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ABSTRACT Clostridioides difficile is the most common cause of antibiotic-associated
gastrointestinal infections. Capillary electrophoresis (CE)-PCR ribotyping is currently the
gold standard for C. difficile typing but lacks the discriminatory power to study transmis-
sion and outbreaks in detail. New molecular methods have the capacity to differentiate
better and provide standardized and interlaboratory exchangeable data. Using a well-
characterized collection of diverse strains (N = 630; 100 unique ribotypes [RTs]), we com-
pared the discriminatory power of core genome multilocus sequence typing (cgMLST)
(SeqSphere and EnteroBase), whole-genome MLST (wgMLST) (EnteroBase), and single-
nucleotide polymorphism (SNP) analysis. A unique cgMLST profile (more than six allele
differences) was observed in 82 of 100 RTs, indicating that cgMLST could distinguish
most, but not all, RTs. Application of cgMLST in two outbreak settings with RT078 and
RT181 (known to have low intra-RT allele differences) showed no distinction between
outbreak and nonoutbreak strains in contrast to wgMLST and SNP analysis. We conclude
that cgMLST has the potential to be an alternative to CE-PCR ribotyping. The method is
reproducible, easy to standardize, and offers higher discrimination. However, adjusted
cutoff thresholds and epidemiological data are necessary to recognize outbreaks of
some specific RTs. We propose to use an allelic threshold of three alleles to identify
outbreaks.

KEYWORDS Clostridioides difficile, whole-genome sequencing, typing methods, core-
genome MLST, whole-genome MLST

C lostridioides difficile is a Gram-positive anaerobic bacterium that is associated with
nosocomial gastrointestinal infection (1, 2). It is estimated that there were almost

500,000 patients with C. difficile infection (CDI) and around 29,000 deaths in the United
States in 2011 (2). Individuals with CDI are an important source of C. difficile transmis-
sion in health care settings (2). Typing of C. difficile is necessary for infection control,
epidemiology, and evaluation of treatment. Several methods are used for typing C. dif-
ficile, including capillary electrophoresis (CE)-PCR ribotyping (3, 4) and multilocus
sequence typing (MLST) (5). CE-PCR ribotyping is currently the gold standard.
However, it does not provide sufficient discriminatory power to distinguish related
strains (6). Furthermore, for CE-PCR ribotyping, standardization, and interlaboratory
comparisons are difficult to establish (7). In contrast, this is relatively simple for
sequence-based methods like MLST, in which sequence types (ST) are assigned based
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on the allele combinations of a limited number of housekeeping genes (5). Previously,
it has been shown that the C. difficile phylogenetic tree, based on MLST, consists of five
major clades. The majority of STs cluster in MLST clade 1. Hypervirulent ribotype (RT)
027 (ST1) belongs to clade 2, whereas hypervirulent RT078 (ST11) belongs to clade 5,
which is divergent from the other clades (5, 8).

In the case of a suspected outbreak, CE-PCR ribotyping can be used in combination
with multilocus variable-number tandem repeat (VNTR) analysis (MLVA) for subtyping
of strains belonging to one PCR RT (9). This combination of methods is usually suffi-
cient to type strains and understand transmission events. However, these methods do
not provide sufficient information about strain characteristics (e.g., possession of viru-
lence and resistance genes) and possible treatment failures (relapse versus reinfection).
The techniques are also less suitable to study transmission over longer time scales, as
tandem repeats are unstable and can come and go. This also limits the use of MLVA to
determine the role of symptomatic and asymptomatic patients in hospital-acquired
CDI (10). Therefore, typing methods with more discriminatory power and preferably
based on better standardized whole-genome sequencing (WGS) are urgently needed.

There are two commonly applied methods to identify genomic variations using
WGS. Single-nucleotide polymorphism (SNP) analysis usually uses a reference genome
and detects SNPs between the reference genome and the studied genome (11). SNP
analysis provides the highest resolution, but it is relatively slow, requires extensive bio-
informatic tools, and is difficult to standardize, and typing nomenclature is missing (10,
12, 13). The second approach is based on gene-by-gene allelic profiling of the core ge-
nome (a set of genes that are conserved across most, if not all genomes studied)
(cgMLST) or whole-genome (wgMLST) (14). cgMLST provides high discriminatory
power, is more rapid than SNP analysis, offers reasonably accurate reproducibility, is
reference independent (12), and could be used as a typing method since the cgMLST
scheme is maintained by a centralized database (15).

Currently there are several cg/wgMLST schemes available for C. difficile, both com-
mercially and publicly. The first commercial platform is SeqSphere1 software (Ridom
GmbH, Germany) comprising a scheme (the cgMLST.org nomenclature server) using
up to 2,147 core genes and 1,357 accessory genes out of 3,756 genes present in strain
630 (15). The second is BioNumerics (bioMérieux, France) with the cgMLST/wgMLST
scheme developed by Applied-Maths, comprising 1,999 core genes and 6,713 acces-
sory genes and several other genes associated with virulence, antimicrobial resistance
and others from different C. difficile strains (16). In addition to these two commercial
platforms, there is a publicly available cg/wgMLST scheme from EnteroBase (University
of Warwick, UK) consisting of 2,556 genes for the cgMLST scheme and up to 13,763
genes for the wgMLST scheme (17). The cgMLST scheme of EnteroBase (EB cgMLST) is
also available through the Center for Genomic Epidemiology (cgMLSTFinder 1.1;
https://cge.cbs.dtu.dk/services/cgMLSTFinder/).

Several studies have been published on the application of cgMLST (12, 15–17).
Most studies show that cgMLST is concordant with CE-PCR ribotyping, but only a re-
stricted number of RTs were analyzed, and outbreaks were not included. Recently,
Seth-Smith et al. (18) showed that cgMLST predicted 36 RTs using nearly 300 well-char-
acterized clinical strains from Switzerland. However, some RT complexes (RT078/126)
had a low number of genetic differences, whereas other RTs (e.g., RT023) were very
diverse (18). An in-depth analysis of backward compatibility between sequence-based
methods and PCR ribotyping has been provided in a recent study (19).

The aim of this study is to assess the concordance between cg/wgMLST and CE-PCR
ribotyping using a collection of 630 C. difficile strains belonging to 100 unique RTs. We
analyzed the performance of CE-PCR ribotyping, cgMLST, wgMLST, and SNP analysis by
using multiple software programs (SeqSphere1 and EnteroBase). A second aim was to
determine the optimal threshold to distinguish clonal strains from nonclonal in an out-
break setting. Importantly, our study shows that a threshold of up to three targets/al-
leles is needed for C. difficile isolates that are highly likely to belong to the same clone.
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MATERIALS ANDMETHODS
Sequence data. The NCBI sequence read archive (SRA) was searched at the start of this study for C.

difficile sequencing runs, and this resulted in 4,845 sequencing runs. Only sequence data generated on
Illumina sequencing platforms and with available RT metadata were selected. A random selection of
overrepresented strains (e.g., RT027 and RT078) was included. This approach resulted in 609 sequence
runs that were analyzed. In addition to downloaded strains from the NCBI database, we also included 21
strains that were recently sequenced at the Leiden University Medical Center (LUMC). This included 15
Greek RT181 outbreak strains that were already sequenced for a previous study (PRJEB36956) (Table S1)
(20) and 6 strains from an outbreak in The Netherlands due to RT078. For sequencing of strains, total
DNA was isolated from cultured bacteria. A few colonies were emulsified in Tris/EDTA (TE) buffer and
heated at 100°C for 10 min according to the protocol of Griffiths et al. (5). Chromosomal DNA was iso-
lated using the QiaAmp blood and tissue kit (Qiagen) according to the instructions of the manufacturer.
DNA was sequenced at Genome Scan B.V. (Leiden, The Netherlands) on an Illumina NovaSeq 6000 after
preparation with the NebNext Ultra II DNA library prep kit for Illumina. This produced on average 3 mil-
lion paired-end reads (read size 150 bp) per sample, with a minimum of 90% reads with a quality of 30
or more.

Ridom SeqSphere+ cgMLST. Ridom SeqSphere1 (version 6.0.2; Ridom GmbH, Münster, Germany)
was run with default settings for quality trimming, de novo assembly, and allele calling on a Microsoft
Windows operating system. Quality trimming occurred at both 59 and 39 ends until an average base
quality of 30 was reached (length of 20 bases and a 120-fold coverage) (14, 15). De novo assembly was
performed using the SKESA assembler version 2.3.0 (21) integrated in SeqSphere1 (22) using default set-
tings for SKESA. SeqSphere1 scanned for the defined genes using BLAST (23) with the criteria described
previously (14, 24). For further analysis, distance matrices, minimum spanning trees, and neighbor join-
ing trees were constructed using the integrated features within SeqSphere1 with the “pairwise ignoring
missing values” option turned on.

EnteroBase cgMLST and wgMLST. cgMLST was performed using cgMLST Finder 1.1, available through
the Center for Genomic Epidemiology (cgMLSTFinder 1.1; https://cge.cbs.dtu.dk/services/cgMLSTFinder/).
Genomic data were processed using automated pipelines inside EnteroBase, as described in detail previously
(25). In short, de novo assembly of Illumina sequence reads was performed using Spades version 3.10 (26). In
order to pass quality control, assemblies were needed to comply with the criteria described previously (17).
BLASTn and UBLASTP were used to align assemblies to alleles. The EnteroBase module MLSType was used
to assess allele numbers and cluster types (25). cgMLST Finder 1.1 provides a distance matrix for analysis.
Distance matrices were used to calculate the mean intra- and interallelic distance between different CE-PCR
RTs. For wgMLST analysis, an ad hoc scheme was used based on the wgMLST scheme from EnteroBase (EB
wgMLST) (17, 27). This ad hoc scheme was integrated in Ridom SeqSphere (15). De novo assembly, allele call-
ing and further analysis were carried out as mentioned previously (under SeqSphere1 cgMLST).

SNP analysis. SNPs were identified as previously described (28) using CSI Phylogeny 1.4 (http://cge
.cbs.dtu.dk/services/CSIPhylogeny/). Default settings were used for the SNP analysis. C. difficile strain 630
(NC_009089) was used as the reference genome for the analysis of intra-RT SNP difference. The reference
strain M120 (RT078) and a nonoutbreak related RT181 strain (obtained from a clinical isolate in 2019 in
Romania) were used as a reference to analyze two CDI outbreaks with RT078 and RT181, respectively. In
short, reads were mapped to the reference sequence using BWA (version 0.7.2) (29). Depth at each posi-
tion was calculated using genomeCoverageBed, which is a component of BEDTools (version 2.16.2) (30).
SNPs were called using mpileup, which is a component of SAMTools (version 0.1.18) (31). Mapping qual-
ity (minimum of 25 reads) and SNP quality (SNPs were filtered out if quality was below 30 or if they were
called within the vicinity of 10 bp of another SNP) were calculated by BWA and SAMTools, respectively.
CSIPhylogeny 1.4 provides a distance matrix for analysis. Distance matrices (based on pairwise compari-
son, missing data were excluded) were used to calculate the mean intra- and inter-RT SNP distance
between different CE-PCR RTs.

Neighbor joining tree. A neighbor joining tree was constructed using integrated features with
“pairwise ignoring missing values” option turned on in SeqSphere cgMLST. This analysis included 100
unique RTs. We selected strains from 75 different CE-PCR RTs of the standardized Leeds-Leiden collec-
tion (4). If not available, a random strain of a RT obtained from the sequencing runs from the SRA was
used.

Mean intra-RT allele difference.Mean intra-RT allele difference and minimum and maximum range
were determined for 19 RTs using distance matrices produced with cgMLST and wgMLST schemes and
SNP analysis. These distance matrices showed the pairwise difference in alleles or in SNPs. From each RT,
3 to 13 strains were included. To prevent inclusion of related strains, e.g., from outbreak reports, we
selected RTs with at least three random strains from different geographic locations and/or from different
collection years.

Mean inter-RT allele difference.Mean inter-RT allele difference and minimum and maximum range
were determined for 31 RTs using distance matrices produced with SeqSphere1 cgMLST scheme. From
each RT, one to three strains were included and compared with all strains (N = 630) included in this
study, excluding the strains of the analyzed RT. To prevent inclusion of related strains, we selected ran-
dom strains from different geographic locations and/or from different collection years.

Data availability. All genome sequence data generated as part of this study were submitted to the
NCBI/ENA under study number PRJEB46469. The SRA accession numbers for the other analyzed
genomes are provided in Table S1.
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RESULTS
Ridom cgMLST can distinguish 82% of CE-PCR RTs. To test the concordance of

cgMLST (SeqSphere1) with CE-PCR ribotyping, we compared cgMLST and CE-PCR ribo-
typing using a selection of sequenced C. difficile strains with known RTs (10). Fig. 1
depicts a neighbor joining tree based on the Ridom SeqSphere1 cgMLST scheme,
including 100 different PCR RTs from all five MLST clades. Most RTs show a unique
allelic profile in cgMLST. However, there are RTs within every MLST clade that show

FIG 1 Neighbor joining tree from 100 unique ribotypes (RTs) based on SeqSphere cgMLST allele difference. Each RT is depicted with “RTn” followed by
“reference” (belonging to the Leeds-Leiden collection) or “clinical” (non-Leeds-Leiden strain). RTs from multilocus sequence typing (MLST) clades 1, 2, 3, 4,
and 5 are colored red, yellow, green, blue, and purple, respectively. RT131 has no designated MLST clade and is shown in white. The distance is given as
the absolute allelic difference.
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low allele difference (six alleles or less) with other RTs, indicating that these RTs have
likely recently evolved and cannot be distinguished with cgMLST using a simple allelic
differences threshold.

When all included strains (n = 630 strains) from 100 unique RTs were analyzed with
SeqSphere1 cgMLST (Table 1), 82 RTs were distinguishable, i.e., the strains within these
RTs differed by more than six alleles from strains within other RTs. Eighteen RTs (18%)
from MLST clades 1, 2, and 5 clustered together with one to three other RTs from the
same clade and had at most six allele differences. In Fig. 2, we show the RTs in each
cluster and how these clusters vary at different thresholds (zero to six allele differences)
to explore whether a lower threshold could distinguish different RTs. When the thresh-
old was lowered from six to zero, the number of different RTs that clustered decreased
from thirteen to two. Even at a threshold of zero allele differences, RT045 and RT127
remained clustered, demonstrating the limitation of short-read sequencing and
cgMLST as only able to capture part of the genetic diversity present.

Intra-RT allele differences vary per RT and per MLST clade. We determined the
mean number of allele differences between strains from the same RT to see whether it
varies by RT and tested if intra-RT allele differences vary between MLST clades. We also
compared the mean intra-RT allele or SNP differences with cgMLST, wgMLST, and SNP
analysis. Mean intra-RT allele difference varied between RTs (Fig. 3A and Table 2). The
method with the smallest scheme (SeqSphere1 cgMLST) showed the lowest intra-RT al-
lele difference average (mean range of 5 to 376 alleles), whereas SNP analysis showed
the highest average (mean range of 67 to 2,563 SNPs). Fig. 3A also shows that the so-
called hypervirulent RT027 (clade 2) had intra-RT allele differences of 8.4 (SeqSphere1

cgMLST), 10.7 (EB cgMLST), 18.1 (EB wgMLST), and 100.7 (SNP). Another frequently found
hypervirulent RT, RT078 (clade 5), showed allele differences of 13.2, 15.5, 29.3, and 139.4,
respectively. The most frequently found RT in Europe, RT014 (clade 1), showed allele dif-
ferences of 148.1, 173, 258.8, and 855.7, respectively. EB wgMLST and SNP analysis
showed similar results as cgMLST but showed much higher average intra-RT allele and
SNP differences. The RT with lowest intra-RT allele difference for clade 1 was RT002 (64
cgMLST alleles and 140 SNPs), and the highest was RT056 (650 alleles and 2,563 SNPs).
The RT with the lowest intra-RT difference from clade 2 was RT181 (11 alleles and 67
SNPs), whereas the highest was RT036 (39 alleles and 120 SNPs). Lastly, RT126 from clade
5 showed the lowest difference (18 allele and 130 SNP differences) and RT127 the high-
est (379 allele and 592 SNP differences). SNP analysis showed the highest resolution and
often more than 2 times more differences in comparison with wgMLST.

To determine the applicability and the extent of background diversity for outbreak
studies of a given clade, including involving a novel RT, we analyzed the observed vari-
ety in allele and SNP difference for clades 1, 2, and 5. The average intraclade allele dif-
ference was calculated by combining the averages per RT within a clade (Fig. 3B).
Clade 1 had the highest average allele differences for SeqSphere1 cgMLST, EB cgMLST,
EB wgMLST, and SNP analysis (114, 136, and 171 allele difference and 685 SNPs, respec-
tively). Followed by clade 5 with 39, 49, and 66 allele differences and 177 SNPs, respec-
tively. Clade 2 had the lowest average intra-RT allele difference (9, 12, and 18 allele dif-
ferences and 100 SNPs, respectively).

Inter-RT allele differences vary by MLST clades.We determined the mean number
of allele differences between strains from different RTs and analyzed with SeqSphere1

cgMLST whether inter-RT allele difference varies by clade. Mean inter-RT allele difference
varied between RTs (Fig. S1A to E). Comparing all MLST clade sequences to RT014 (in
clade 1) showed a mean inter-RT allele difference of 1,787.9 (range, 0 to 2,213 alleles). In
clade 2, the mean inter-RT allele difference comparing to RT027 was 1,890.2 (range, 3 to
2,214). Compared to all MLST clades, RT078 in clade 5 showed a mean inter-RT of 1,781.2
(range, 3 to 2,214 alleles). In contrast, for RTs 023 (clade 3) and 017 (clade 4), there were
higher mean inter-RT allele differences 2,088.3 (range, 450 to 2,193) and 2,124.3 (range,
14 to 2,207 alleles), respectively.

Clade 5 had the lowest mean number of inter-RT allele differences (Fig. S1F),
1,627.2 alleles (range, 0 to 2,014). The first quartile (25% of the data were below this
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TABLE 1 Clustering between PCR RTsa

Threshold
(in alleles)

Studied PCR RT
Matching other PCR RT
strain

CladeRT No. of strainsb RT No. of strainsb

6 020 1/20 076 1/2 1
016 1/1 027 5/23 2

036 1/4
176 4/16

027 3/23 036 2/4 2
10/23 176 13/16
2/23 198 1/2

036 1/4 176 1/16 2
033 2/46 288 2/2 5
045 2/15 078 16/58 5

2/15 126 7/29
066 1/2 078 3/58 5

1/2 126 1/29
078 39/58 126 23/29 5

5 018 1/18 356 1/13 1
016 1/1 027 2/23 2

176 1/16
198 1/2

027 4/23 036 1/4 2
10/23 176 6/16
2/23 198 1/2

036 1/4 176 2/16 2
033 1/46 288 1/2 5
045 2/15 078 7/58 5

2/15 126 4/29
3/15 127 2/17

066 1/2 078 4/58 5
1/2 126 2/29

078 31/58 126 21/29 5
4 016 1/1 027 1/23

027 6/23 036 1/4 2
9/23 176 5/16

033 2/46 288 2/2
045 2/15 078 5/58

2/15 126 4/29
3/15 127 3/17

066 1/2 078 1/58
078 25/58 126 15/29

3 018 1/18 356 3/13 1
027 3/23 036 1/4 2

6/23 176 3/16 2
045 1/15 078 1/58

1/15 126 1/29
3/15 127 3/17

078 18/58 126 13/29
2 001 1/14 055 1/1 1

018 1/18 356 3/13 1
016 1/1 027 1/23
027 3/23 176 2/16
045 2/15 126 2/29

1/15 127 2/17
078 8/58 126 4/29

1 018 1/18 356 6/13 1
045 1/15 127 1/17

0 045 2/15 127 2/17
aThe clustering between PCR ribotypes (RTs) is shown only in one direction; e.g., the comparison between RT016
and RT027 at threshold 6 is shown only in the RT016 row and not again in the RT027 row.
bNumber of strains that cluster with another PCR RT.
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point) of the samples showed 398 allele differences. This meant that the RT in clade 5
were more related to other RTs from clade 5. In contrast, clade 3 showed the highest
inter-RT allele difference of 2,088.3 (range, 289 to 2,195) with a first quartile of 2,070 al-
leles. This indicates that RTs belonging to clade 3 are less related to each other and to
RTs of other clades. When all clades are combined, the mean inter-RT allele difference
was 1,742.1 (range, 0 to 2,215).

WGS-based typing methods may not distinguish outbreak strains from
nonoutbreak strains in RTs with a low intra-RT allele differences. CE-PCR ribo-
typing has a low resolution in comparison with WGS-based typing for outbreak analy-
sis. However, even with the increased resolution of WGS-based typing, it remains
crucial to understand what defines an outbreak. The current proposed threshold for
cgMLST for isolates that are likely to belong to the same clone is six alleles or fewer
(15). To assess this interpretative threshold, we compared cgMLST, wgMLST, and SNP
analysis in two outbreak settings. We selected outbreak strains from MLST clades 2
(RT181) and 5 (RT078) (Fig. 4A and B), since both clades have a low average allele dif-
ferences between strains in contrast to strains from MLST clade 1. A non-outbreak-
related RT181 strain and C. difficile strain M120 (RT078), respectively, were used as
reference strains for the genetic analysis. Outbreak strains were defined as having a
well-established epidemiological link (e.g., nursed in the same ward) combined with at
most 6 allele differences with cgMLST. Control strains belonged to similar CE-PCR RTs
as the outbreaks strains or to other CE-PCR RTs from the same clade. We analyzed the
distance matrices of two clusters containing confirmed outbreaks and nonoutbreak
strains with cgMLST, wgMLST, and SNP analysis.

The first CDI suspected outbreak we analyzed was due to RT078 (clade 5) in a Dutch
general hospital, involving six patients in the gastroenterology ward between October-
December 2018 (Fig. 4A). Three of these cases (outbreak cases in red circles) were epide-
miologically linked by location and onset of disease. The other three cases with RT078
CDI (green circles) were admitted 1 month later. Twelve additional control samples from
clade 5 were added to this collection. These included five Leeds-Leiden reference strains
(RT033, RT045, RT066, RT078, and RT126) (4) and seven other strains (RT045, RT066,
RT126, RT127, and RT078 [N = 3]). Fig. 4A depicts the minimum-spanning tree (based on
SeqSphere1 cgMLST) of the studied isolates. Three clusters (six alleles or less) could be
recognized, each comprising epidemiologically related and unrelated strains. The three
outbreak cases showed a clustering and had 0 allele differences.

A report on the second outbreak has been published recently (20) and therefore is
not described again in detail. This outbreak occurred in a Greek 180-bed rehabilitation

FIG 2 Clustering of different PCR RTs at different thresholds using SeqSphere1 core genome
multilocus sequence typing (cgMLST; zero to six allelic difference). The number of clustering RTs is
shown in blue, and the number of clusters at every threshold is shown in pink; e.g., at three allele
differences, nine different RTs belong to seven clusters.
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clinic involving 15 CDI patients infected with RT181 (clade 2) at the orthopedics and
neurological wards between March and April 2019 (Fig. 4B). All 15 patient isolates
showed a minimal number of allele differences (0 to 2 alleles) to the most closely
related case, with a range across all cases of zero to eight. Seven control samples from
clade 2 were added to this collection, including Leeds-Leiden reference strains of
RT016, RT027, and RT198; one strain of RT036 and RT176; and two strains of RT181. Fig.
4B shows the minimum-spanning tree based on SeqSphere1 cgMLST. Two clusters
could be recognized, each composed of epidemiologically related and unrelated
strains. Cluster 1 contained both confirmed outbreak strains (RT181, N = 15) and one
control strain of RT181. Therefore, the current threshold of 6 alleles or less incom-
pletely separated the outbreak of RT181 from the background diversity.

The strains within each cluster of RT078 or RT181 were either labeled as outbreak
strain or control strain. The distance matrices of both clusters were visualized in
graphs (Fig. 5A and B) with each data point representing a distance in alleles or SNPs
between two strains. We calculated the range of allele or SNP difference of outbreak
(O) strains (range O) and compared it with the range of allele or SNP difference of
nonoutbreak (NO) strains (range NO). The NO range depicts allele or SNP difference
between the control strain and the outbreak strains. The area between the upper
limit of range O and the lower limit of range NO determines the area where adjust-
ment of the threshold is possible, provided that outbreak strains and nonoutbreak

FIG 3 (A) Mean intra-RT allele and single-nucleotide polymorphism (SNP) difference shown for individual RTs from MLST clade 1 (RT001 to RT056), clade 2
(RT027 to RT244), clade 3 (RT023), clade 4 (RT017), and clade 5 (RT033 to RT127). Mean intra-RT allele difference per RT is shown in light green, turquois,
and orange for SeqSphere1 core genome multilocus sequence typing (cgMLST), EnteroBase (EB) cgMLST1, and EB whole-genome multilocus sequence
typing (wgMLST), respectively. Mean intra-RT SNP difference per RT is shown in red. (B) Mean intra-RT allele and SNP difference shown for MLST clade 1,
clade 2, and clade 5. Mean intra-RT allele difference per clade is shown in light green, turquois, and orange for SeqSphere1 cgMLST, EB cgMLST, and EB
wgMLST, respectively. Mean intra-RT SNP difference per clade is shown in red.
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TABLE 2 Several ribotypes with given mean intra-ribotype difference and minimum and maximum range in alleles or single-nucleotide
polymorphisms (SNPs) per whole-genome sequence (WGS) method

Ribotype WGS method Mean Minimum range Maximum range
001 (N = 11) SeqSphere cgMLST 56.7 9 96

EB cgMLST 70.5 11 113
EB wgMLST 130.1 17 226
SNP analysis 251.7 115 445

002 (N = 12) SeqSphere cgMLST 32.3 6 40
EB cgMLST 41.1 9 56
EB wgMLST 63.7 13 162
SNP analysis 139.5 41 196

005 (N = 5) SeqSphere cgMLST 37.8 19 52
EB cgMLST 47.5 23 64
EB wgMLST 110.5 46 135
SNP analysis 184 133 229

014 (N = 13) SeqSphere cgMLST 148.1 4 419
EB cgMLST 173 6 470
EB wgMLST 258.8 13 635
SNP analysis 855.7 68 2,556

015 (N = 8) SeqSphere cgMLST 349.7 14 610
EB cgMLST 416.9 15 708
EB wgMLST 643 26 1,159
SNP analysis 2,456.2 59 4,206

018 (N = 6) SeqSphere cgMLST 69.1 4 124
EB cgMLST 87.7 6 159
EB wgMLST 165.5 62 254
SNP analysis 567.9 146 965

020 (N = 9) SeqSphere cgMLST 111.4 4 461
EB cgMLST 131.2 5 524
EB wgMLST 193.2 6 701
SNP analysis 632.5 23 2,368

056 (N = 3) SeqSphere cgMLST 376 22 554
EB cgMLST 436.3 24 643
EB wgMLST 650.3 43 963
SNP analysis 2,562.7 212 3,780

027 (N = 13) SeqSphere cgMLST 8.4 2 15
EB cgMLST 10.7 3 16
EB wgMLST 18.1 7 28
SNP analysis 100.7 18 208

036 (N = 3) SeqSphere cgMLST 22 10 31
EB cgMLST 28.3 15 37
EB wgMLST 39 20 50
SNP analysis 120 95 148

181 (N = 3) SeqSphere cgMLST 5.3 3 7
EB cgMLST 6.7 4 8
EB wgMLST 11 10 13
SNP analysis 67.3 47 92

244 (N = 3) SeqSphere cgMLST 21.3 3 31
EB cgMLST 24 5 35
EB wgMLST 40.7 8 59
SNP analysis 79.3 56 96

023 (N = 5) SeqSphere cgMLST 108.7 24 199
EB cgMLST 121.3 24 233
EB wgMLST 157.5 41 293
SNP analysis 1,014.7 140 1,980

017 (N = 4) SeqSphere cgMLST 22.3 20 25
EB cgMLST 23.5 21 25
EB wgMLST 63.7 40 87
SNP analysis 129.3 76 172

033 (N = 7) SeqSphere cgMLST 9.9 0 15
EB cgMLST 14.2 2 20
EB wgMLST 21.6 1 40
SNP analysis 78.7 25 146

(Continued on next page)
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strains do not overlap. The larger the area, the better the method can discriminate
between outbreak and nonoutbreak strains. Fig. 5A shows that all WGS-based meth-
ods could distinguish between confirmed outbreak and nonoutbreak RT078 strains,
since there is no overlap between range O and range NO. SNP analysis had the best
discriminatory power, followed by EB wgMLST and cgMLST, which showed the low-
est discriminatory power. Fig. 5B shows that wgMLST and SNP analysis could dis-
criminate between outbreak and nonoutbreak RT181 strains, whereas cgMLST
showed overlap in their ranges. Ranges O and NO are shown in Table S2 for both
clusters and all applied typing methods. No overlap was seen between range O and
range NO from cluster 1 from the RT078 CDI outbreak. For SeqSphere cgMLST and
EB cgMLST, cluster 1 showed a difference of three alleles and two alleles between
range O and range NO, respectively. Furthermore, the difference between range O
and range NO was 6 alleles for wgMLST and 8 SNPs for SNP analysis, indicating that
the threshold could be lowered. However, cluster 1 from the RT181 CDI outbreak
showed overlap between range O and range NO in cgMLST but not in wgMLST and
SNP analysis, suggesting that the threshold could only be adjusted in wgMLST and
SNP analysis.

DISCUSSION

CE-PCR ribotyping is currently the gold standard for typing C. difficile strains. This
method is an indirect way to compare genomes of C. difficile strains since it is based
on the lengths and numbers of ribosomal interspace regions between 16S and 23S
rRNA and not on the sequence of this intergenic space (3). Therefore, hypothetically
the CE-PCR RT banding pattern of two genetically unrelated strains can have an iden-
tical appearance. Likewise, similarity of two RTs does not necessarily predict genetic
relatedness between strains. Our aim was to compare the discriminatory power of
cgMLST (SeqSphere1 and EnteroBase) and wgMLST (EnteroBase) with SNP analysis
for typing of C. difficile. We also touched upon the backward compatibility of WGS-
based methods with CE-PCR ribotyping, but our goal was not to fully study backward
compatibility.

We tested the concordance between SeqSphere1 cgMLST and CE-PCR ribotyping
and found that 82 of 100 different PCR RTs had a unique cgMLST profile using a cutoff
of at most six alleles differences. Certain strains with distinct RTs were indistinguishable
by SeqSphere1 cgMLST, similar to data from Seth-Smith et al. (18), who found
genomes of different RTs (RT078/RT126, RT106/RT500) clustering with maximum of 9
allelic difference. In agreement with these findings, we found that RTs from clades 1
and 5 had the lowest mean inter-RT allele difference and was directly followed by clade
2. Our results are also consistent with data from others (17, 18, 32). Finally, Frentrup et

TABLE 2 (Continued)

Ribotype WGS method Mean Minimum range Maximum range
045 (N = 5) SeqSphere cgMLST 192.2 15 239

EB cgMLST 230.2 20 293
EB wgMLST 337.8 30 425
SNP analysis 384.8 52 499

078 (N = 12) SeqSphere cgMLST 13.2 3 28
EB cgMLST 15.5 5 33
EB wgMLST 29.3 7 56
SNP analysis 139.4 27 358

126 (N = 9) SeqSphere cgMLST 7 0 14
EB cgMLST 12.8 6 23
EB wgMLST 18.3 7 54
SNP analysis 129.7 41 228

127 (N = 5) SeqSphere cgMLST 235.4 17 372
EB cgMLST 288 21 455
EB wgMLST 379.1 30 599
SNP analysis 592.2 143 893
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al. (17), observed clustering of several RTs (e.g., RT001/RT241, RT106/RT500, and
RT078/RT126) from MLST clades 1 and 5, also in agreement with our observations.

The genome clustering of various RTs was reduced, but not eliminated, by decreas-
ing the threshold from 6 to 0 allele difference. The clustering between two strains of
RT045 and two strains of RT127 at a threshold of 0 alleles in SeqSphere1 cgMLST was
verified with EB cgMLST and SNP analysis. With EB cgMLST, one clustering pair of
RT045 and RT127 showed one allele difference, whereas the other remained at zero al-
lele differences. Verification with SNP analysis showed two and seven SNP differences.
This observation shows that cgMLST cannot predict all CE-PCR RTs and instead would
require additional epidemiological information to analyze strains belonging to RT045
and RT127 together.

We showed that the mean inter-RT allele differences per clade were high using
SeqSphere1 cgMLST. This means that the genomes of most RTs differ (by more than
1,700 alleles) from other RTs. However, there are RTs that tend to cluster with related
RTs (e.g., RT014, RT027, and RT078) and have lower inter-RT allele differences. Strains
from clades 3 and 4 have higher mean inter-RT allele differences, indicating that the
RTs within these clades are less related to each other. The inter-RT allele and SNP differ-
ences from EB cgMLST, wgMLST, and SNP analysis differed in scale but followed similar

FIG 4 SeqSphere1 cgMLST analysis with minimum-spanning trees of two suspected CDI outbreaks of
RT078 and RT181. (A) Minimum-spanning tree of RT078 (clade 5) CDI suspected outbreak with six
cases (RT078, shown in red and in green) of which three were confirmed (shown in largest septated
red circle) and added control strains of RTs belonging to clade 5 (RT033, RT045, RT066, RT078, RT126,
and RT127 shown in blue). (B) Minimum-spanning tree of RT181 (clade 2) CDI suspected outbreak
with 15 suspected and 15 confirmed cases (RT181, shown in septated red circles) and added control
strains of RTs belonging to clade 2 (RT016, RT027, RT036, RT176, RT181 and RT198 shown in blue).
The size and septation of the circle in the minimum-spanning trees corresponds to the number of
included strains. The numbers between each circle correspond to the number of different alleles
between the strains. The colored shadowing of circles represents a cluster with at most six allele
differences that are genetically related. One or more strains inside a circle means that these strains
have zero allele differences.
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patterns, reflecting the overall discriminatory power of each approach, i.e., the mean
allele differences between strains from the same RTs with SeqSphere1 cgMLST and EB
cgMLST are lower in comparison with EB wgMLST and SNP analysis.

Based on our observations in two CDI outbreaks, we conclude that cgMLST has less
discriminatory power than wgMLST and SNP analysis in MLST clades with low intra-RT
allele differences. Lower diversity in some strains may reflect recent emergence and
dissemination and/or lower mutation rates, resulting in less diversity and therefore a
lower intra-RT allele difference (33, 34). For outbreaks caused by RTs belonging to
other clades than 2 and 5, the performance of cgMLST is comparable with SNP analysis,
similar to what was found in other studies (15, 35). Based upon the Oxfordshire data
set (33), Frentrup et al. had a similar conclusion regarding cgMLST and SNP analysis
(17). They showed that C. difficile genomes that differ by zero, one, or two alleles gen-
erally also differ by at least two SNPs, using a logistic regression model, and concluded
that cgMLST is equivalent to SNP analysis for identifying transmission chains between
patients. Bletz et al. showed similar results between cgMLST and SNP analysis in
detecting clusters when an outbreak due to ST1 was investigated (15). Therefore, we
propose to apply a lower threshold of three alleles in comparison to the initially pub-
lished threshold of six alleles (15) when using cgMLST in outbreak situations. In the
study by Eyre et al., the evolutionary rate of C. difficile was estimated to be 0.74 SNVs
(95% confidence interval, 0.22 to 1.40) per genome per year (36). They expected zero
to two SNPs to occur when isolates are obtained less than 124 days apart and three
SNPs when isolates were obtained 124 to 364 days apart. However, only vegetative C.
difficile isolates obtained from patients were analyzed. According to Weller and Wu,
sporulation reduces the evolutionary rate of Firmicutes (37). Therefore, we expect that
the evolutionary rate of C. difficile is lower during CDI transmission than during CDI
within a patient, since the spores need time to transmit to another patient and other-
wise lie dormant in the surroundings in a health care facility or in the environment for
a long period. Accordingly, we expect that outbreak strains will generally fall within
zero to two alleles. Nevertheless, we recommend a threshold of three alleles to com-
pensate for any assembly artifacts when less conservative pipelines are used and for
outbreaks that last longer than 124 days (38). Even if we have optimized the threshold

FIG 5 Visualized distance matrices of strain pairs based on cgMLST, wgMLST, and SNP analysis of isolates of cluster 1 as described in Fig. 4. (A) Visualized
distance matrix of strain pairs belonging to cluster 1 of RT078. (B) Visualized distance matrix of strain pairs belonging to cluster 1 of RT181. Allele difference per
pair of strains is shown in light green, turquois, and orange for SeqSphere1 cgMLST, EB cgMLST, and wgMLST, respectively. SNP difference per pair of strains is
shown in red.
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based on our data presented here, by applying this threshold of three alleles, we still
encountered difficulties with interpretation of the RT181 outbreak. Here, we observed
a broad range (0 to 8 SNPs) within the outbreak strains. A possible explanation could
be that there were multiple introductions of different RT181 strains to the hospital or
that SNPs arose on several consecutive transmission events, which is not very unlikely
since the outbreak had a prolonged course and was also affecting other hospitals.
Since RT181 has very recently emerged, limited sequence data are available to assess
the intra-RT allele difference more accurately. Also, this situation demonstrates that
even with an optimized threshold, epidemiological information is always necessary
and helpful to interpret ambiguous typing results.

The main strength of our study is that we compared the performance of several
typing methods, in contrast to previous studies (12, 15–17). We also expanded the
collection of C. difficile strains and tested more than 600 sequenced strains belong-
ing to 100 unique RTs. Our study has also some limitations. The lack of sufficient
available genome sequences from strains belonging to clades 3 and 4 limits the
generalizability of our findings. Although the concordance of EB wgMLST with CE-
PCR ribotyping was not tested, the results can be extrapolated from SeqSphere1

cgMLST, EB cgMLST, and SNP analysis, since the discriminatory power of EB
wgMLST lies between the latter two. We could not verify the correctness of the
strain RTs, as we had only access to the information as deposited by the research-
ers. There are also a few RTs that have similar banding patterns and could be misi-
dentified. The best example is the similarity of RT014 with RT020; they have an
almost identical PCR banding pattern, but they differ substantially from each other
by cgMLST. Though we only studied two outbreaks, we carefully selected the out-
breaks by choosing RTs with low intra-RT allele variation. Finally, we have not
tested long-read sequencing, from which in silico PCR ribotyping can theoretically
also be obtained.

A concern with application of cgMLST is the availability of various cgMLST
schemes and software programs. The centralized databases need resources to main-
tain their databases of sequentially numbered alleles. To tackle the problem of the
need for a centralized database and to rapidly identify related genomes against a
background of thousands of other identified genomes, hash-based cgMLST has been
developed (12). It is based on cgMLST but converts alleles to a fixed unique hash or
short string of letters. Whether traditional cgMLST or hash-based MLST is used, as
Werner et al. proposed, it is favorable that a fixed cgMLST scheme is adopted to
standardize comparisons (35). Furthermore, there are logistical and cost considera-
tions for routine implementation of cgMLST. Reference laboratories are needed with
a good infrastructure to sequence strains on a routine basis while keeping the costs
in mind as well. Cost-wise, WGS-based methods are becoming competitive with the
current gold-standard, CE-PCR ribotyping. In the near future, cgMLST could be used
as the typing method, and when the discriminatory limit of cgMLST is reached (e.g.,
outbreak with strains with low intra-RT allele differences), wgMLST or SNP analysis
could be applied.

In summary, cgMLST has the potential to replace CE-PCR ribotyping for C. difficile.
The method provides similar differentiation of strains, is easy to standardize, is repro-
ducible, and shows a high discriminatory power. Several cgMLST-based typing meth-
ods have emerged with all their specific advantages and disadvantages (12, 15, 17). For
the time being, it remains unclear whether one method will get the preference over
other methods or that every center will use its own method. A consensus group could
be assembled to harmonize these efforts as has been done previously for CE-PCR ribo-
typing (4).

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 2.8 MB.
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