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ORIGINAL RESEARCH ARTICLE

Cross-Ancestry Investigation of Venous
Thromboembolism Genomic Predictors
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BACKGROUND: Venous thromboembolism (VTE) is a life-threatening vascular event with environmental and genetic determinants.
Recent VTE genome-wide association studies (GWAS) meta-analyses involved nearly 30000 VTE cases and identified up
to 40 genetic loci associated with VTE risk, including loci not previously suspected to play a role in hemostasis. The aim of
our research was to expand discovery of new genetic loci associated with VTE by using cross-ancestry genomic resources.

METHODS: We present new cross-ancestry meta-analyzed GWAS results involving up to 81669 VTE cases from 30 studies,
with replication of novel loci in independent populations and loci characterization through in silico genomic interrogations.

RESULTS: In our genetic discovery effort that included 55330 participants with VTE (47 822 European, 6320 African, and
1188 Hispanic ancestry), we identified 48 novel associations, of which 34 were replicated after correction for multiple
testing. In our combined discovery-replication analysis (81669 VTE participants) and ancestry-stratified meta-analyses
(European, African, and Hispanic), we identified another 44 novel associations, which are new candidate VTE-associated
loci requiring replication. In total, across all GWAS meta-analyses, we identified 135 independent genomic loci significantly
associated with VTE risk. A genetic risk score of the significantly associated loci in Europeans identified a 6-fold increase
in risk for those in the top 1% of scores compared with those with average scores. We also identified 31 novel transcript
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associations in transcriptome-wide association studies and 8 novel candidate genes with protein quantitative-trait locus
Mendelian randomization analyses. In silico interrogations of hemostasis and hematology traits and a large phenome-
wide association analysis of the 135 GWAS loci provided insights to biological pathways contributing to VTE, with some
loci contributing to VTE through well-characterized coagulation pathways and others providing new data on the role of
hematology traits, particularly platelet function. Many of the replicated loci are outside of known or currently hypothesized

pathways to thrombosis.

CONCLUSIONS: Our cross-ancestry GWAS meta-analyses identified new loci associated with VTE. These findings highlight
new pathways to thrombosis and provide novel molecules that may be useful in the development of improved antithrombosis

treatments.

Key Words: genetics ® genome-wide association study ® meta-analysis ® venous thromboembolism ® venous thrombosis

Clinical Perspective
What Is New?

* Our venous thromboembolism (VTE) genetic analy-
ses revealed 135 loci associated with VTE, of which
92 were novel. Although novel VTE-associated vari-
ants were typically noncoding and displayed small
odds ratios, they point at novel biological pathways
involved in VTE.

* In particular, a large number of novel VTE variants
are shared with platelet traits and located in loci
with known roles in hematopoiesis or megakaryo-
cyte development, which suggests that platelet
generation, turnover, or reactivity may be a feature
of VTE pathogenesis.

What Are the Clinical Implications?

* These results constitute a valuable resource for
thrombosis researchers and for the discovery of
new VTE therapeutic targets.

* A genetic risk score constructed from the Euro-
pean-specific results and applied to the UK Bio-
bank participants of European ancestry explained
~5% of the phenotypic variance, and displayed
a strong predictive ability with an area under the
curve equal to 0.62.

enous thrombosis is a vascular event resulting
Vfrom an imbalance in the regulation of hemostasis,

with subsequent pathologic coagulation and vas-
cular thrombosis formation. Clinically, venous thrombosis
can manifest as deep vein thrombosis, when occurring
in the deep veins primarily of the legs and trunk, or as
a pulmonary embolism, when the thrombus embolizes
and obstructs the pulmonary arteries. Collectively, these
events are known as venous thromboembolism (VTE),
a life-threatening condition with an incidence of 1 to
2 events per 1000 person-years.'® VTE is a complex
disease with both environmental and genetic determi-
nants. Family studies, candidate-gene approaches, and
early genome-wide association studies (GWAS) primar-
ily identified genetic risk factors in loci with well charac-
terized effects on coagulation (F2, F5, F11, FGG, ABO,
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Nonstandard Abbreviations and Acronyms

AA African ancestry
AUC area under the curve
cBC complete blood count
EA European ancestry

GRS genetic risk score
GWAS genome-wide association study
HIS Hispanic ancestry

LD linkage disequilibrium
MAF minor allele frequency
MR Mendelian randomization
OR odds ratio

PAI-1 plasminogen activator inhibitor 1
PheWAS phenome-wide association study
pQTL protein quantitative trait loci

QTL quantitative trait loci

TWAS transcriptome-wide association study
VTE venous thromboembolism

VWF von Willebrand factor

SERPINC1, PROCR, PROC, PROST), supporting current
therapeutic strategies that mainly target the coagulation
cascade.*® In recent years, larger GWAS meta-analyses
revealed unanticipated loci, such as SLC44A2° which
was later characterized as a choline transporter involved
in platelet activation,'® and in the adhesion and activation
of neutrophils.""'? Thus, genetic associations with VTE
in larger and more diverse populations may uncover new
biological pathways and molecular events contributing
to the disease and potentially help identify novel targets
for treatment. Most recently, 2 large efforts involving up
to 30000 VTE cases, led by the INVENT (International
Network Against Venous Thrombosis) consortium'® and
the MVP (Million Veteran Program),'* identified up to 43
genetic loci associated with VTE. To expand discovery of
novel VTE risk loci, we conducted a large, cross-ances-
try GWAS meta-analysis involving >80000 VTE cases,
along with a replication of novel loci and their character-
ization through downstream analyses.

Circulation. 2022;146:1225-1242. DOI: 10.1161/CIRCULATIONAHA.122.059675
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METHODS

The data that support the findings of this study will be available
through dbGaP (database of Genotypes and Phenotypes).

Design and Study Participants

The study design (Figure 1) included a cross-ancestry discovery
meta-analysis of GWAS summary data from 4 consortia/stud-
ies (INVENT-2019, MVR, FinnGen, Estonian Genome Project)
followed by a replication of discovery loci that exceeded the
genome-wide significance threshold (FA<5.0x10%). The replica-
tion population involved 12 studies, limiting data to nonoverlapping
studies with our discovery.'® The combined discovery and replica-
tion data (when available) were then meta-analyzed, and ances-
try-stratified meta-analyses were performed for African-ancestry
(AA), European-ancestry (EA), and Hispanic-ancestry (HIS) par-
ticipants to enable further downstream ancestry-specific analyses,
such as fine mapping. Participants from studies provided written
informed consent for use of their genetic and health information
for analysis, and the studies were individually approved by the
appropriate institutional review boards (Supplemental Material).

Study-Specific GWAS

Each study performed association analyses and provided sum-
mary data for meta-analysis. Genotyping arrays, imputation
panels, and analyses performed by each participating study are
detailed in Table S1. Additional study specifics are available as
Supplemental Material.

Discovery, Replication, and Combined GWAS

Meta-Analyses

All GWAS meta-analyses were conducted with METAL,'® using
a fixed-effects inverse-variance weighted model. All variants
were included and there was no lower minor allele frequency
(MAF) limit beyond study-specific minor allele count. Genome-
wide significant variants (F<5.00x10®) were kept if a concor-
dant effect direction was observed in 2 or more studies and

Venous Thromboembolism GWAS

grouped into the same locus if they were within 1 Mb. We used
the closest gene to the lead variant to refer to each locus, except
at known loci where the causal gene has been previously identi-
fied and is different from the closest gene (such as PROCR or
PROS1). We defined a locus as novel if a genetic association
with VTE has not been previously observed in the region accord-
ing to our review of peer-reviewed published reports.

Discovery Meta-Analysis

For the discovery cross-ancestry GWAS meta-analysis, we
meta-analyzed data from 4 consortia/studies: INVENT-2019,
MVP, FinnGen, and EGP. Participants were EA, AA, and HIS
adult men and women with VTE (either deep vein thrombosis or
pulmonary embolism cases) and controls. At each locus with a
genome-wide significant signal, the lead variant was extracted
and tested in an independent replication meta-analysis.

Replication

The replication GWAS meta-analysis consisted of the remain-
ing 10 participating studies, as well as 2 external collaborators
(GBMI™ and 23andMe'"). Replicating variants from the discov-
ery were defined as those that had concordant effect direction
in the discovery and the replication, and reached a Bonferroni-
corrected P value threshold in the replication population cor-
responding to the number of variants tested for replication with
a 1-sided hypothesis: Pvalue threshold = [(0.05*2)/number of
variants tested for replication] in the replication analysis.

Combined GWAS Meta-Analysis and Stratification
by Ancestry

We performed a combined, cross-ancestry GWAS meta-analysis
of discovery and replication data (when available) using participat-
ing studies with genome-wide summary data. We included variants
with MAF>0.01 to maintain adequate statistical power by reduc-
ing the number of low-powered tests because replication was not
available. We estimated the heterogeneity associated with each
variant using the Cochran Q test and the corresponding I? statis-
tic. We assessed the genomic inflation with the lambda genomic
control.’™® We report on variants exceeding the genome-wide

Discovery Meta-Analysis [55,330 VTE cases] .
[EUR=47,822 ; AFR=6,320 ; HIS=1,188]

\....kead Variants

Replication Meta-Analysis [91,230 VTE cases]
[EUR=87,594 ; AFR=1,588 ; HIS=1,075 ; SAS=273 ; EAS=700]

Replication 10 GWAS Studies [N=26,339]: UKB, BBJ, MGB, BioMe, Upenn, FARIVE,
4 GWAS Studies: INVENT-2019, MVP, FinnGen, EGP MARTHA12, RETROVE, MESA, GAIT2
I 2 Lookup Studies [N=64,891]: 23andMe, GBMI

Combined Meta-Analysis [81,669 VTE cases]
[EUR=71,771 ; AFR=7,482 ; HIS=1,720 ; SAS = 189; EAS = 507]
14 GWAS Studies: INVENT-2019, MVP, FinnGen, EGP, UKB, BBJ, MGB, BioMe, Upenn, FARIVE, MARTHA12, RETROVE, MESA, GAIT2

2

¥ ¥

EUR Meta-Analysis [71,771 VTE cases]

BioMe, Upenn, FARIVE, MARTHA12, RETROVE, MESA, GAIT2

v

AFR Meta-Analysis [7,482 VTE cases]
13 GWAS Studies: INVENT-2019, MVP, FinnGen, EGP, UKB, MGB, || 7 GWAS Studies: INVENT-2019, MVP, UKB, MGB,
BioMe, Upenn, MESA

HIS Meta-Analysis [1,720 VTE cases]
4 GWAS Studies: MVP, MGE, BioMe, MESA

)

Conditional analyses with GCTA-COJO to identify independent associations

Figure 1. Analyses workflow.

Workflow of genetic analyses conducted for this study. AFR indicates African ancestry; BBJ, Biobank Japan; EAS, East Asian ancestry; EUR, European
ancestry; GAIT2, Genetic Analysis of Idiopathic Thrombophilia; GBMI, Global Biobank Meta-Analysis Initiative; HIS, Hispanic ancestry; INVENT-2019,
International Network Against Venous Thrombosis (2019 meta-analysis); MARTHA12, Marseille Thrombosis Association study of 2010-2012; MESA,
Multi-Ethnic Study of Atherosclerosis; MGB, Mass General Brigham Biobank; MVP, Million Veteran Program; RETROVE, Riesgo de Enfermedad
TROmboembodlica VEnosa study; SAS, South Asian ancestry; UKB, UK Biobank; Upenn, Penn Medicine Biobank; and VTE, venous thromboembolism.
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threshold (A<5.00x108) and view these as candidate novel loci
associated with VTE and needing future replication.

We then stratified the analyses by ancestry and limited
strata to EA, AA, and HIS because the remaining ancestries
had too few VTE events to be informative. We estimated het-
erogeneity and genomic inflation; the linkage disequilibrium
(LD) score intercept was computed for EA analysis, using the
recommended Hapmap3 variants.'® We report all additional
ancestry-specific variants exceeding the genome-wide thresh-
old (A<B.00x10%) and view these as ancestry-specific candi-
date loci associated with VTE and needing future replication.

Ancestry-Stratified Analyses: Conditional
Analyses and Fine-Mapping

To estimate the presence of independent signals, we per-
formed conditional analyses with GCTA-COJO?° at each
locus with significant signals in EA, AA, and HIS GWAS meta-
analyses. The TOPMed (Trans-Omics for Precision Medicine)
ancestry-specific sequence data were used as reference
panels.?’ Conditional analyses were performed at each locus,
using a window that encompassed at least the genome-wide
significant variants present in the locus with an additional buf-
fer of £100 kb. A stepwise joint regression model was used
to identify secondary signals with joint P values <5.00x 108
and a LD ”<0.2 with selected variants. In addition, for each
locus and for each ancestry-specific GWAS meta-analysis, we
produced forest plots, Manhattan plots, and regional asso-
ciation plots to visually inspect the local genetic architecture
(Figures S1-59).222% Additional information is found in the
Supplemental Material.

Genetic Risk Score

We constructed an ancestry-specific genetic risk score
(GRS) derived from the genome-wide significant lead vari-
ants observed in the EA meta-analysis and evaluated it for UK
Biobank EA participants. The GRS for AA and HIS were not
constructed because of a lack of availability of a large-scale
dataset with accessible genotype data for other ancestries. The
EA GRS was calculated for each individual as a summation of
log(odds ratio [OR])-weighted genotypes. We then performed
logistic regression to measure the association of the GRS
with VTE status, while correcting for age, sex, and the top 10
genetic principal components. The predictive ability of the score
was estimated by calculating the area under the curve (AUC),
using the pROCR library2* Additional information is available in
the Supplemental Material.

Transcriptome-Wide Association Studies

We performed a transcriptome-wide association study (TWAS)
with the FUSION pipeline? using the EA meta-analysis results.
We first performed a series of single-tissue TWAS using
gene expression from expression quantitative trait loci (eQTL)
datasets relevant to blood and thrombosis disorders: whole
blood, peripheral blood, liver, lung, and spleen.?-2¢ All associa-
tions reaching a Bonferroni-corrected significance threshold
corresponding to the number of genes tested (N=14219,
<3.52x10°) were deemed statistically significant. Additional
details are available in the Supplemental Material.

1228 October 18, 2022
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Protein QTL Mendelian Randomization

Using the combined, cross-ancestry VTE GWAS meta-analysis
results, we performed a proteome Mendelian randomization
(MR) analysis with high-confidence genomic instruments cor-
responding to protein QTL (pQTL) for 1216 circulating plasma
proteins that passed consistency and pleiotropy filters, as pre-
viously described.?® Additional information is available in the
Supplemental Material. To account for multiple testing, asso-
ciations passing the Bonferroni-corrected threshold (N=1256,
<3.98x107%) were considered statistically significant.

Association of VTE Loci With Hemostasis and
Hematology Traits
We conducted a series of in silico investigations involving hemo-
stasis and hematology traits to better characterize the VTE-
associated variants from the GWAS meta-analyses. To better
understand if novel VTE-associated variants operate through
hemostasis pathways, we extracted associations from published
GWAS of 10 hemostatic traits: fibrinogen®; fibrin D-dimer®’;
coagulation factors VI3 VIII,% and XI**; von Willebrand factor
(VWF) ; tissue plasminogen activator®®; PAI-1 (plasminogen-
activator inhibitor 1)%; activated partial thromboplastin time; and
prothrombin time.®” Because each variant association was inves-
tigated in 10 hemostasis traits, we set a P value threshold of
0.005 (0.05/10 traits tested for each lead variant of a locus) to
separate associations of interest from other associations.
Similarly, we extracted associations with complete blood
count (CBC) measures using summary data from nearly
760000 individuals on 15 leukocyte, erythrocyte, and plate-
let traits.3® Given the large sample size and high statistical
power of these analyses, we used a more stringent threshold
of interest that was a Bonferroni correction corresponding to
the number of look-ups performed (P<1.92x107%). We further
performed colocalization analyses with the coloc®® R library for
significant associations, using the discovery, combined, EA, and
AA VTE meta-analyses. Additional information is available in
the Supplemental Material.

Phenome-Wide Association Testing

To explore associations between VTE-associated variants and
other traits agnostically, we performed a phenome-wide asso-
ciation study (PheWAS) using the Medical Research Council
Integrative Epidemiology Unit infrastructure and the associ-
ated jeugwasr R library.® Lead variants identified in our VTE
meta-analyses were queried in 2 sources of GWAS (using the
PheWAS codes “ukb-a” and “ukb-d"), which correspond to 1500
UKB analyses performed by the Neale laboratory (https://gwas.
mrcieu.ac.uk/datasets/) on 337 000 individuals of British ances-
try. We then retrieved associations reaching genome-wide sig-
nificance (F<5.00x 108) for each of the 1500 traits investigated.

RESULTS
Discovery Cross-Ancestry Meta-Analysis and
Replication

The primary cross-ancestry discovery analysis included
55330 participants among 3 ancestry groups with VTE

Circulation. 2022;146:1225-1242. DOI: 10.1161/CIRCULATIONAHA.122.059675
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(47822 EA, 6320 AA, and 1188 HIS) and 1081973
participants without VTE (918195 EA, 118144 AA,
and 45634 HIS). Over the 22 autosomal and X chro-
mosomes, 35.5 million variants were analyzed, and the
observed lambda was 1.06. We identified 10493 vari-
ants reaching genome-wide significance, corresponding
to 85 loci, of which 48 have not been identified in previ-
ous genetic studies of VTE (Table S2).

We tested lead variants from these 85 loci for rep-
lication in 91230 cases and 3322939 controls from
the independent replication data. After meta-analyzing
the results of these 85 tests in the replication popula-
tion, we identified 83 variants with a concordant effect
direction between the discovery and the replication, of
which 68 were replicated at the 1-sided Bonferroni-
corrected significance threshold (£<0.1/83=0.0012;
Table 1, Figure 2, Table S2). The successfully replicated
signals corresponded to 34 known and 34 novel loci.
Among the 34 novel loci that replicated, heterogene-
ity was minimal (heterogeneity £>0.05), ORs ranged
between 0.84 to 0.98 and 1.03 to 1.18, and MAFs were
all 20.021. The majority of variants were gene-centric
(4 exonic, 16 intronic, and 3 in 3 or 5 untranslated
regions or immediately downstream), 3 were linked to
intronic noncoding RNA, and 8 were considered inter-
genic. Among the 17 variants and their associated loci
that failed replication, 14 were novel and remain can-
didate loci that merit additional replication, whereas 3
were known loci.

Combined Cross-Ancestry GWAS Meta-Analysis
and Ancestry-Stratified Results

Combined

The combined, cross-ancestry meta-analysis of the stud-
ies with genome-wide markers included 81 669 individu-
als with VTE and 1426717 individuals without VTE. We
analyzed 19.1 million common variants (MAF>0.01) and
observed a lambda of 1.16, which is slightly elevated
but expected for large-scale meta-analyses of polygenic
traits.*! We identified 16550 variants reaching genome-
wide significance in 111 loci, of which 41 were not ob-
served in the discovery analysis (Table S3, Figure 2). Of
these 41 additional loci, 1 corresponded to a common
variant at the known SERPINC1 locus (rs6695940)
which encodes antithrombin, 4 were previously identi-
fied in the INVENT-2019" or MVP'* meta-analyses at
the PEPD, ABCA5, MPHOSPHS, and ARID4A loci, and
1 was a known pathogenic missense variant located in
SERPINAT (rs28929474, p.Glu366Lys).*? The remain-
ing 35 loci were novel associations and are presented
in Table 2. Among these 35 candidate loci, all had ORs
with ranges of 0.93 to 0.97 and 1.03 to 1.15 and had
a minimum MAF of 0.021. The majority of the variants
were gene-centric (18 intronic and 3 in 3’ untranslated

Circulation. 2022;146:1225-1242. DOI: 10.1161/CIRCULATIONAHA.122.059675
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regions), 3 were intronic in noncoding RNA, and 11 were
considered intergenic.

European Ancestry

The EA meta-analysis, which included 71771 partici-
pants with VTE and 1059740 participants without VTE,
had a lambda of 1.22. Because population stratification
might be introduced by founder effects in Finnish par-
ticipants from FinnGen, we did a sensitivity analysis by
removing this cohort, and observed a similar genomic
factor of 1.19. We also observed an LD score intercept
of 1.07, indicating an inflation mainly caused by polygenic
architecture, and possibly slight residual stratification. Of
the 11.1 million variants analyzed, 16 867 were genome-
wide significant and clustered into 100 regions, of which
7 did not overlap with loci identified in the discovery or
combined meta-analysis (Table 2, Figure 2, Table S4). For
these 7 additional candidate loci, the ORs ranged from
0.94 to 0.97 and 1.04 to 1.07, and the minimum MAF
was 0.058. Conditional analyses were performed at each
of the 100 significant loci and revealed a subset of 21
loci with multiple independent signals (Table Sb) and in-
cluded 3 of the novel loci.

African Ancestry

The AA meta-analysis included 7482 participants with
VTE and 129975 participants without VTE from 7 co-
horts and had alambda of 1.05. Here, 17.1 million variants
were analyzed, of which 752 were genome-wide signifi-
cant and located within 13 loci, of which 2 corresponded
to novel ancestry-specific signals at RBFOX1 (OR=0.56;
MAF=0.04) and COL6A2 (OR=2.16; MAF=0.011; Ta-
ble 2, Figure 2, Table S6). Conditional analyses were per-
formed at each of the 13 significant loci and revealed 3
loci with additional independent signals (Table S7).

Hispanic Ancestry

The HIS meta-analysis included 1720 participants
with VTE and 57 367 participants without VTE from 4
cohorts and had a lambda of 1.02. We analyzed 11.1
million variants, of which 58 were genome-wide sig-
nificant, all located at the ABO locus with rs2519093
as lead variant (OR=1.49, MAF=0.15, P=3.08x1079).
The conditional analysis revealed a secondary signal at
this locus (Table S7).

Comparison of Ancestry-Specific and Cross-
Ancestry Meta-Analysis Results

We then investigated the lead variants from the AA and
EA meta-analyses at the 11 loci (all known) identified
in both analyses. At b loci, none of the AA lead variants
were available in the EA analyses, because of their low
frequency in EA (MAF<0.0006 for all 5 lead variants in
non-Finnish Europeans according to gnomAD*). At the
remaining 6 loci, the lead variants from the AA analysis
were also genome-wide significant in the EA analysis,
and shared similar effect sizes.
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Table 1. Sixty-Eight Lead Variants From the Discovery That Meta-Analysis Successfully Replicated
Locus.
rsID CHR:POS:EA:NEA EAF.Disc | OR.Disc | P.Disc OR.Repl P.Repl Context Locus.Gene
rs9442580 1:9339467:T:C 0.1551 1.06 1.83E-08 1.03 9.70E-05 Intergenic H6PD;SPSB1*
rs3767812 1:118155620:A:G 0.2437 1.05 9.64E-11 1.06 1.03E-20 Intronic TENT5C*
rs6025 1:169519049:T:C 0.0259 3.02 8.40E-811 3.569 9.29E-3103 | Exonic F5 (p.Q534Q)
rs2842700 1:207282149:A:C 0.1092 1.11 5.95E-17 112 1.19E-25 Intronic C4BPA
rs3811444 1:248039451:T:C 0.3324 0.96 5.70E-09 0.95 1.53E-20 Exonic TRIM58* (p.T374M)
rs7600986 2:68636923:A:T 0.2819 1.06 3.54E-12 1.05 9.18E-19 Intergenic PLEK;FBX0O48
rs182293241 2:128029746:A:G 0.0195 1.89 1.83E-27 1.55 0.0001063 Intronic ERCC3
rs6719550 2:188272460:T:C 0.6639 1.04 7.56E-09 1.05 1.93E-17 Intronic CALCRL*
rs715 2:211543055:T:C 0.7022 0.95 3.51E-09 0.95 1.43E-17 UTR3 CPS1*
rs13412535 2:224874874:A:G 0.2047 1.06 3.05E-10 1.08 1.10E-36 Intronic SERPINEZ*
rs13084580 3:39188182:T:C 0.1076 1.09 2.89E-15 1.08 9.10E-22 Exonic CSRNP1 (p.G18S)
rs662281690 | 3:90177913:T:G 0.0024 2.01 6.45E-15 2.40 8.68E-31 Intergenic EPHA3;NONE
rs62282204 3:138584405:T:C 0.5784 0.96 1.87E-08 0.98 6.73E-05 Intergenic PIK3CB;LINCO1391*
rs7613621 3:169191186:A:G 0.4467 1.04 3.21E-09 1.03 5.33E-09 Intronic MECOM*
rs710446 3:186459927:T:C 0.5799 0.96 5.92E-11 0.96 1.41E-16 Exonic KNGT1 (p.15811)
rs6797948 3:194784705:T:C 0.7983 1.06 2.99E-11 1.05 7.59E-16 Intergenic LINCO1968:XXYLT1*
rs6826579 4:83785031:T:C 0.7914 1.05 2.38E-08 1.03 2.44E-07 Intronic SEC31A*
rs17010957 4:86719165:T:C 0.8581 1.06 3.99E-09 1.05 1.00E-11 Intronic ARHGAP24*
rs2066864 4:155525695:A:G 0.2585 1.23 1.98E-172 1.23 1.94E-284 UTR3 FGG
rs3756011 4:187206249:A:C 0.3903 1.23 7.48E-198 1.24 9.26e-398 Intronic F11
rs16867574 5:38708554:T:C 0.6673 0.95 2.78E-11 0.95 5.67E-16 ncRNA_in- OSMR-AS1
tronic
rs38032 5:96321887:T:C 0.6049 1.04 8.74E-09 1.03 1.49E-09 Intronic LNPEP*
rs9268881 6:32431606:A:T 0.5727 0.96 417E-10 0.97 6.73E-09 Intergenic HLA-DRA;HLA-DRB5*
rs145294670 6:34622561:A:AG 0.1385 1.06 6.11E-10 1.04 6.89E-06 Intronic ILRUN*
rs9390460 6:147694334:T:C 0.4957 0.95 2.49E-13 0.95 1.01E-20 Intronic STXBP5
rs67694436 8:6654220:T:C 0.3486 0.96 3.94E-08 0.98 0.0001105 Intergenic AGPAT5; XKR5*
rs2685417 8:27807434:C:G 0.2562 1.06 1.57E-14 1.06 2.84E-25 Intronic SCARAS
rs6993770 8:106581528:A:T 0.7142 1.08 4.48E-25 1.09 3.55E-48 Intronic ZFPM2
rs35208412 9:99194509:A:AT 0.8298 1.09 1.56E-08 1.04 5.54E-06 Intergenic ZNF367;:HABP4*
rs505922 9:136149229:T:C 0.6334 | 0.74 1.11E-425 0.69 1.55E-1043 | Intronic ABO
rs1887091 10:14535113:T:C 0.4936 0.96 4.77E-08 0.98 0.001107 Intergenic MIR1265;FAM107B*
rs17490626 10:71218646:C:G 0.1136 0.80 1.02E-79 0.80 3.23E-160 Intronic TSPAN15
rs16937003 10:80938499:A:G 0.0287 1.15 1.07E-08 1.11 2.11E-11 Intronic ZMIZT*
rs2274224 10:96039597:C:G 0.4414 1.04 2.55E-09 1.03 1.29E-10 Exonic PLCET* (p.R1267P)
rs10886430 10:121010256:A:G 0.8897 0.89 7.34E-25 0.88 2.76E-64 Intronic GRK5
rs11032074 11:32993887:A:G 0.7792 1.05 5.37E-09 1.03 3.24E-06 Intronic QSER1
rs1799963 11:46761055:A:G 0.0136 2.05 2.19E-135 2.09 6.86E-420 | UTR3 F2
rs141687379 11:56666822:A:G 0.9953 0.52 3.56E-31 0.64 1.06E-42 Intronic FADS2B
rs174551 11:61573684:T:C 0.6583 1.07 1.65E-19 1.07 4.90E-35 Intronic FADS1
rs35257264 11:126296816:T:C 0.0212 1.21 2.88E-14 1.18 2.28E-24 Intronic ST3GAL4*
rs1558519 12:6153738:A:G 0.6175 0.93 7.73E-24 0.92 1.42E-55 Intronic VWF
rs7311483 12:9053661:T:C 0.3589 0.96 2.74E-09 0.97 2.73E-07 Intergenic APML1,PHCT*
rs6580981 12:54723028:A:G 0.5081 0.96 3.71E-09 0.95 2.26E-23 Intronic COPZ1*
rs3184504 12:111884608:T:C 0.4520 1.05 1.18E-11 1.04 3.30E-12 Exonic SH2B3* (p.T178T)
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Table 1. Continued

Locus. g
rsID CHR:POS:EA:NEA EAF.Disc | OR.Disc | P.Disc OR.Repl P.Repl Context Locus.Gene =]
rs3211752 13:113787459:A:G 0.5527 0.95 1.69E-12 0.94 3.49E-25 Intronic F10 ,E_
rs57035593 14:92268096:T:C 0.3202 1.07 1.08E-20 1.07 2.64E-38 Intronic TC2N E
rs8013957 14:103140254:T:C 0.3699 1.04 5.33E-09 1.03 2.23E-07 Intronic RCORT* E
rs55707100 15:43820717:T:C 0.0270 0.87 2.90E-08 0.84 2.49E-27 Exonic MAP1A* (p.P2349L) 2
rs59442804 15:60899031:G:GAAAT | 0.6438 0.96 4.67E-08 0.97 5.42E-10 ncRNA_in- RORA-AS 1*

tronic
rs12443808 16:30996871:C:G 0.4668 1.06 3.89E-14 1.03 1.85E-07 UTR5 HSD3B7*
rs56943275 16:81898152:T:G 0.2446 1.08 4.15E-13 1.07 1.20E-26 Intronic PLCGZ2
rs28634651 16:88553198:T:C 0.6191 1.06 9.20E-13 1.04 7.62E-14 Intronic ZFPM1*
rs6503222 17:1977862:A:G 0.6188 1.05 1.59E-12 1.04 5.21E-06 Intronic SMG6
rs7225756 17:6893691:A:G 0.4877 0.96 3.57E-08 0.98 1.20E-06 ncRNA_in- ALOX12-AST*

tronic
rs62054822 17:43927708:A:G 0.8028 0.95 6.39E-09 0.95 711E-19 ncRNA _in- MAPT-AS1*

tronic
rs142140545 | 17:64191540:CTATT:C 0.1169 0.93 2.27E-08 0.95 7.83E-07 Intergenic CEP112,APOH*
rs59277920 19:6077231:A:G 0.8210 0.94 1.47E-09 0.96 8.52E-06 Intronic REX2
rs8110055 19:10739143:A:C 0.2000 0.89 5.36E-44 0.89 6.50E-70 Intronic SLC44A2
rs34783010 19:46180414:T:G 0.2132 0.95 3.25E-09 0.96 4.87E-10 Intronic GIPR*
rs1688264 19:49209560:T:G 0.5341 0.96 2.07E-10 0.96 3.02E-15 downstream FUT2*
rs1654425 19:55538980:T:C 0.1468 0.91 2.65E-18 0.94 4.21E-14 Exonic GP6 (p.5192S)
rs79388863 20:23168500:A:G 0.1521 0.92 1.74E-18 0.92 4.48E-27 Intergenic LINCOO656;NXT1
rs6060288 20:33772243:A:G 0.3417 1.12 8.19E-54 1.13 1.52E-102 Intronic MMP24-AS1-EDEM2
rs4820093 22:33160208:T:C 0.2693 1.05 1.04E-08 1.04 5.39E-14 Intronic SYN3*
rs9611844 22:43115776:C:G 0.1286 1.10 2.09E-21 1.07 7.54E-20 Intronic A4GALT
rs3002416 23:39710195:T:C 0.3638 0.95 2.20E-18 0.93 2.23E-23 Intergenic MIR1587,BCOR
rs6048 23:138633280:A:G 0.7215 1.07 1.09E-25 1.08 1.59E-46 Exonic F9 (p.T156T)
rs2084408 23:154346709:T:G 0.3764 0.94 5.36E-19 0.94 6.27E-09 Intronic BRCC3

Results from the discovery are in presented in columns suffixed with “Disc)” whereas results from the replication are in columns suffixed with “Repl” CHR
indicates chromosome; EA, effect allele; EAF, effect allele frequency; NEA, noneffect allele; OR, odds ratio; P, P value; and POS, position (hg19 build).
*Indicates novel genetic associations.
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Across the discovery, combined, EA, AA, and HIS
meta-analyses, we identified 135 distinct loci (Figure 2).
A summary of each locus, including LD patterns between
lead variants from each meta-analysis as well as inde-
pendent signals and association test results across all
meta-analyses, is available in Table S8.

Genetic Risk Score

Using the 100 lead variants identified in the EA meta-
analysis, we developed a GRS that was applied to in-
dependent UKB EA participants, which included 18516
cases and 92929 controls (Figure 3A and 3B). The
GRS was significantly associated with VTE status (OR,
1.55 [95% CI, 1.563-1.58]), and the phenotypic variance
explained by the score was estimated at 0.051. To as-
sess the predictive ability of the score, we first calcu-
lated the AUC of the base model, which included the age,
sex, and 10 genetic principal components, and obtained

Circulation. 2022;146:1225-1242. DOI: 10.1161/CIRCULATIONAHA.122.059675

AUC__=0516 (95% CI, 0.511-0.520). After adding
the GRS to the model, the AUC reached AUC_,.=0.620
(95% ClI, 0.616-0.625), an increase of A-AUC=0.104
over the base model. Compared with individuals with a
score in the middle stratum (45%-55%), participants
with a GRS in the top 1% had a significantly higher risk
(OR, 6.07 [95% ClI, 5.33-6.91]), whereas individuals in
the bottom 1% had a significant risk reduction (OR, 0.52

[95% Cl, 0.42-0.65]; Figure 3, Table S9).

Gene Prioritization With TWAS and pQTL MR

Transcriptome-Wide Association Study

Across the 6 single-tissue and 3 cross-tissues datasets
analyzed, we identified 166 significant (F<3.52x10°)
and conditionally independent associations with a high
posterior probability of colocalization (>0.75) between
gene expression and VTE risk (Table S10). These asso-
ciations involved 108 genes, of which 77 were mapped
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Figure 2. Genetic loci associated with VTE.

This figure presents the 135 loci significantly associated with VTE identified across all 5 meta-analyses: the discovery (in red), the overall meta-
analysis (in green), and the analysis restricted to individuals of European ancestry (in purple), African ancestry (in orange), and Hispanic ancestry
(in blue). Novel loci are represented with circles and known loci with diamonds. Loci with replication evidence are indicated with a red asterisk.

VTE indicates venous thromboembolism.

to 46 genome-wide significant GWAS loci, leaving an ad-
ditional 31 novel candidate genes that mapped outside
of genome-wide significant GWAS loci (Table S11). At
33 GWAS loci, an associated gene matched the gene
closest to the lead variant, supporting a role as a causal
gene, whereas associated genes at the remaining 13
GWAS loci indicate genes for further investigation.

Protein QTL MR

We performed agnostic MR of 1216 plasma circulating
pQTL using the combined VTE meta-analysis results
and identified 23 proteins with a significant association
(P<3.98x10%, Figure 4, Table S12). For 13 proteins, the
gene coordinates matched a genome-wide significant
GWAS locus and included 5 of the novel GWAS loci.

Association of VTE-Associated Variants With
Hemostasis and Hematology Traits

The association of any lead or conditionally independent
variant at the 135 GWAS loci with hemostasis traits is
presented in Figure BA and Table S13. Across the 10
traits, we observed 83 signals shared with VTE. Among
the 92 novel (replicated and candidate) loci reported
above (see “Discovery Cross-Ancestry Meta-Analysis
and Replication” and “Combined Cross-Ancestry GWAS
Meta-Analysis and Ancestry-Stratified Results”), 18
(19%) had a variant associated with 1 or more of the 10
hemostasis traits (Figure S10A).

Next, we investigated associations of the 135 GWAS
loci with hematology traits, presented in Figure 5B and
Table S14. Across all 15 CBC measures, we identified
375 shared signals, and among the 92 novel loci, we
observed at least 1 association at 55 (59%) novel (repli-
cated and candidate) loci (Figure S10B).

1232 October 18, 2022

Rates of colocalization with VTE signals (colocalized
signals/total shared signals) were similar for hemostatic
factors (48/83=58%, Figure S11A) and hematology
traits (214/375=57%, Figure S11B). At shared loci, we
also examined the effect directions of both VTE risk and
the studied trait levels. For each hemostatic factor, the
observed directions of effect were mostly consistent and
agreed with our current biological knowledge, with the
exception of factor VII, which shared 4 loci with the same
effect direction than VTE, 4 with an opposite direction,
and 1 with 2 independent variants that displayed the
same direction for the first and an opposite direction for
the second. Hematology traits displayed less consistent
directions of effect with VTE across shared loci.

Phenome-Wide Association Studies

We performed a PheWAS of lead and conditionally in-
dependent variants at the 135 significantly associated
loci across 1500 publicly available phenotypes involv-
ing EA UKB participants (Table S15). For each trait, only
genome-wide significant variants were retrieved, and
we restricted our analyses on traits sharing at least 10
loci with VTE (Figure 6, Table S16), which might indi-
cate common biological pathways. Hematology traits, in
particular platelet traits, shared the most loci with VTE
(for example, 33 for platelet count), consistent with our
observations from the larger CBC GWAS (N~750000)
sample (Figure BB). Several traits correspond to height
and weight measurements, as well as enzymes mainly
produced by the liver (such as albumin, sex hormone—
binding globulin, or insulin growth factor-1), and plasma
lipid-related traits (apoA and apoB, high-density lipopro-
tein cholesterol, or triglycerides). Blood pressure (systolic
and diastolic), glycated hemoglobin, calcium, cystatin C,

Circulation. 2022;146:1225-1242. DOI: 10.1161/CIRCULATIONAHA.122.059675
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Table 2. Additional 44 Candidate Novel Loci Identified in the Overall, European, and African Ancestry Meta-Analyses

rsID CHR:POS:EA:NEA ‘ EAF ‘ EFFECT ‘ SE ‘ OR ‘ P value Locus.Context Locus.Gene

Novel loci identified in the overall meta-analysis
rs651176418 | 1:27107263:T:TC 0.9248 0.0759 0.0132 1.08 9.61E-09 UTR3 ARID1A
rs6695572 1:77945635:A:G 0.1938 0.0424 0.0072 1.04 4.28E-09 Intronic AKS
rs3832016 1:109818158:CT:C 0.7627 -0.0449 0.0066 0.96 8.95E-12 UTR3 CELSR2
rs1267881263 | 1:1560496127:CA:C 0.5468 0.0426 0.0076 1.04 2.36E-08 Intergenic FALEC,ADAMTSL4
rs905938 1:1564991389:T:C 0.7448 -0.0346 0.0063 0.97 3.70E-08 Intronic DCST2
rs3557 1:161188893:T:G 0.9182 0.0654 0.0106 1.07 7.70E-10 UTR3 FCER1G
rs143410348 | 1:196809316:T:TAA 0.5434 0.0415 0.0074 1.04 2.44E-08 Intergenic CFHR1,CFHR4
rs78475244 2:65086804:T:C 0.0542 -0.0713 0.0128 0.93 2.52E-08 ncRNA _intronic | LINCO1800
rs78872368 2:198545250:C:G 0.1919 -0.0412 0.0071 0.96 7.27E-09 Intergenic RFTN2;MARS2
rs900399 3:156798732:A:G 0.6205 0.0382 0.0060 1.04 1.46E-10 Intergenic LINC02029;LINCO0880
rs9654093 4:7903763:C:G 0.1504 0.0492 0.0081 1.05 1.03E-09 Intronic AFAP1
rs781656 4:57778645:A:G 0.1963 0.0389 0.0070 1.04 2.26E-08 Intronic REST
rs7730244 5:72957088:T:C 0.5245 -0.0328 0.0057 0.97 1.04E-08 Intronic ARHGEF28
rs147133967 | 5:132426851:G:GTT 0.0810 -0.0659 0.0110 0.94 2.43E-09 Intronic HSPA4
rs214059 6:25536937:T:C 0.4331 0.0357 0.0055 1.04 1.01E-10 Intronic CARMIL 1
rs2394251 6:29943688:G:C 0.7331 -0.0405 0.0063 0.96 1.43E-10 ncRNA_intronic | HCG9
rs1513275 7:28259233:T:C 0.7453 0.0449 0.0070 1.06 1.40E-10 ncRNA_intronic JAZF1-AS1
rs10099512 8:9178821:C:G 0.1105 0.0608 0.0105 1.06 6.98E-09 Intergenic LOC101929128;LOC157273
rs2048528 8:23373680:A:G 0.3089 -0.0347 0.0060 0.97 5.77E-09 Intergenic ENTPD4;SLC25A37
rs2915595 8:30402817:A:G 0.2391 0.0365 0.0065 1.04 2.52E-08 Intronic RBPMS
rs4236786 8:108291878:C:G 0.2492 0.0353 0.0064 1.04 3.93E-08 Intronic ANGPT1
rs1243187 10:21907016:T:C 0.6920 -0.0341 0.0061 0.97 2.53E-08 Intronic MLLT10
rs4272700 10:27881308:A:T 0.2726 0.0395 0.0064 1.04 7.75E-10 Intergenic RAB18;MKX
rs2030291 11:16251251:A:T 0.6077 -0.0325 0.0056 0.97 8.19E-09 Intronic S0X6
rs4354705 11:60088159:C:G 0.3635 0.0315 0.0058 1.08 4.83E-08 Intergenic MS4A4A;MS4AGE
rs2846027 11:114003415:T:C 0.3112 -0.0344 0.0061 0.97 1.42E-08 Intronic ZBTB16
rs7107568 11:130779668:T:C 0.5610 -0.0303 0.0056 0.97 4.71E-08 Intronic SNX19
rs2127869 14:65794352:T:C 0.3350 -0.0340 0.0062 0.97 4.68E-08 Intergenic LINC02324;MIR4708
rs7183672 15:96101018:A:G 0.6432 -0.0358 0.0062 0.96 7.34E-09 Intergenic LINC00924;LOC105369212
rs71376077 16:15738114:C:G 0.9728 0.1408 0.0249 1.15 1.67E-08 Intronic NDE1
rs7197453 16:72079127:C:G 0.3572 0.0315 0.0057 1.08 3.19E-08 Intergenic DHODH;HP
rs77246010 16:75429853:T:C 0.4489 0.0408 0.0069 1.04 4.12E-09 Intronic CFDP1
rs8049403 16:85778651:A:G 0.0214 0.1365 0.0248 1.15 3.91E-08 Intronic C16orf74
rs71138827 17:27833678:A:AGATT | 0.4288 0.0336 0.0058 1.08 5.89E-09 Intronic TAOKT
rs2545774 19:41287674:T:C 0.2528 -0.0378 0.0065 0.96 6.80E-09 Intronic RAB4B

Additional novel loci identified in the European meta-analysis
rs4540639 1:192104320:C:G 0.4675 0.0346 0.0060 1.04 6.88E-09 Intergenic LINCO1680;,RGS18
rs35225200 4:103146888:A:C 0.9190 -0.0645 0.0115 0.94 1.89E-08 Intergenic BANK1,;SLC39A8
rs112367053 | 5:28379046:T:G 0.6662 0.0586 0.0107 1.06 4.07E-08 Intergenic LINCO2103;LSP1P3
rs2754251 6:88385949:A:G 0.0584 0.0715 0.0129 1.07 2.65E-08 Intronic AKIRIN2
rs10763665 10:28771491:C:G 0.5783 -0.0342 0.0062 0.97 3.13E-08 ncRNA_intronic | LINCO2652
rs7122100 11:10732560:A:C 0.2411 0.0410 0.0075 1.04 4.93E-08 Intergenic IRAG1,CTR9
rs1145656 11:73305859:A:C 0.8171 -0.0442 0.0079 1.05 2.00E-08 upstream FAM168A

Additional novel loci identified in the African meta-analysis
rs76668186 16:6686083:A:T 0.9597 -0.5776 0.1056 0.56 4.52E-08 Intronic RBFOXT1
rs114102448 21:47523605:A:G 0.0114 0.9527 0.1725 2.60 4.11E-08 Intronic COL6A2

CHR indicates chromosome; EA, effect allele; EAF, effect allele frequency; NEA, noneffect allele; OR, odds ratio; POS, position (hg19 build); and SE, standard

error of effect.

Circulation. 2022;146:1225-1242. DOI: 10.1161/CIRCULATIONAHA.122.059675

October 18,2022 1233

(—]
=
o
—
==
—
=
m
ow
m
==
=
(]
==




=
]
=
==
L
7]
Ll
==
—l
=
=
=
o=
=]

ARTICLE

€202 ‘TZ Yore |\ uo Aq Bio'sfeuno feye/:dny wouy papeojumoq

Thibord et al

Venous Thromboembolism GWAS

A C 7.0/
0.4 65
> 0.34 6.0
D 5.5+
& 0.24 5.0
= __ 454
0.1 no: 404
~_’3‘5-
0.0 w
2 0 2 4 5 £ 3.0 +
2.5
B 2.0
1.5 T ==
b -
Controls 4 o 104 S
054+ +
0.0
T T T T T T
Cases ome—— — e o e g do o\h Q\ a\o o\ﬂ a\n g\u
P (1/ \((’ k)
\ e\u o\o 0\0 e\n o\o o\u "'
P & o
T T T T T e‘\u
-2 0 2 4 6
GRS (Scaled) GRS percentile category

Figure 3. GRS analysis.

Distribution of the GRS in VTE cases (in green) and controls (in purple) as a density plot (A) and a boxplot (B). C, Presentation of the VTE risk
as ORs and associated 95% Cls (y axis) for different percentiles ranges of the GRS score (x axis) relative to the middle range (45%-55%). GRS
indicates genetic risk score; OR, odds ratio; REF, reference; and VTE, venous thromboembolism.

and C-reactive protein levels were among additional
traits sharing at least 10 loci with VTE. Few traits had
a consistent direction of effect with respect to VTE risk
across shared loci (Figure 6). For example, out of 10
loci shared between bilirubin levels and VTE, 9 (90%)
were associated with an increase of both bilirubin levels
and VTE risk. For albumin levels, glycated hemoglobin,
and systolic blood pressure, an opposite direction of ef-
fect between these traits and VTE risk was observed at
>75% of shared loci.

DISCUSSION

We identified 135 independent genomic loci and 39 ad-
ditional genes from TWAS and pQTL associated with an
increased or decreased risk of VTE. This reflects a sub-
stantial increase in the number of validated and candidate
loci for VTE risk beyond past genetic mapping efforts.'4
Although the novel VTE associated variants were typi-
cally noncoding and displayed small effect sizes, they
may provide valuable insights into genetic loci not previ-
ously suspected to play a role in VTE. Our results high-
light genetic variation across the rare-to-common allele
frequency spectrum in multiple ancestry groups and add
new evidence of biologic predictors of VTE pathogen-
esis for further investigation. The in silico interrogations
provide valuable clues about the putative causal gene at
each locus and additional insights to biological pathways
shared with VTE.

1234  October 18,2022

Biological Insights

Novel Replicated Loci

Our strongest evidence supports 34 loci with novel
VTE associations. Except for TFP/ and SERPINEZ, the
novel genetic loci were not in established VTE patho-
physiology pathways. A subset of these 34 loci (12
loci, 35%) was associated with plasma levels of the
hemostasis traits interrogated, and most (26 loci, 76%)
were associated with a hematology trait. This contrast
should be interpreted with caution because statistical
power for the hemostasis traits was much smaller than
for the hematology traits.

Although most of the novel associations reported had
an OR in the range of 0.90 to 0.98 and 1.03 to 1.10,
we were able to identify and replicate 3 uncommon
variants with larger estimated effects: an intronic vari-
ant (MAF=0.021) in the glycosyltransferase ST3GAL4
(ORdiswvery, OR=1.21, OR | icaio=1.18), which was also
associated with increased VWF and factor VIl levels; an
intronic variant (MAF=0.029) in the transcriptional coact-
ivator ZMIZ 1 (ORdlscover_1 15, ORe ication =1+ 11); and an
exonic variant (MAF—O 027) in MAPTA (p.Pro2349Leu,
ORdiSCOver =0.87, ORre ieation =0.84), which was also associ-
ated with decreased levels of VWF and fibrinogen, and
had a protective effect against VTE.

Variants associated with hemostasis traits pro-
vide clues that the causal gene at these loci might
directly or indirectly perturb the coagulation cascade.
For instance, XXYLT1 encodes a xylosyltransferase

Circulation. 2022;146:1225-1242. DOI: 10.1161/CIRCULATIONAHA.122.059675
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Figure 4. Significant associations of protein quantitative trait loci Mendelian randomization.
Twenty-three proteins significantly associated with venous thromboembolism, of 1216 plasma protein analyzed, using the combined venous

thromboembolism summary statistics. OR indicates odds ratio.

known to interact with coagulation factors** and had a
nearby variant (ORdiscoveW=1.O6, ORrephcat‘on=1.06) also
associated with decreased factor VII levels. Another
example is FUTZ2, a fucosyltransferase gene with a
downstream variant (ORdiscoveW=O.96, ORrephcaﬁon=O.96)
that was also associated with decreased VWF levels.
In addition, some variants were associated with sev-
eral hematology traits, suggesting common genetic
regulatory pathways affecting hematopoiesis, such as
the replicated RCOR1 signal on chromosome 14, and
the candidate gene REST on chromosome 4 identified
in the combined meta-analysis, 2 genes that form the
transcriptional repressor CoREST, known to mediate
hematopoiesis.*

Among the 34 loci, 17 (50%) had TWAS evidence
linking transcript expression with a gene in the locus, and
3 were linked to protein measures. These results may
help to prioritize biologically relevant genes for further
investigations. At the COPZ1 locus, the lead variant was
associated with several CBC measures, including platelet
count and red blood cell count, and the TWAS revealed
an association with NFEZ, known to regulate erythroid
and megakaryocyte maturation.*®

Circulation. 2022;146:1225-1242. DOI: 10.1161/CIRCULATIONAHA.122.059675

Other Replicated and Nonreplicated Loci

Replicated variants included 2 rare variants at the
known EPHA3 (intergenic, MAF=0.0024, OR=2.40) and
FADS2B (intronic, MAF=0.0047, OR=0.64) loci. Among
the 17 failed replications, 7 reached nominal significance
(F<0.05), suggesting that these variants might need a
larger replication sample to be validated. See the Supple-
mental Material for more details.

Novel Candidate Loci

Across the multiple interrogation approaches, we iden-
tified several scores of candidate loci with evidence to
support their association with VTE, although not yet
replicated. This included 35 candidates from the com-
bined GWAS, 7 candidates from the EA GWAS, and
2 candidates from the AA GWAS. Interestingly, the 2
variants (MAF 0.04 and 0.011) in the AA population
were not present in EA participants and were associ-
ated with nearly 2-fold changes in risk of VTE. How-
ever, these 2 variants were detected in only a subset
of studies, which included only 882 AA VTE cases out
of 7482, warranting additional investigations to confirm
these 2 signals in RBFOX1 (an RNA-binding protein)
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Figure 5. VTE genetic loci shared with hemostatic factors and blood traits.

A, Number of VTE loci shared with each of the 10 hemostatic factors investigated. Loci with shared variants that had an opposite effect direction
between the trait and VTE are indicated in orange, whereas those that had the same effect direction are presented in blue. Loci with multiple
independent shared variants and conflictual effect directions are indicated in gray. B, The same analysis with complete blood count traits: platelet
count (PLT), mean platelet volume (MPV), red blood cell count (RBC), mean corpuscular volume (MCV), hematocrit (HCT), mean corpuscular
hemoglobin (MCH), MCH concentration (MCHC), hemoglobin concentration (HGB), red cell distribution width (RDW), white blood cell count
(WBC), monocyte count (MONO), neutrophil count (NEU), eosinophil count (EOS), basophil count (BASO), and lymphocyte count (LYM). aPTT
indicates activated partial thromboplastin time; PT, prothrombin time; and VTE, venous thromboembolism.

and COLBA2 (a collagen-generating gene that con-
tains several domains similar to VWF type A domains).
For the remaining candidate GWAS loci, we saw attri-
butes and associations similar to those with the repli-
cated loci. With additional replication resources in the
future, these candidates may become fully replicated
genetic associations.

In addition, the conditional analyses revealed inde-
pendently associated variants mapping to distinct genes
that may be of interest for further investigations, such
as BRD3 at the ABO locus, a chromatin reader known
to associate with the hematopoietic transcription factor
GATA 14" At the EPHAS3 locus, we also noted that the
lead GWAS variant and the conditionally independent
variant mapped upstream and downstream of PROS2P,
a protein S pseudogene that might be of interest.

At these candidate loci, genes prioritized by the
TWAS may also provide putative genes at these loci. For
example, ZBTB7B, a zinc-finger protein that represses
the expression of extracellular matrix genes such as
fibronectin and collagen,*® was identified by TWAS at
the GWAS candidate locus DCSTZ2. The 31 candidate
genes identified in the TWAS as well as the additional
8 from the pQTL MR analyses, although lacking a sig-
nificant genetic association at these loci, might indicate
relevant genes for future investigations. For instance,
SYK is a critical platelet-activation protein, and tyrosine

1236 October 18, 2022

kinase inhibitors of SYK have been explored for platelet
inhibition.*%%0

Clinical Implications

The GRS provided VTE risk discrimination in our EA pop-
ulation, and those at the extremes of the score distribu-
tion experienced multifold risk differences. We were not
able to integrate or to compare nongenetic risk factors
with the GRS.

Current anticoagulation therapy to prevent or treat
VTE operates through the modulation of proteins
produced in the liver (coumarin-based therapies) or
through direct inhibition of coagulation factors lla
(thrombin) and Xa. Although the safety profile of anti-
coagulation treatments has evolved, bleeding remains
a life-threatening off-target outcome. New approaches
to preventing thrombosis while minimizing bleeds are
in development, including a focus on contact (intrinsic)
pathway proteins factor Xl, factor Xll, prekallikrein, and
high-molecular-weight kininogen.®' Agnostic interro-
gations such as these may lead to discovery of novel
proteins that “break the inexorable link between anti-
thrombotic therapy and bleeding risk."s?

The hematology traits investigations and the Phe WAS
established that CBC measures share a large number of
loci with VTE, and platelet phenotypes in particular are

Circulation. 2022;146:1225-1242. DOI: 10.1161/CIRCULATIONAHA.122.059675
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Figure 6. PheWAS traits sharing at least 10 loci with VTE.

The PheWAS traits sharing at least 10 loci with VTE. Shape and color represent 1 of b categories: complete blood count (CBC) traits, lipid traits,
liver enzyme, height and weight traits, or other (if the trait did not fit in one of the aforementioned categories). The x axis indicates the number of
loci shared between VTE and the PheWAS trait, whereas the y axis indicates the proportion of loci where the direction of effect was the same
between the PheWAS trait and VTE. As a result, traits close to 100% have the same direction of effect as VTE at most shared loci, whereas traits

close to 0% have an opposite direction than VTE at most shared loci. BP
platelet volume; PheWAS, phenome-wide association study; PLT, platelet

the most frequent traits shared with VTE variants: 51
loci were associated with platelet count, mean platelet
volume, plateletcrit, or platelet distribution width in the
PheWAS, and 35 of these loci are novel, which represents
more than a third of all novel genetic associations. Several
loci associated with VTE harbor genes with known roles
in hematopoiesis and megakaryocyte development, or
platelet turnover,*54653-60 or platelet aggregation (Supple-
mental Material).’"%¢"""" Altered platelet generation, turn-
over, or reactivity may be a feature of VTE pathogenesis.
For one, past prospective studies™ and case-control stud-
ies™™ suggest that enlarged platelets, as measured by
mean platelet volume, are associated with VTE and VTE
outcomes. Studies of platelet function measures with
VTE have been less conclusive, which may relate to the
limitations of these studies in assessing comprehensive
and standardized platelet reactivity mechanisms.”""” Col-
lectively, these results suggest that treatments inhibiting
platelet activation such as aspirin might be beneficial in
the prevention of VTE, although previous studies and trials
on aspirin and combinations with anticoagulants offered
mixed results.” Different antiplatelets, such as more tar-
geted thrombin, PAR1 or PAR4 inhibitors, or intracellular
PDE platelet signaling inhibitors like cilostazol, could be
worthwhile for further study in VTE prevention.

Circulation. 2022;146:1225-1242. DOI: 10.1161/CIRCULATIONAHA.122.059675

indicates blood pressure; HbA1c, glycated hemoglobin; MPV, mean
count; and VTE, venous thromboembolism.

Strengths and Limitations

The major strength of this genetic discovery effort is the
large sample size of the populations contributing to the
genetic variation interrogations. We increased statisti-
cal power compared with previous VTE GWAS meta-
analysis efforts and increased our ability to detect new
associations, many of which were replicated, and less
common genetic variations. The cross-ancestry meta-
analyses also increased discovery potential where allele
frequencies were more common in some populations
compared with others.

Several limitations deserve mention. Case ascertain-
ment varied by study, and some studies provided vali-
dated VTE events whereas others relied on information
from electronic health records. Further, some studies
included only hospitalized VTE events and did not cap-
ture events in the outpatient setting. These differences
may have introduced some bias if case ascertainment
and hospitalization status have genetic determinants.
We included all VTE cases and did not stratify by pro-
voked status to increase statistical power. Many of the
studies had not classified the VTE events as provoked
and unprovoked. In addition, although the cross-ancestry
approach provided benefits, the numbers of VTE cases
were not evenly distributed by ancestry, thus reducing
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our ability to detect ancestry-specific VTE variants in
the underrepresented ancestry groups with more mod-
est case counts. Because of the diversity of imputation
panels used by the participating studies, genetic variants
had variable coverage across studies, which weakened
our power to detect associations. Another limitation of
our approach that used summary GWAS statistics from
meta-analyses is the absence of participant-specific
genotype-level information. This required us to rely on
LD information extracted from external datasets, which
can result in variants being missed and LD patterns not
accurately captured. This may have introduced some bias
in analyses that relied on LD, such as the conditional
analyses and the TWAS. Further, in silico work was per-
formed using external datasets such as the hemostatic
factors and hematology traits summary statistics, where
the size (and statistical power) of the datasets varied
greatly. Although different significance thresholds were
used for significance, this may have biased the detection
of significant associations to those traits that had large
sample sizes. In addition, the pOTL MR analyses relied in
some cases on a single genetic instrument, such as the
KLKBT analysis, and these results should be considered
hypothesis-generating.

Conclusions

These cross-ancestry GWAS meta-analyzes identified
34 loci that replicated discovery findings. Some of the
novel loci may contribute to VTE through well-character-
ized coagulation pathways, whereas others provide new
data on the role of hematology traits, particularly platelet
function. Many of the replicated loci are outside of known
or currently hypothesized pathways to thrombosis. We
also provided a list of 44 new candidate loci including
candidates from the combined cross-ancestry GWAS,
from the EA GWAS, from the AA GWAS, and also 39
candidate genes from the TWAS and pQTL MR. These
findings highlight new pathways to thrombosis and pro-
vide novel molecules that may be useful in the develop-
ment of antithrombosis treatment that reduces bleeding
adverse occurrences.
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