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INTRODUCTION

Individuals with low socioeconomic status (SES) are at an increased risk of developing 
cardiovascular disease (CVD) [1-4]. Although it is known that a low SES is associated 
with adverse lifestyle factors such as smoking, alcohol consumption, unhealthy diet, and 
physical inactivity [5-8], the exact mechanisms underlying the link between SES and risk 
for CVD are still relatively unclear. Additionally, classic cardiovascular risk factors such as 
high body mass index (BMI), elevated blood lipid levels and systolic blood pressure (BP) 
play prominent roles in the pathogenesis of (atherosclerotic) CVD [9]. Simultaneously, 
studies indicate that these classic risk factors are also generally more prevalent in 
individuals with lower SES [10-13], emphasizing the complex interplay between SES, 
CVD risk factors and the development of disease. 

In a previous study conducted in the UK biobank, it was shown that as much as 40% 
of the association between low education, as a reflection of low SES, and increased 
CVD risk was mediated by BMI, BP and smoking behavior [14]. Additionally, evidence 
is emerging that the risk for CVD associated with the classical CVD risk factors is not 
universal throughout subgroups of the general population, and differs for example 
already for different age groups and for the different sexes in observational studies [15, 
16]. The heterogeneous risk factor-CVD associations in different groups of the general 
population emphasizes the need of a “tailor-made” approach for clinical decision 
making. These observations are in line with the general hypothesis that atherogenic 
cardiovascular diseases is not a single disease entity but a dynamic disease construct 
with changing pathogenesis depending on specific patient characteristics throughout 
life. For example, and in line with this concept, we previously showed, using Mendelian 
Randomization approaches, that the impact of genetically-influenced increased BMI on 
the risk of developing type 2 diabetes was dependent on the age of diagnosis where 
older people with higher BMI were less susceptible for developing T2D [17]. In addition, 
the impact of classical genetically-influenced CVD risk factors on coronary artery disease 
(CAD) attenuated for increasing age of diagnosis [18].

We hypothesized that SES is an important factor that can modify the impact of 
classical CVD risk factors on CVD, in addition to age and sex. If confirmed, this would 
mean that interventions tailored to specific SES groups may achieve a larger reduction 
in CVD risk not only due to low SES groups having a higher average BMI, but also due 
to SES acting as a catalyst for BMI attributable CAD risk. To omit potential reverse 
causation and/or most confounding in our analyses, we used a two-sample Mendelian 
Randomization (MR) approach. Here, genetic variants are used as instrumental variables 
for given exposures to approximate the effect of life-long exposure to risk factors on the 
development of disease outcomes [19-21]. In the present study [22], we assessed the 
associations between classical genetically-influenced CVD risk factors and CAD, stratified 
for SES, in a large cohort of European-ancestry participants from the UK Biobank.

ABSTRACT

Background and aims
Low socioeconomic status (SES) is associated with cardiovascular risk factors and 
increased coronary artery disease (CAD) risk. We tested whether SES is an effect 
modifier of the association between classical cardiovascular risk factors and CAD using 
SES-stratified Mendelian Randomization (MR) in European-ancestry participants from 
UK Biobank. 

Methods
We calculated weighted genetic risk scores (GRS) for the risk factors body mass index 
(BMI), systolic blood pressure, LDL cholesterol, and triglycerides. Participants were 
stratified by Townsend deprivation index (TDI) score. Logistic regression models 
were used to investigate associations between GRSs and CAD occurrence using MR. 
Additionally, stratification based on GRS-adjusted TDI residuals was conducted to correct 
for possible collider-stratification bias.

Results
In a total sample size of N=446,485, with 52,946 cases, the risk for CAD per SD increase 
in genetically-influenced BMI was highest in the group with the lowest 25% SES (OR: 
1.126, 95% CI: 1.106-1.145; OR: 1.081, 95% CI: 1.059-1.103 in high SES), remaining 
similar after controlling for possible collider-stratification bias. The effects of genetically-
influenced systolic blood pressure, LDL cholesterol, and triglyceride on CAD were similar 
between SES groups.

Conclusion
CAD risk attributable to increased BMI is not homogenous and could be modified by 
SES. This emphasizes the need of tailor-made approaches for BMI-associated CAD risk 
reduction.
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array. More information on the genotyping processes can be found online (https://
www.ukbiobank.ac.uk). Based on the genotyped data from these arrays, the UK Biobank 
resources performed imputation on the autosomal SNPs using the UK10K haplotype [27], 
1000 Genomes Phase 3 [28], and Haplotype Reference Consortium [29] as reference 
panels. 

Socioeconomic status
To stratify the UK biobank population into different SES groups, we used the Townsend 
deprivation index (TDI) [30]. This calculated index score, defined at the moment of 
enrolment, is a composition of four different variables, all related to SES: unemployment, 
non-ownership of a home, non-ownership of a car, and household overcrowding [30]. 
Importantly, the TDI is not linked to a specific individual, but instead linked to the 
postal codes from the UK Biobank participants and is therefore a reflection of overall 
socioeconomic status of the neighborhood in which the participants are living.

The TDI scores recorded within the UK Biobank ranged between -6.26 and 11.00, and 
lower scores are reflective of a higher SES in the neighborhood. Using quartiles of these 
scores, the population was divided into four groups. Because some individuals had very 
high TDI values, we performed sensitivity analyses by dividing the highest TDI group 
into two subgroups based on the 87.5 percentile of TDI, and repeated the main analysis 
accordingly.

Coronary artery disease 
Coronary artery disease occurrence (either before or after enrollment in UK Biobank) 
was the primary outcome for the analyses. Diagnoses were coded according to the 
International Classification of Diseases (ICD) [23]. Here, the study outcome was CAD 
which we defined as: angina pectoris (I20), myocardial infarction (I21 and I22), and acute 
and chronic ischemic heart disease (I24 and I25). Cases were ascertained through a 
UKB algorithm combining data from linked hospital admissions, death registries, reports 
from the general practitioner and self-report.

Statistical analysis
Mendelian Randomization
All the analyses were done using R (v4.1.0) statistical software (The R Foundation 
for Statistical Computing, Vienna, Austria) [31]. In our MR analyses, the associations 
between genetically-determined CVD risk factors and CAD were calculated using 
multivariable-adjusted logistic regression analyses, with CAD as dependent and the 
weighted GRS score as exposure and corrected for age, sex, and the first 10 principal 
components. In addition, the analyses were stratified by the TDI score categories to 
study the possible effect modification of the association between the genetically-
influenced CVD risk factor and CAD by SES. The results derived from these models (with 

Methods 

Study setting and population
The UK Biobank is a prospective general population cohort with 502,628 participants 
between the age of 40 and 70 years at the moment of enrollment [23]. Recruitment 
took place between 2006 and 2010 (more information can be found online https://www.
ukbiobank.ac.uk). Invitation letters were sent to eligible adults registered to the National 
Health Services (NHS) and living within a 25 miles distance from one of the assessment 
centers. Participants provided information on their lifestyle and medical history through 
touch-screen questionnaires and physical measurements. Blood samples were collected 
for biochemistry analyses and genotyping. 

The UK biobank study was approved by the North-West Multi-center Research Ethics 
Committee (MREC). Access for information to invite participants was approved by the 
Patient Information Advisory Group (PIAG) for England and Wales. All participants in the 
UK Biobank provided a written informed consent. The present study was accepted under 
project number 56340. 

We restricted all our analyses to participants of European origin (N=446,485), as to 
limit confounding by ethnic genetic variation. Townsend Deprivation Index (TDI) scores, 
a measure of SES, were collected at baseline for nearly all of the participants in the study 
(N=445,965). 

Genotyping, genetic imputations and genetic risk scores
For our study, we conducted a two-sample, stratified mendelian randomization analyses, 
where weighted genetic risk scores (GRS) were used to represent the genetically-
determined higher BMI, low-density lipoprotein cholesterol (LDL-C) levels, triglyceride 
(TG) levels and systolic blood pressure (SBP). These weighted GRS were calculated using 
independent lead genetic variants (p-value<5x10-8) that have been previously identified 
in genome-wide association meta-analyses in which the UK Biobank population did not 
contribute. The GRS score for BMI was based on data from 339,224 individuals; 76 SNPs) 
[24], LDL cholesterol level on188,577 individuals; 15 SNPs [25], triglycerides on 188,577 
individuals; 20 SNPs [25], and systolic blood pressure 200,000 individuals; 42 SNPs) [26].
The published beta estimates for the independent lead variants in these meta-analyses 
were subsequently used to calculate the weighted GRS for each CVD risk factor for 
each participant in the UK biobank study. Overlapping independent lead variants [25] 
between LDL cholesterol and triglyceride levels in the genetic risk scores were not taken 
into account in the calculation of the GRS with the intention to limit bias by (directional) 
pleiotropy. 

The genotyping of the UK Biobank population was performed for roughly 50,000 
participants by Affymetrix, using a BiLEVE Axium array. For the other UK Biobank 
participants, the genotyping was performed using the Affymetrix UK Biobank Axiom 
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RESULTS 

Baseline characteristics of the UK biobank study population
When stratified in quartiles for TDI score, the study sample (Table 1) consisted of 446,495 
individuals of which 52,946 (12%) had CAD. Participants in the group with the highest 
TDI scores had a higher mean measured BMI (28.0 versus 27.0 kg/m2) and a lower mean 
age (55.9 versus 57.3 years) compared with the lowest TDI group. 

Mendelian Randomization analyses
In the lowest TDI group, around 10% of the participants (N = 11,526) developed CAD 
prior or during follow-up. With a higher TDI, the percentage of participants with CAD 
increased to around 14% (N= 16,158) in the highest TDI group. 

The logistic regression models in our MR analyses without stratification by TDI, 
showed that a one SD increase in genetically-determined BMI (OR: 1.107 [95% CI: 1.096, 
1.117]), systolic blood pressure (OR: 1.068 [95% CI: 1.058, 1.078]), LDL cholesterol (OR: 
1.086 [95% CI: 1.077, 1.097]) and triglycerides (OR: 1.053 [95% CI: 1.044, 1.063]) were 
all associated with a higher risk of CAD. 

In the stratified analyses, we observed that the effect estimate of CAD by genetically-
determined BMI increased as TDI increased (Figure 2A). The OR for CAD per SD increase 
in genetically-influenced BMI was 1.081 (95% CI: 1.059, 1.103) in the lowest TDI group 
versus 1.126 (95% CI: 1.106, 1.145) in the highest TDI group. Using a logistic model, 
interaction analyses showed that, after correcting for multiple testing, the OR of CAD 
per SD increase in BMI differed significantly between TDI groups (p-value for interaction 
= 0.0049). For systolic blood pressure, LDL cholesterol and triglyceride levels, the OR for 
CAD per SD increase was similar in the different TDI groups (Figure 2B-D). In addition, 
interaction analyses for these variables showed no significant difference between 
groups (p-value for interaction = 0.27, for systolic blood pressure, 0.44 for LDL and 0.073 
for triglyceride respectively). 

In subsequent analyses where we further stratified the highest TDI group because of 
the large range in TDI values in this group, the OR for CAD per SD increase in genetically-
influenced BMI in the 75-87.5 percentile TDI group was 1.109 (95% CI: 1.080, 1.138), 
whereas in the group with TDI values above the 87.5 percentile the OR was 1.140 (95% 
CI: 1.113, 1.167). 

Sensitivity analyses
In logistic regression analyses, only genetically-influenced BMI was associated with TDI. 
Therefore, the analysis that studied the association between genetically-influenced BMI 
and CAD, stratified for TDI was repeated using new BMI GRS_free subgroups of TDI (“IV 
free”). These results did not substantially differ from the main analysis (Supplementary 
Table 1).

accompanied 95% confidence intervals) can be interpreted as the change in odds on 
CAD for every increase in standard deviation (SD) in genetically-determined exposure. 
All analyses were adjusted for age, sex and the first 10 genetic principal components to 
correct for possible population admixture. Additional analyses were performed where 
we stratified the study population for men and women. We tested for evidence for an 
interaction on a multiplicative scale by adding multiplicative interaction terms between 
the GRS’s and TDI (both as continuous variables) in the multivariable-adjusted logistic 
regression models for CAD. For these analyses, we reported the p-values for interaction, 
corrected for multiple testing using the Bonferroni adjustment method. Therefore, we 
required a P-value < 0.0125.

However, stratification by TDI can introduce collider bias when there is a conditional 
relationship between the genetic risk score and TDI (e.g., the mean GRS score is higher 
in either the low or high TDI group). As explained in detail previously in Coscia et al, 
when a variable (TDI) in a causal diagram is directly affected by two other variables, 
such as the risk factor (BMI, blood pressure, LDL cholesterol and triglyceride levels) and 
corresponding GRS, conditioning on TDI might introduce a collider (Figure 1) [32]. In 
line with this paper, in a sensitivity analysis, we controlled for the possible presence of 
such bias in the main analyses, by defining strata defined by quantiles of the residual 
TDI collider. We calculated the residual TDI, a variable that is free from any influences of 
the instrument variable (the GRS) [32], by calculating residuals using linear regression 
analyses with TDI as outcome and the genetic risk score as independent variable. Using 
the residuals, new subgroups were defined based on quartiles, and the main analyses 
were repeated accordingly. 

Figure 1. Directed Acyclic Graph (DAG) illustrating the relationship between the studied variables. 
When variable G (GRS) and variable C (TDI) are directly linked, TDI can be considered a collider variable, 
becoming a dependent variable when conditioned on.
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A B

C D

Figure 2. Association between genetically determined risk factors Body Mass Index (A), systolic 
blood pressure (B), LDL Cholesterol (C), triglyceride (D) and coronary artery disease stratified for 
Socioeconomic Status
Estimated ORs represent the effect per SD increase in risk factor GRS on CAD. Results obtained using a 
logistic regression with genetic risk score as exposure, corrected for age, sex, and the first 10 principal 
components and were stratified for SES. Abbreviations: BMI, Body Mass Index; SBP, systolic blood 
pressure; TG, triglyceride; SES, Socioeconomic Status. 
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instruments for visceral fat, we were unable to test this hypothesis. Thus, subsequent 
studies should aim to explore the potential differences in body composition between 
SES groups. 

It has been shown that low SES is one of the strongest predictors towards engaging in 
lifestyle risk behavior associated with cardiovascular death [35]. These include smoking, 
alcohol consumption and an unhealthy diet. All of these lifestyle factors are in turn 
associated with increased liver fat and/or visceral fat, which are known to increase CAD 
risk [36, 37]. It is therefore possible that lifestyle risk behavior could lead to different 
body compositions between SES groups, which in turn could explain our results. 

Although SBP, triglyceride and LDL cholesterol are assumed to be causal risk 
factors for CAD incidence, there does not seem to be a difference in effect between 
SES groups according to our results. Thus, it is likely that interventions targeting either 
SBP, triglyceride or LDL cholesterol would have a comparable effect on CAD incidence, 
independent of SES.

The main strength of this study is the large sample size as well as considerable number 
of CAD cases. This ensured statistical power for our analyses on the association between 
CVD risk factors and CAD occurrence. The MR method also aims to prevent possible 
reverse causation or confounding. Finally, our findings on the associations between 
known CVD risk factors and CAD are directionally consistent compared with earlier 
literature, which increases the credibility of our main findings. Some limitations should 
also be considered. First, we used the Townsend Deprivation Index as an indication of SES. 
As TDI is only measured at baseline, potential changes in SES during follow-up cannot be 
taken into account. To add, TDI is calculated based on geographical data and therefore is 
not a measure of individual SES, but a measure of environmental poverty. Furthermore, 
using a measure of neighborhood SES could provide suitable target locations for 
potential tailor-made intervention policies. Second, our study population from the UK 
Biobank consists of Caucasian participants. Therefore, the generalizability of our results 
to other ancestry groups is limited. This is especially relevant as prevalence of CVD risk 
factors differ between ethnic groups [38]. However, limiting the study population to 
Caucasians greatly reduces the heterogeneity between participants.

In conclusion, our findings indicate that CAD risk attributable to BMI is not homogenous 
and is modified by SES. Although genetically-influenced BMI was associated with CAD in 
all SES subgroups, tailor-made approaches for risk reduction dependent on SES should 
be considered to optimize the reduction in disease risk.

Acknowledgements
The present study has been conducted using the UK Biobank Resource (Application 
Number 56340) that is available to researchers. 

DISCUSSION

We performed MR analyses using calculated genetic risk scores for CVD risk factors to 
investigate their association with CAD in different SES groups, using data from 446,495 
European-ancestry participants from the UK Biobank. Results indicated that in every SES 
group, each investigated genetically-influenced risk factor (BMI, SBP, LDL, triglycerides) 
was associated with an increased risk of CAD, confirming the previously observed effects 
of these risk factors on CAD. However, for genetically-influenced BMI, the observed effect 
on CAD differed between SES groups. Specifically, in the lower SES group the increased 
risk on CAD per SD increase BMI was larger compared with the highest SES group. These 
results could be an indication that an increased BMI is not only more prevalent in low 
SES groups, but that the risk associated with a one-unit increased BMI is also higher.

To the best of our knowledge, the current study is the first to investigate the impact 
of classic CVD risk factors on CAD occurrence in different sub-groups of SES in a MR 
analysis. Of interest, earlier Mendelian Randomization studies have shown age-specific 
effects attributable to CVD risk factors [17, 18]. These findings, together with the 
findings from the present study, further illustrate that the effect of CVD risk factors is 
not homogeneous, but subgroup specific instead. 

To illustrate, a hypothetical intervention in our study population leading to an equal 
reduction (e.g., 1 SD) in BMI across all groups, would lead to a relatively larger case 
reduction of CAD in the lower SES group. A 1 SD reduction of BMI would lead to 1.081 
lower odds of developing CAD attributable to BMI in the highest SES group. Conversely, 
the same 1 SD reduction would lead to 1.126 lower odds in the lowest SES group. With 
both a larger incidence and a bigger effect size, a 1 SD reduction of BMI leads to a larger 
absolute case reduction in the low SES group. By not recognizing the different effect 
attributable to BMI in different SES groups and using the overall increased risk (OR: 
1.107), a hypothetical intervention would assume an under- and overestimation of case-
reduction in high and low SES groups respectively.

Our findings on the subgroup-specific impact of BMI on CAD risk could be caused by 
different body compositions in different socioeconomic groups. BMI is generally thought 
to have a linear relationship with CVD incidence [33]. However, it is a measure of overall 
adiposity that takes into account body weight and length, but not body composition 
variables such as fat mass and muscle mass. It is possible that the increased CAD risk in 
groups of lower SES could be due to the fact that groups of lower SES have a higher body 
fat percentage. However, there is currently not much literature on body composition in 
different socioeconomic groups. The distribution of fat is another aspect to consider. 
Literature has shown that compared with subcutaneous fat, visceral fat is associated 
with a higher risk for CAD [34]. It could be hypothesized that the body fat of individuals 
of lower SES consists of a larger proportion of visceral fat than the body fat of individuals 
of higher SES. As there are, to our knowledge, currently not sufficient reliable genetic 
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