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Abstract

Pulse wave velocity (PWV) assessed by magnetic resonance imaging (MRI) is a 
prognostic marker for cardiovascular events. Prediction modelling could enable 
indirect PWV assessment based on clinical and anthropometric data. Th e aim was to 
calculate estimated-PWV (ePWV) based on clinical and anthropometric measures 
using linear ridge regression as well as a Deep Neural Network (DNN) and to 
determine the cut-off  which provides optimal discriminative performance between 
lower and higher PWV values. In total 2254 participants from the Netherlands 
Epidemiology of Obesity study were included (age 45–65 years, 51% male). Both 
a basic and expanded prediction model were developed. PWV was estimated 
using linear ridge regression and DNN. External validation was performed in 114 
participants (age 30–70 years, 54% female). Performance was compared between 
models and estimation accuracy was evaluated by ROC-curves. A cut-off  for optimal 
discriminative performance was determined using Youden’s index. Th e basic ridge 
regression model provided an adjusted R2 of 0.33 and bias of < 0.001, the expanded 
model did not add predictive performance. Basic and expanded DNN models 
showed similar model performance. Optimal discriminative performance was found 
for PWV < 6.7 m/s. In external validation expanded ridge regression provided the 
best performance of the four models (adjusted R2: 0.29). All models showed good 
discriminative performance for PWV < 6.7  m/s (AUC range 0.81–0.89). ePWV 
showed good discriminative performance with regard to diff erentiating individuals 
with lower PWV values (< 6.7  m/s) from those with higher values, and could 
function as gatekeeper in selecting patients who benefi t from further MRI-based 
PWV assessment.
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Introduction

Cardiovascular disease (CVD) is still the leading cause of death in the world, 
despite the eff orts and expenses that have been put in improving cardiovascular 
care [1, 2]. Th erefore, increasing the accuracy of cardiovascular risk assessment is 
imperative to guide the effi  cacy and effi  ciency of treatment. Pulse wave velocity 
(PWV), a measure of aortic stiff ness, is a risk factor for cardiovascular morbidity 
and mortality and has been added to the most recent ESC hypertension guideline 
for cardiovascular risk assessment [3,4,5]. Carotid-femoral PWV (cf PWV) using 
applanation tonometry and magnetic resonance imaging (MRI) are commonly used 
techniques for PWV assessment. cf PWV is easy to use, however less accurate due to 
the inability to accurately assess aortic length and thereby resulting in a systematic 
overestimation of PWV as compared to MRI-PWV [6]. Additionally, cf PWV 
is unable to assess local aortic PWV and measurements in obese patients can be 
challenging. In contrast, MRI provides the most accurate non-invasive assessment of 
PWV [6]. However, MRI also has several disadvantages, as it is not widely available, 
requires local technical expertise, is relatively expensive and time consuming, which 
limits the application of MRI-based PWV in clinical care. An adequate estimation 
of PWV (ePWV) using an equation based on clinical determinants that are easily 
assessable could reduce the amount of MRI scans needed. As such, ePWV would 
be widely available for cardiovascular risk assessment, which could contribute to the 
implementation of PWV in clinical care.

Traditionally, prediction models were developed using linear regression, however 
potential non-linear associations between cardiovascular risk factors and PWV 
could hamper the predictive performance of linear regression models. Deep neural 
networks (DNN) use a dense network of layers containing multiple neurons that can 
operate linearly as well as non-linearly. DNN simulates a biological neural network 
and in theory should provide improved model performance as compared to linear 
regression in complicated medical prediction modelling, which has been illustrated 
by previous neural network estimation equations that outperformed traditional 
linear regression [7, 8]. To our knowledge, a DNN-based prediction model for MRI-
based PWV has not yet been reported in literature. Several determinants such as 
age, sex, smoking, obesity, diabetes, hypertension and dyslipidaemia are known to 
infl uence PWV and would be relevant determinants for both linear and DNN models 
to estimate PWV [9, 10]. High PWV values are likely more diffi  cult to accurately 
predict, as the interplay of the diff erent risk factors becomes more complex. We 
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postulate that lower PWV values can be accurately predicted by both linear and 
DNN based models, but that higher PWV values may still require MRI for accurate 
assessment. Determining a cut-off  that can discriminate reliably between lower and 
higher values could provide a threshold at which point MRI assessment is needed. 
Our objective was therefore to develop both a linear and DNN-based equation to 
estimate MRI-based PWV (ePWV), and to determine the cut-off  which provides 
optimal discriminative performance between lower and higher PWV values.

Methods

Development and internal validation sample

Th e present study is a cross-sectional analysis of the baseline measurements in the 
Netherlands Epidemiology of Obesity (NEO) study (see htt ps://www.lumc.nl/org/
neo-studie/ for more information); a population-based, prospective cohort study in 
6671 individuals aged 45–65 years [11]. Men and women living in the greater area 
of Leiden (the Netherlands) were invited to participate in the study if they were aged 
between 45 and 65 years and had a self-reported body mass index (BMI) of ≥ 27 kg/
m2. In addition, all inhabitants from one municipality (Leiderdorp) were invited to 
participate irrespective of their BMI, allowing for a reference distribution of BMI 
(n = 1671). Participants completed general questionnaires on demographic, lifestyle 
and clinical information. At the baseline visit, all participants underwent an extensive 
physical examination including anthropometry, blood pressure measurements and 
blood samples. Approximately 35% of the participants were randomly selected for 
abdominal MRI including PWV (except those with potential contraindications for 
MRI). We aimed to develop a prediction model that applies to a population without 
known CVD, as this population will benefi t the most from accurate cardiovascular 
risk assessment. Th erefore, participants with overt CVD (myocardial infarction, 
angina, congestive heart failure, stroke, or peripheral vascular disease) were excluded. 
Th e Medical Ethical Committ ee of the Leiden University Medical Center (LUMC) 
approved the design of the study and all participants gave their writt en informed 
consent.

External validation sample

Th e participants of the  MAGNA VICTORIA study were used for the external 
validation, the study population and design have been previously described [12]. 
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Th is is a prospective double blind clinical trial aimed at evaluating eff ects of liraglutide 
on cardiovascular end-points assessed using cardiac MRI, including PWV. For the 
external validation we used the baseline measurements including anthropometric 
measures, blood pressure and PWV assessed using MRI.

Magnetic resonance imaging

In the development cohort, MRI was performed on a 1.5 Tesla scanner (Philips 
Medical Systems, Best, the Netherlands) [11,  13]. In the external validation 
cohort, participants were scanned on a 3 Tesla scanner (Ingenia, Philips, Best, 
Th e Netherlands) [12]. Retrospective ECG-gated gradient-echo sequence with 
velocity encoding was performed during free breathing to assess aortic fl ow. Imaging 
parameters of development sample: fi eld-of-view 300 mm, rectangular fi eld-of-view 
percentage 90%, echo time 2.8 ms, repetition time 4.8 ms, fl ip angle 20°, acquired 
voxel size 2.34 × 2.34 × 8.00 mm, velocity encoding 200 cm/s. Imaging parameters 
of external validation sample: fi eld-of-view 350  mm, rectangular fi eld-of-view 
percentage 80%, echo time 2.5 ms, repetition time 4.4 ms, fl ip angle 20°, acquired 
voxel size 2.8 × 2.8 × 8.00  mm, velocity encoding 200  cm/s. Maximum velocity–
time curves provided the arrival time of the systolic pressure wave. Th e foot of the 
systolic wave front was detected automatically using in-house developed soft ware, 
by assessing the intersection point of the horizontal diastolic fl ow and the upslope of 
the systolic wave front, modelled by a linear regression along the upslope from the 
fl ow values between 20 to 80% of the range. Th rough-plane fl ow measurements were 
performed at the level of the pulmonary trunk perpendicular to the ascending aorta 
and just above the bifurcation of the abdominal aorta. For pathlength assessment, 
a gradient-echo multi-slice (8 slices) oblique-sagitt al scout image was acquired 
to capture the entire aorta (fi eld-of-view 225 × 225 × 40  mm, echo time 1.85  ms, 
repetition time 3.70  ms, fl ip angle 55°, acquired voxel size 1.8 × 1.8 × 5.0  mm). 
Th e aortic path length between the measurement sites was measured using MASS 
soft ware (Medis, Leiden, Th e Netherlands). Aortic path length divided by transit 
time between arrival of the systolic wave front at these sites was used to calculate 
PWV in m/s.

Statistical analysis

We performed a complete case analysis on all participants who had available PWV 
measurements. To optimise the potential applicability of our model we developed 2 
models, a basic model with few predictors which is easier to use in clinical practice 
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and a more extensive model which is possibly more accurate. Th e pre-specifi ed 
variables were selected based on literature, clinical relevance and anticipated 
availability in most clinical sett ings. We developed a basic model to estimate PWV 
based on few predictors (age, sex, height, weight, heart rate, systolic and diastolic 
blood pressure), and an expanded model requiring HbA1c, total cholesterol, use of 
antihypertensive (beta blockers, alpha blockers, calcium-channel blockers, ACE-
inhibitors/ AT2-antagonist, vasodilators or diuretics), antidiabetic or cholesterol 
lowering medication and smoking status including pack years in addition to the seven 
basic parameters. Both linear regression and DNN models were used to develop the 
basic and expanded equations (Fig. 1). Model performances were assessed using the 
adjusted R2, bias, mean absolute error (MAE), root mean squared error (RMSE) 
and Bland–Altman plots.

Linear model

For the linear regression models a multivariable ridge regression was performed. 
Th e average tuning parameter that minimized the mean squared error (MSE) in 10 
repeats of tenfold cross-validation was used. Internal validation was performed using 
bootstrapping with 150 repetitions, in which all modelling steps were repeated, from 
which optimism-corrected performance parameters were calculated [14].

Figure 1 Study overview: le�  panel: PWV measurement by MRI; middle panel: illustration 
of prediction model development using deep neural networks and linear ridge regression; 
right panel: illustration of ePWV model performance evaluation in the external validation 
dataset.
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Deep Neural Network

Th e Keras package for R was used for DNN model development. First, 90% of the 
male and female participants were randomly selected to form the training sample, 
the remaining 10% formed the internal validation sample. Second, data pre-
processing was performed where the 7 predictors of the basic and 14 predictors of 
the expanded model formed the model input. MRI-PWV was coded as the training 
target. A sequential model with several hidden layers was used to develop a neural 
network. Additional layers with a dropout function were added to the model to test 
whether this would result in improved internal validation performance through a 
reduction of overfi tt ing [15]. Th e input layers consisted of the 7 and 14 predictors 
of the basic and expanded model. Th e single output layer provided the estimated 
PWV. Each hidden layer used an activation function that could be activated in 
diff erent ways, which function to use was determined in the training process. Th e 
mean squared error (MSE) was used as the loss function for the learning algorithm. 
Model training and tuning was based on the shape of the learning curve, adjusted R2, 
RMSE and MAE. Tuning of the validation split, epochs and batch size, activation 
functions, amount of hidden layers and neurons, were performed to obtain the 
optimal adjusted R2 and minimal RMSE and MAE.

Cut-o� 

We determined the cut-off  that provided optimal discriminative performance 
between lower and higher PWV values in the development data. To determine the 
optimal cut-off  we used Youden’s Index, which is based on specifi city and sensitivity 
of the prediction model to diff erentiate between values above and below a specifi c 
cut-off  [16]. Th e dataset was dichotomised into values above and below cut-off s 
across the PWV range, the cut-off  that provided the highest Youden Index was used.

External validation

Th e equations derived by ridge regression and DNN were applied in the external 
validation sample. Receiver-operating characteristics (ROC) curves were computed 
for measured-PWV categorized into low and high. Th e area under the ROC (AUC), 
specifi city, sensitivity and accuracy (percentage of agreement between ePWV and 
measured-PWV) were calculated to test how oft en ePWV falls in the same category 
as the measured-PWV. Th e AUC’s were compared using DeLong’s test. Diff erences 
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in means between models were tested using a paired t-test. We predefi ned an AUC 
of > 0.7 as acceptable and > 0.8 as excellent [17]. Development and analysis of 
ePWV models were performed using R version 3.6.1.

Results

Characteristics of the development sample and external validation sample are 
shown in Table 1. From the 2484 participants of the development sample who had 
available MRI-PWV data, 2254 participants free from CVD without missing data 
were selected (Fig.  2, age 45–65  years, 51% male, mean PWV 6.63  ±  1.27  m/s). 
From the 131 participants of the external validation sample, 114 participants free 
from CVD without missing data were selected (age 30–70 years, 54% female, mean 
PWV 7.71 ± 1.88 m/s).

DNN model training

Th e fi nished basic DNN model was constructed by three hidden layers containing 
8, 8 and 4 neurons respectively. Th e fi nal expanded DNN model was constructed 

Figure 2 Flowchart for sample selection. Abbreviations: CVD = cardiovascular 
disease; PWV = pulse wave velocity



75

Table 1. Characteristics of the study populations

Development/ internal 
validation sample

External validation sample

Men

n=1170

Women

n=1084

Men

n=50

Women

n=64
Characteristics
Age (years) 55.8 ± 6.1 55.5 ± 5.8 56.8 ± 9.0 53.3 ± 9.1
Length (m) 1.81 ± 0.07 1.66 ± 0.06 1.77 ± 0.07 1.63 ± 0.07
Weight (kg) 95.8 ± 12.7 81.5 ± 14.3 86.9 ± 15.8 73.3 ± 14.6
BMI (kg/m²) 29.3 ± 3.4 29.4 ± 4.9 27.6 ± 4.2 27.7 ± 5.5
BSA (m²) 2.19 ± 0.17 1.93 ± 0.19 2.06 ± 0.21 1.81 ± 0.19
Total body fat (%) 28.4 ± 5.6 41.3 ± 6.0 26.0 ± 5.2 39.4 ± 7.4
Systolic blood pressure (mmHg) 136.7 ± 15.3 128.4 ± 17.3 138.3 ± 14.8 132.9 ± 21.8
Diastolic blood pressure (mmHg) 86.3 ± 10.1 83.7 ± 10.3 87.8 ± 9.6 80.5 ± 9.9
Heart rate (beats/min) 67.7 ± 10.9 70.7 ± 10.6 69.7 ± 11.3 72.8 ± 13.0
Pulse wave velocity (m/s) 6.6 ± 1.2 6.7 ± 1.3 8.2 ± 1.8 7.4 ± 1.9
Smoking (%)
- Never 413 (35.3) 432 (39.9) 27 (54.0) 44 (68.8)
- Former 558 (47.7) 533 (49.2) 5 (10.0) 8 (12.5)
- Current 199 (17.0) 119 (11.0) 18 (36.0) 12 (18.8)
Pack years 11.3 ± 16.0 8.6 ± 13.3 5.0 ± 10.6 3.9 ± 9.3
Glucose lowering medication (%)
- No 1113 (95.1) 1052 (97.0) 21 (42.0) 30 (46.9)
- Oral medication 44 (3.8) 27 (2.5) 13 (26.0) 9 (14.1)
- Insulin 4 (0.3) 1 (0.1) 0 (0) 0 (0)
- Oral medication and insulin 9 (0.8) 4 (0.4) 16 (32.0) 25 (39.1)
Lipid lowering medication (%) 169 (14.4) 91 (8.4) 25 (50.0) 22 (34.4)
Medication for hypertension (%) 301 (25.7) 277 (25.6) 21 (42.0) 22 (34.4)
Total cholesterol (mmol/L) 5.64 ± 1.05 5.85 ± 1.09 5.09 ± 1.23 5.02 ± 1.05
Triglycerides (mmol/L) 1.63 ± 1.03 1.27 ± 0.74 1.59 ± 1.47 1.46 ± 0.94
HDL (mmol/L) 1.26 ± 0.32 1.62 ± 0.42 1.37 ± 0.37 1.57 ± 0.48
LDL (mmol/L) 3.63 ± 0.96 3.65 ± 1.01 2.95 ± 1.12 2.78 ± 0.90
Glucose (mmol/L) 5.78 ± 1.16 5.53 ± 0.89 6.84 ± 2.19 6.52 ± 2.22
HbA1c (%) 5.45 ± 0.60 5.40 ± 0.42 7.07 ± 1.59 6.85 ± 1.55
Creatinine (umol/L) 86.1 ± 14.2 69.5 ± 10.6 84.1 ± 15.6 61.2 ± 9.2

Data are shown as n (%) or mean ± SD. Abbreviations: BMI: Body Mass Index; BSA: body surface area; 
HDL: high-density lipoprotein; LDL: low-density lipoprotein.
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by 2 hidden layers containing 15 and 8 neurons respectively. Addition of a dropout 
function with various dropout rates was tested, but did not result in improved model 
performance in internal validation and was therefore not used. Th e Rectifi ed Linear 
Unit (ReLu) activation function was used for all layers in both models. Th e used 
learning rate was “optimizer_rmsprop (lr = 0.001)”. Training of the model revealed 
that epochs = 100, batch size = 16, and validation split = 0.1, resulted in the optimal 
model.

DNN and Ridge regression model development and internal validation

Development and internal validation model performance parameters are discussed 
in the supplemental material and can be found in supplemental Table 1. Estimation 
of PWV using the basic and expanded DNN model can be performed at htt ps://
epwv.shinyapps.io/webpage/. Th e generated equations of the Ridge regression 
models are presented in Table 2.

Based on the Youden index, the optimal cut-off  to discriminate between low versus 
high PWV was found to be 6.7 m/s for both linear and DNN models.

Model performance in the external validation sample

Performance of the four models in the external validation dataset are shown in Table 
3. Th e expanded ridge regression model provided the best performance measures 

Table 2. Regression equations for the ePWV

Regression model Equation

Basic (0.704*height) + (0.282*sex) + (0.088*age) + (0.017*heart 
rate) + (0.015*systolic BP) + (0.015*diastolic BP) – 
(0.002*weight) – 3.853

Expanded (0.669*height) + (0.275*sex) + (0.146*glucose 
lowering medication) + (0.085*age) + (0.072*HbA1c) 
– (0.068*medication for hypertension) + (0.052*lipid 
lowering medication) – (0.031*smoking) + 
(0.016*diastolic BP) + (0.016*heart rate) + (0.014*systolic 
BP) – (0.003*weight) + (0.001*total cholesterol) + 
(0.001*pack years) - 3.896

Abbreviations: BP: blood pressure.
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in the external validation sample with an adjusted R2 of 0.29. As is illustrated in 
the Bland–Altman plots in Fig. 3, lower PWV values showed good agreement, 
whereas predictions of higher PWV values were less accurate with a systematic 
underestimation of the measured-PWV. Th e AUC, sensitivity, specifi city and 
accuracy of the four models estimating PWV < 6.7 m/s, ≥ 6.7 m/s are presented in 
Table 4. Because of limited sample size of the external validation sample, this was 
not used to calculate prediction parameters. Discriminating ability of ePWV for 
values < 6.7 versus ≥ 6.7 m/s had AUC values ranging from 0.81–0.89 with high 
accuracy (0.84–0.88) for both basic and expanded models in ridge as well as DNN-
based models. Th e AUC of the expanded ridge regression model was lower than the 
basic model (p = 0.03). No other diff erences were found in the comparison of ridge 
and DNN models. A suggestion for cardiovascular risk management using ePWV 
and MRI-PWV is provided in Fig. 4.

Table 3. External validation of the regression models and DNN models 

Linear ridge regression based models
Adjusted R2 RMSE (m/s) MAE (m/s) Bias (m/s)

Basic model 0.20 1.62 1.14 0.80

Expanded model 0.29 1.47 1.07 0.42
DNN based models

Adjusted R2 RMSE (m/s) MAE (m/s) Bias (m/s)
Basic model 0.17 1.65 1.17 0.87
Expanded model 0.22 1.60 1.13 0.64

Abbreviations: DNN: deep neural network; MAE: mean absolute error; RMSE: 
root mean sum of squared errors.

4
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Figure 3. Bland-Altman plots of ePWV versus measured-PWV. A: basic ePWV ridge 
regression model. B: expanded ePWV ridge regression model. C: basic ePWV DNN 
model. D: expanded ePWV DNN model.
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Figure 4. A suggestion for cardiovascular risk management using ePWV and MRI-
PWV. Abbreviations: BP = blood pressure; CVD = cardiovascular disease; ePWV = 
estimated pulse wave velocity; mPWV = measured pulse wave velocity
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Discussion

In this analysis of 2254 participants of the  NEO study, we developed ridge 
regression and DNN based prediction models to estimate MRI-assessed PWV using 
cardiovascular risk factors and anthropometric measures. External validation was 
performed in 114 participants of the  MAGNA VICTORIA study. All ePWV models 
provided good discriminative performance with regard to diff erentiating individuals 
with lower PWV (< 6.7 m/s) from those with higher PWV values. ePWV combined 
with measured MRI-PWV could reduce the amount of MRI scans needed, while 
increasing the availability of accurate cardiovascular risk assessment. To the best of 
our knowledge, this is the fi rst reported MRI-based ePWV model.

Basic and expanded ePWV models

Prediction modelling in vascular medicine allows for early, accessible and aff ordable 
estimation of cardiovascular risk beyond traditional risk factors. A previous ePWV 
model has been developed based solely on blood pressure and age to predict the 
cf PWV [10]. Th is model showed similar predictive performance as compared to 
our model including limited prediction of high PWV values (R2 range 0.27–0.45) 
[10, 18]. However, a post-hoc analysis of the SPRINT study showed that estimated 
cf PWV predicts outcome beyond the Framingham Risk Score and found bett er 
survival in participants whose estimated cf PWV responded to antihypertensive 
treatment independent of systolic blood pressure [19]. Albeit these fi ndings may 
suggest a role for markers of aortic stiff ness as eff ective treatment targets in patients 
with hypertension, the systemic underestimation of high PWV values highlights 
that ePWV should be used with caution in clinical practice and could be particularly 
useful as a gatekeeper for additional testing.

Our basic and expanded models that estimate MRI-based PWV showed similar 
performance as the previous model developed to estimate cf PWV [10]. As was 
also shown in the previous study, accurate estimation was particularly diffi  cult 
for the high measured-PWV range. Higher PWV values may be more diffi  cult to 
predict due to the more complex interplay of diff erent risk factors, as is illustrated 
by the increased variability of PWV with age irrespective of blood pressure 
[20]. Nonetheless, high predictive performance should not be the only focus in 
assessment of clinical prediction models. A good clinical example is the estimated 
glomerular fi ltration rate (eGFR), which has taken up a central role in estimating 
kidney function despite the suboptimal predictive performance of eGFR models 
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[21]. Regardless of its limitations, eGFR is accurate enough to discriminate between 
diff erent stages of renal dysfunction, which is most important in a clinical sett ing. 
In cases where more accuracy is aspired, measurement of GFR using gold standard 
invasive techniques is recommended [22]. Th e developed prediction models in this 
study all showed good discriminative performance between individuals with lower 
(< 6.7 m/s) versus higher (≥ 6.7 m/s) PWV values. Albeit normal values of PWV are 
age dependent, in the middle-aged general population PWV values below 6.7 m/s 
correspond to the low end of the distribution for both men and women [23]. Th is 
indicates a possible gatekeeper function for ePWV when applied in the middle-aged 
population, where an ePWV < 6.7 m/s has a high likelihood of low aortic stiff ness 
and warrants no additional vascular stiff ness assessment. In such a scenario, ePWV 
values ≥ 6.7 m/s would indicate the need for additional measurement of PWV by 
MRI for accurate assessment of vascular morbidity and the associated cardiovascular 
risk, whereas for ePWV values < 6.7  m/s no additional measurement of PWV 
would be needed. In current guidelines the role of MRI-based PWV is unclear, even 
though it provides the most accurate non-invasive assessment of aortic stiff ness 
[5]. ePWV as a pre-selection tool could aid in the clinical implementation of MRI-
based PWV as this reduces the number of scans, considering MRI is only needed 
for accurate measurement of higher PWV values. A suggestion for cardiovascular 
risk management using ePWV and MRI-PWV is provided in  Fig.  4.  As such, a 
combination of ePWV with MRI-assessed PWV might be a safe and cost eff ective 
strategy for more widely available accurate cardiovascular risk assessment, however 
this remains area for future research. In the future it would also be interesting to 
investigate the prospective validation of 10  year CVD outcome in the NEO 
population [11].

In our models we used easily identifi able and broadly available markers associated 
with PWV, of which age and blood pressure provide the most weight in the 
regression function as is consistent with previous literature [24]. Arterial stiff ness 
is known to develop diff erently over life in men and women, however in middle-
aged populations previous studies oft en found no important sex diff erences, as is 
also observed in our model [23, 25]. Th e variation of PWV with heart rate has been 
documented extensively and subsequently heart rate provided substantial weight in 
the regression equation [26]. It is somewhat remarkable that body weight did not 
provide a greater impact as compared to height given the known association between 
obesity and PWV, although there have been studies that show the greater importance 
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of height in PWV assessment [27]. Our basic model performed reasonable in the 
development data, however in external validation the expanded model performed 
bett er indicating a benefi cial eff ect of the additional parameters on generalizability. 
Besides generalizability, addition of laboratory results and cardiovascular risk factors 
associated with PWV did not improve model performance.

Ridge regression versus deep neural network

Ridge regression and DNN models showed relatively similar performance 
parameters in the training data, however in the internal and external validation 
performance parameters of the ridge regression models were slightly bett er. Th is 
is likely due to overfi tt ing, which is a known issue in DNN models [28,  29]. To 
account for overfi tt ing in DNN, a dropout function was added; however, this did 
not result in improved model performance [15]. Neural networks have been used in 
medical analysis with varying success, as evidenced in numerous studies in diff erent 
areas of medicine [7,  30,  31]. A common explanation for the added predictive 
performance of neural networks is the amount on non-linearity present between 
the used variables, however the consistency of machine learning models has recently 
been challenged [32].

Limitations

Th ere are several limitations that need consideration. For MRI-based measures, 
it can be diffi  cult to obtain large sample sizes, although new large size population 
studies and improved automated image analysis are providing new opportunities. 
Th e sample size of 2254 that was used in this study, was relatively limited compared 
to what is commonly used in DNN applications, however smaller sample sized 
studies have found added value of neural networks. Th is limitation was particularly 
illustrated in our external validation, an important analysis to test generalizability 
which oft en is not performed [33]. Due to the intrinsic limitation of DNN to 
overfi t the data, we added a dropout function which did not result in improved 
performance in internal validation. Moreover, we restricted model variables to those 
widely available and the model was developed in a largely white population aged 
45–65, limiting generalizability in other age groups and ethnicities.

4
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Conclusion

Th e current study is the fi rst to report a prediction model to estimate MRI-based 
PWV. ePWV showed good discriminative performance with regard to diff erentiating 
individuals with lower PWV values (< 6.7 m/s) from those with higher values, and 
could function as gatekeeper in selecting patients who benefi t from further MRI-
based PWV assessment. Th ereby, MRI scan time and healthcare costs might be 
saved.
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Supplementary material

Ridge regression model

Performance of the basic and expanded ridge regression and DNN models are 
shown in table S1. Th e basic ridge regression model, consisting of 7 predictors 
(age, sex, height, weight, pulse, systolic and diastolic blood pressure), showed an 
adjusted correlation with an R2 of 0.33 as is shown in table S1. Th e expanded ridge 
regression model, which included HbA1c, total cholesterol, use of antihypertensive, 
antidiabetic or cholesterol lowering medication and smoking status including pack 
years in addition to the seven basic parameters, did not show any added predictive 
performance. Mean measured-PWV and ePWV of the basic and expanded ridge 
regression models were all similar (6.63 m/s). As is illustrated in the Bland-Altman 
plots of the basic and expanded model in fi gure S1, the higher measured-PWV 
predictions were less accurate, with a systematic underestimation of the PWV. 

Ridge regression model performance in the internal validation bootstrap sample

Th e Bootstrap sample produced similar performance parameters as the original 
basic and expanded models (table S1). 

DNN model

Results of the DNN models are shown in table S1. Th e basic model provided an 
adjusted R2 of 0.33, similar to the ridge regression model, however with higher bias 
of 0.11 m/s. Th e expanded model provided a slightly higher adjusted R2 of 0.34 with 
lower bias of 0.06 m/s. Mean basic ePWV (6.74 ± 0.64 m/s) was higher than the 
expanded ePWV (6.70 ± 0.66 m/s; p<0.001) and both were higher compared to the 
measured-PWV (p<0.001; p=0.005 respectively). Similar as in the ridge regression, 
the Bland-Altman plots of the basic and expanded models illustrate the limited 
predictive performance for higher measured-PWV values (fi gure S1). Estimation of 
PWV using the basic and expanded DNN model can be performed at htt ps://epwv.
shinyapps.io/webpage/.

DNN model performance in the internal validation sample

Th e split sample internal validation showed inferior performance parameters as 
compared to the original basic and expanded DNN models (table S1). Th e basic 
model provided an adjusted R2 of 0.22 with a bias of 0.12 m/s. Th e expanded model 
had an adjusted R2 of 0.18 with a bias of 0.07 m/s. 
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Table S1. Performance of the regression models and DNN models 

Linear ridge regression based models
Adjusted R2 RMSE (m/s) MAE (m/s) Bias (m/s)

Basic model 0.33 1.03 0.74 <0.001

Bootstrap validation 0.33 1.04 0.74 0.002

Expanded model 0.33 1.03 0.74 <0.001
Bootstrap validation 0.33 1.04 0.75 0.002

DNN based models
Adjusted R2 RMSE (m/s) MAE (m/s) Bias (m/s)

8.8.4 Basic model 0.33 1.02 0.77 0.11
Split sample validation 0.22 1.27 0.81 0.12

15.8 Expanded model 0.34 1.01 0.75 0.06
Split sample validation 0.18 1.28 0.78 0.07

Abbreviations: DNN: deep neural network; MAE: mean absolute error; RMSE: 
root mean sum of squared errors.
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Figure S1. Bland-Altman plots of ePWV versus measured-PWV. A: basic ePWV 
ridge regression model. B: expanded ePWV ridge regression model. C: basic ePWV 
DNN model. D: expanded ePWV DNN model.
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