement 
the FFQs. However, achieving this goal remains a challenge that requires the identification 
and validation of strong and robust biomarkers for a wide number diets and food sources 
(26). The same principle of validating patient questionnaires using metabolites can potentially 
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be applied to verify other lifestyle factors such as the aforementioned tobacco smoking via 
cotinine metabolites (28). 

Xenobiotic metabolites from medications can also provide unique epidemiological insights. 
Common ways to obtain medication data is from prescription and dispensing data from hospitals 
or pharmacies, or from the beforementioned self-reported patient questionnaires. However, 
this data could be scarce for the general population or not accessible for research purposes. In 
addition, some drugs can be obtained over the counter without a prescription and do not leave 
patient specific data traces. In these cases, metabolomic measurements can be useful if the 
medication related xenobiotic metabolites can be quantified. Nonsteroidal anti-inflammatory 
drugs (NSAIDs) are an example of an over-the-counter drug class that does not require prescription 
and are difficult to trace. This is an issue when attempting to study the negative health impact 
of NSAIDs overuse. Indeed, NSAIDs have been found to be associated with increased risk of 
heart failure (29)—particularly in hypertensive patients (30)—and increased risk of gastrointes-
tinal bleeding (31, 32). The same principle can also be coupled with randomized controlled trials 
(RCTs) to collect metabolomic quantitative data regarding the patient’s medication compliance. 
Therefore, using xenobiotic metabolites for NSAIDs and other medications can provide quanti-
tative data of their usage in the general population. In turn, these xenobiotic measurements can 
be used to address various epidemiological questions such as improving the estimation of the 
population use of NSAIDs—or other medications—and their association with negative health 
outcomes or mortality. 

One limitation that should be noted for the use of metabolomics to trace and quantify medication 
related metabolites is the half-life of metabolites in the human samples, i.e., the period of time 
it takes a substance (metabolite) level to decrease to half its initial concentration (33). A metab-
olite with a short half-life is eliminated from the body too quickly and can be difficult to measure. 
One possible work around for this issue is to obtain and measure multiple samples to capture 
metabolite levels at different time points. 

As demonstrated by these examples, the quantification of xenobiotic metabolites related to 
environmental contamination, diet, or medication could provide tools to answer exposome 
related epidemiological questions. Hence, metabolomics may be a key for the expansion of 
exposome research.

6 THE VALUE OF CROSSING AND INTEGRATING MULTIPLE OMICS
The human biological system is incredibly complex and sophisticated. Thanks to technological 
advancements, OMICs have enabled the comprehensive study of different layers of this human 
system. OMICs studies usually focus on a single layer; however, these layers are interconnected 
and actively interacting. Although the genetic sequence is largely static and conserved after 
conception, massive diversity in gene expression occurs from epigenetic regulation. Moreover, 
gene expression differs in various body tissues and the degree of expression differs over time. 
As a consequence, the diversity and levels of proteins and metabolites in different tissues also 
differ over time. 

This level complexity is disregarded when focusing on a single OMICs layer. Indeed, despite the 
important findings from genome wide association studies, examining DNA sequence data and 
SNPs alone is currently incapable of explain the full heritability of diseases, referred to as the 
missing heritability problem (34). Likewise, focusing on OMICs data such as metabolomics alone 
ignores genetic factors that may affect metabolism and metabolite levels.
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The integration of two or more OMICs, i.e., multi-OMICs, can be a powerful approach that 
combines and reinforces the unique features of separate OMICs data. Indeed, multi-OMICs can 
expand on etiological findings by providing better understanding of disease pathophysiology. 
For example, the integration of genomic and metabolomic data as presented in chapter 6, has 
also been used for NAFLD research (35), and to create an atlas of genetic influences on blood 
metabolites (16). Another valuable addition to a multi-OMICs study is the use of transcriptomics 
data. Transcriptomics can be further applied to assess the dynamic expression of the genome 
in different cell lines in the body. Crossing over the results from genomics and transcriptomics 
with metabolomics or proteomics can form a network pinpointing the location and time points 
for gene expression and link it to the levels of proteins and metabolites. Beyond these endog-
enous layers, the beforementioned external xenobiotics and exposome can also be added to 
this network. Thus, the possible associations of environmental and lifestyle exposures with the 
endogenous factors can be considered. In this sense, crossing OMICs not only combines their 
unique features, but also compensates their individual downsides and reinforces their strengths. 
Therefore, integrating multi-OMICs data is an important up and coming field for understanding 
complex pathophysiology of human phenotypes and diseases.

Crossing over multi-OMICs can also provide insights into causal associations. One way to achieve 
this is by using genomics in combination with one or more OMICs data. Since genetic varia-
tions are conserved since conception and are not affected by confounders, it is possible to use 
genomics to infer causality, using statistical methodologies such as Mendelian Randomization 
(MR) (36). On the other hand, metabolomics and proteomics are not readily applicable to assess 
causality in associations with diseases. However, genomics combined with other single OMICs 
can possibly enable inferring causality between the different single OMICs and outcomes of 
interest. In an MR analysis SNPs can be selected that are associated with a specific outcome 
and relevant metabolites or proteins biomarkers. These can then be used to estimate the causal 
effect of the biomarkers on the outcome. Thus, providing a method to avoid confounding if the 
assumptions required for causal inference in MR are maintained. A hypothetical example would 
be for venous thrombosis research. The search for biomarkers which are associated or predictive 
for VTE remains challenging (37, 38). Multi-OMICs can be utilized by using known and unknown 
genomic associations with VTE and its associated metabolites and proteins. Analysis of these 
OMICs could potentially assist in identifying novel biomarkers or causal associations related to 
VTE (by way of MR or other causal inference methodologies). To date, several multi-OMICs MR 
studies have been used to identify potential drug targets (39), inferred causality between the 
metabolome and obesity (40), and identified causal links between carnitine and systolic blood 
pressure (41).

7 MULTI-OMICS AND THE (NOT SO) LONG AND WINDING ROAD 
We have described the merits of multi-OMICs and provided examples which demonstrate their 
potential, such as creating complex OMICs atlases for deeper etiological understanding of 
diseases (16, 42, 43) and in identifying causal associations (39-42). But what are the challenges 
facing multi-OMICs? What is needed for it to grow? How far are we in this upcoming field? For 
starters, the big challenge of multi-OMICs data is the sheer amount of data to combine and 
study. One way to address this challenge is to use the aforementioned analytical methods to 
construct a multi-OMICs network for the relevant biological pathways related to the outcome of 
interest. This selection can be done using statistical methods or prior findings from epidemio-
logical and single OMICs studies. 
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Multi-OMICs studies are currently being conducted more frequently (Figure 1). However, for 
multi-OMICs to blossom, it would first require further advancements in the separate OMICs 
fields. These advancements must aim to improve the reliability and reproducibility of measure-
ments whilst reducing costs. For genomics, we reiterate the importance of studying copy 
number variations, structural variations, and other variations in addition to SNPs. This may help 
to address the missing heritability problem and may shed light on new mechanisms underlying 
pathophysiology of diseases. In addition, new and efficient methods are needed to integrate and 
analyze the complex OMICs data. Open-source software and plugins for statistical software and 
programming languages, such as R and Python, can streamline these methodologies and simplify 
their use for multi-OMICs research. The subsequent results and findings would greatly benefit 
from dynamic and interactive representation to enable the full exploration by other researchers. 
Indeed, network analysis and interactive web tools can display multi-OMICs data and their 
associations efficiently. In addition, new analysis methods have been explored to process and 
analyze multi-OMICs data. One such method is machine learning (ML). ML techniques are 
increasingly applied in epidemiological and OMICs research. ML is a powerful technique for the 
analysis of large data and can be used for prediction modeling and even causal effect estimation 
(44). However, ML may suffer from several pitfalls. For one, the parameters and steps silently 
undertaken by the ML algorithm, to automatically learn from the data, may be nontransparent 
and complicated (45, 46). Moreover, ML inherently uses some level of randomness which may 
affect its performance and specific outcome. Changing the randomness parameter (also known 
as the random seed) may lead to inflated estimates of the model (45, 47) Another aspect is 
that ML methodologies can also be affected from the same issues as non-ML methods, such 
confounding, overfitting, and bias (45, 47). These aspects can be challenging when verifying and 
reproducing the results from ML models (45, 47). In addition, some studies reported that, for 
clinical prediction models, ML showed no performance benefits when compared to logistical 
regression (48). These problems have been addressed by combining epidemiological principles 
and statistical frameworks with ML and by selecting appropriate ML algorithms and properly 
applying them (44-46). Indeed, efforts are underway to provide guidelines for to address the 
aforementioned issues and help guide the development and reporting of ML prediction models 
(46). These aspects and solutions will be applicable for multi-OMICs as well and can enable the 
use of robust ML methods in OMICs and multi-OMICs research. 

Figure 1: Search results of publications using the term “multi-OMICs” in PubMed from 2006 to November 2022 (49)
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Ultimately, the potential of multi-OMICs research is promising and the number of studies incor-
porating multiple OMICs is rapidly increasing. Furthermore, statistical methodologies, such as 
ML, are improving as well, further enabling multi-OMICs analyses. Overall, the challenges facing 
multi-OMICs are being addressed and will likely be steadily resolved. The road to prevalent multi-
OMICs epidemiological research appears shorter than ever before. 

8 OMICS, CLINICAL CARE, AND BEYOND
OMICs and multi-OMICs are powerful tools for dissecting the pathophysiology and etiology of 
diseases. How can these findings be incorporated into clinical care? Physicians and clinicians rely 
on their medical knowledge and experience for prognosis, diagnosis, and treatment of patient’s 
medical conditions. Based on this knowledge, they may request a screening for specific biomarkers 
with a strong indication for a specific outcome to verify their diagnosis. For example, c-reactive 
protein (CRP) is a strong biomarker for inflammation and used as a diagnostic marker of infection 
and inflammation (50). D-dimer, small protein fragments of fibrin, is a strong diagnostic biomarker 
for venous thrombosis events (51). D-dimer has a high sensitivity for the identification VTE patients 
but is noted to having low specificity to identify patients without VTE (52). Prohormone brain 
natriuretic peptide (pro-BNP) is an example of a peptide that has become regularly measured 
for the diagnosis, particularly in the emergency room, and prognosis of heart failure (53-55). 
Physicians also rely on the patient’s personal and family history to order screening of specific 
disease biomarkers. For example, screening for the BRCA1 and BRCA2 genes has become common 
procedure to identify the risk of breast cancer and ovarian cancer (56). Another example is prenatal 
and newborn genetic screening. These tests have become routine clinical procedures to identify 
possible treatable but severe diseases that require swift and early action for new born babies (57). 
Newborn genetic screenings checks for diseases such as thyroid disorder, blood disorders, a range 
of metabolic disorders, and several other diseases (58). These examples show how some OMICs 
findings, especially genomics, have reached and enhanced some areas of routine clinical care 
(59, 60). In order to be implemented in clinical practice, identified biomarkers for diseases must 
show a robust and specific association with a disease outcome, show a strong utility for prognosis 
and diagnosis of an outcome, and should be readily available and easily measured. Subsequently, 
this may lead to the incorporation of the biomarker measurement to routine clinical application, 
as what was done for pro-BNP. However, challenges still remain, and progress is slower than 
expected for the integration of OMICs biomarkers in the clinic. As a consequence, the integration 
of these biomarkers into clinical use has been slow. For example despite strong evidence linking 
genetic variation with increased disease risk, it has taken a 25-30 year period between discovery 
and clinical implementation of genetic markers such BRCA1 (61) and nearly 10 years for incorpo-
ration and standardization of pro-BNP measurement in clinical care (62). 

Genetic screening for patients remains expensive and time consuming. This adds another layer 
of complication due to limited financial coverage of these tests by health insurance companies. 
This financial burden discourages physicians and patients to request such tests. In addition, 
results for the analysis are often not easily readable by the clinician or the risk probability from 
the tests are not sufficient to determine a treatment course. “Why request an expensive and 
time-consuming test that does not add value to the standard treatment plan? Is OMICs research 
truly useful for clinical care?” These concerns and issues must be addressed when thinking of the 
future value of OMICs to clinical setting. Metabolomics and proteomics research must learn from 
the lesson of genomics and other successful biomarkers (such as pro-BNP) to prove their value 
and to expedite their integration in the clinical setting. We will discuss three potential points that 
can aid OMICs to reach clinical care. 
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First, the measurements from OMICs platform can provide better clinical relevance if they report 
the absolute concentration of the biomarkers instead of relative values. One of the tradeoffs of 
most untargeted methodologies is between the ability to measure large amounts of biomarkers 
and obtaining absolute quantification. One of the reasons for this is the nature of the methods 
and platforms used to a attain those measurements (i.e., mass spectrometry and aptamer-based 
methods). The large number of measured biomarkers and relative concentrations from these 
platforms are indeed useful and beneficial to address research questions. However, for clinical 
use these relative measurements can be difficult to interpret when deciding a treatment plan. 
This is particularly true when compared to standardized and routine clinical biomarker measure-
ments. Of course, attaining absolute quantification is possible from some OMICs instruments 
and platforms, such as the Nightingale platform. However, moving forward, OMICs should aim to 
provide absolute concentrations on large scales. For existing absolute quantification platforms 
this would require expanding the range of measurable biomarkers. For relative quantification 
platforms this requires finding solutions such as converting relative values to absolute concentra-
tions by including reference samples or implementing other methodologies. Alternatively, future 
technologies can lead the way for novel large scale untargeted absolute quantification platforms. 
Achieving these goals will ultimately aid in translating the findings from OMICs research into 
clinical relevancy.

Second, as discussed earlier, identification of causal associations from single or multi-OMICs 
research could be the key to finding novel and important disease biomarkers. This can be further 
expanded to identify potential protein and metabolite drug targets. Previous studies have 
successfully used MR to identify ACE2 and IFNAR2 proteins as potential drug targets for severe 
COVID-19 patients (63). This was in line with findings from a large randomized controlled trial 
(RCTs) (64). This study also showcases other benefits of MR and OMICs studies. Compared with 
an RCT, an MR study is much cheaper, less time consuming, and faces fewer ethical implications. 
In addition, many RCTs fail at the crucial phase 3 stage (65), thus wasting time, money, and 
potentially negatively affecting the wellbeing of patients included in the RCT. One of the reasons 
for this high rate of failure is designing drugs for a target without sufficient causal evidence (65, 
66). An example of this is an MR study that concluded, despite previous expectations, that CETP 
and CETP inhibition showed no causal association with reducing cardiovascular disease risk and 
therefore was not a suitable drug target for prevention of CVD (67). This illustrates how failed 
RCTs, like the ones who targeted CETP, could have been prevented if genetic and OMICs findings 
were initially applied. Indeed, OMICs and multi-OMICs evidence could complement epidemio-
logical studies and provide insight for the design of RCTs (68-70). Thus, researching this combi-
nation would be beneficial as it can potentially increase the probability of success of RCTs, while 
potentially reducing financial cost and reducing patient burden. 

Third, biomarkers are rare, which in isolation provide strong evidence for the prognosis and 
diagnosis of a disease or health outcome. An alternative method may be to combine several 
biomarkers to generate a single score to diagnose or predict a disease. In genomics, this already 
has become commonplace by means of polygenic risk scores (71). A similar method was used in 
chapter 4, in which hundreds of metabolites were combined to provide a “metabolomic age”. 
Similarly, a combination of metabolites, proteins, and genetic variations may be used to identify 
disease specific profiles (72). For example, these profiles could aid in the identification of patients 
with a high risk of cardiometabolic disease despite exhibiting a normal weight—which is typically 
associated with a low risk of cardiometabolic disease. Conversely, it can also identify overweight 
individuals who are biologically at low risk of cardiometabolic disease. These two groups are 
sometimes referred to as exhibiting unfavorable and favorable adiposity respectively, and have 
been reported to be linked with specific SNPs (73, 74) and specific SNP-metabolomic profiles 
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(75). Identifying these individuals without OMICs data may be challenging for physicians. In an 
ideal scenario, a panel of a different OMICs results associated with favorable and unfavorable 
adiposity is developed. The measurements from these panels can be used for the diagnosis or 
risk assessment of cardiometabolic disease on an OMICs level. These types of panels can also 
help in reducing cost and time to produce results for clinical use. 

In conclusion, OMICs research is important for understanding and disentangling disease patho-
physiology, discovering novel associations, revealing effects of exposures, identifying causal 
pathways, bridging the gap between the roles of nature and nurture, and enhance public health 
and clinical care. With the continuous expansion of single and multi-OMICs studies and rapid 
technological advancements, it is not farfetched to expect more impactful findings in the near 
future. Ideally, the time between discovery to clinical application will be shortened as well.
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