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1	 GENERAL INTRODUCTION: THE RISE OF OMICS
The human genome project was a scientific milestone for human biological understanding (1, 
2). This achievement started an era of large genetic analyses of an assortment of diseases. 
Genetic studies, such as genome-wide association studies (GWAS), have since revolutionized 
our understanding of disease etiology, prognosis, and diagnosis, and have contributed to public 
health (3, 4). Cardiometabolic diseases, including obesity, cardiovascular disease (CVD), type 2 
diabetes (T2D), hypertension, and liver disease such as non-alcoholic fatty liver disease (NAFLD), 
are prevalent diseases that have benefited from genomic studies. GWAS have resulted in the 
identification of thousands of single nucleotide polymorphisms (SNPs) associated with these 
diseases (5). Furthermore, these associated SNPs enabled genetic epidemiological studies 
that identified causal associations, expanded our understanding of the pathophysiology, and 
improved the prediction of these diseases. In the wake of rapid technological advancements, it 
became possible to perform extremely large genomic studies in millions of individuals. 

2	 PROTEOMICS AND METABOLOMICS
Technological developments have enabled the study of genome-wide gene expression (6), whole 
genome DNA modifications  in various body tissues (7), and the large scale measurement of 
proteins and metabolites downstream of the genome (8). The large-scale study of biological 
measures is generally referred to as OMICs. When referring to proteomics and metabolomics, we 
are referring to modern methods of mass measurements of hundreds to thousands of proteins 
and metabolites from a single sample. These types of studies usually include a large number of 
individuals and therefore often require the collaboration of several cohorts.

2.1	 Proteomics

Measurement and analysis of proteins has been possible for over 200 years (9). The start of 
modern proteomics can be dated back to the 1960s and 70s with the advent of two-dimen-
sional gel electrophoresis (10) and the creation of protein databases (11). However, this process 
was slow, had low throughput, and was not easily reproducible. Advances in mass spectrometry 
(MS) in the 1990s provided a powerful tool for the identification of proteins that bypassed the 
limitations of previous methods (10). After the completion of the human genome project, the 
proteome became a new focus to complement the newly sequenced genome (10, 12). 

Proteomics and proteome research aims to achieve several goals. First, to use high throughput 
technologies to enable the identification and quantification of all human proteins. The number of 
proteins that can be produced from genes is amplified by alternative RNA splicing and post-trans-
lational modifications. Whereas the genome is nearly identical in every cell of the body, the 
proteome can differ substantially. The variable expression of genes in different cell types as well 
as environmental influences determine when and in which cells proteins are produced (13). 
These facts make the proteome more dynamic than the genome. Moreover, it makes it difficult 
to pinpoint the total number of proteins in humans. Currently, the estimated number of human 
proteins varies from 10,000 to billions (13). Second, in addition to the quantification of proteins, 
proteomic research enables studying the functionality of proteins. This includes the association 
between protein function and disease. Assessing functionality is complicated by protein-protein 
interactions and protein-DNA interactions (14). Currently, proteomics research has yielded large 
protein atlases publicly available online, such as the human protein atlas (15). Diseases that have 
been studied using proteomics include T2D and CVD (16), Alzheimer’s disease (17), NAFLD (18), 
osteoarthritis (19), and venous thrombosis (20), to name a few.
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2.2	 Metabolomics

Metabolomic research measures small biomolecules in biofluids that are often substrates and 
products of metabolism (21, 22). Metabolites can thus be consumed and produced by endog-
enous metabolic processes or acquired from external sources and subsequently modified. 
Metabolites include amino acids, fatty acids, cholesterols, nucleotides, triglycerides, lipids, 
lipoproteins, and externally acquired compounds such nicotine and its metabolites from smoking 
(22, 23). One of the earliest studies on metabolite measurements was reported in the 1940’s by 
Willems et al. (24-26). This work was included in their pivotal publication in 1951 where they 
coined the concept of “metabolic profiles” (24, 26). In this work, the authors demonstrated the 
methodology of quantifying and estimating different metabolites from urine and saliva samples 
using paper chromatography. They further reported their extensive work on different metabolic 
profiles of alcoholics, schizophrenics, mentally deficient children, overweight and underweight 
individuals, and the metabolic profile of different diets (24).

In parallel with the aforementioned completion of the human genome project, advances in MS 
and nuclear magnetic resonance (NMR) technology and the expansion of proteomics in the early 
2000s, metabolomics has followed suit and gained momentum. This advancement has been driven 
by the development of commercial and non-commercial resources for metabolomic measure-
ments that have made this more accessible and affordable for researchers (27). Metabolomics 
data have been used to provide insight into the pathophysiology of several diseases. Examples 
include the lipoprotein and metabolic profile that have been associated with the risk of coronary 
artery disease (28), the metabolomic profile of healthy and unhealthy body weight and their 
associations with disease outcomes (29),  and the metabolomic profile for depression (30) as 
well as numerous  other diseases. Furthermore, metabolomics has been used for discovering 
disease biomarkers such as neurodegenerative diseases, NAFLD (31), and colorectal cancer (32). 

3	 �A SELECTION OF CURRENT PROTEOMICS AND 
METABOLOMICS MEASUREMENT PLATFORMS

A myriad of protein detection and quantification technologies have been developed over the last 
decades. These technologies include enzyme-linked immunosorbent assay (ELISA) and western 
blotting, two-dimensional gel electrophoresis, gas- and liquid chromatography, MS, NMR, and 
aptamer-based proteomics. Most metabolomics platforms use NMR or MS for metabolite 
detection and quantification. In this thesis we have used three techniques: for proteomics we 
have used the aptamer-based platform SomaScan, for metabolomics we have used the NMR 
based Nightingale Inc. platform and the ultra-high performance liquid chromatography - tandem 
mass spectrometry (UHPLC-MS/MS) based platform used by Metabolon Inc. 

3.1	 SomaScan for Proteomics

New techniques have been developed for high throughput protein measurements in recent 
years. One such method makes use of nucleotide based “aptamers” to identify and quantify 
proteins. A leading platform that uses aptamers for proteomic measurements is SomaScan. 
SomaScan (SomaLogic, Inc. Boulder, CO, USA) is a high throughput proteomics platform capable 
of simultaneous measurement of over a thousand proteins. Unlike traditional immunoassay 
instruments, SomaScan utilizes “Systematic Evolution of Ligands by Exponential enrichment” 
(SELEX), a biochemical technique used to create a library with a wide range of modified synthetic 
oligonucleotide ligands (i.e., the aptamers) bioengineered to bind to their respective protein 
targets. These aptamers are designed to emit a fluorescence signal only when they are bound to 
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their target protein. This fluorescence signature is then used to measure the relative concentra-
tions of the target protein. This method provides several benefits over traditional immunoassay 
methods; Aptamers are inexpensive to produce, highly modifiable and are chemically stable. 
SomaLogic has developed a vast library of thousands of unique aptamers to detect proteins from 
a single biological sample (33). However, this technique is not perfect and some studies have 
noted that aptamers binding affinity can be affected by cross reactivity issues, genetic variations 
altering the protein structure, post-translational modifications, and the effects of the complexity 
and stability of the target protein structure (34). Nevertheless, SomaScan has been used for 
connecting genetics with the proteome profile of different diseases (35), creating a genomic 
atlas of the human proteome (36) and predicting coronary heart disease (37, 38) to name a few.

3.2	 Metabolomics Measurement Techniques and Platforms

Metabolomic platforms are often divided into two categories: targeted and untargeted (also 
referred to as non-targeted). The targeted approach focuses on detection of predefined target 
metabolites (39). A benefit of using targeted metabolomics is its consistency and the possibility 
of generating absolute metabolite concentrations. Targeted metabolomic platforms, such as 
the Nightingale platform, currently measure several hundred metabolites (39, 40). Untargeted 
platforms, on the other hand do not fully target specific metabolites before the measurements. 
Instead, the platforms aim to detect and quantify as many metabolites as possible and subse-
quently identify them by cross referencing in large libraries of metabolites. The Metabolon 
platform is an example of untargeted platform that utilizes UHPLC-MS/MS technologies (41) and 
is capable of measuring thousands of metabolites including known and unknown metabolites. 

3.2.1	 Nightingale: Proton Nuclear Magnetic Resonance 

The Nightingale metabolomics platform (Nightingale Health Plc., Helsinki, Finland) is a targeted 
platform that utilizes proton NMR (1H NMR) (39, 42). 1H NMR detects the hydrogen atoms of a 
prespecified selection of metabolites or macromolecules—that must be typically found in high 
concentrations in the samples—to capture their spectral characteristics. Due to these require-
ments 1H NMR is not as sensitive as other methods, such as MS (41). However, the properties 
of 1H NMR make it ideal for in depth quantitative measurement of lipoprotein particles (39). 
Moreover, it enables the reproducible quantification of absolute concentrations. The Nightingale 
platform utilizes three “molecular windows” for detecting different groups of metabolites. The 
lipoprotein (LIPO) window mainly detects the strong signal of lipoprotein subclasses and their 
lipid content. The low molecular weight molecules (LMWM) window filters out the signals from 
the LIPO window to detect the molecules with low molecular weight such as amino acids and 
glucose metabolites (42). Finally, the window for the lipids and lipids related molecules (LIPID)  
is used to specifically measure the saturated and unsaturated fatty acids, free and esterified 
cholesterol, sphingolipids, and phosphoglycerides (43). By using these three windows, 1H 
NMR Nightingale enables both in depth lipoprotein quantification and detection of several low 
molecular weight metabolites that are typically not easily measured using NMR. The Nightingale 
platforms provides approximately 230-245 metabolite measures including ratios and measure-
ments of subfractions of lipoproteins (39). 

3.2.2	 Metabolon: Liquid Chromatography Tandem Mass Spectrometry

Chromatography and Mass Spectrometry

Chromatography is an important step for the separation of the biological molecules to enable 
the use of MS, particularly for metabolite and protein quantification (21). Chromatography is a 
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technique that applies high pressures to push the components of a biological sample through 
columns of silica, thus separating them. This requires the samples to be properly prepared and 
ionized before the procedure in order for the components to travel in the column. Moreover, 
the high pressure applied into the column must be consistent. This pressure can be supplied by 
either liquid or gas, respectively referred to as liquid chromatography (LC) and gas chromatog-
raphy (GC). Exceptionally high pressure is in an advanced variant technique known as ultra-high 
performance liquid chromatography. The silica columns are designed to exhibit unique chemicals 
properties that have binding affinity with specific types of biological molecules. This interaction 
between the molecules and the column causes them to travel slower than those that do not 
bind to the column. In addition, the travel times differ between the different molecules in the 
column due to their unique affinities. The time it takes the molecules to pass through the column 
(referred to as the retention time) is key for inferring the molecular characteristics of the reacting 
molecules. Following this separation, mass spectrometry can be used to identify the molecules 
(21). 

Fragmentation of proteins and metabolites is an essential step preceding mass spectrometry. 
Fragmentation is commonly achieved by shooting beams of electrons that break the biological 
molecules. These fragments are subsequently detected by their electronic charge (z) and their 
mass (m). By combining these two values as the mass to charge (m/z) ratio, a relatively unique 
signature is assigned to the fragments. The collected data of m/z ratios of the fragments are then 
represented as “spectral data”. For metabolomics, a second MS step is frequently applied. This 
technique of coupling a chromatographer with two mass spectrometers in tandem is known as 
chromatography MS/MS. Tandem MS are used in metabolomics to measure metabolites in the 
first MS and subsequently fragment them into smaller particles to be measured in the second 
MS. This substantially increases the sensitivity of the measured m/z ratios of metabolites (44). 
Subsequently, the retention time from the chromatography step and the spectral data of m/z 
ratios from both mass spectrometers are combined (21, 41). For final identification, these signa-
tures are compared to a reference library containing a vast number of retention times and m/z 
ratios corresponding to annotated metabolites or proteins.

Ultra High-Performance Liquid Chromatography and Tandem Mass Spectrometry

Metabolon™ Discovery HD4 platform is an untargeted metabolomic platform at Metabolon Inc. 
(Durham, North Carolina, USA) that utilizes ultra high-performance liquid chromatography and 
tandem mass spectrometry (UHPLC-MS/MS). This platform uses four independent UHPLC-MS/
MS platforms with different LC columns (41, 45). Two platforms use positive ionization reverse 
phase chromatography, one uses negative ionization reverse phase chromatography, and one uses 
hydrophilic interaction liquid chromatography negative ionization (45). Thus, the platform can 
measure a wide range of metabolites with different chemical properties and affinities with high 
sensitivity. The signal from the m/z ratio and retention time of the measured ionized molecules 
are subsequently cross referenced with an in-house large library of metabolite molecules. If the 
metabolite is known, it will be assigned the annotation from the library. Metabolites found in the 
library but without a full annotation will also be reported as novel unnamed metabolites (41, 46). 
The Metabolon™ HD4 platform currently measures up to 1400 metabolites from a single sample. 

Xenobiotics

A feature of the Metabolon platforms is its ability to measure not only endogenous metabolites 
produced by the body but also externally acquired “xenobiotic”, or exogenous metabolites in 
an untargeted fashion. Essential metabolites for the human body that are acquired from the 
diet are usually considered part of the endogenous metabolite group. Xenobiotics on the other 

14



591124-L-bw-PS4U591124-L-bw-PS4U591124-L-bw-PS4U591124-L-bw-PS4U
Processed on: 27-2-2023Processed on: 27-2-2023Processed on: 27-2-2023Processed on: 27-2-2023 PDF page: 15PDF page: 15PDF page: 15PDF page: 15

1
hand include nonessential metabolites from food consumption (such as caffeine) (8) Moreover, 
xenobiotics comprise metabolites and chemicals derived from environmental exposures (e.g., 
pollution or chemical contamination), nutrition and diet, lifestyle choices (e.g., smoking, 
applying cosmetics), and medication use. The study of the effect of these environmental and 
external exposures on individuals is also known as the study of the exposome. In addition to 
the factors above, the exposome also includes factors such as the general environment, social 
economic status, and climate related factors. Exposome research aims to elucidate the “external” 
causes of disease and improve their prevention by examining the environment of patients (47). 
Indeed, environmental exposures are suggested to have a stronger impact on health outcomes 
than genetic factors (48). Therefore, the Metabolon platform provides a glimpse of an individ-
ual’s exposome in addition to the broad array of endogenous metabolites. In addition, novel 
“unnamed” metabolites are also measured which may belong to endogenous or xenobiotic 
sources. This enables the simultaneous study of both the internal and external metabolomic 
factors involved in disease etiology and clinical outcomes (8) and the identification of associa-
tions with novel, unknown metabolites.

4	 GROWING PAINS:  CHALLENGES IN EPIDEMIOLOGICAL 
STUDIES USING OMICS

4.1	 Genomic Challenges: capturing structural variation and the missing heritability 
problem

Genomic studies were the first and are the most established of the contemporary OMICs fields. 
However, genomics studies have their shortcomings and limitations (49). One of which is their 
inherent inability to capture any effects from the exposome. Another issue with genomic studies 
is the observation that a very minor proportion, often less than 5%, of the heritability of many 
traits is explained by the genetic variants tested (50, 51). This is referred to as the missing herit-
ability problem (52, 53). Despite the increase in the number of genomic studies and the sample 
sizes of the cohorts in these studies (often hundreds of thousands of subjects), the explained 
variance from these studies remains low (50). Basic genetic analyses can estimate the heredita-
bility of diseases, especially in familial and twin studies that share large portions of the genome 
(54, 55). When GWAS became possible and widely available, it was expected that the identified 
loci and SNPs would fully account for the known hereditability estimates. Surprisingly, this 
was not the case. Even extensive GWAS with thousands of individuals still reported loci that 
combined explain a sub-portion of the hereditability of several phenotypes, such as T2D and 
height (53). It has been suggested that one of the reasons for the missing hereditability is that 
genetics alone do not capture the complete heritability of complex diseases, such as cardiomet-
abolic diseases (52). The influence of environmental factors and their interaction with genetics 
could account for the missing heritability (52). Another potential reason for this problem is that 
GWAS do not usually include genetic variations outside of SNPs (52). SNPs are the most common 
type of variation in the genome and are defined as a germline substitution of a single nucleotide 
at a specific position in the genome. However, other mutation types exist such as copy number 
variations (CNV) or repeat expansions, in which large number of nucleotides or patterns of nucle-
otides are repeated in the genome. The intrinsic properties of SNPs make their detection using 
DNA sequencing techniques much easier then CNVs and other types of genetic variation. This 
has contributed to the focus on SNPs in GWAS. However, due to the rapid advances in genomic 
technology, it has become possible to readily detect CNVs and other structural variations in the 
genome (56). Indeed, these recent advances have enabled genomic research in examining CNVs 
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in large studies. These studies have found that CNVs strongly contributed to the hereditability of 
various traits such as height and weight (52). 

4.2	 Challenges in Proteomics and Metabolomics

Many challenges may be encountered when using large metabolomics and proteomics data 
sets. Technical issues can occur during the preparation, processing, and quantification phase 
of metabolites and proteins. These issues can either be specific to the type of platform and 
technique used or can be general biological or chemical problems associated with the compound 
to be measured. For instance, if the biological sample and platform preparation is not performed 
properly, then the measurement and detection of the metabolites or proteins would be affected. 
This can occur if, for example, aptamers are not prepared properly or if the chromatography 
columns are contaminated due to overuse. Moreover, the efficiency of the measurement 
technique differs depending on the targeted biomarkers. Chemically complex biomarkers can be 
more difficult to quantify than simpler ones (57). 

A more general issue that occurs in OMIC research is the batch and run day effects. OMIC platforms 
usually use the standard 96 well plate format to store and measure the samples. Therefore, they 
are limited in the number of samples that can be simultaneously quantified. Studies of hundreds 
or thousands of individuals requires sending the samples in batches at different time points. 
Additionally, each batch needs to be split to smaller groups to be measured by the platform over 
several days. The variation of how well each batch is stored and handled can affect the level 
of contamination and degradation in the samples. Moreover, the level of contamination may 
accumulate in the measurement platform itself after each batch run. Thus, the sensitivity of 
the platform and the samples quality can differ per run day and per batch, resulting in potential 
batch effects and measurement errors.

Another common problem during quantification occurs when some metabolites or proteins are 
in low concentrations in the sample. A limitation of most OMICs platforms is their inability to 
distinguish between different metabolites or proteins if their concentrations are below a certain 
cutoff range. This cutoff is referred to as the limit of detection (LoD). Metabolites or proteins 
below the LoD cannot be quantified and instead their concentrations are set to 0 or left blank 
(46). Run day and batch effects also contribute to the sensitivity of the platform and, in turn, the 
range of the LoD limits for the platforms (58).

After the physical quantification of the biological samples, computational post-processing steps 
are required. In these steps, further issues can occur. For example, correct matching of the m/z 
ratio and retention time from the UHPLC-MS/MS based Metabolon platform to the correct entry 
in the reference library is prone to machine and human errors. The signal matching procedure 
is usually automated by a software tool and then double checked manually. However, due to 
software errors or human errors, it is possible that a metabolite signal is not matched correctly. 
Similarity between metabolites or poor calibration of the platform during measurement also 
contribute to likelihood of these issues. Thus, a valid metabolite signature could be unmatched 
and, in worst case scenarios, be incorrectly matched with a completely different metabolite 
signature (46). 

Once the quantification and postprocessing steps are complete, the generated data is used for 
statistical analysis. Here as well complications can occur. OMICs approaches have the benefit of 
measuring hundred to thousands of biochemicals from a single sample leading to high dimen-
sional data. Often, the number of measurements is larger than the number of individuals in 
the study (N<P). If the sample size is too small, then this high dimensionality can decrease 
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the power of the study and lead to aberrant results. Furthermore, even if the sample size is 
sufficient, high dimensional data requires extra analytical procedures such as adjustment for 
multiple testing (59). Furthermore, beforementioned issues that may arise during quantification 
and postprocessing must be addressed during the statistical analysis. Indeed, transformation 
methods must be used to treat the variations between the batches and the run days. Likewise, 
missing measurements from LoD or other technical difficulties must also be addressed.

4.2.1	 Missing Data in Metabolomics

Treating missing data is a common issue in epidemiological research. In metabolomics, 
handling and imputing missing values in metabolite measurements is a particularly important 
and challenging issue. As mentioned, missing values can occur due to contaminations in the 
platforms which in turn affects the sensitivity of the measurements. This issue is more common 
in untargeted metabolomics platforms (58). The reason for this is that the nature of untargeted 
metabolomics is to detect a large number of metabolites without prior selection. This approach 
may suffer from errors during the signal identification and signal matching steps (58). Naturally, 
the odds of these mistakes occurring increases as the number of metabolites measured expands, 
such as the case in untargeted metabolomics, and as the number of samples increases. Missing 
values can also occur due to the beforementioned technical difficulties, such as LoD (60), batch 
and run day effects, and mismatching issues (58). In addition, missing values could be truly 
missing and should not be imputed at all. This is the case with xenobiotic metabolites that are 
expected to be measured in specific individuals only. For example, imputing missing values for 
metabolites related to the metformin would imply that all participants are diabetics. These 
different issues and the high dimensionality of the data makes it statistically challenging to apply 
appropriate imputation methods (58).

5	 STUDY POPULATIONS
As aforementioned, OMIC research is typically performed with large sample sizes in large 
population-based studies to accommodate the large number of OMIC variables. The work in 
this thesis involved several population-based studies and collaborations with Dutch and interna-
tional research groups. 

5.1	 NEO

The Netherlands Epidemiology of Obesity (NEO) study is an ongoing population-based, 
prospective cohort study of individuals aged 45–65 years, with an oversampling of individuals 
with overweight or obesity. Men and women aged between 45 and 65 years with a self-reported 
BMI of 27 kg/m2 or higher, living in the greater area of Leiden (in the West of the Netherlands) 
were eligible to participate in the NEO study. In addition, all inhabitants aged between 45 and 
65 years from one municipality (Leiderdorp) were invited, irrespective of their BMI. Recruitment 
of participants started in September 2008 and completed at the end of September 2012. In 
total, 6,671 participants have been included, of whom 5,217 with a BMI of 27 kg/m2 or higher. 
Participants were invited to come to the NEO study center of the Leiden University Medical 
Center for one baseline study visit after an overnight fast of at least 10 hours. During the visit a 
blood sample of 108 mL was taken from the participants (61). The study was approved by the 
medical ethical committee of the Leiden University Medical Center.
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5.2	 THE-VTE

The Thrombophilia, Hypercoagulability and Environmental Risks in Venous Thromboembolism 
(THE-VTE) study — a multicenter case control study from Leiden (The Netherlands) and 
Cambridge (UK) (62). Inclusion took place between March 2003 and December 2008. In total, 
626 patients were included, aged 18-75, with a first DVT or PE. Partners of the patients were 
invited as controls. Subsequent follow-up of the cases was performed to assess recurrence risk. 
The mean follow-up duration was 4.8 years after discontinuation of oral anticoagulant therapy. 
Blood samples were taken 2-3 months after discontinuation of anticoagulants. The study was 
approved by the Medical Ethics Committee of the Leiden University Medical Centre (Leiden, 
Netherlands) and the NHS Research Ethics Committee in Cambridge, UK.

5.3	 PROSPER 

The Prospective Study of Pravastatin in the Elderly at Risk (PROSPER) was a randomized, double-
blind, placebo-controlled trial among 5,786 men and women between 70-82 years old with a 
pre-existing vascular disease or a raised risk for such a disease. The aim of the trial was to test the 
benefits of Pravastatin. Participants were recruited from three countries with 2,517 individuals 
from Scotland, 2,173 individuals from Ireland and 1,096 individuals from the Netherlands. 
Fasting blood sample were collected and stored at -80 degrees for later NMR metabolomics 
analysis (63). The study was approved by the institutional ethics review boards of all centers and 
written informed consent was obtained from all participants (64).

5.4	 NESDA 

The Netherlands Study of Depression and Anxiety (NESDA) is an ongoing longitudinal cohort 
study into the long-term course and consequences of depressive and anxiety disorders.  The 
sample consists of 2,981 participants with depressive/anxiety disorders and healthy controls 
recruited from the general population, general practices, and secondary mental health centers 
(65). Blood samples were collected after an overnight fast at the baseline visit (2004-2007). The 
Ethical Committees of all participating universities approved the NESDA project, and all partici-
pants provided written informed consent (66)

5.5	 	 The Rhineland Study

The Rhineland Study is an ongoing prospective population-based cohort study based in two 
geographically defined areas In Bonn, Germany. Participants were recruited via invitation 
beginning in 2016. The primary focus of the study is on aging and age-related brain disorders in 
adult life. The source population consists of all inhabitants aged 30 years or older in the specified 
Bonn area. Participation was only possible upon invitation and regardless of health status 
provided they had sufficient command in the German language to provide an informed consent. 
The ethics committee of the medical faculty of the University of Bonn approved the undertaking 
of the study and it was carried out according to the recommendations of the International 
Council for Harmonisation Good Clinical Practice standards. Written informed consent was 
acquired from all participants per the Declaration of Helsinki.

5.6	 INTERVAL 

INTERVAL is a prospective cohort study nested within a pragmatic randomized trial of blood 
donors enrolled from 25 static centers of NHS Blood and Transplant (67). Recruitment of about 
50,000 male and female donors started in June 2012 and was completed in June 2014. Blood 
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donors 18 years and older were consented and recruited from 25 National Health Service Blood 
and Transplant (NHSBT) static donor centers across England. All participants fulfilled all normal 
criteria for blood donation (68). Therefore, participants included in the study were predomi-
nantly healthy. The INTERVAL study was approved by the Cambridge (East) Research Ethics 
Committee. Written informed consent was obtained from all participants.

6	 OUTLINE
In this thesis, we will look at the methodological challenges and epidemiological applications 
of genomics, proteomics, and in particular metabolomics. Part I focuses on methodological 
challenges and applications of proteomics and metabolomics research. In Part I, Chapter 2, we 
demonstrate the application of measures of agreement to compare contemporary large-scale 
aptamer-based proteomics with standardized clinical measurements in the THE-VTE study. Part 
I, Chapter 3 explores the challenges of treating missing data in metabolomics and describes a 
workflow for imputing the different types of missing data. In Part I, Chapter 4, we present a 
metabolomic age prediction model based on 826 UHPLC-MS/MS measured metabolites from 
the INTERVAL study. We also report our evaluation of the model using several comorbidities 
in the NEO study. Part II of this of this thesis focuses on the etiological applications of metabo-
lomics and genomics. In Part II, Chapter 5, we combine regression analysis and network analysis 
to investigate the association between UHPLC-MS/MS metabolite measurements with hepatic 
triglyceride content in the NEO study. In addition, we illustrate the results as an interactive online 
atlas. Part II, Chapter 6, focuses on the effects of genetic tandem repeat mutations in the HTT 
gene on NMR metabolite measurements in the NEO, PROSPER, and NESDA studies. We further 
explore the role of BMI mediation on the associations. In Part II, Chapter 7, we present the results 
for the effect of the environmental contaminant Per- and polyfluoroalkyl substances (PFAS) on 
the metabolic and lipoprotein profile of the general populations in Germany (The Rhineland 
Study) and the Netherlands (NEO study). In Part III, Chapter 8, we discuss our findings and offer 
our thoughts on the future evolution of multi-OMIC in research.
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