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PART I

Models of photoevaporative
disc winds





Captain, the most elementary
and valuable statement in science,
the beginning of wisdom, is,
“I do not know”.

Data, Star Trek: The Next
Generation

Chapter 2
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ABSTRACT
The so-called transition discs provide an important tool to probe various mech-
anisms that might influence the evolution of protoplanetary discs and therefore
the formation of planetary systems. One of these mechanisms is photoevaporation
due to energetic radiation from the central star, which can in principle explain
the occurrence of discs with inner cavities like transition discs. Current models,
however, fail to reproduce a subset of the observed transition discs, namely objects
with large measured cavities and vigorous accretion. For these objects, the pres-
ence of (multiple) giant planets is often invoked to explain the observations. In
our work, we explore the possibility of X-ray photoevaporation operating in discs
with different gas-phase depletion of carbon and show that the influence of photo-
evaporation can be extended in such low-metallicity discs. As carbon is one of the
main contributors to the X-ray opacity, its depletion leads to larger penetration
depths of X-rays in the disc and results in higher gas temperatures and stronger
photoevaporative winds. We present radiation-hydrodynamical models of discs ir-
radiated by internal X-ray+EUV radiation assuming carbon gas-phase depletions
by factors of three, 10, and 100 and derive realistic mass-loss rates and profiles.
Our analysis yields robust temperature prescriptions as well as photoevaporative
mass-loss rates and profiles which may be able to explain a larger fraction of the
observed diversity of transition discs.
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2.1 Introduction

The nurseries of planets, circumstellar discs, are dense remnants of the star forma-
tion process, enclosing all the gas and dust material crucial for the formation of
planetary systems. Far from being static, they evolve and ultimately disperse while
they give birth to planets, moons, and minor bodies. As the disc dispersal pro-
ceeds on timescales which are of the same order as the planet formation timescales
(e.g., Helled et al. 2014), the disc evolution and planet formation processes are
directly linked and occur as a highly coupled and complex problem.

In this regard, the so-called transition discs are of particular interest, as they
show evidence for inner dust (and possibly gas) depleted regions (e.g., Strom et al.
1989) and are therefore often treated as being on the verge of dispersal. These
cavities can reach various sizes from sub-au to several tens of au, with many
transition discs simultaneously showing evidence of gas accretion onto the central
star. Understanding the occurrence and underlying physics of transition discs may
enable us to probe various mechanisms that could play a role during disc evolution
and influence the planet-formation and migration processes.

Many different mechanisms have been proposed so far to explain the ob-
served diversity of transition discs (e.g., photoevaporation, planet–disc interac-
tions, magnetohydrodynamic processes), none of which however can explain the
whole database of observations (e.g., Alexander et al. 2014; Espaillat et al. 2014).
One promising mechanism is internal photoevaporation, which describes the for-
mation of inner holes or gaps as a result of the interaction of high-energy stellar
radiation with the disc material, naturally producing transition discs. It was how-
ever assumed for a long time that photoevaporation can only account for very few
of the observed objects. Especially those discs which were found to have cavities
at large disc radii and simultaneously vigorous gas accretion onto the central star
(of order 10−8 M⊙ yr−1) are not explained by current photoevaporation models
(Owen et al. 2011; Ercolano & Pascucci 2017; Picogna et al. 2019). These discs
are therefore often suggested as being an indicator of the presence of (multiple)
giant planets, which are in principle able to dynamically carve significant gaps into
a disc.

Recent studies have however shown that the range of photoevaporative influ-
ence can be extended in discs of reduced metallicity compared to the solar elemen-
tal abundances (Ercolano et al. 2018). Indeed, several observations of gas-phase
depletion of volatile carbon and oxygen in outer disc regions have been reported in
the last years (Hogerheijde et al. 2011; Favre et al. 2013; Ansdell et al. 2016; Kama
et al. 2016; Du et al. 2017; Miotello et al. 2017). Carbon and oxygen represent the
main contributors to the X-ray opacity, thus a disc depleted in these elements ex-
periences stronger (X-ray) photoevaporative winds and enhanced mass-loss rates,
as the X-ray radiation can penetrate further into the disc and heat the gas in
deeper disc layers.

In this paper, we investigate the effects of X-ray photoevaporation in such
metal-depleted discs, adopting different degrees of carbon depletion, and perform
detailed radiation-hydrodynamical simulations following the approach of Picogna
et al. (2019). FUV photoevaporation is not included in this work, yet it can play
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Figure 2.1: Relative
opacity, shown for a car-
bon depletion by a fac-
tor of three (blue) and 10
(red) with respect to the
undepleted case.
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a role at larger disc radii (e.g., Gorti et al. 2009). Thus, the presented mass-loss
rates are a lower limit to the actual mass-loss rates. We describe the numerical
methods and setups we used in Sect. 2.2 whereas our main results are presented
in Sect. 2.3. A conclusion of our analysis and an outlook for future research are
given in Sect. 2.4.

2.2 Methods

2.2.1 Thermal Calculations

We used the gas and dust radiative transfer code mocassin (Ercolano et al. 2003,
2005, 2008b) to model gas temperatures of circumstellar discs with different car-
bon abundances that are irradiated by an X-ray+EUV spectrum (presented in
Ercolano et al. 2008a, 2009, unscreened spectrum of Fig. 3 in Ercolano et al.
2009) of a 0.7 M⊙ star. In total, we set up three simulations with mostly stan-
dard solar abundances but varying degrees of carbon depletion. Our standard
interstellar gas-phase abundances are taken from Savage & Sembach (1996) (C:
1.4 × 10−4; O: 3.2 × 10−4). These values take into account that some fraction of
the solar abundances (Asplund et al. 2005) are locked up in refractory material.
Subsequently, we depleted the gas-phase carbon abundance relative to the inter-
stellar value by factors of three, 10, and 100. This has a strong impact on the
opacity as visible in Fig. 2.1 where the relative opacity of the carbon depletion
by a factor of three and 10 to the undepleted case is shown, respectively. The
curves are presented for a column density of ≈ 5× 1020 pp cm−2 and an ionization
parameter ξ = LX

nr2 (Tarter et al. 1969) of log(ξ) = −2, where LX is the X-ray
luminosity, r the distance from the star, and n the electron number density.

The adopted synthetic thermal spectrum was created with the plasma code
PINTofALE (Kashyap & Drake 2000) in order to match Chandra spectra of
T Tauri stars observed by Maggio et al. (2007). All simulations were run for
column densities up to 2.5 × 1022 pp cm−2 and for in total 20 ionization parame-
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ters between log(ξ) = −8 and log(ξ) = −2. From the output of the simulations,
we obtained the equilibrium gas temperature at the upper disc layers as a function
of the ionization parameter. We furthermore divided the disc into 10 sections of
size 2.5× 1021 pp cm−2 and retrieved a temperature prescription for each column
density bin. For higher column densities than 2.5×1022 pp cm−2 we assumed that
the gas and dust are thermally coupled and used the dust temperatures from the
models of D’Alessio et al. (2001), mapped to our models.1

In order to fit the modelled data, we adopted the following ad-hoc relation

log10 (T (ξ)) = d+
1.5− d

[1.0 + (log10(ξ)/c)
b]
m (2.1)

with the resulting curves being shown in Fig. 2.2 and the corresponding coefficients
being listed in Table 2.1.

In Fig. 2.2, we also include the parameterization for a solar metallicity disc as
a reference (the underlying data were taken from Picogna et al. 2019). The lowest,
medium, and highest column densities are highlighted with colour. Figure 2.2
shows that the three different carbon depletion sets clearly vary from each other
and from the solar metallicity set and that the temperatures increase as expected
with increasing degree of depletion. In addition, the curves become flatter and
are distributed more narrowly over the whole column density range for a higher
depletion. This results from a lower gas opacity in the X-ray regime in case of a
stronger depletion.

Our parameterization schemes include the column density independent curve
for solar metallicity used by Owen et al. (2010, 2011, 2012). We note that the
inclusion of a column density parameter helps to model the temperatures more
accurately at different disc locations. Similar to Picogna et al. (2019), we find
the temperature error to be reduced to less than 1 % for all simulations (compare
Appendix 2.A). Furthermore, our calculations extend to lower ξ values (log (ξ) =
−8 instead of log (ξ) = −6), which allows us to simulate the outer disc regions that
are important for studying the evolution of transition discs more extensively. The
prescription of Owen et al. (2010) reaches a higher maximum temperature due to
an integration over a finer grid. This in principle allows to resolve a region of low
density that is heated by EUV radiation, however, this region does not contribute
to the total mass-loss rate and is therefore not relevant for the purpose of this
work. A detailed description and discussion of the new temperature prescriptions
for solar abundance discs and their impact on photoevaporative mass-loss rates
and profiles can be found in Picogna et al. (2019).

To test the reliability of our temperature prescriptions we performed additional
Monte Carlo simulations with higher resolution and furthermore applied different

1The radiation-hydrodynamical calculations were actually performed using temperature pa-
rameterizations which extended to columns of 5× 1022 pp cm−2. We however found a posteriori
that the high column density curves (> 2.5×1022 pp cm−2) are severely affected by Monte Carlo
noise and as a consequence carry large errors on the temperatures. We have thus decided not
to include these high-column parameterizations in this work. We further note that the errors
on the high-column parameterization do not affect the hydrodynamical simulations presented
here, since the region of parameter space affected represents only a very small percentage of our
simulation domain, well below the wind launching region.
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Figure 2.2: Temperature parameterization for the different carbon depletions by a factor
of three (top right), 10 (bottom left), and 100 (bottom right). The temperatures for solar
metallicity are included as a reference in the top left panel (Picogna et al. 2019). In each
panel, the lowest column density curves are highlighted in red, the medium ones in blue,
and the highest ones in green while the black curve represents the parameterization by
Owen et al. (2010). The four different carbon abundance sets clearly differ from each
other, showing higher gas temperatures for stronger depletion.

binnings, with both tests yielding the same results as presented in Fig. 2.2. In
terms of the microphysics, which are relatively well known, the mocassin code
has been thoroughly benchmarked (see Ercolano et al. 2003, 2005, 2008b), which
together with the small temperature error confirms the robustness of our param-
eterization.

2.2.2 Hydrodynamics

We used the open source hydro-code pluto (Mignone et al. 2007) to model differ-
ent carbon-depleted as well as solar metallicity protoplanetary discs until a ‘steady
state’ was reached, in order to find reliable photoevaporative mass-loss rates Ṁ
and Σ̇ profiles. We performed several simulations with pluto, adopting a two-
dimensional spherical coordinate system centred around a 0.7M⊙ star in the r− θ
plane, since the problem we address is symmetric along the ϕ dimension. We fur-
thermore implemented the temperature prescriptions described in Sect. 2.2.1 and
interpolated from the curves for the whole column density range directly in pluto.
Outside of this range, we set the lowest column density of 2.5 × 1021 pp cm−2 as
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Table 2.1: Coefficients of the temperature parameterization for the different carbon
depletions by factors of three, 10, and 100 and all 10 column density bins up to 2.5 ×
1022 pp cm−2.

NH b c d m
1× 1020 pp cm−2

Carbon depletion by a factor of 3
0–25 −49.6442 −7.0423 3.9952 0.1008
25–50 −15.6516 −5.7592 3.9144 0.3904
50–75 −13.5273 −5.2914 3.8841 0.5038
75–100 −13.8039 −5.1523 3.8620 0.4904
100–125 −20.0278 −5.2913 3.8378 0.3184
125–150 −18.2243 −5.1041 3.8208 0.4003
150–175 −19.2923 −5.3050 3.8429 0.2354
175–200 −23.5695 −5.3299 3.8464 0.1839
200–225 −16.7558 −4.9177 3.8138 0.3483
225–250 −22.9758 −5.0689 3.8247 0.2440

Carbon depletion by a factor of 10
0–25 −21.1849 −7.7162 4.0001 0.2214
25–50 −15.1575 −6.4422 3.9176 0.3672
50–75 −14.1757 −6.2253 3.8915 0.3679
75–100 −10.8864 −5.8325 3.8743 0.4958
100–125 −11.1109 −5.6791 3.8418 0.4705
125–150 −11.2723 −5.5136 3.8344 0.4798
150–175 −17.3954 −5.7711 3.8030 0.2998
175–200 −13.5226 −5.3788 3.8126 0.4469
200–225 −13.9993 −5.4703 3.7953 0.4657
225–250 −19.0899 −5.5465 3.7807 0.3046

Carbon depletion by a factor of 100
0–25 −11.3726 −8.2547 4.0024 0.3494
25–50 −7.3249 −6.7159 3.9200 0.6860
50–75 −6.9106 −5.9662 3.8872 0.8848
75–100 −6.3211 −5.6836 3.8557 0.9324
100–125 −5.6213 −5.3946 3.8461 1.1009
125–150 −4.7809 −4.7992 3.8218 1.5653
150–175 −5.5289 −5.0542 3.8155 1.1728
175–200 −5.1865 −4.5065 3.7945 1.7157
200–225 −5.5705 5.0308 3.7948 1.1407
225–250 −5.0972 −4.1973 3.7693 2.2123
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a limit and used the assumption described in the previous subsection for higher
column densities than 2.5 × 1022 pp cm−2. In terms of the log (ξ) range, we as-
sumed T = Tdust for values smaller than log (ξ) = −8 and applied the maximum
temperature we found in our temperature parameterization for values larger than
log (ξ) = −2. As an initial density and temperature structure of the discs, we took
the results of Ercolano et al. (2008a, 2009), which were obtained from hydrostatic
equilibrium models.

To avoid numerical issues in the low-density regions near the pole and at larger
radii, we defined a logarithmic grid scaling in both directions. Being positive in
the radial and negative in the polar direction, this leads to a finer grid close to
the star. Another issue that needs to be considered is the outer boundary of the
domain. Here, unwanted oscillations can occur (observed also in Picogna et al.
2019 and Nakatani et al. 2018a) and affect the inner disc regions and therefore
the final results. To deal with this, we adopted an outer boundary inside the
computational domain at 980 au, after which the gas was not evolved in time.
Due to this sort of damping region, unrealistic oscillations and reflections could
successfully be prevented.

All simulations described in the upcoming sections were run for 300–500 orbits
at 10 au. In this context, a good compromise needs to be found for the total
number of orbits: if too few orbits are performed, a steady-state value of Ṁ cannot
be reached. As the disc is however continuously losing mass, a real equilibrium
cannot be found and the mass-loss rate will change over time due to the disc’s
evolution. We therefore have to find a time span in which first of all, the change
of the total disc mass Mdisc is stable and not too rapid and secondly, the disc
has not evolved significantly yet. Above a certain number of orbits, depending
on the disc’s properties (e.g., the mass), no steady state is established and Mdisc

will decrease rapidly due to the wind, resulting in a rapid change in the mass-loss
rates.

2.2.2.1 Primordial Discs

With the purpose of investigating the effects of carbon abundance in various pro-
toplanetary discs, we set up six types of primordial disc (i.e., full disc without a
hole) simulations for four disc masses in a range between Mdisc = 0.005M∗ and
Mdisc = 0.1M∗. Besides a solar metallicity simulation, these simulation types in-
cluded three with a homogeneous carbon depletion by a factor of three, 10, and 100
throughout the whole disc and two additional inhomogeneous simulations where
we assumed solar abundances within 15 au distance from the star and carbon de-
pletion factors of three and 10, respectively, outside of this radius. No self-gravity
was included in our models, but may play a role for the highest mass disc of our
sample (Mdisc = 0.1M∗). The parameter space of all primordial disc simulations
is shown in Table 2.2.

2.2.2.2 Transition Discs

Alongside the primordial discs, we also modelled several transition discs for dif-
ferent initial hole radii and corresponding to all primordial disc simulations. In
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Table 2.2: Parameter space for the primordial disc simulations with pluto.

Variable Value

Disc extent
Radial (au) 0.33–1000, log spaced
Polar (rad) 0.005–π/2, log spaced

Grid resolution
Radial 412
Polar 160

Physical properties
Mdisc (M∗) 0.005, 0.01, 0.05, 0.1
Luminosity LX (erg s−1) 2× 1030

Luminosity LEUV 1.26 LX

Viscosity parameter α 0.001
Mean molecular weight µ 1.37125

this context, we chose a similar setup as before, increasing however the inner ra-
dial boundary, depending on the hole radius, and adjusted the number of radial
grid cells in order to have the same resolution in the modelled region as for the
primordial disc simulations. To set up a realistic cavity without an abrupt density
change, we added an exponential decay of the density close to the defined gap
radius. Again, we used the hydrostatic models of Ercolano et al. (2008a, 2009) as
initial conditions.

Similar to Picogna et al. (2019) and Owen et al. (2010), we find that adia-
batic cooling can be neglected in our calculations. We thus conclude that the gas
should be in thermal equilibrium, which we prove in Appendix 2.C by directly
comparing the advection and recombination timescales throughout the computa-
tional domain. Here we find that the advection timescale is significantly exceeding
the timescale for the recombination processes. This result stands in contrast to
Wang & Goodman (2017) who find adiabatic cooling to play an important role in
the thermal balance of their models. There are however a number of important
differences in the model setup and assumptions which may contribute to these
discrepancies. This is discussed in more detail in Picogna et al. (2019).

2.2.3 Calculation of the mass-loss rates and Σ̇ profiles

In order to derive the mass-loss rates and profiles Σ̇, we adopted the approach used
by Picogna et al. (2019), which is similar to the methods followed by Owen et al.
(2010). In this context, we first remapped the grid onto a Cartesian grid of 4000×
4000 and defined a radius in the disc from which we followed the streamlines of the
gas to the base of the flow. Here, the location of the flow base is characterized by
the local maximum of the derivative of the temperature profile at each cylindrical
radius. We checked that this definition is consistent with the Bernoulli parameter.
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Figure 2.3: Disc structure for the lowest mass (0.005M∗, top panels) and highest
mass (0.1M∗, bottom panels) primordial discs at the end of a simulation with carbon
depletion by a factor of three. Depicted are the mass density (left panels), temperature
(middle panels), and radial velocity (right panels). The wind streamlines are overlaid
as white dashed lines at 5% intervals of the integrated mass-loss rate. The radius of
the streamlines calculation and sonic surface are plotted with solid and dashed red lines,
respectively.

While the domain of our calculations extends to 1000 au, we chose to calculate
mass-loss rates out to 200 au. The reasons for this choice are discussed in detail
in Appendix 2.B. From the streamline calculations, we derived the mass loss as
a function of the cylindrical radius and a value for the total mass-loss rate. We
furthermore applied a fit

Ṁ(R) = 10a lg6(R)+b lg5(R)+c lg4(R)+d lg3(R)+e lg2(R)+f lg(R)+g (2.2)

for the mass-loss rates from which we were able to calculate the Σ̇ profiles via

Σ̇ = ln(10)

(
6a ln5(R)

R ln6(10)
+

5b ln4(R)

R ln5(10)
+

4c ln3(R)

R ln4(10)
+

3d ln2(R)

R ln3(10)
+

2e ln(R)

R ln2(10)
+

f

R ln(10)

)
Ṁ(a, b, c, d, e, f, g, R)

2πR
. (2.3)
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Figure 2.4: Disc structure for the lowest mass (0.005M∗, top panels) and highest mass
(0.1M∗, bottom panels) transition discs (factor three depletion), displayed for a hole
radius of RH ≈ 11 au. Depicted are the mass density (left panels), temperature (middle
panels), and radial velocity (right panels). The wind streamlines are overlaid as white
dashed lines at 5% intervals of the integrated mass-loss rate.

2.3 Results

Figures 2.3 and 2.4 display examples of the density, temperature, and radial ve-
locity structure of the primordial and transition discs, respectively. In each case,
an example for the lowest mass disc of 0.005M∗ (top panels) and the highest mass
disc of 0.1M∗ (bottom panels) is shown at the end of a simulation with carbon
depletion by a factor of three. The transition discs in Fig. 2.4 have cavities with ra-
dius RH ≈ 11 au. Furthermore, we overlay the disc structure with the streamlines
of the photoevaporative wind flow (white dashed lines), plotting a streamline for
every interval of 5 % of the integrated mass loss. The radius of 200 au, from which
the streamline calculation starts, is marked by a solid red line while the dashed
red line indicates the sonic surface. For the primordial discs, we find that the
streamlines mostly originate from a radius inside of 50 au, whereas the percentage
of these lines drops with decreasing carbon abundance. In general, the fraction
is comparable for the various disc masses but we still notice a slight drop in the
percentage of streamlines inside of 50 au with decreasing mass as well.

In total, all primordial disc simulations behaved in a stable manner over the



38 2.3. RESULTS

0.0

0.5

1.0

1.5

M
 [

M
yr

1 ]

1e 7 Mdisc = 0.005M*

solar
solar + C/3
C/3

C/10
solar + C/10
C/100

Mdisc = 0.01M*

0 100 200 300 400 500
Orbit

0.0

0.5

1.0

1.5

M
 [

M
yr

1 ]

1e 7 Mdisc = 0.05M*

0 100 200 300 400 500
Orbit

Mdisc = 0.1M*

Figure 2.5: Mass-loss rate as a function of orbits for the different carbon depletion
setups and disc masses. Shown are the results of the primordial disc simulations. Aside
from a small scatter, the mass-loss rates behave stable after ≈ 100 orbits.

whole range of orbits after a small adjustment time. Quite in contrast to that,
the transition disc simulations evolved relatively fast within a few hundred or-
bits, showing two sorts of behaviour: first, the inner hole radius moved outwards
about 1− 5 au within 100 orbits (∼ 3800 yr), depending on the disc mass, degree
of depletion and initial hole radius, which indicates some sort of inside-out clear-
ing. Secondly, for a disc mass of 0.005M∗ (and partly 0.01M∗), the disc quickly
starts to thin out for depletion factors above three, whereby this effect is more
pronounced for a larger initial cavity. Such a behaviour indicates some kind of
rapid clearing of (lower mass) transition discs that are harbouring a very extended
hole (see Sect. 2.3.4).

2.3.1 Mass-loss rates for the primordial disc simulations

The evolution of the mass-loss rate of the primordial disc models is presented in
Fig. 2.5 for all five (six) simulations of each disc mass. First, it becomes clear that
the mass-loss rate is, apart from a small scatter, relatively stable beyond 100 orbits.
Moreover, the mass-loss rates of the homogeneously and the inhomogeneously
depleted discs lie relatively close to each other, implying that the overall mass-loss
is mostly dominated by the outer disc regions, with the solar abundances inside of
15 au causing no significant effect. We note however that despite the small mass-
loss rate variation, the Σ̇ profiles can be noticeably influenced by the different
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depletion architectures and differ from each other significantly (see Sect. 2.3.3).
As expected, the mass-loss rates increase with carbon depletion, the difference
between the carbon depletion by a factor of 10 and 100 becomes more pronounced
with higher disc mass.

In Fig. 2.6, we show the mass-loss rate as a function of the relative carbon
abundance AC (compared to the solar carbon abundance value) for all four disc
masses. Here, the average mass-loss rates were calculated from the last 100 orbits,
the solar abundance value for the lowest mass disc was adopted from Picogna et al.
(2019). To fit the data, we applied the following relation

Ṁ(AC) = a · e−
b

AC + c, (2.4)

finding

Ṁ(AC) = (−9.33× 10−8)M⊙ yr−1 · e−
0.29
AC + (1.02× 10−7)M⊙ yr−1 (2.5)

for the 0.005M∗ disc,

Ṁ(AC) = (−1.05× 10−7)M⊙ yr−1 · e−
0.24
AC + (1.16× 10−7)M⊙ yr−1 (2.6)

for the 0.01M∗ disc,

Ṁ(AC) = (−1.4× 10−7)M⊙ yr−1 · e−
0.18
AC + (1.38× 10−7)M⊙ yr−1 (2.7)

for the 0.05M∗ disc, and

Ṁ(AC) = (−1.45× 10−7)M⊙ yr−1 · e−
0.17
AC + (1.4× 10−7)M⊙ yr−1 (2.8)

for the 0.1M∗ disc. Besides these four relations, we also include the metallicity
relation

Ṁw ∝ Z−0.77 (2.9)
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found by Ercolano & Clarke (2010) as a reference in Fig. 2.6. While there are
fundamental differences between the approach used here and that of Ercolano &
Clarke (2010), as also discussed below, a comparison is still interesting as previous
work used this relation to investigate the effect of carbon depletion on transition
disc populations (Ercolano et al. 2018). We show here that there are important dif-
ferences, particularly at low values of carbon abundance, highlighting the need for
further work on population syntheses of transition discs using our current results.
In contrast to the relation by Ercolano & Clarke (2010), our simulations predict a
flatter and somewhat saturating increase of the mass-loss rate with decreasing car-
bon abundance (metallicity). In Fig. 2.6, we only show the relation of Ercolano &
Clarke (2010) for the lowest mass disc, using the mass-loss rate for solar metallicity
found by Picogna et al. (2019) as Ṁ0. Comparing our new and the old relation for
each disc mass individually, we find that the two curves follow (except for the disc
mass of 0.01M∗) a very similar slope down to a carbon abundance of 0.2–0.3 but
differ significantly for smaller carbon abundances. The comparison of our model
to the model of Ercolano & Clarke (2010) is mostly for illustrative purposes, as the
two models have substantial differences. Rather than performing hydrodynamical
calculations to extract mass-loss rates, Ercolano & Clarke (2010) performed ther-
mal calculations and looked for a hydrostatic solution. The mass-loss rates were
then calculated assuming that at each radius the surface mass-loss rate Σ̇ is the
product of the density and the sound speed at the base of the flow. The base of the
flow at each radius was identified as the first height starting from the midplane,
where the temperature of the gas becomes equal to the local escape temperature.
This simplified method carries large uncertainties (see discussion in Owen et al.
2010). In contrast, this work performs detailed hydrodynamical calculations to
extract the wind mass-loss rates and profiles. Furthermore, Ercolano & Clarke
(2010) lowered the abundance of all elements by the same amount to investigate
the metallicity dependency, since their work aimed at studying disc lifetimes in
regions of lower metallicity (e.g., the extreme outer Galaxy) and their effect on
planet formation. The goal of this work is different as we want to investigate the
effects of the observationally determined gas-phase depletion of carbon in discs.
Therefore, we only lower the abundance of carbon. It is thus not surprising that
the resulting effect on the mass-loss rate is lower since the opacity suppression is
not as high as in Ercolano & Clarke (2010).

Comparing the four disc masses, we notice a reversed behaviour, as the mass-
loss rates are decreasing with disc mass for larger carbon abundances, but increas-
ing with disc mass for smaller carbon abundances. Being comparable for the lower
mass discs, a significant rise in the mass-loss rate from factor 10 to factor 100 car-
bon depletion can be distinguished for the higher mass discs. The reason behind
the various effects connected to the disc mass is that depending on the carbon
abundance, photoevaporation is efficient in distinct regions of the disc. While for
high carbon abundances (AC ≳ 0.3) the total mass loss is mainly dominated by the
inner disc, the disc becomes more transparent to X-ray radiation for lower carbon
abundances, which can then drive a significant flow from the outer disc regions.
Now two effects have to be considered: one is that radiation can penetrate radially
further into a lower mass disc, whereas more mass can in principle be removed if
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Figure 2.7: Mass-loss
rate as a function of
disc mass, shown for
the six different carbon
abundance cases. While
for higher carbon abun-
dances the mass loss is
overall going down with
disc mass, it increases
when the carbon abun-
dance is low.

a larger reservoir is hit. In this context, the low-mass disc experiences stronger
winds when the depletion is moderate because the effect of reaching larger radii
dominates over the effect of the larger mass content, which is anyway small near
the star. For strong depletion however, the radiation can heat the large amount
of mass present in the outer disc, which is why the radius of the layers reached
by the radiation becomes less important. To conclude, we would like to note that
even though clear variations can be distinguished between the four disc masses,
these differences are in fact remarkably small, keeping in mind that the discs span
a wide realistic mass range.

In Fig. 2.7, we display the dependency of the total mass-loss rate on the disc
mass for each carbon abundance, applying the following ad-hoc functions

Ṁ(Mdisc) =
a+Mdisc

b+ c ·M2
disc

+ d (2.10)

for the higher carbon abundance and

Ṁ(Mdisc) = a ·M (b·Mc
disc)

disc + d (2.11)

for the lower carbon abundance cases. For no or moderate depletion (black, purple,
and blue curve), the mass-loss rate is overall decreasing with increasing disc mass
due to the fact that the radiation cannot reach the radially further disc layers. As
the radiation can however hit a larger mass reservoir if more material is present,
the mass-loss rate does not follow a steep, but rather flat slope after a short
increase. If on the other hand, the carbon abundance is low (red, orange, and
green curve), the mass-loss rate is in general increasing with disc mass. Similar to
the high carbon abundance cases these curves are marked by a flat rise and are
then slightly decreasing when the disc mass becomes too high for the radiation to
penetrate far enough into the disc layers.

All average mass-loss rates for the primordial disc simulations, calculated from
the last 100 orbits, are listed in Table 2.3. The corresponding uncertainties are
calculated from the standard deviation.
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Table 2.3: Average mass-loss rates of the primordial disc simulations calculated from
the last 100 orbits.

Simulation Ṁ (M⊙yr−1)

Disc mass 0.005M∗
Solar (Picogna et al. 2019) 2.644× 10−8

C/3 (6.16± 0.26)× 10−8

Solar + C/3 (5.94± 0.32)× 10−8

C/10 (9.91± 0.41)× 10−8

Solar + C/10 (9.52± 0.50)× 10−8

C/100 (1.00± 0.04)× 10−7

Disc mass 0.01M∗
Solar (3.47± 0.20)× 10−8

C/3 (6.23± 0.24)× 10−8

Solar + C/3 (6.22± 0.21)× 10−8

C/10 (1.09± 0.02)× 10−7

Solar + C/10 (1.24± 0.05)× 10−7

C/100 (1.14± 0.06)× 10−7

Disc mass 0.05M∗
Solar (2.53± 0.14)× 10−8

C/3 (4.94± 0.26)× 10−8

Solar + C/3 (4.68± 0.32)× 10−8

C/10 (1.20± 0.04)× 10−7

Solar + C/10 (1.27± 0.07)× 10−7

C/100 (1.36± 0.06)× 10−7

Disc mass 0.1M∗
Solar (2.04± 0.21)× 10−8

C/3 (4.51± 0.28)× 10−8

Solar + C/3 (4.15± 0.29)× 10−8

C/10 (1.16± 0.04)× 10−7

Solar + C/10 (1.17± 0.05)× 10−7

C/100 (1.38± 0.07)× 10−7

2.3.2 Hole radius dependency

As mentioned before, the transition discs evolved relatively fast during our simu-
lations. It was therefore more challenging to find stable mass-loss rates, and thus
profiles, because the full range of orbits could not be taken into account. We
therefore decided to use a suitable range of 100 orbits (and not necessarily the last
orbits), for which we calculated the average hole radius and mass-loss rate. In this
context, we considered several factors in order to find the best possible time span.
First, we tried to find a range for which the mass-loss rate was relatively stable.
Furthermore, we checked if the evolution of the disc mass was moderate and not
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too rapid in this range. In addition, we only chose orbits for which significant thin-
ning of the disc had not begun yet. In general, it was easier to match these three
conditions (simultaneously) for the higher mass disc simulations. In case of the
larger depletions (factor 10 and 100) no stable mass-loss rates for hole radii above
RH ≈ 25 au could be found for the 0.005M∗ disc. Similarly, no stable mass-loss
rates were established at these depletion factors for the 0.01M∗ disc simulations
above RH ≈ 35 au. These discs evolved extremely fast and were (almost) com-
pletely dispersed during the simulation. We discuss the implications of this rapid
disc dispersal in Sect. 2.3.4.

The transition disc simulations can be used to test the dependency of the
photoevaporative mass-loss rate on the inner hole radius. The results of this
parameter study are presented in Fig. 2.8 and Table 2.D.1 (see Appendix 2.D). In
Fig. 2.8, we plot the mass-loss rate as a function of the hole radius (black dots)
which we fit with the following relation

Ṁ(RH) =
a

1 +
(
Ṁ−b
c

)2 + d (2.12)

(red solid lines). The primordial mass-loss rates (blue dots) are excluded from this
fit but included in a second one (red dashed lines) for which we applied different
functions. It is difficult to determine which curve would better match the mass-
loss rate for small hole radii (RH < 5 au), as we do not have any hydrodynamical
models for these transition discs. When a gap opens at very small disc radii, an
inner disc is in general still present, shielding the outer disc from the star’s direct
radiation. By the time this inner disc is accreted, the hole will however have
developed to larger radii. It is therefore not realistic to model a transition disc
with a very small hole radius, as such a disc would still behave like a primordial
one. Thus, it is probably more appropriate to treat transition discs and primordial
discs independently from each other and use the fit for which the primordial mass-
loss rate is excluded. In a follow-up paper, we will present a population synthesis
model for which we will switch between our primordial and transition disc models,
applying the fit for the hole radius dependency (red solid lines) down to 2− 3 au.

From Fig. 2.8, we notice a reversed (overall) trend similar to the one described
in Sect. 2.3.1, as the mass-loss rate decreases with hole radius for no or moderate
depletion and increases with hole radius for strong depletion. With increasing
hole radius, the initial mass of the disc decreases as larger parts are cut compared
to the primordial disc. For no or moderate depletion this means that more and
more mass is removed from the disc regions where photoevaporation is effective,
leading to weaker photoevaporative winds. For strong depletion on the other hand,
the radiation can penetrate into disc regions that are not affected by the cut in
the inner disc. Even though the disc mass is still lower for a larger hole radius
in this case, the mass-loss rates increase with hole radius, as more disc layers
and especially the midplane are irradiated directly. In principle, this effect of
directly irradiated layers occurs as well for the moderate depletion, being however
dominated by the opposite effect caused by the cut of the inner regions if the inner
hole radius is large enough. Even though we can clearly identify the behaviour of
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Figure 2.8: Mass-loss rate as a function of hole radius, shown for the different disc
masses and carbon abundances. The black and blue dots are the mass-loss rates of the
transition and primordial discs. The solid red lines display a fit for the transition discs
only, the primordial disc simulations are taken into account in the fit shown by the red
dashed lines. The green dots represent the inhomogeneously depleted discs.
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the different curves, the absolute difference in the mass-loss rates for various hole
radii is minimal.

The behaviour explained above and in Sect. 2.3.1 can indeed be seen when
comparing the four disc masses for each carbon abundance case individually (along
the rows). Again, we find that the mass-loss rate is decreasing with disc mass if
the depletion is low. For higher depletions on the other hand, the mass-loss rate
is smaller for the lower mass discs below a hole radius of RH ≈ 15 au, while it is
higher for larger radii. Moreover, the slope of the curves becomes steeper with
increasing disc mass when the depletion is low and flatter when the depletion is
high.

Besides the data for the homogeneously depleted discs, we also include the
mass-loss rates of the inhomogeneously depleted transition discs in Fig. 2.8 (green
dots). For the carbon depletion by a factor of three, these values lie slightly below
the ones for the homogeneously depleted discs but suggest a similar slope. In case
of the carbon depletion by factor 10, the values lie very close to the ones for the
homogeneously depleted discs for the two higher disc masses, but quite far off for
the lower mass discs.

2.3.3 Mass-loss profiles Σ̇

The resulting mass-loss profiles from our primordial disc models are displayed in
Figs. 2.9, 2.10, and 2.E.1. In Fig. 2.9, we present the profiles of the four different
(homogeneous) carbon abundance setups for all disc masses. It strikes out that
the profiles in general extend further with increasing depletion, with the difference
between the high and the low carbon abundances becoming more pronounced with
increasing disc mass. Carbon-depleted discs are thus experiencing a significant
mass loss at larger disc radii, which enables the formation of transition discs with
large cavities that could still show an accretion signature. We will test the effect
of our profiles on disc evolution in a follow-up population synthesis model.

As mentioned before, the total mass-loss rates of the homogeneously and in-
homogeneously depleted discs are very similar, the corresponding profiles however
show some substantial differences (compare examples in Fig. 2.10). While the
inhomogeneously depleted discs experience a slightly enhanced mass loss in the
inner and outer part of the disc compared to the homogeneously depleted disc,
the mass loss is lower in the mid regions. In both cases, the profiles extend to a
similarly large disc radius.

Figure 2.E.1 displays a comparison of the profiles of the four different disc
masses for each carbon abundance individually. Here it becomes evident that for
solar metallicity and moderate carbon depletion the profiles are clearly different:
while the mass loss is similar for radii up to ≈ 50 au, the profiles extend to larger
radii if the disc mass is low. In contrast to that, these differences disappear with
decreasing carbon abundance, as the X-ray opacity becomes low, resulting in very
similar, disc mass independent profiles.

Alongside the primordial mass-loss profiles, we show some examples of transi-
tion disc profiles in Fig. 2.E.2 for the lowest mass disc and in Fig. 2.E.3 for the
highest mass disc. Regarding the solar metallicity, factor three depletion, and
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Figure 2.9: Mass-loss profiles Σ̇ of the primordial discs, shown for the four different
disc masses and homogeneous carbon abundances. With increasing depletion, the profiles
extend to larger disc radii. The solar metallicity profile for the lowest mass disc is taken
from Picogna et al. (2019).

inhomogeneously depleted discs, the overall shape of the profiles does not change
for the transition discs compared to the primordial discs, with the peak however
decreasing with increasing hole radius. Furthermore, some of the features are be-
coming more pronounced for the transition disc profiles. In principle, all profiles
extend to a similar disc radius, which is however slightly below that for the pri-
mordial disc and increases slightly with hole radius, partly exceeding the profile
for the primordial disc when the hole radius becomes very large. For the higher de-
pletions (factor 10 and 100) on the other hand, the profiles extend to smaller radii
when the hole radius increases (but increase again for very large hole radii), with
this effect being more pronounced for a lower mass disc. One possible reason for
this behaviour might be that the strong wind in the inner part of the disc, which
occurs for large carbon depletion, shields the very outer part of the disc from the
star’s radiation. Therefore, the photoevaporative wind significantly drops in these
disc regions. With increasing hole radius, the effect becomes stronger, and thus
the profiles shallower, as the wind intensifies with more layers being hit directly
by high-energy stellar radiation. Being marked by a weaker disc wind, the higher
carbon abundance simulations do not show this behaviour.

Concerning the transition disc profiles, we note that the inner edge of the pro-
files should in principle be very sharp at the location of the hole radius, only beyond
which the disc is present. As we applied a fit to our simulated data, which could
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Figure 2.10: Mass-loss profiles Σ̇ for the inhomogeneously depleted discs, shown for
the lowest mass disc of 0.005M∗ (top plots) and the highest mass disc of 0.1M∗ (bottom
plots). Compared to the homogeneously depleted discs, the mass loss is slightly higher
close to and far from the star and lower in the mid disc regions. The solar metallicity
profile for the lowest mass disc is taken from Picogna et al. (2019).

not account for such an abrupt cut, this feature is not represented in the depicted
profiles. For the purpose of this work and the following population synthesis this
treatment is sufficient and does not influence the results. If however applied to
other problems, a cut of the profile at the hole radius should be considered.

2.3.4 Rapid disc dispersal of carbon-depleted discs

As mentioned in Sect. 2.3.2, some of the lower mass transition discs are evolving
extremely fast in the course of our simulations if the depletion is high and the hole
radius is relatively large. In Fig. 2.11, we show an example for such a low-mass
disc (0.005M∗), depleted in carbon by a factor of 10 and harbouring a cavity with
an initial hole radius of RH ≈ 30 au. Here, the disc is quickly moving outwards,
thinning out rapidly, and completely dispersed after about 500 orbits (≈ 19 000 yr).
This represents the final stages of photoevaporation that can be observed directly
in the course of the simulations for carbon-depleted lower mass discs. Due to
deeply penetrating X-rays (causing strong mass-loss rates), a metal-depleted disc
can thus experience a very rapid clearing of the order of 104 yr, which inhibits any
further planet formation in the disc and could furthermore prevent the formation
of so-called relic discs. Relic discs are non-accreting transition discs, harbouring
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Figure 2.11: Rapid disc clearing of a low-mass transition disc (0.005M∗) with an initial
hole radius of RH ≈ 30 au and a carbon depletion by a factor of 10. The disc is fully
dispersed within 500 orbits, corresponding to ≈ 19 000 yr.

large holes, that are frequently predicted by current photoevaporation models,
but not generally observed, thus representing one of the main open questions for
these models. A full investigation of the impact of this rapid dispersal of (low-
mass) carbon-depleted discs is beyond the scope of this paper but will be part of
a forthcoming work on the demographics of transition discs.

2.4 Conclusions

For this work, we performed radiation-hydrodynamical simulations of X-EUV-
driven photoevaporation in different solar metallicity and carbon-depleted pri-
mordial and transition discs. We probed different carbon depletion factors (three,
10, and 100), disc masses between 0.005 and 0.1M∗ as well as varying inner holes
between 5 and 60 au. Our models significantly improve on the previous hydrostatic
models of Ercolano et al. (2018) by performing hydrodynamical calculations with
new temperature prescriptions, based on tailored photoionization and thermal cal-
culations. The main results of our analysis are summarized in the following.

Our new approach yields that carbon depletion results in higher gas temper-
atures compared to solar abundances, with the temperature increasing with the
degree of depletion (see Fig. 2.2). From the hydrodynamical simulations, we deter-
mined new reliable total mass-loss rates of order 10−8 to 10−7 M⊙ yr−1 (compare
Tables 2.3 and 2.D.1) and find that the total mass-loss rate is about two to six times
higher for carbon-depleted discs compared to solar metallicity discs (depending on
the depletion and the disc mass). The mass loss in our calculations is dominated
by the X-ray radiation. Even though we also included EUV in the irradiating
spectrum, its contribution is negligible, as the EUV is already absorbed in small
column densities and does not reach the high-density regions. FUV radiation is not
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included in our analysis. As FUV could in principle drive a significant mass loss
in the outer parts of the disc, our results for the mass-loss rates represent a lower
limit. Other authors like Gorti & Hollenbach (2009) or Nakatani et al. (2018b)
suggest that the effects of X-ray photoevaporation are minimal compared to FUV
photoevaporation, thus a quantitative comparison of X-ray and FUV heating in
low-metallicity discs is needed but outside the scope of this paper.

For each disc mass, we find improved relations for the dependency of the total
mass-loss rate on the carbon abundance, which predict a less extreme increase
of the photoevaporative mass loss with decreasing carbon abundance than the
relation found by Ercolano & Clarke (2010) (see Fig. 2.6) for the dependency of the
mass loss on the metallicity. These relations turn out to be weakly dependent on
the disc mass. Moreover, we obtain scalings for the dependency of the total mass-
loss rate on the disc mass for each carbon abundance setup, showing a reversed
behaviour depending on the degree of depletion (see Fig. 2.7). In this context, we
identify different effects to be responsible for the opposite trends.

Similar to the reversed behaviour of the disc mass dependencies we find op-
posing trends for the dependency of the total mass-loss rate on the hole radius,
resulting from the fact that photoevaporation is effective in different disc regions
for different carbon abundances and that a cut in the inner part of the disc is either
affecting these regions or not (see Fig. 2.8). Comparing the mass-loss rates for the
homogeneously and inhomogeneously depleted discs, we find that the values are
in principle very similar, including however some outliers in the case of the carbon
depletion by a factor of 10 and the two lower disc masses. The according inhomo-
geneously depleted disc simulations behaved less stable than the other simulations.
Further tests (e.g., with higher resolution) could show if the mass-loss rates are
resulting from numerical effects or if transition discs with solar abundances inside
of 15 au and strong carbon depletion outside of 15 au are indeed experiencing an
enhanced photoevaporative mass-loss due to the disc being less stable.

In our analysis, we derived reasonable mass-loss profiles Σ̇ for all simulated
primordial and transition discs (compare Figs. 2.9 to 2.E.3). From the primordial
disc profiles, we can indeed conclude that the influence of X-ray photoevaporation
is extended in carbon-depleted discs, as the profiles extend to larger disc radii with
increasing degree of depletion (Fig. 2.9). In this context, the differences of the
curves become more pronounced for higher disc masses, with the profiles for no or
moderate depletion being clearly disc mass dependant while the profiles for higher
depletions turn out to be very similar (Fig. 2.E.1). Interestingly, even though the
total mass loss is comparable for the homogenously and inhomogeneously depleted
discs, it is generated from different regions in the disc (Fig. 2.10). While the
corresponding Σ̇ profiles extend to similar radii in both cases, the mass loss is
slightly enhanced close to the star and at larger disc radii and significantly lower
for mid disc regions if the disc is depleted inhomogeneously.

Some of our lower mass transition discs are marked by a rapid disc dispersal,
proceeding on a timescale of the order of 104 yrs (compare Fig. 2.11). This poten-
tially helps to prevent the formation of relic discs in a population synthesis model
and will be studied in more detail in a follow-up paper.

The models presented here represent a detailed study of X-ray-driven pho-
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toevaporation in carbon-depleted discs and lay the foundation for a number of
future investigations. Implementing the mass-loss profiles together with the total
mass-loss rates into a population synthesis code could reveal the demographics of
transition discs and show if carbon depletion can account for the majority of the
observed diversity of transition discs and especially those discs that appear with
large cavities and simultaneously strong accretion onto the central star. As we
find a significant mass-loss at larger disc radii (up to ≈ 200 au), we expect the for-
mation of large cavities and even multiple holes, which we will test in a follow-up
work.
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Appendix

2.A Temperature error

Using only a single-slab parameterization for the column density, the models of
Owen et al. (2010, 2011, 2012) can result in errors for the temperature of the
order of 30%. As shown in Fig. 2.A.1 for carbon depletion by a factor of three
and 100, respectively, this error is significantly reduced within our models. Even
though the relative error slightly increases with the degree of depletion, it is always
less than 1% for the whole computational domain in all simulations. The error
was calculated by comparing the temperature coming directly from pluto to the
temperature that is found from post-processing the steady-state from the pluto
simulations in mocassin.

Figure 2.A.1: Relative error of the temperature determined in pluto with respect to
the one post-processed with mocassin after a steady-state was reached in pluto. Shown
are examples for the carbon depletion by a factor of three (top panel) and 100 (bottom
panel) for the lowest mass disc of Mdisc = 0.005M∗.

2.B Choice of the (internal) disc radius of the
streamlines calculation

While the outer radius of the computational domain is fixed at 1000 au, the choice
of the disc radius from which the streamlines are calculated is crucial for the
distinction between the material that is actually removed from the disc and the
material that is just redistributed within the disc. In this context, we tested dif-
ferent (internal) radii ranging from 100 to 800 au for the primordial, low-mass disc
simulations (Mdisc ≈ 0.005M∗). The result of this test is shown in Fig. 2.B.1 for
carbon depletion by a factor of three with the overall behaviour being representa-
tive for all simulations. From the plot, we note that the lowest mass-loss rate is
adjusted for the smallest radius of 100 au, while the value is in general decreasing
with increasing internal disc radius. The small value of the 100 au radius, con-
tradicting the overall trend, indicates that in this case important regions where
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Figure 2.B.1: Mass-
loss rate as a function of
orbits, shown for internal
disc radii between 100
and 800 au and the car-
bon depletion by a fac-
tor of three simulation of
the 0.005M∗ disc. The
mass-loss rate is overall
decreasing with increas-
ing radius.
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photoevaporation was effective were cut out. The decrease in the mass-loss rate
for larger radii is caused by the effect that some of the gas streamlines fall back
below the sonic surface at larger disc radii. However, we cannot fully trust those
streamlines at large radii (r > 200 au) because the number of orbits they went
through is limited and possibly they have not yet reached a stable state. Despite
the variations, the mass-loss rate is comparable for all (internal) disc radii, possi-
bly making them all suitable for the further calculations. Nevertheless, we decided
to choose a radius of 200 au, which yields the highest mass-loss rate. By doing so,
we maximize the number of orbits at the given location, which is important for
the streamlines stability, avoiding at the same time cutting too much of the outer
disc regions. Moreover, we thus exclude the outermost regions that are possibly
affected by the numerical oscillations and reflections from the outer boundary,
which we described in Sect. 2.2.2.

Even though a radius of 200 au provides a good compromise for the purpose
of this work, it would in principle be favourable to extend the hydrodynamical
simulations in order to increase the number of orbits also for larger disc radii.
As mentioned above, we found that some streamlines in the beginning leave the
disc but later fall back onto it. If the chosen radius is too small in these cases,
streamlines, which are truly not contributing to the photoevaporative wind flow
that leaves the disc, could be included in the mass-loss calculations. Performing
additional hydrodynamical simulations could help to test the significance of this
effect and yield detailed information about the influence of the different disc radii
on the mass-loss rates and Σ̇ profiles.

2.C Test for radiative equilibrium

The approach we followed in this analysis is based on the assumption that the disc
is in radiative equilibrium. This means that microphyiscal processes, which affect
the temperature equilibrium, occur on timescales shorter than the hydrodynamical
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Figure 2.C.1:
Advection timescale
τadv divided by
the microphysi-
cal recombination
timescale τrec in
order to test for ra-
diative equilibrium.
Displayed is the
test for the carbon
depletion by a factor
of three setup. The
fraction is signifi-
cantly larger than
one for the whole
computational
domain.

timescale. The most important microphysical process is hydrogen recombination,
which proceeds on the longest timescale (Ferland 1979; Salz et al. 2015)

τrec =
1

αA(Te)ne
≃ 1.5× 109 s ·

(
Te
1K

)0.8

·
(

ne
ptcls/cm3

)−1

, (2.13)

with Te as the electron temperature, ne as the electron density, and αA(Te) as the
temperature-dependent recombination rate. In order to check whether the hydro-
dynamical timescale is greater than this recombination timescale, we compared
τrec to the advection timescale τadv for the regions that are important for the wind
dynamics. The result of this test is presented in Fig. 2.C.1, where we plot the
ratio of the advection and radiation timescale for the carbon depletion by a factor
of three setup. In order to compute the advection timescale, we have used the
expression dx/vgas for each grid cell, which corresponds to the time a gas parcel
takes to cross a grid cell. Figure 2.C.1 shows that our assumption of radiative
equilibrium is valid in the whole computational domain, as the hydrodynamical
advection timescale is several orders of magnitude larger than the microphysical
recombination timescale. Only very close to the Z-axis there is a region that
shows a smaller value of the fraction, although still considerably above one. We
performed this test for all carbon depletion setups, which yielded similar results
as shown in Fig. 2.C.1.

2.D Mass-loss rates of the transition disc simula-
tions
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Ṁ
R

H
Ṁ
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Figure 2.E.1: Comparison of the mass-loss profiles Σ̇ of the four disc masses for each
carbon abundance setup. With increasing depletion, the profiles become more similar.
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Figure 2.E.2: Examples of mass-loss profiles Σ̇ for low-mass transition discs (0.005M∗)
with various hole radii, shown for the different carbon abundance setups.
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Figure 2.E.3: Examples of mass-loss profiles Σ̇ for high-mass transition discs (0.1M∗)
with various hole radii, shown for the different carbon abundance setups.






