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Aims Evolving evidence suggests that endothelial wall shear stress (ESS) plays a crucial role in the rupture and progression of 
coronary plaques by triggering biological signalling pathways. We aimed to investigate the patterns of ESS across coron
ary lesions from non-invasive imaging with coronary computed tomography angiography (CCTA), and to define plaque- 
associated ESS values in patients with coronary artery disease (CAD).

Methods 
and results

Symptomatic patients with CAD who underwent a clinically indicated CCTA scan were identified. Separate core labora
tories performed blinded analysis of CCTA for anatomical and ESS features of coronary atherosclerosis. ESS was as
sessed using dedicated software, providing minimal and maximal ESS values for each 3 mm segment. Each coronary 
lesion was divided into upstream, start, minimal luminal area (MLA), end and downstream segments. Also, ESS ratios 
were calculated using the upstream segment as a reference. From 122 patients (mean age 64 + 7 years, 57% men), a 
total of 237 lesions were analyzed. Minimal and maximal ESS values varied across the lesions with the highest values 
at the MLA segment [minimal ESS 3.97 Pa (IQR 1.93–8.92 Pa) and maximal ESS 5.64 Pa (IQR 3.13–11.21 Pa), respect
ively]. Furthermore, minimal and maximal ESS values were positively associated with stenosis severity (P , 0.001), per
cent atheroma volume (P , 0.001), and lesion length (P ≤ 0.023) at the MLA segment. Using ESS ratios, similar 
associations were observed for stenosis severity and lesion length.

Conclusions Detailed behaviour of ESS across coronary lesions can be derived from routine non-invasive CCTA imaging. This may 
further improve risk stratification.
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Graphical Abstract

Schematic representation of the study design and patients (left panel), the comprehensive image analysis process including blinded analysis of 
anatomical and ESS features of coronary atherosclerosis (middle panel), and the patterns of ESS across lesions (right panel). Images are partly 
derived and adjusted from Ohayon et al., Biomechanics of coronary atherosclerotic plaque: from model to patient, Academic Press, 1st edition, 
chapter 9, page 207, copyright 2020 and Puchner et al., High-risk plaque detected on coronary CT angiography predicts acute coronary syn
dromes independent of significant stenosis in acute chest pain: results from the ROMICAT-II trial, Journal of the American College of 
Cardiology, volume 64, page 687, copyright 2014, both with permission from Elsevier.31,32 CAD, coronary artery disease; CCTA, coronary com
puted tomography angiography; ESS, endothelial wall shear stress.

Keywords atherosclerosis • coronary artery disease • endothelial wall shear stress • computational fluid dynamics • coronary 
computed tomography angiography

Introduction
Endothelial wall shear stress (ESS) is a biomechanical stress that de
velops from frictional forces of blood flow against the vessel wall in 
vascular tissue, such as the coronary arteries.1 ESS is relatively small 
in orders of magnitude, but can uniquely trigger biological signalling 
pathways involved in the natural history of coronary artery disease 
(CAD).2,3 It has been postulated that ESS plays a pivotal role in the 
rupture and progression of individual coronary lesions through 
stimulating fibrous cap thinning and inducing local inflammation, re
spectively.4,5 Hence, ESS is a hypothesized marker of rupture- 
vulnerable plaque that has the potential to refine and enhance the 
risk stratification of lesions. Although prior research has evaluated 
this specific role of ESS, most studies have been limited to invasive 
imaging techniques in high-risk patients with CAD.6–8 Coronary 
computed tomography angiography (CCTA) has rapidly emerged 
as the routine tool to non-invasively evaluate and characterize cor
onary atherosclerosis with excellent diagnostic certainty.9,10

Recently, technological advancements in CCTA imaging have 

enabled the non-invasive assessment of ESS.11–13 Therefore, the pri
mary aim of this study was to investigate the detailed behaviour of 
ESS across coronary lesions from non-invasive CCTA imaging in pa
tients with CAD. Secondary aims included the definition of ESS va
lues associated with anatomical features of coronary atherosclerosis.

Methods
Study design and patients
Consecutive symptomatic patients with suspected CAD and a clinical in
dication for CCTA were prospectively enrolled at the Turku University 
Hospital, Turku, Finland between 2007 and 2011. All patients had an 
intermediate pre-test likelihood of obstructive CAD. The study design 
has been published earlier in detail.14 Of those enrolled, a total of 549 
vessels from 183 patients underwent blinded analysis of anatomical 
and ESS features of coronary atherosclerosis by separate core laborator
ies. The study protocol was approved by the ethics committee of the 
Hospital District of South-West Finland, and the need for written 
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informed consent was waived. The study was conducted in direct com
pliance with the Declaration of Helsinki. For the current analysis, vessels 
with failed analysis of anatomical features (n= 37), failed analysis of ESS 
features (n= 93), impaired image quality (n= 22), chronic total occlu
sions (n= 30), unfeasible co-registration (n= 38), or absence of disease 
(n= 141) were excluded. Hence, for our analysis 188 vessels and 237 le
sions from 122 patients with CAD were included.

CCTA acquisition and image analysis
Patients were scanned with a 64-detector row positron emission tomog
raphy/CT scanner (GE Discovery VCT or GE D690, General Electric 
Medical Systems, Waukesha, WI, USA), and detailed protocols regarding 
the acquisition of scans were previously reported.14,15 Protocols included 
the systematic administration of intravenous metoprolol (0–30 mg), sub
lingual nitroglycerin (800 μg), or isosorbide dinitrate (1.25 mg) before ac
quisition to achieve target heart rates (,60/min) and coronary 
vasodilatation, respectively.14 If feasible, prospectively triggered acquisi
tion was employed in an attempt to reduce radiation dose.

Analysis of anatomical features
Scans were quantitatively analyzed by 1 independent reader (V.K.) for ana
tomical features at the Dutch core laboratory (Leiden University Medical 
Center, Leiden, the Netherlands) according to the 17-segment modified 
American Heart Association model, blinded to clinical and ESS results.16,17

All coronary segments ≥1.5 mm in diameter were evaluated. Quantitative 
analysis was assessed using semi-automated validated software (QAngio 
CT Research Edition version 1.3.6, Medis Medical Imaging Systems, 
Leiden, the Netherlands) with manual correction if needed.18 Coronary 
lesions were defined as tissue ≥1 mm2 within or adjacent to the coronary 
lumen discriminable in .2 planes from pericardial tissue, epicardial fat, or 
lumen.19 For each coronary lesion, measurement of maximal diameter 
stenosis, percent atheroma volume, and lesion length were completed. 
Maximal diameter stenosis was graded by severity into ,25%, 25–50%, 
and ≥50%. Percent atheroma volume was calculated according to standar
dized definitions, and categorized into small (,44.9%) and large (≥44.9%) 
using the mean as a cut-off.20 Lesion length was categorized into short 
(,9.4 mm) and long (≥9.4 mm), using the median as a threshold. All mea
surements were performed on a per-segment and per-lesion basis and 
summation of these values produced per-patient data.

Analysis of ESS features
Scans were separately analyzed by 2 independent readers (S.N. and L.M.) 
for ESS features at the Greek core laboratory (University of Ioannina, 
Ioannina, Greece), blinded to clinical and anatomical results. All coronary 
segments of the main epicardial arteries [i.e. left anterior descending ar
tery (LAD), left circumflex artery (LCx), right coronary artery (RCA)] 
were evaluated, except for their corresponding side branches.21

Notably, the left main artery (LM) was analyzed as part of the LAD. 
ESS was assessed using dedicated software (SMARTool version 0.9.17, 
FORTH, Ioannina, Greece) by the following consecutive steps.22–24

First, three-dimensional reconstructions were created of each vessel in 
the shape of a tetrahedral mesh.22,25 Second, steady-state flow simula
tions were performed using finite element software (ANSYS CFX ver
sion 18.1, Canonsburg, Philadelphia, PA, USA) for the solution of 
Navier-Stokes and continuity equations.21 To this end, specific boundary 
conditions were applied. The vessel wall was assumed to be rigid with a 
no-slip condition.26,27 For the inlet boundary condition, a fixed mean 

pressure of 100 mmHg was selected to simulate myocardial blood 
flow at a resting state. For the outlet boundary condition, a typical out
flow coronary uniform velocity profile of 1 mL/s was selected to describe 
a resting state.28,29 Blood was assumed to be a Newtonian fluid with a 
dynamic viscosity of 0.0035 Pa×s and a density of 1050 kg/m3. The 
flow was assumed to be laminar and incompressible. Third, ESS was cal
culated at the luminal surface of each vessel as the product of viscosity 
and the gradient of blood velocity near the vessel wall.21 Fourth, ESS 
was extracted by employing the segmental method, providing minimal 
and maximal ESS values for each 3 mm segment (see Supplementary 
data online, Figure S1).30,31 The segmental method divided each 3 mm 
segment into quarter cylinders with a 90° arc, and for the separate cylin
ders the ESS over the luminal surface was averaged. To assess the min
imal ESS value, the minimum averaged value of the cylinders was 
assigned to the entire segment. Likewise, the maximal averaged value 
was assigned to the entire segment to determine the maximal ESS value. 
For each vessel, measurement of minimal and maximal ESS values was 
completed over its total length.

Co-registration and consensus reads
Visual co-registration of vessel centrelines from the anatomical and ESS out
put was performed using fiduciary landmarks to determine the exact loca
tion position (i.e. 3 mm segment) of coronary lesions by consensus of ≥3 
experienced readers (A.S., I.J.v.d.H., J.H.K., J.K., J.S.) (see Supplementary 
data online, Figure S2). The interval between the consensus reads was 2–3 
months. For each coronary lesion, 5 locations of interest were identified: 
(i) upstream segment, (ii) start segment, (iii) minimal luminal area (MLA) seg
ment, (iv) end segment, and (v) downstream segment. Note that locations 
2–4 could be located in a single 3 mm segment in case of small and/or short 
lesions. Intraobserver intraclass correlation coefficient for locations was 
0.934 (P , 0.001) in 47 (20%) randomly selected lesions. For all locations, 
minimal and maximal ESS ratios were calculated as: minimal or maximal 
ESS value at the segment of that specific location/minimal or maximal ESS 
value at the upstream segment. Therefore, these ratios were always 1.0 
at the upstream segment and represented the relative change in ESS as com
pared with this reference.

Statistical analysis
Continuous data are presented as means + standard deviations or medians 
with interquartile ranges (IQR) on the basis of their distribution. Categorical 
data are presented as counts with percentages. Continuous data were com
pared with the Independent-Samples T test or Mann–Whitney U test (for 
2 group comparisons), and the Kruskal–Wallis test (for 3 group compari
sons). Categorical data were compared with the χ2 test. For visual interpret
ation, bar charts were created. Coronary lesions were treated as 
independent observations for the purpose of this analysis. All statistical tests 
were two-sided and a P-value of ,0.05 specified statistical significance. All 
analyses were performed with SPSS software (version 26, SPSS IBM 
Corp., Armonk, NY, USA).

Results
Patient characteristics
Baseline patient characteristics are depicted in Table 1. A total of 122 
patients with CAD (mean age 64 + 7 years, 57% men) underwent 
blinded analysis of CCTA for anatomical and ESS features of coronary 
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atherosclerosis. All patients were symptomatic with prevalent cardiac 
risk factors and medication use. In particular, a high prevalence of 
hypertension (74%) and dyslipidaemia (74%) was observed.

Anatomical characteristics of coronary 
lesions
Anatomical characteristics of the lesions are depicted in Table 2. For the 
analyzed 237 lesions, mean maximal diameter stenosis was 26.3 + 

15.2%, mean percent atheroma volume was 44.9 + 10.3%, and median 
lesion length was 9.4 mm (IQR 5.0–15.5 mm). Most lesions were lo
cated in the LM or LAD (58%), followed by the RCA (22%) and LCx 
(21%). More specifically, the location within the vessel was proximal 
for the vast majority (77%), followed by mid (19%) and distal (3%).

ESS characteristics of coronary lesions
Absolute ESS values
Minimal ESS values as related to each lesion location are visually pre
sented in Figure 1A. Median minimal ESS value was 2.00 Pa (IQR 0.99–                           

3.08 Pa) at the upstream segment, and thereafter increased to 2.26 Pa 
(IQR 1.19–4.31 Pa) at the start segment and 3.97 Pa (IQR 1.93– 
8.92 Pa) at the MLA segment. After the MLA, values decreased to 
1.82 Pa (IQR 1.01–3.96 Pa) at the end segment and increased again 
to 2.13 Pa (IQR 0.97–3.95 Pa) at the downstream segment. 
Similarly, the median maximal ESS value was 3.20 Pa (IQR 2.09– 
4.88 Pa) at the upstream segment, and raised to 3.69 Pa (IQR 2.29– 
6.43 Pa) at the start segment and 5.64 Pa (IQR 3.13–11.21 Pa) at 
the MLA segment (Figure 1B). After this point, values reduced to 
4.04 Pa (IQR 2.38–7.57 Pa) at the end segment and marginally raised 
to 4.46 Pa (IQR 2.49–7.57 Pa) at the downstream segment.

Relative ESS values
Minimal ESS ratios as related to each lesion location are displayed in 
Figure 2A. Median minimal ESS ratio was 1.18 (IQR 0.77–2.04) at the 
start segment and peaked to 1.97 (IQR 1.12–4.70) at the MLA seg
ment. After the MLA, ratios decreased to 1.10 (IQR 0.60–2.50) at the 
end segment and slightly increased to 1.21 (IQR 0.52–2.37) at the 
downstream segment. Likewise, the median maximal ESS ratio was 
1.14 (IQR 0.87–1.55) at the start segment and raised to 1.62 (IQR 
1.05–2.95) at the MLA segment (Figure 2B). After this point, ratios 
reduced to 1.36 (IQR 0.89–2.31) at the end segment and minimally 
raised to 1.39 (IQR 0.92–2.50) at the downstream segment.

Association between ESS and anatomical 
features
On a per-lesion level, minimal and maximal ESS values were positively 
associated with stenosis severity, mainly at the MLA segment (both P 
, 0.001) (Table 3). At the MLA, median minimal ESS values varied 
from 2.80 Pa (IQR 1.66–5.70 Pa) for ,25% stenosis to 11.00 Pa 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Baseline patient characteristics

Patients with ≥1 
coronary lesion 

n=122 
Mean +++++ SD or n (%)

Age, years 64 + 7

Male 70 (57)

BMI, kg/m2 28.1 + 4.7

Symptoms

Typical angina 38 (33)

Atypical angina 57 (49)

Non-cardiac pain 21 (18)

Dyspnoea at exertion 42 (50)

Cardiac risk factors

Hypertension 90 (74)

Dyslipidaemia 90 (74)

Diabetes mellitus 26 (21)

Family history of CAD 54 (44)

Smoking current or former 48 (44)

Cardiac medication

Aspirin 79 (74)

Beta blockers 67 (63)

Calcium channel blockers 20 (19)

Renin–angiotensin system inhibitors 33 (31)

Statins 64 (59)

Laboratory findings

Total cholesterol, mmol/L 4.8 + 1.0

Low-density lipoprotein, mmol/L 2.6 + 0.8

High-density lipoprotein, mmol/L 1.6 + 0.4

Triglycerides, mmol/L 1.4 + 0.8

Creatinine, µmol/L 76.8 + 16.8

BMI, body mass index; CAD, coronary artery disease.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Anatomical characteristics of lesions

Coronary lesions 
n=237 

Mean +++++ SD, median  
(IQR) or n (%)

General

Maximal diameter stenosis, % 26.3 + 15.2

Maximal cross-sectional plaque burden, % 60.0 + 15.9

Percent atheroma volume, % 44.9 + 10.3

Plaque volume, mm3 57.5 (31.3–110.0)

Lesion length, mm 9.4 (5.0–15.5)

Vessel location

LM, LAD 137 (58)

RCA 51 (22)

LCx 49 (21)

Within-vessel location

Proximal 183 (77)

Mid 46 (19)

Distal 8 (3)

LAD, left anterior descending artery; LCx, left circumflex artery; LM, left main 
artery; RCA, right coronary artery.
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(IQR 3.26–28.55 Pa) for ≥50% stenosis. Likewise, median maximal 
ESS values varied from 4.21 Pa (IQR 2.45–8.41 Pa) for ,25% 
stenosis to 14.55 Pa (IQR 4.32–32.34 Pa) for ≥50% stenosis. 
Positive associations were also observed for large versus small percent 
atheroma volume (P , 0.001) and long versus short lesion length (P≤
0.023) at least at the MLA segment (Tables 4 and 5). Comparably, min
imal and maximal ESS ratios were positively associated with stenosis 
severity (P= 0.009 and P= 0.004) and lesion length (P= 0.007 and 
P= 0.012) at the MLA segment (see Supplementary data online, 
Tables S1–3). However, only maximal ESS ratios were positively asso
ciated with percent atheroma volume (P= 0.038) at this location.

Discussion
The present study evaluated the feasibility of evaluating ESS from 
non-invasive CCTA imaging in a large cohort of 122 symptomatic pa
tients with CAD. Our findings revealed the detailed behaviour of 

absolute and relative ESS values across coronary lesions (Graphical 
Abstract).31,32 At the MLA segment, these values—minimal ESS value, 
maximal ESS value, and ESS ratios—were highest and demonstrated 
a positive association with anatomical features of coronary athero
sclerosis, such as stenosis severity and lesion length.

ESS behaviour over coronary lesions
A couple of studies have reported on the varying behaviour of ESS 
across lesions within the coronary artery tree.6,8,12 In the 
Prediction of Progression of Coronary Artery Disease and Clinical 
Outcome using Vascular Profiling of Shear Stress and Wall 
Morphology (PREDICTION) study, 506 acute coronary syndrome 
patients that underwent three-vessel intravascular ultrasound 
(IVUS) at index percutaneous coronary intervention were examined 
for ESS patterns.6 Highest and lowest ESS were most frequently ob
served at the throat (73%) and 6 mm distal to the throat (60%) of 
lesions, respectively. Likewise, Stone et al.8 evaluated 145 non-culprit 

Figure 1 ESS characteristics of coronary lesions. Bar charts depict the median minimal (A) and maximal (B) ESS values with IQR bars (y-axis: in
creased values= increased median ESS in Pa) for 5 locations across the 237 lesions (x-axis; upstream segment, start segment, MLA segment, end 
segment, downstream segment). ESS, endothelial wall shear stress; MLA, minimal luminal area.
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lesions from 97 acute coronary syndrome patients that underwent 
IVUS at index percutaneous coronary intervention. Again, the high
est ESS most commonly occurred at the MLA segment (59%), 
whether or not the non-culprit lesion caused an adverse event after 
median follow-up of 3.4 years (P= 0.78). Moreover, the lowest ESS 
most often occurred 3–9 mm proximal (31%) or distal (24%) to the 
MLA segment, irrespective of future event status (P= 0.87). Using 
non-invasive imaging, Park et al.12 analyzed 80 patients with sus
pected or known CAD that underwent CCTA among other exam
inations. By including 79 lesions, ESS was highest at the MLA segment 
as compared with upstream or downstream segments (P , 0.001). 
Our findings, which provided both (i) absolute ESS values (i.e. min
imal, maximal) and (ii) relative ESS values (i.e. ratios) were overall 
consistent with the abovementioned results and further extended 
this knowledge with the addition of the comprehensive anatomical 
characterization of coronary atherosclerosis in a large contemporary 

cohort of patients. Besides, it should be mentioned that CCTA, in 
comparison to invasive imaging techniques such as IVUS, is able to 
image the complete coronary artery tree and is not limited by severe 
lesions that cannot be passed by a catheter.

ESS and anatomical features of coronary 
atherosclerosis
To date, only limited studies have reported on the associations be
tween ESS and anatomical features of coronary atheroscler
osis.11,21,33 Eshtehardi et al.33 selected 27 stable patients with 
angina or an abnormal non-invasive stress test that were referred 
for virtual histology IVUS. By analyzing 3581 IVUS frames, segments 
with high ESS were shown to be associated with larger cross- 
sectional plaque burden. More specifically, ESS remained relatively 
constant in the smaller quartiles of plaque burden, but significantly 

Figure 2 ESS characteristics of coronary lesions using ratios. Bar charts depict the median minimal (A) and maximal (B) ESS ratios with IQR bars 
(y-axis: increased values= increased median ratio) for 5 locations across the 237 lesions (x-axis; upstream segment, start segment, MLA segment, 
end segment, downstream segment). Minimal and maximal ESS ratios were calculated as: minimal or maximal ESS value at the segment of that spe
cific location/minimal or maximal ESS value at the upstream segment. Hence, these ratios were always 1.0 at the upstream segment (i.e. reference). 
ESS, endothelial wall shear stress; MLA, minimal luminal area.
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increased in the largest quartile of cross-sectional plaque burden. 
Our findings, which utilized percent atheroma volume as a volumet
ric measure of plaque burden, revealed a similar positive association. 
Furthermore, from the Determination of Fractional Flow Reserve by 
Anatomic Computed Tomographic Angiography (DEFACTO) 
study, Han et al.11 studied 100 stable patients with suspected or 
known CAD that were referred for CCTA and subsequent inva
sive coronary angiography. By including 163 lesions, ESS was posi
tively associated with stenosis severity on CCTA (P= 0.002), and 
numerically with percent atheroma volume (P . 0.05) and lesion 

l

ength (P . 0.05). In addition to this, positive associations were ob
served between ESS and stenosis severity on invasive coronary 
angiography (r= 0.315, P , 0.001): 43% stenosis for low ESS, 
48% stenosis for intermediate ESS, and 55% stenosis for high 
ESS. Recently, Kalykakis et al.21 investigated 53 patients with sus
pected CAD that underwent CCTA. By analyzing 92 vessels, ESS 
was positively associated with stenosis severity: mean ESS values 
varied from 3.3 + 3.0 Pa for ,50% stenosis to 15.1 + 30.0 Pa 
for ≥50% stenosis. Similarly, median ESS values varied from 
2.80–4.21 Pa for ,25% stenosis to 11.00–14.55 Pa for ≥50% 
stenosis in the present study.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Per-lesion ESS values according to stenosis severity

,25% stenosis 
n=129 

Median (IQR)

25–50% stenosis 
n=89

≥50% stenosis 
n=19

P-value P-value  
for trend

Minimal values

ESSupstream, Pa 2.01 (0.91–2.99) 1.86 (1.10–3.12) 3.24 (0.93–5.54) 0.293 0.262

ESSstart, Pa 2.24 (1.00–4.14) 2.38 (1.38–4.40) 2.33 (0.72–5.05) 0.523 0.328

ESSMLA, Pa 2.80 (1.66–5.70) 4.94 (2.61–10.61) 11.00 (3.26–28.55) ,0.001 ,0.001

ESSend, Pa 1.67 (1.05–3.01) 1.83 (0.97–5.30) 3.71 (0.94–13.40) 0.094 0.055

ESSdownstream, Pa 2.04 (0.95–3.65) 2.26 (1.04–4.31) 2.78 (1.05–7.12) 0.249 0.101

Maximal values

ESSupstream, Pa 3.08 (1.85–4.56) 3.27 (2.29–4.76) 6.45 (1.98–9.14) 0.068 0.030

ESSstart, Pa 3.62 (1.75–5.81) 3.70 (2.51–6.01) 6.68 (2.40–13.89) 0.162 0.079

ESSMLA, Pa 4.21 (2.45–8.41) 6.59 (3.73–14.32) 14.55 (4.32–32.34) ,0.001 ,0.001

ESSend, Pa 3.41 (2.13–6.23) 4.65 (2.54–9.14) 9.69 (4.58–33.76) ,0.001 ,0.001

ESSdownstream, Pa 3.85 (2.13–7.17) 4.64 (2.54–7.89) 8.47 (4.14–16.58) 0.014 0.009

ESS, endothelial wall shear stress; MLA, minimal luminal area.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4 Per-lesion ESS values according to 
volumetric plaque burden

Small percent 
atheroma 
volume 
n=116 

Median (IQR)

Large percent 
atheroma 
volume 
n=121

P-value

Minimal values

ESSupstream, Pa 1.88 (0.91–2.93) 2.16 (1.07–3.32) 0.160

ESSstart, Pa 1.98 (1.00–3.68) 2.54 (1.43–4.92) 0.028

ESSMLA, Pa 2.94 (1.66–6.16) 4.95 (2.47–12.21) ,0.001

ESSend, Pa 1.60 (0.97–2.79) 2.30 (1.08–5.73) 0.005

ESSdownstream, Pa 1.80 (0.88–2.99) 2.65 (1.08–4.96) 0.001

Maximal values

ESSupstream, Pa 3.05 (1.77–4.54) 3.64 (2.32–6.11) 0.018

ESSstart, Pa 3.09 (1.80–4.91) 4.22 (2.62–7.11) 0.004

ESSMLA, Pa 4.17 (2.45–8.78) 6.94 (3.69–14.96) ,0.001

ESSend, Pa 3.38 (2.13–6.05) 5.40 (2.76–11.03) 0.001

ESSdownstream, Pa 3.79 (2.44–6.47) 4.94 (2.60–9.75) 0.018

ESS, endothelial wall shear stress; MLA, minimal luminal area.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5 Per-lesion ESS values according to lesion 
length

Short lesion 
length 
n=119 

Median (IQR)

Long lesion 
length 
n=118

P-value

Minimal values

ESSupstream, Pa 2.10 (1.13–3.14) 1.86 (0.79–2.97) 0.239

ESSstart, Pa 2.49 (1.36–5.77) 2.09 (0.98–3.24) 0.007

ESSMLA, Pa 3.02 (1.71–8.04) 4.51 (2.26–11.12) 0.022

ESSend, Pa 1.71 (1.13–3.52) 1.88 (0.91–5.26) 0.715

ESSdownstream, Pa 2.14 (1.01–3.64) 2.12 (0.99–5.32) 0.557

Maximal values

ESSupstream, Pa 3.19 (2.14–5.28) 3.24 (2.07–4.66) 0.652

ESSstart, Pa 3.85 (2.34–7.70) 3.54 (1.95–5.16) 0.048

ESSMLA, Pa 4.76 (2.74–10.38) 6.17 (3.67–14.88) 0.023

ESSend, Pa 3.64 (2.20–6.39) 4.96 (2.59–9.62) 0.028

ESSdownstream, Pa 4.22 (2.24–6.59) 4.67 (2.53–10.67) 0.063

ESS, endothelial wall shear stress; MLA, minimal luminal area.
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Clinical implications
At present, the clinical importance of assessing ESS from CCTA im
aging has yet to be elucidated. No evidence exists on normal or 
physiological ESS values from CCTA, and therefore comparisons 
to such references could not be performed. Also, uniform thresholds 
regarding pathological ESS values (i.e. low, intermediate, high) are not 
available in CCTA literature.11,13 For example, the majority of 
thresholds is based on the distribution of ESS values within diverse 
study cohorts. As a consequence, it remains unclear whether or 
not those cut-offs may vary according to differences in baseline 
risk and computational methods. Moreover, as compared with inva
sive imaging techniques, ESS values derived from CCTA appear to be 
higher.6,8 Although our first findings seem promising, future studies 
are warranted to determine the true clinical value of ESS. 
Interestingly, ESS, as a hypothesized marker of vulnerable plaque, 
could potentially refine and further enhance risk assessment in pa
tients with CAD undergoing non-invasive CCTA imaging.

Limitations
The current study is not without limitations. First, our study had an 
observational design with intrinsic limitations such as confounding 
and selection bias. Moreover, vessels were excluded because the 
retrospective assessment of ESS failed, often caused by motion or 
blooming artefacts. Also, vessels with chronic total occlusions 
were excluded because their (micro)vasculature and flow were con
sidered highly complex. However, exclusion rates are not dissimilar 
to prior studies using CCTA.13,21 Second, the assessment of ESS did 
not allow for incorporation of side branches, and therefore these ef
fects were not taken into account. Though, we applied a standar
dized approach that has been employed in several prior 
reports.8,34 Third, plaque composition of coronary atherosclerosis 
was not (yet) available for this analysis. Last, 3 mm axial segments 
were used to co-register anatomical and ESS output and to deter
mine the exact location position of coronary lesions. Despite our 
meticulous methodology including consensus reads by experienced 
readers, we cannot rule out that errors may have occurred during 
this time-consuming process.

Conclusion
It is feasible to evaluate the precise patterns of ESS across coronary 
lesions from routine non-invasive CCTA imaging. In particular, the 
highest absolute and relative ESS values and associations with ana
tomical features of coronary atherosclerosis were observed at the 
MLA segment. ESS assessment from CCTA may further improve 
risk stratification.
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Supplementary data are available at European Heart Journal – 
Cardiovascular Imaging online.
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