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Development of a Translational Model to 
Assess the Impact of Opioid Overdose and 
Naloxone Dosing on Respiratory Depression 
and Cardiac Arrest
John Mann1, Mohammadreza Samieegohar1, Anik Chaturbedi1, Joel Zirkle1, Xiaomei Han1,  
S. Farzad Ahmadi1 , Amy Eshleman2, Aaron Janowsky2, Katherine Wolfrum2, Tracy Swanson2,  
Shelley Bloom2, Albert Dahan3 , Erik Olofsen3, Jeffry Florian1, David G. Strauss1  and Zhihua Li1,*

In response to a surge of deaths from synthetic opioid overdoses, there have been increased efforts to distribute 
naloxone products in community settings. Prior research has assessed the effectiveness of naloxone in the hospital 
setting; however, it is challenging to assess naloxone dosing regimens in the community/first-responder setting, 
including reversal of respiratory depression effects of fentanyl and its derivatives (fentanyls). Here, we describe 
the development and validation of a mechanistic model that combines opioid mu receptor binding kinetics, 
opioid agonist and antagonist pharmacokinetics, and human respiratory and circulatory physiology, to evaluate 
naloxone dosing to reverse respiratory depression. Validation supports our model, which can quantitatively predict 
displacement of opioids by naloxone from opioid mu receptors in vitro, hypoxia-induced cardiac arrest in vivo, and 
opioid-induced respiratory depression in humans from different fentanyls. After validation, overdose simulations 
were performed with fentanyl and carfentanil followed by administration of different intramuscular naloxone 
products. Carfentanil induced more cardiac arrest events and was more difficult to reverse than fentanyl. Opioid 
receptor binding data indicated that carfentanil has substantially slower dissociation kinetics from the opioid 
receptor compared with nine other fentanyls tested, which likely contributes to the difficulty in reversing carfentanil. 
Administration of the same dose of naloxone intramuscularly from two different naloxone products with different 
formulations resulted in differences in the number of virtual patients experiencing cardiac arrest. This work provides 
a robust framework to evaluate dosing regimens of opioid receptor antagonists to reverse opioid-induced respiratory 
depression, including those caused by newly emerging synthetic opioids.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?
 It is challenging to assess naloxone dosing regimens in the 
community/first-responder setting, including to reverse the res-
piratory depression effects of fentanyl and its derivatives.
WHAT QUESTION DID THIS STUDY ADDRESS?
 Can quantitative systems pharmacology modeling be used to 
evaluate naloxone dosage regimens in a quantitative and clini-
cally meaningful manner?
WHAT DOES THIS STUDY ADD TO OUR 
KNOWLEDGE?
 This study adopted a stringent validation strategy to develop 
a model that translates in vitro receptor binding kinetics into 

clinical outcomes of opioid-induced respiratory depression, 
such as cardiac arrest. Initial modeling suggests respiratory 
depression induced by carfentanil is difficult to reverse due to 
its slow dissociation kinetics from the opioid receptor and a na-
loxone product’s formulation can impact naloxone’s ability to 
prevent cardiac arrest.
HOW MIGHT THIS CHANGE CLINICAL PHARMA-
COLOGY AND THERAPEUTICS?
 This work presents a robust framework for assessing the 
ability of naloxone formulations and dosing to reverse opioid 
overdose in a community setting, including for newly emerging 
synthetic opioids with little clinical data.
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An increasing number of opioid-related deaths1,2 are attributed to 
synthetic opioids, such as fentanyl and its derivatives.3,4 As part 
of the strategy to combat the opioid crisis, naloxone, a fast-acting 
opioid mu receptor antagonist capable of reversing opioid-induced 
toxicity, has been distributed and utilized in the community and 
pre-hospital settings.5 The American Heart Association has pro-
vided dosing recommendations in the community setting6 and the 
US Food and Drug Administration (FDA) has approved intramus-
cular autoinjector and intranasal naloxone products that can be 
used by lay persons in the community.7,8 However, data to evaluate 
naloxone dosing in the community setting are limited.

In 2016, the FDA held a joint meeting of the Anesthetic and 
Analgesic Drug Products Advisory Committee and the Drug Safety 
and Risk Management Advisory Committee wherein some discus-
sion focused on naloxone dosing for community use. Although 
there was general agreement that the risk of under-dosing naloxone 
far outweighs the potential risk of precipitating opioid withdrawal, 
a consensus could not be reached on certain aspects due to a lack of 
evidence supporting a specific dosing recommendation.9

It is difficult to recommend specific naloxone dose require-
ments for overdose scenarios because the necessary naloxone 
amount depends on the amount of opioid, the pharmacokinetics 
of the opioid and naloxone, and the kinetic interactions between 
the opioid and naloxone at the opioid mu receptor (referred to 
as opioid receptor throughout).5 For example, pharmacokinetic–
pharmacodynamic modeling demonstrated that the difficulty 
in reversing buprenorphine-induced respiratory depression is 
linked to its slow dissociation kinetics from the opioid receptor.10 

Furthermore, with the continued emergence of new illicitly manu-
factured synthetic opioids, in particular fentanyl derivatives, eval-
uating if such compounds have similar slow dissociation kinetics 
that may require more aggressive naloxone dosing is valuable.

In the present study, we report on the development and val-
idation of a model that integrates the: (i) pharmacokinetics of 
opioid receptor agonists and antagonists, (ii) opioid receptor 
binding kinetics of agonists and antagonists, (iii) impact of opi-
oid receptor binding on ventilation, and (iv) physiological ef-
fects of changes in ventilation on oxygen and carbon dioxide gas 
exchange in the lungs and circulation to the body, in particular 
the brain, and the subsequent feedback to ventilation (Figure 1). 
Compared with prior models, we enhanced the physiological 
component to reflect the initial compensatory increase in car-
diac output following acute severe hypoxemia that subsequently 
decompensates leading to cardiac arrest if adequate respiration is 
not provided.

METHODS
Detailed methods are provided in the Supplementary Document, 
which are summarized here.

In vitro receptor binding experiments
Fentanyl and nine of its derivatives (carfentanil, sufentanil, butyryl 
fentanyl, 4-fluorobutyrylfentanyl, 4-fluoroisobutyryl fentanyl, furanyl 
fentanyl, isobutyryl fentanyl, alfentanil, and remifentanil), as well as bu-
prenorphine and naloxone were radiolabeled with [3H] and used in asso-
ciation or dissociation assays. The same set of binding parameters (e.g., 
Kon, Koff, n, see Supplementary Methods for details) were derived to fit 

Figure 1  Overall structure of the model. The model has four components. In the pharmacokinetic (PK) component, compartment PK models 
convert the doses of opioids and naloxone through different dosing routes to their free concentrations in the effective compartment. In the 
receptor binding component, opioid and naloxone compete to bind to the opioid receptor. In the pharmacodynamic (PD) component, the opioid-
bound receptors, but not the naloxone-bound receptors, lead to respiratory depression, through reducing all three ventilatory drives (central 
chemoreflex, peripheral chemoreflex, and wakefulness drives). The physiological component describes gas (oxygen (O2) and carbon dioxide 
(CO2)) exchange and metabolism, ventilatory control, and blood flow control. [Colour figure can be viewed at wileyonlinelibrary.com]
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all association and dissociation experiments for the same ligand (opioid 
or naloxone).

Model development procedures
To increase the credibility of the final model predictions, we designed a 
model development strategy that involved a model calibration phase and 
a model validation phase.

Model calibration
In the model calibration phase, the receptor binding, pharmacokinetic, 
physiology, and pharmacodynamic submodels were built and parame-
terized based on new in vitro binding experiments (see Supplementary 
Methods) and existing pharmacokinetic and physiology data.

Some pharmacokinetic submodels and parameter sets were taken 
directly from the literature, such as intravenous administration of fen-
tanyl11 and remifentanil.12 For carfentanil, the only available clinical 
study with intravenous administration13 did not report plasma concen-
trations, but rather reported a long plasma half-life (~ 45 minutes) after 
bolus injections. Accordingly, for the carfentanil model, we modified the 
fentanyl pharmacokinetic model to fit this half-life (see Supplementary 
Materials). For the pharmacokinetics of naloxone following intramuscu-
lar administration, plasma concentration profiles of two intramuscular 
formulations (generic naloxone hydrochloride injection 2 mg/2 mL14 
and naloxone hydrochloride injection with autoinjector 2 mg/0.4 mL15) 
were used to construct the structural pharmacokinetic model for each 
product. Both naloxone products share the same pharmacokinetic model 
structure with two transit, one central, and one peripheral compartment.

The physiology submodel was based on a previous model developed 
by Ursino et al.16,17 that was calibrated using clinical data of ventilatory 
response under various conditions, such as iso-oxic hypercapnia, hyper-
oxia and normocapnia, iso-capnic hypoxia, and poikilocapnic hypoxia. 
We updated the original model to better reproduce various clinical data 
and expanded the model to capture changes in total systemic blood flow 
(cardiac output) and cerebral blood flow that occur following acute severe 
hypoxia.18–20 In the model, we defined cardiac arrest as total blood flow 
reduced to 0.01 L/min, which most commonly corresponds to pulseless 
electrical activity progressing to asystole in patients with opioid-induced 
out-of-hospital cardiac arrest.21

The pharmacodynamic submodel was calibrated based on two clin-
ical studies investigating the impact of fentanyl on ventilation.11,22 To 
visually compare the model simulation and clinical data, a population 
model was constructed to capture intersubject variability and model 
parameter uncertainty. Randomly sampled pharmacokinetic parame-
ters based on the population pharmacokinetic models (Table S1) were 
combined with estimated distributions of receptor binding parameters 
(Table S2) to form a population of 2,000 virtual patients for popula-
tion simulations.

Model validation
In the subsequent validation phase, various components of the model 
were “frozen” and used to predict new data not used during model cal-
ibration. This included in vitro opioid-naloxone competitive assays, 
animal studies with severe hypoxia-induced cardiac arrest,20 and clin-
ical ventilation studies with fentanyl, alfentanil, and remifentanil.23,24 
Although there is no universally accepted predictive performance cri-
teria for quantitative systems pharmacology models, the fields of other 
mechanistic models, such as physiologically-based pharmacokinetic 
models, commonly use a twofold deviation (predicted value within 0.5 
times to 2 times of the observed value) as a performance criterion.25 
Accordingly, we calculated the ratio between the mean model-predicted 
value (prediction using typical parameters) and the mean observed value 
in the validation data sets to evaluate our model’s predictive credibility. 
In addition, the 95% confidence intervals of the population model pre-
dictions were plotted against clinical data to assess for similar trends.

Opioid overdose simulations
The opioid overdose scenarios were based on real-world data from a 
study of ~ 500 fatal fentanyl overdose cases.26 We estimated the “me-
dium” and “high” intravenous doses to be 1.63 and 2.97 mg, respectively 
(Supplementary Methods). As there are limited fatal overdose data 
available for carfentanil, we utilized a dose equivalence strategy to cal-
culate its medium and high overdose scenarios. With this strategy, the 
minimum dose required to induce cardiac arrest was calculated for both 
fentanyl and carfentanil. The ratio of these minimum doses (carfentanil/
fentanyl) was multiplied by the medium and high fentanyl doses to derive 
the corresponding medium and high overdose scenarios for carfentanil of 
0.012 and 0.022 mg, respectively.

To simulate naloxone reversal of opioid-induced respiratory depression, 
we needed to define the ventilation threshold to trigger naloxone admin-
istration. A threshold of 40% of baseline minute ventilation was selected 
based on review of naloxone training materials and animal studies (see 
Supplementary Methods for detailed rationale). The same threshold was 
used by others27 as an unsafe level of respiration induced by opioids. At 
each dose, we simulated virtual patients where opioid was administered via 
intravenous injection, and pharmacokinetic/pharmacodynamic outputs 
were calculated continuously for 1.5 hours. We simulated intramuscular 
naloxone administration 1 minute after ventilation decreased to 40% of 
baseline to mimic a delay between recognizing respiratory depression and 
administering naloxone.

Both the typical virtual patient (the model with typical parameters) and 
virtual populations were simulated to compare different opioid overdose 
and naloxone dosing scenarios. Code for overdose simulations can be found 
in https://github.com/FDA/Mecha​nisti​c-PK-PD-Model​-to-Rescu​e-  
Opioi​d-Overdose.

RESULTS
Model calibration
Figure  1 shows the overall model structure. It is comprised of 
the receptor binding component (submodel) to simulate opioid 
vs. naloxone competition on the opioid receptor; the pharmaco-
kinetic component to link drug dose to clinical exposure through 
different dosing routes; the physiological component describing 
gas (oxygen and carbon dioxide) metabolism and exchange, venti-
latory control, as well as blood flow control; and the pharmacody-
namic component to link the fraction of opioid receptor bound 
by opioids to ventilation drive. The mathematical equations and 
parameters for different components were estimated separately 
based on different data sources in the model calibration step.

For the receptor binding submodel, binding kinetic parame-
ters for each of the ligands (opioids or naloxone) were estimated 
by fitting the receptor binding equations to the association and 
dissociation experiments for each ligand (Figures S1 and S2). 
These fitted parameters for all ligands are shown in Table S2. 
Buprenorphine had the slowest dissociation kinetics (dissociation 
half-life 84.4 minutes), followed by carfentanil (dissociation half-
life 46.6 minutes). Sufentanil (10.7 minutes) and remifentanil 
(5.6 minutes) had the next slowest dissociation half-lives from the 
opioid receptor. All other opioids tested, including fentanyl and 
its other derivatives (alfentanil, butyryl fentanyl, fluorobutyryl 
fentanyl, isobutyryl fentanyl, furanyl fentanyl, and fluoroisobuty-
ryl fentanyl), had dissociation half-lives < 3 minutes.

For the pharmacokinetic submodels, the pharmacokinetic 
model from Algera et al.28,29 was used for fentanyl. For naloxone 
administered via intramuscular injection, we developed pharma-
cokinetic models based on plasma profiles of generic naloxone 
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hydrochloride injection (2 mg/2 mL) and a more concentrated 
naloxone product (2 mg/0.4 mL) approved for use with an auto-
injector (Figure S3).15 Table S1 contains the fitted parameters for 
fentanyl and naloxone.

The physiological component was updated from the model 
developed by Ursino et al.16,17,30 Our implementation repro-
duced clinical data covering human ventilation responses to dif-
ferent levels of hypoxia and hypercapnia, as shown by the original 
Ursino et al. model,16,17 and better reproduced additional clinical 
data. For example, our model reproduced the ventilatory change 
in response to a hypercapnic stimulus (end-tidal carbon dioxide 
elevated to ~ 48 mmHg) for constant hyperoxia, normoxia, and 
hypoxia (end-tidal oxygen fixed at 200, 100, and 53 mmHg, re-
spectively) observed clinically, and fixed an issue with the original 
model leading to zero baseline minute ventilation under hyperoxic 
conditions16 (Figure S4). For cerebral blood flow regulation, our 
model reproduced clinically observed cerebral blood flow change 
in response to change of the partial pressure of arterial carbon di-
oxide, and simultaneous changes in PaCO2 and the partial pressure 
of arterial oxygen, whereas the original Ursino et al. model did not 
reproduce these changes (Figure 2). For a complete description of 

calibration of the physiology component, see Figures S4–S8 and 
Supplementary Methods.

In addition, we extended the blood flow control mechanisms in 
the model to link respiratory depression and cardiac arrest based 
on animal data (see Methods).18,19 Our model reproduced the ini-
tial compensatory increase in systemic and brain blood flow, sub-
sequent decompensation, and eventual cardiac arrest induced by 
severe hypoxia (Figure 3).

The pharmacodynamic submodel parameters were estimated 
using two human studies involving fentanyl: one study where 
healthy opioid naïve participants were given a bolus intravenous 
injection of fentanyl while breathing room air,22 and another study 
where healthy opioid naïve participants and chronic opioid user 
participants were given intravenous fentanyl over 90 seconds in es-
calating amounts while end-tidal partial pressure of carbon dioxide 
was fixed at ~ 50 mmHg.11 Our model reproduced the changes in 
minute ventilation and arterial oxygen and carbon dioxide levels 
as well as the reduction and recovery of the ventilatory response 
to hypercapnia in these studies (Figure 4). Notably, the simulated 
chronic opioid users demonstrated a similar degree of respiratory 
depression at a higher fentanyl dose compared with simulated 

Figure 2  Cerebral blood flow changes in response to changes in carbon dioxide (top row) and simultaneous changes in oxygen and carbon 
dioxide (bottom row). (a) Our model simulation (updated from Ursino et al. model) of the relationship between arterial carbon dioxide partial 
pressure (PaCO2) and the change in cerebral blood flow from baseline. (b) Clinically derived relationship.48,49 (c) The original simulations 
from the Ursino et al. model. It is apparent that the original Ursino et al. model did not capture the relationship between cerebral blood blow 
and arterial carbon dioxide level. (d) Our model simulation (updated from the Ursino et al. model) of cerebral blood flow changes in response 
to simultaneous changes of PaCO2 and the partial pressure of arterial oxygen (PaO2). (e) Clinical data.48,50 (f) The original simulations from 
the Ursino et al. model. Note that in the original model simulation, the three curves of cerebral blood flow vs. PaO2 at different PaCO2 levels 
completely overlap, which is not consistent with the clinical data.
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healthy opioid naïve individuals at a lower dose, consistent with 
the clinical observations (Figure 4e,f).

Model validation
To evaluate the reliability of the model and its parameters, differ-
ent model components (submodels) went through independent 

validation where the model equations and parameters were “frozen” 
and used to predict new experimental data not used during model 
calibration. For the receptor binding component, the submodel was 
used to predict the fraction of opioid-bound receptor at equilibrium 
with increasing concentrations of naloxone. As shown in Figure 5, 
for all opioids, the predicted opioid-bound receptor profiles (shaded 

Figure 3  Calibration and validation of the cardiac arrest mechanism in the physiological submodel. The first two rows (a, b) compare model 
simulations (left panels) to animal data (right panels) used to calibrate the model, whereas the third and fourth rows (c, d) compare model 
predictions (left panel) to independent animal data (right panel) as model validation. (a) Left: Model simulation of human cardiac output 
(total blood flow) with 0.5% inspired oxygen. Right: Canine mean arterial blood pressure18 with 0.5–1% inspired oxygen. Although the end 
points are different between the model simulation (cardiac output) and animal data (mean arterial pressure), they both reflect the systemic 
circulatory system and the model reproduced the time course of the initial compensation followed by decompensation leading to cardiac arrest. 
(b) Left: Model simulation of human brain blood flow during apnea. Right: Porcine data19 showing the rise and fall of cerebral blood flow in an 
experimental model of fentanyl overdose with endotracheal tube clamping. Although the units are different between the model (L/min) and the 
animal data (mL/100 g tissue/min), the model reproduced the time course of the initial compensatory increase in cerebral blood flow followed 
by subsequent decompensation. Of note, the experimental model in b involved hypoxia plus hypercapnia, whereas the experimental model in a 
only involved hypoxia. The model was able to reproduce the faster decompensation with hypoxia plus hypercapnia compared to hypoxia alone. 
(c, d) Model prediction of the partial pressure of arterial oxygen c and carbon dioxide d after the onset of apnea (time 0 on X axis) as compared 
with equine data (median and range).20 Despite the species difference, the time course of changes in the partial pressure of arterial oxygen and 
carbon dioxide were comparable. Of note, c and d were considered model validation because model equations and parameters were not adjusted 
based on the equine data. [Corrections added on 23 September 2022, after first online publication: Resolution of Figure 3 has been corrected.]

0

0.6

1.2

-1 0 1 2 3 4 5 6 7 8 9 10
0

0.6

1.2

-1 0 1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

-1 0 1 2 3 4 5 6 7 8 9 10
0.5

1

1.5

-1 0 1 2 3 4 5 6 7 8 9 10

(a)

C
ar

di
ac

 O
ut

pu
t 

(L
/m

in
)

Model Calibration: Systemic Circulatory System

0

2.5

5

7.5

0 5 10 15
Time (min)

0
25
50
75

100
125
150

0 5 10 15

Canine Experimental DataModel Simulation

M
ea

n 
Ar

te
ria

l P
re

ss
ur

e 
(%

co
nt

ro
l)

Time (min)

0

0.5

1

1.5

2

2.5

0 5 10 15

(b)

C
er

eb
ra

l B
lo

od
 F

lo
w

(L
/m

in
)

Time (min)

-5

10

25

40

55

0 5 10 15

C
er

eb
ra

l B
lo

od
 F

lo
w

 
(m

L/
10

0g
/m

in
)

Time (min)

ataD latnemirepxE enicroPnoitalumiS ledoM

Pa
rti

al
 P

re
ss

ur
e 

of
 A

rte
ria

l O
xy

ge
n

(F
ra

ct
io

n 
of

 B
as

el
in

e)

(c) Model Validation: Arterial Oxygen

Model Validation: Arterial Carbon Dioxide

Pa
rti

al
 P

re
ss

ur
e 

of
 A

rte
ria

l 
C

ar
bo

n 
D

io
xi

de
(F

ra
ct

io
n 

of
 B

as
el

in
e)

)nim( emiT)nim( emiT

)nim( emiT)nim( emiT

Model Calibration: Cerebral Blood Flow (CBF)

(d)

Pa
rti

al
 P

re
ss

ur
e 

of
 A

rte
ria

l O
xy

ge
n

(F
ra

ct
io

n 
of

 B
as

el
in

e)

Pa
rti

al
 P

re
ss

ur
e 

of
 A

rte
ria

l 
C

ar
bo

n 
D

io
xi

de
(F

ra
ct

io
n 

of
 B

as
el

in
e)

Model Simulation

Model Simulation

Equine Experimental Data

Equine Experimental Data

ARTICLE
 15326535, 2022, 5, D

ow
nloaded from

 https://ascpt.onlinelibrary.w
iley.com

/doi/10.1002/cpt.2696 by U
niversity O

f L
eiden, W

iley O
nline L

ibrary on [29/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 112 NUMBER 5 | November 2022 1025

bands) followed the trend of the experimentally observed values 
(error bars). The median ratio between predicted and measured 
opioid-bound receptor fractions was 1.00 (interquartile range, 
0.86–1.00).

For the physiological component, the submodel was used to 
predict the changes in arterial oxygen and carbon dioxide par-
tial pressures with severe hypoxia leading to cardiac arrest in an 
equine study.20 The model predicted the time course of changes 

Figure 4  Calibration of the pharmacodynamic component of the model. The pharmacodynamic component describes the drug effects on 
the ventilatory drives, and subsequently on the partial pressures of arterial oxygen (PaO2) and carbon dioxide (PaCO2). (a) Minute ventilation 
(fraction of baseline), (b) PaCO2 (fraction of baseline), and (c) PaO2 (fraction of baseline) after 0.5 mg fentanyl bolus injection while study 
participants breathed room air.22 (d) The ventilatory response to hypercapnia (i.e., the slope of ventilation vs. end-tidal carbon dioxide 
response curve, expressed as a fraction of the baseline slope) was assessed through a rebreathing procedure in the same participants as 
displayed in panels a through c. (e, f) Minute ventilation (fraction of baseline) changes after bolus fentanyl injection for healthy opioid naïve 
participants e and chronic opioid user participants f with their end-tidal carbon dioxide fixed at ~ 50 mmHg (isohypercapnic condition).11 At 
the 120th minute (X axis), opioid naïve and chronic opioid user participants received a bolus injection of 75 and 250 μg fentanyl/70 kg body 
weight, respectively. At the 180th minute (X axis), opioid naïve and chronic opioid user participants received a fentanyl intravenous injection 
of 150 and 350 μg/70 kg body weight, respectively. Of note, some participants received more than two doses of fentanyl; however, these 
higher dosing groups excluded some participants due to adverse events or fentanyl intolerance. These dosing groups with excluded subjects 
were not used in model calibration. Solid blue lines and bands are the typical patient (the virtual patient with typical parameters) and the 95% 
confidence interval (CI) of the virtual population simulations, respectively. Black dots and error bars are the mean and 95% CI of the clinical 
data, respectively. [Colour figure can be viewed at wileyonlinelibrary.com]

ARTICLE
 15326535, 2022, 5, D

ow
nloaded from

 https://ascpt.onlinelibrary.w
iley.com

/doi/10.1002/cpt.2696 by U
niversity O

f L
eiden, W

iley O
nline L

ibrary on [29/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

www.wileyonlinelibrary.com


VOLUME 112 NUMBER 5 | November 2022 | www.cpt-journal.com1026

from baseline in arterial oxygen (Figure 3c) and carbon dioxide 
(Figure 3d). The median ratio between predicted and measured 
values was 1.00 (interquartile range, 0.92–1.06).

For the validation of the pharmacodynamic submodel, we used the 
model to independently predict the outcome of clinical studies. This 
included Mildh et al.23 with computer-driven continuous infusion 
of fentanyl or alfentanil while study participants breathed room air 
(Figure 6a–f), and Olofsen et al.24 with remifentanil infusion with-
out fixing end-tidal carbon dioxide (Figure 6g). Of all the observed 
data, which included minute ventilation, arterial oxygen levels, and 
arterial carbon dioxide levels, the median ratio between predicted 
and measured values was 0.95 (interquartile range, 0.90–1.01).

Preliminary simulation of opioid overdose and naloxone 
administration in a community setting
Having validated the full model, we simulated chronic opioid users 
(see Figure 4f) under fentanyl or carfentanil overdose scenarios 
with or without administration of two naloxone intramuscular 
formulations: intramuscular 2 mg/0.4 mL15 and intramuscular 
2 mg/2 mL.14

Without naloxone administration, opioid-induced decrease 
in ventilation led to a decrease in arterial oxygen partial pres-
sure (red lines in Figure 7a, top two rows). The resulting acute 
hypoxemia initially caused a compensatory increase in cardiac 
output, followed by subsequent decompensation (red lines in 

Figure 5  Independent validation of the receptor binding component using competition assays between naloxone and nine of the opioids 
tested. In each assay, increasing naloxone concentration (X axis) was incubated with a fixed concentration of each opioid (top of each plot) to 
compete for binding to the opioid receptor. The dots (mean) and error bars (95% confidence interval) correspond to the measured fraction of 
opioid-bound receptors from the competition assays. Solid lines and gray bands indicate the point estimate and 95% confidence interval for 
the predicted fraction of opioid-bound receptors in the competition assays using parameters previously derived from association/dissociation 
experiments (Table S2). Of note, alfentanil and remifentanil competition assay data are not available.
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Figure 6  Validation of the pharmacodynamic (PD) component of the model. The model was “frozen” without any changes and used to predict 
clinical outcome from studies not used for model calibration. (a) Minute ventilation, (b) partial pressure of arterial carbon dioxide (PaCO2), and 
(c) partial pressure of arterial oxygen (PaO2) after computer-driven continuous fentanyl infusion to achieve various pseudo-steady-state plasma 
concentrations while study participants breathed room air.23 (d–f) The same study with various pseudo-steady-state plasma concentrations 
of alfentanil. For each plasma concentration for fentanyl and alfentanil, a computer-driven infusion pump was used to maintain the desired 
concentration level for 10 minutes, with PD variables (ventilation, arterial gas levels, etc.) measured at 7–9 minutes, when the plasma 
concentration was at pseudo steady-state.23 To mimic this design, we fixed opioid concentrations at each desired level in the model, without 
executing the pharmacokinetic submodel. Note that for panels a and d, the minute ventilation comparison was based on fraction of baseline 
instead of absolute values, because the clinical data had substantially different baseline mean minute ventilation (~10 L/min) compared 
with the model (6.67 L/min). Of note this study only enrolled male participants in their 20s,23 which may explain why their baseline minute 
ventilation was higher than that of the general population (5–8 L/min).51 (g) A study24 where remifentanil was administered as a continuous 
pump-driven infusion over 3 minutes under hyperoxic conditions. The simulated infusion scheme was adjusted to match the measured 
plasma concentrations (Figure S10). Black points and error bars are the mean and 95% confidence interval (CI) of clinically measured minute 
ventilation. The blue line and band are the predicted minute ventilation from the typical virtual patient and 95% CI of the virtual population, 
respectively. [Corrections added on 23 September 2022, after first online publication: Resolution of Figure 6 has been corrected.] [Colour 
figure can be viewed at wileyonlinelibrary.com]

(a) (b) (c)

(d)

(g)

(e) (f)
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Figure 7a, third row) and ultimately cardiac arrest (red X in 
Figure 7a). The onset of ventilatory depression was slower for 
carfentanil than fentanyl (Figure 7a, first row), consistent with 
carfentanil binding to the opioid receptor more slowly (slower 
association rate; Table S2). As a result of the slower initial de-
cline in ventilation with carfentanil compared with fentanyl, by 
the time ventilation decreased to 40% of baseline (the trigger 
for administering naloxone 1 minute later), carfentanil virtual 
patients had lower arterial oxygen and higher arterial carbon 
dioxide.

Naloxone administration led to a reversal of ventilatory de-
pression (green and blue lines in Figure 7a, first row), an increase 

of arterial oxygen partial pressure (Figure 7a, second row), and 
a return of cardiac output to baseline without cardiac arrest in 
some cases (Figure 7a, third row). For a typical virtual patient, 
the 2 mg/0.4 mL naloxone formulation, but not the 2 mg/2 mL 
formulation, rescued the high fentanyl overdose scenario 
(Figure 7a, second column) due to the more concentrated for-
mulation having a faster rise of naloxone plasma concentration 
(Figure S11). However, with high-dose carfentanil (0.022 mg), 
one dose of either naloxone formulation did not reverse ventila-
tory depression fast enough to prevent cardiac arrest (Figure 7a, 
fourth column), consistent with a slower dissociation rate for 
carfentanil from the opioid receptor (Table S2). The rescue 

Figure 7  Model-predicted physiology and outcomes after fentanyl and carfentanil overdose in chronic opioids users and dosing evaluation 
for two intramuscular naloxone products. The opioid overdose scenarios tested were intravenous bolus administration of fentanyl medium 
overdose (1.63 mg, column 1), fentanyl high overdose (2.97 mg, column 2), carfentanil medium overdose (0.012 mg, column 3), and carfentanil 
high overdose (0.022 mg, column 4). See the Methods section for the rationale for specific opioid doses. In all graphs, no naloxone is red, 
generic naloxone hydrochloride injection 2 mg/2 mL is green, and naloxone hydrochloride injection with autoinjector 2 mg/0.4 mL is blue. 
(a) Physiological outcomes over 15 minutes from the typical virtual patient are plotted: minute ventilation (first row), partial pressure of arterial 
oxygen (second row), and cardiac output (third row). The red X indicates the time of cardiac arrest (defined as cardiac output reduced to 
0.01 L/min; see the Methods section). Note that some cardiac output curves and red Xs from different naloxone dosing groups overlap with 
each other. (b) The percentage of virtual patients experiencing cardiac arrest. The error bars represent the median and interquartile range of 
cardiac arrest percentage after randomly sampling 200 out of the 2,000 virtual patients 2,500 times.
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pattern observed with the typical virtual patient simulation 
above was consistent with population simulations (Figure 7b) 
considering interindividual variability in pharmacokinetic and 
receptor binding parameters. The 2 mg/0.4 mL naloxone for-
mulation was associated with a lower cardiac arrest percentage 
compared with the 2 mg/2 mL formulation. For example, for 
the medium fentanyl overdose of 1.63 mg, administering the 2 
naloxone formulations resulted in a cardiac arrest percentage 
of 16% (interquartile range, 14–17%) and 30% (interquartile 
range, 28–31%), respectively. Carfentanil overdose, compared 
with fentanyl overdose, resulted in a higher percentage of car-
diac arrest. For example, with the 2 mg/0.4 mL naloxone formu-
lation, the carfentanil medium overdose (0.012 mg) resulted in 
20% (interquartile range, 19–22%) cardiac arrest percentage in 
the virtual population, compared with 16% (interquartile range, 
14–17%) with the fentanyl medium overdose (1.625 mg). The 
same pattern was observed with the other naloxone formulation 
and the higher doses of fentanyl and carfentanil (Figure 7b).

DISCUSSION
Here, we presented the development and validation of a model 
that can be used to evaluate the impact of different dosing schemes 
of opioid antagonists on reversing opioid-induced respiratory de-
pression in the community setting. Compared with other similar 
modeling studies,31 we adopted a more vigorous model validation 
strategy by using independent in vitro, in vivo, and clinical data to 
evaluate the predictive credibility of different components of the 
model.

One key feature of our model is the ability to translate in vitro 
assessments to clinical outcomes. Buprenorphine, which is known 
clinically to cause difficult-to-rescue respiratory depression,10 had 
the slowest dissociation rate from the opioid receptor in our study 
(Table S2). Interestingly, carfentanil, an ultrapotent fentanyl de-
rivative considered of high concern in opioid overdose-associated 
death,32 had a dissociation rate almost as slow as buprenorphine 
(dissociation half-life ~ 47 minutes vs. 84 minutes, Table S2). 
Unlike buprenorphine, which is a partial opioid receptor agonist 
with a ceiling effect on respiratory depression,28 carfentanil appears 
to be a full agonist with the capability of inducing apnea in animal 
studies.33 To our knowledge, this is the first report that a full opioid 
receptor agonist possesses slow dissociation kinetics comparable to 
the partial agonist buprenorphine. In contrast, fentanyl,26 as well 
as other fentanyl derivatives we tested that have been implicated 
in fatal community overdose cases, such as butyryl fentanyl,34 fura-
nyl fentanyl,35 fluorobutyryl fentanyl,36 and fluoroisobutyryl fen-
tanyl,37 had significantly faster dissociation rates from the opioid 
receptor (dissociation half-lives < 3 minutes; Table S2).

Another key feature of our modeling approach was the mech-
anistic representation of physiology, including the storage, me-
tabolism, and exchange of gases (oxygen and carbon dioxide), 
ventilatory drives, and blood flow control. This allowed us to re-
produce a wide range of clinical data probing the complex relation-
ship between these components (see Supplementary Materials) 
and made it possible for the model to simulate opioid-induced re-
spiratory depression as it would occur under real life conditions of 
patients breathing room air (poikilocapnic hypoxia). In contrast, 

many published models ignored such physiological responses and 
were developed under conditions where end-tidal carbon dioxide 
partial pressure was fixed at an elevated level (isohypercapnic hy-
poxia), sometimes together with elevated end-tidal oxygen partial 
pressure.28,29,38 In addition, whereas models incorporating blood 
flow regulation were developed previously,16,17,30 they only ac-
counted for what would happen in the initial minutes following 
ventilatory depression and predicted a continued increase in car-
diac output and cerebral blood flow with prolonged respiratory 
depression. This is not physiological because continued severe hy-
poxia causes decompensation leading to decreased cardiac output 
and eventual cardiac arrest.18–20 Our model captured this mecha-
nism to better reflect physiology after opioid overdose.

Being mechanistic in nature, our model can simulate many phys-
iological outcomes during opioid-induced respiratory depression. 
In our initial simulation of opioid overdose and naloxone reversal 
in community settings, we focused on the end point of opioid-
induced cardiac arrest. Opioid-associated out-of-hospital cardiac 
arrest is one of the leading causes of death associated with opioid 
overdose, and among all out-of-hospital cardiac arrests treated by 
emergency medical services, ~ 9% have been estimated to be due 
to opioid overdose.21 Although it is difficult to conduct clinical in-
vestigations studying opioid-induced cardiac arrest in humans, our 
mechanistic model and integrated approach provides a valuable 
tool for evaluating different opioid antagonists, along with doses 
and dosing strategies in this setting. Of note, patients who do not 
experience cardiac arrest may still have brain damage due to pro-
longed hypoxia. Our model simulates brain tissue oxygen partial 
pressure, and this could be used as an additional end point.

When simulating patients with opioid overdose, different 
patterns were observed. First, there were some differences in the 
physiological responses following overdose of different opioids. 
For example, compared with fentanyl, carfentanil takes longer to 
bind to the opioid receptor (Kon) and dissociate from the opioid 
receptor (Koff ). This appears to contribute to ventilatory depres-
sion developing slightly more slowly after intravenous injection 
of carfentanil, compared to fentanyl; however, once ventilation 
decreases below 40% of baseline, the virtual patient has lower ar-
terial oxygen partial pressure. Second, because carfentanil dissoci-
ates more slowly from the opioid receptor, it was more difficult to 
reverse respiratory depression compared with fentanyl, even when 
potency-normalized equivalent doses were given (see Methods 
section and Figure 7). Third, the more concentrated naloxone 
formulation rescued more patients than the lower concentration 
formulation with the same naloxone dose, which is consistent 
with it causing a faster rise in naloxone plasma concentration. This 
highlights how different naloxone products that have not been de-
termined to be bioequivalent can have different pharmacokinetic 
properties that may lead to different outcomes.

There are limitations to the in vitro-in silico methodology de-
veloped in this work when it is applied to illicitly manufactured 
opioids without clinical pharmacokinetic data. First, similar to pre-
vious community-wide discussions about regulatory use of mod-
els,39 the term “validation” is intended here as the evaluation of 
“how good is the model for a given prediction task” rather than of 
“how good is it as a representation of the real physiological system.” 
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Although some datapoints in the validation datasets have high 
variability, the ratio of mean values between model-predicted and 
observed datapoints across validation datasets has a median of 0.95 
(interquartile range, 0.90–1.01), well below the previously recom-
mended 2-fold range.25

Second, not all parameters required to model a new opioid can be 
estimated through in vitro experiments. For example, pharmacoki-
netic parameters for many of the opioids tested in this study are un-
known, and that is one of the reasons that, while we tested different 
fentanyl derivatives in our in vitro studies, only two (fentanyl and 
carfentanil) were used in the initial overdose simulations. As obtain-
ing human clinical pharmacokinetic data on many of these fentanyl 
derivatives that are not approved for human use is unlikely, we are 
exploring combining in vitro assays with physiologically-based phar-
macokinetic modeling40 to estimate their pharmacokinetic param-
eters for a more accurate assessment of naloxone dosage evaluation.

An additional limitation was that the pharmacodynamic pa-
rameters that govern the relationship between opioid receptor 
occupancy and the reduction of ventilatory drives may be opioid-
specific but were assumed to be constant in this study. These phar-
macodynamic parameters were estimated based on fentanyl clinical 
data during model calibration, and subsequently predicted clinical 
data for different fentanyl derivatives during model validation. The 
fact that the model predictions were highly similar to clinical data 
in the validation dataset (median ratio of predicted to measured 
values of 0.95 (interquartile range, 0.90–1.01)) suggests that the 
different fentanyl derivatives assessed may have similar pharmaco-
dynamic parameters. Now that the validation step is completed, 
the model can be updated to have opioid-specific pharmacody-
namic parameters based on clinical ventilation data when available.

Similarly, the in vitro submodel assumes simple competitive 
binding between opioids and naloxone on the opioid receptor, 
ignoring intricate mechanisms, such as G protein activation41 and 
multiple states of the opioid receptor.42 We adopted a “middle-
out” approach43 by keeping some submodels (such as the in vitro) 
more empirically derived and others (such as the physiological 
submodel) more mechanistic, with the aim of balancing biologi-
cal reality and model complexity. Such a design dictates that the 
context of use of the model should be relevant to the validation 
procedure.44 For example, our in vitro validation demonstrates the 
model’s capability of predicting the fraction of opioid-bound re-
ceptor in the presence of naloxone, and the pharmacodynamic vali-
dation demonstrates the possibility of translating such a fraction to 
respiratory depression-related clinical variables for fentanyl and its 
derivatives. However, opioids not structurally similar to fentanyl, 
or clinical end points related to other opioids’ effects like analgesia, 
might need more mechanistic in vitro simulations. For example, 
our current in vitro submodel, while able to capture the binding 
rate constants for buprenorphine, is not designed to recapitulate 
the partial agonist effect after receptor binding. This may be better 
described by a submodel with multiple states of the opioid recep-
tor.42 The modular design of our model makes it straightforward 
to replace components of the model with alternative submodels.

In summary, we developed and validated a model that integrates 
pharmacokinetics, opioid receptor binding kinetics, pharmaco-
dynamic effects on ventilation, and the physiological feedback 

mechanisms involving lung gas exchange, blood gas transport, tissue 
oxygen, and carbon dioxide metabolism, as well as blood flow con-
trol. The blood flow components go beyond prior models to capture 
not only the compensatory response to hypoxemia, but also the sub-
sequent decompensation that leads to cardiac arrest in the absence of 
a return of adequate respiration. Capturing this is critical to simulate 
the acute physiology of opioid overdose and assess opioid antagonist 
dosing to rescue patients prior to cardiac arrest. The in vitro-in silico 
methodology presented here is one of the first approaches proposed 
to assess naloxone dosing for newly emerging synthetic opioids with 
little clinical data, and has already begun to be used in the regulatory 
review of new naloxone product(s) and dosing strategies.45,46 This 
approach can be extended to cover other opioids and opioid antag-
onists (e.g., nalmefene47) to aid in evaluating the effectiveness of dif-
ferent opioid antagonists or dosing strategies in a community setting.

SUPPORTING INFORMATION
Supplementary information accompanies this paper on the Clinical 
Pharmacology & Therapeutics website (www.cpt-journal.com).
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