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ABSTRACT
Event logs are widely used for anomaly detection and pre-
diction in complex systems. Existing log-based anomaly
detection methods usually consist of four main steps: log
collection, log parsing, feature extraction, and anomaly de-
tection, wherein the feature extraction step extracts useful
features for anomaly detection by counting log events. For
a complex system, such as a lithography machine consisting
of a large number of subsystems, its log may contain thou-
sands of different events, resulting in abounding extracted
features. However, when anomaly detection is performed at
the subsystem level, analyzing all features becomes expen-
sive and unnecessary. To mitigate this problem, we develop
a feature selection method for log-based anomaly detection
and prediction. Specifically, our method consists of three
main modules: the Log Event Vectorization module that
converts semi-structured log texts into time series; the Se-
lection of Relevant Features module that leverages Kendall
rank correlation and Granger causality test to select log
events for fault detection and prediction; and the Removal
of Redundant Features module that utilises Kendall rank
correlation to reduce redundant log events. Results on 25
real-world datasets show that our method can detect and
predict faults more accurately by selecting a small propor-
tion of log events, thereby improving the effectiveness and
efficiency.

1. INTRODUCTION
A lithography machine is a piece of complex structural equip-
ment used to manufacture chips. Typically, it consists of
the following main subsystems: the light source subsystem,
the objective lens subsystem, the table subsystem, the mask
table subsystem, the mask transfer subsystem, the wafer
transfer subsystem, and the exposure subsystem [19]. Par-
ticularly, the wafer transfer subsystem serves to transfer sil-
icon wafers between the track and wafer stage, having a
great impact on the precision of chip fabrication. A wafer
transfer subsystem usually contains two robots, namely a
load robot and an unload robot. When the lithography
machine goes into production, these two robots may en-
counter faults. We assume there are L+M types of faults,
viz. GF1,GF2,...,GFL and SF1,SF2,...,SFM . Specifically,
GF1,GF2,...,GFL represent faults that occur gradually and
thus can be detected in an early stage (i.e., they are typ-

ically predictable). In contrast, SF1,SF2,...,SFM denote
faults that generally occur suddenly and are often hard to
predict.

To minimize machine downtime and thus maximize produc-
tivity, the possible faults of load and unload robots should
be detected and predicted (if possible) in an automated way.
To this end, the wafer transfer subsystem usually uses sen-
sors to measure the position of the two robots in real time,
collecting time series data that can be used for data-driven
fault detection and prediction. However, due to the lim-
ited information contained in sensor data, it is challenging
to detect all possible faults based on time series data alone.
Meanwhile, as shown in Figure 1 and Table 1, a lithogra-
phy machine also has an information system that records all
triggered events—in the form of logs—when the machine is
working. Since the different subsystems in a lithography ma-
chine are interconnected, a fault incurred in one subsystem
(e.g., the wafer transfer system) may trigger events not only
in that subsystem, but also in other subsystems. Besides,
the components in the same subsystem are usually closely
interconnected. Therefore, the fault of one component is
very likely to cause faults of other components. Therefore,
the event logs contain important information for fault de-
tection and prediction. Traditional log-based anomaly de-
tection methods can be used to detect such faults [17].

Due to the complexity of the lithography machine, there can
be thousands of unique log events, resulting in millions of
log events in a relatively short working time of the machine.
Moreover, when attempting to detect faults of certain com-
ponents in a specific subsystem (e.g., the load and unload
robots in the wafer transfer subsystem), many of these log
events are irrelevant or abundant. Hence, a direct applica-
tion of existing log-based anomaly detection methods on all
log events can be computationally prohibitive and may also
produce misleading detection results due to the inclusion of
irrelevant log events. To mitigate this problem, we regard
each log event as a feature and develop a feature selection
method that aims to select relevant features for log-based
fault detection and prediction.

In brief, our method consists of three main modules, namely
Log Event Vectorization, Selection of Relevant Features and
Removal of Redundant Features. Specifically, the Log Event
Vectorization module aims at converting unstructured log
events into time series data; the Selection of Relevant Fea-
tures module attempts to select relevant features for fault
detection and prediction by using the variables measured
by sensors as target; and the Removal of Redundant Fea-
tures module focuses on eliminating redundant features to
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Figure 1: The composition of the lithography system, and an illustration of the feature selection problem addressed in this
work.

further reduce the number of selected features. The main
contributions of this paper can be summarized as follows:

1) We formalize the problem of feature selection for fault
detection and prediction based on event log analysis.
To our knowledge, this problem is not uncommon in
the industry, but has not yet been studied.

2) To address this problem, we further propose a novel
approach using two types of feature selection.

3) We demonstrate the effectiveness of our approach by
conducting extensive experiments on 25 real-world datasets
gathered from lithography systems.

The remainder of this paper is organized as follows. Section
2 introduces related work. Next, Section 3 introduces termi-
nology, formalizes the problem, and presents our proposed
method in detail. Section 4 empirically evaluates the per-
formance of our method. Finally, Section 5 concludes the
paper and discusses possible future directions.

2. RELATED WORK
Existing log-based anomaly detection methods usually con-
sist of four main steps: Log Collection, Log Parsing, Feature
Extraction and Anomaly Detection [7]. First, the Log Col-
lection step is responsible for recording triggered events in
the form of logs. A record is called a log message, which
usually contains the date and time of occurrence and the
detailed description of event. More concretely, detailed de-
scriptions are typically presented in predefined templates,
and may also include parameters. Second, the Log Pars-
ing step aims at converting each log message into a specific
log event template [21]. Usually, a log event corresponds
to a unique template. Third, based on derived log events,
the Feature Extraction step attempts to convert each log se-
quence into a log count vector. Specifically, a log sequence
is composed of multiple log events. In general, a log count
vector is a vector with each entry indicating the number of
times that the corresponding log event was triggered. Note
that the entries of the log count vector can be computed
in another refined way [4]. Finally, the Anomaly Detection
step performs anomaly detection based on the extracted log
count vectors.

There exist many log parsing methods based on clustering
[5], frequent pattern mining [2], or heuristic techniques [6].
Since our work centers around feature selection (e.g., log
event selection) for fault detection and prediction, we will
only consider the Feature Extraction and Anomaly Detection
steps.

He et al. [9] have performed a systematic comparison of five
state-of-the-art log-based anomaly detection methods, in-
cluding DeepLog [3], LogAnomaly [11], PLELog [18], LogRo-
bust [20], CNN [10]. Their findings show that log-based
anomaly detection methods are often not as good as ex-
pected (i.e., as claimed by the original authors of each method)
in real-world datasets. Importantly, they found that some
log-based anomaly detectors, such as LogAnomaly, perform
poorly on datasets with numerous log events. Therefore, fea-
ture selection can be exploited to improve the performance
of these anomaly detection methods. However, we are not
aware of any existing publications that attempt to address
this problem.

3. METHOD
In the following section, we first introduce the terminology
used in this work and then formalize the problem. Next, we
elucidate our proposed method that consists of three mod-
ules: Log Event Vectorization, Selection of Relevant Fea-
tures, and Removal of Redundant Features.

3.1 Terminology and Problem Formulation
We assume that we have access to two types of data. First,
as shown in Table 1, we assume that the log data in a lithog-
raphy machine, denoted by X, has been collected and accu-
rately parsed. Without loss of generality, we suppose there
is a Code as the unique identifier for each log event, a Level
roughly indicating the severity level of triggered log event, a
Detail describing the detail of each log message that is an
instantiation of a log event using a predefined template, and
a DateTime containing the corresponding date and time.
Hereinafter, we also call each log event a log feature. In ad-
dition, we may have log data for multiple lithography ma-
chines, and we use M to represent the corresponding name
of the machine.

Ideally, applying an existing log-based anomaly detection
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Table 1: An example event log. All values are fictional.
M Code Level Detail DateTime
1 AA-BBBB Low descr 2020-01-01 00:00:01
1 CC-DDDD Med descr 2020-01-01 00:00:01
1 AA-BBBB Low descr 2020-01-01 00:01:00
1 AA-BBBB Low descr 2020-01-01 00:02:03
1 EE-FFFF High descr 2020-01-01 00:05:00
...

...
...

...
...

Table 2: Example sensor data. All values are fictional.
Robot Position Value DateTime
Load P1 0.05 2020-01-01 00:00:00
...

...
...

...
Load PK 0.04 2020-01-01 00:01:00
Unload P1 0.04 2020-01-01 00:02:00
...

...
...

...
Unload PK 0.04 2020-01-01 00:03:00
...

...
...

...

method on X can detect most faults related to load and
unload robots. However, due to the large number of log fea-
tures, it is computationally prohibitive to directly use most
existing anomaly detection methods. Furthermore, the pres-
ence of irrelevant log features may significantly degrade de-
tection performance and even lead to misleading detection
results.

Second, we also assume the availability of sensor data, de-
noted byY, that measures the positions of robots. As shown
in Table 2, there are measurements and corresponding times-
tamps from K different positions for the load robot and the
unload robot, respectively. By using the Log Event Vec-
torization module in our proposed method (as will be ex-
plained in the sequel), Y can be rewritten as (LP1, ...,LPK,
UP1, ...,UPK). Specifically, for k ∈ {1, ...,K}, LPk =
{(V aluet, DateT imet)}t∈T denotes the corresponding time
series of load robot from position k, and at the same time
UPk = {(V aluet, DateT imet)}t∈T denotes the correspond-
ing time series of unload robot from position k, where T
denotes the timestamp when the time series was sampled.

By applying an appropriate time series anomaly detection
method on (LP1, ...,LPK) and (UP1, ...,UPK), we can de-
tect certain faults (especially gradual faults) of the load and
unload robot, respectively. However, due to the limited fault
information contained in Y, these faults are difficult to pre-
dict using sensor data only.

Therefore, we aim to address the following problem: Sup-
pose there is a complex system ∆ that is composed of several
interconnected subsystems {Γ,Λ, ...,Θ}. Given a database
of logs X∆ generated by the entire system ∆ and a database
YΘ consisting of time series measured by sensors from a
certain subsystem Θ, we assume the set of unique log events
in X∆ is C∆ = {C1, C2, ..., CN}. Based on YΘ, we attempt

to select a subset of C∆, denoted by CΘ = {C
′
1, C

′
2, ..., C

′
L}

with L ≪ N and resulting in a new database XΘ ⊂ X∆, that
mainly keeps relevant log events for detecting and predicting
faults occurred in subsystem Θ.

Specifically, as shown in Figure 1, system ∆ is a lithography

machine and subsystem Θ is the wafer transfer subsystem
in this work. To solve the above problem, we propose a
method consisting of three modules, namely Log Event Vec-
torization, Selection of Relevant Features and Remove of Re-
dundant Features, each of which will be separately described
next.

3.2 Log Event Vectorization (Module 1)
The first module, namely Log Event Vectorization, mainly
aims at converting unstructured or semi-structured log events
into time series data. Considering the log messages given in
Table 1, it is straightforward to generate a time series for
each Code per machine by keeping only the correspond-
ing records. Without loss of generality, we assume that the
smallest unit of time in the original data is seconds. Accord-
ingly, for each log event in a certain machine, we can ob-
tain a time series in the form of {(V aluet, DateT imet)}t∈T,
meaning that this log event is triggered V aluet times at the
timestamp DateT imet for t ∈ T, where T represent all time
points (an ordered list) when this log event was triggered.

After preliminary results and based on domain knowledge,
we have decided to take each day as an interval to count the
number of times a log event is triggered. Besides, we take
the start point of this time interval to represent the time
point when this log event is triggered.

3.3 Selection of Relevant Features (Module 2)
Given that the load robot and unload robots are very sim-
ilar, for simplicity, we only consider the load robot when
elucidating the proposed method. That is, we assume a
multivariate time series database Y = (Y1, ...,YK). Note
that all these time series are of equal length. Therefore, we
assume Yk = {ykt}t∈T for k ∈ {1, ...,K}, with T denoting
the timestamp when Yk was sampled. Meanwhile, after ap-
plying the Log Event Vectorization module on the log event
database X, we can obtain another multivariate time series
database Z = (Z1, ...,Zn, ...,ZN), where N represents the
number of unique log features (i.e., log events). Although
different log events are usually triggered at different time
points, we have taken each day as an interval to count the
number of times that each log event is triggered. As a re-
sult, for n ∈ {1, 2, ..., N}, Zn has a fixed length and thus
we assume Zn = {zns}s∈S, with S denoting the timestamp
when Zn was sampled.

To detect faults, for k ∈ {1, ...,K}, we can apply a univari-
ate time series anomaly detector ϕ(·) on Yk, resulting in
ϕ(Yk). Alternatively, we can apply a multivariate time se-
ries anomaly detector Φ(·) on Y by jointly considering all
Yk for k ∈ {1, ...,K}, leading to Φ(Y1, ...,YK). As shown
in Figure 2 (the two subplots at the bottom), the identifi-
cation of faults is feasible by applying time series anomaly
detectors on Y. However, for gradual faults, just identify-
ing them is not enough. It is also necessary to predict them
accurately. Since there is only limited fault information in
Y, it is difficult to predict these faults based on Y alone.
Therefore, we attempt to select relevant log features from
Z to better detect and predict faults. For k ∈ {1, ...,K}, by
considering Yk as the target variable and Z1, ...,Zn, ...,ZN

as the prediction variables, it becomes a supervised feature
selection problem. Compared to traditional supervised fea-
ture selection problems, however, there are three novel chal-
lenges:

1) The features considered are time series rather than
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numeric tabular data;

2) The target and prediction variables are not of equal
length, and their timestamps are also different;

3) Traditional similarity metrics (e.g. Euclidean distance,
dynamic time warping) do not give meaningful results
when measuring the relevance/similarity of the predic-
tor variable to the target variable.

We now detail why traditional similarity metrics fail to pro-
vide meaningful results when trying to find relevant log fea-
tures. As shown in Figure 2, we can see that from ‘D3’
some faults started to appear in the robot and became de-
tectable after a certain time based on P1 and P2. These
faults disappeared after the replacement of specific compo-
nents on ‘Replacement Date’. Meanwhile, we can observe
that log event Z was triggered several times before the re-
placement date. More importantly, it was triggered several
times even before the faults became detectable based on P1
and P2. At other times, this log event was not triggered.
In other words, the log event Z could potentially be used
to detect and predict these faults. However, if we consider
their shapes (wrapped or not) or values (normalised or not),
we can see that log feature Z is not similar to P1 or P2. To
address this problem, we propose a novel similarity metric
that consists of three steps, as follows.

As summarized in Algorithm 1, for k ∈ {1, ...,K}, we first
apply an appropriate univariate time series anomaly detec-
tor ϕ(·) on Yk, resulting in a time series of anomaly scores
Uk = {ukt}t∈T (Lines 5-8). Second, for n ∈ {1, 2, ..., N}, we
apply an appropriate univariate time series anomaly detec-
tor φ(·) on Zn, resulting in a time series of anomaly scores
Vn = {vns}s∈S (Lines 9-12). Note that ϕ(·) and φ(·) can
be different considering that Zn is sampled at a regular fre-
quency (i.e., an observation per day) but Yk is sampled at
an irregular frequency (e.g., multiple observations in day A
but no observation in day B). Third, we can select relevant
log events by comparing Uk with Vn (Lines 13-23). Note
that the lengths and scales of Uk and Vn may be different,
but their peaks should overlap (for detection) or preferably
the peak of Vn precedes the corresponding peak of Uk (for
prediction) if we compare them using the same timeline. A
peak here means a relatively high degree of outlyingness.

3.3.1 Time series anomaly detector ϕ(·)
Since Yk is sampled at an irregular frequency, it may have
multiple observations on a given day, but no observations in
the following days. However, traditional time series anomaly
detection methods usually assume that the input time se-
ries is regularly sampled. To circumvent this limitation,
we adapt a simple yet effective anomaly detection strategy,
which is called persistence checking. Specifically, for each
time series value Ykt in Yk, we compare this value with
its previous value to obtain an anomaly score, defined as
Ukt = ϕ(Ykt) = |Ykt − Ykh| with t = h + 1. Particularly,
this anomaly detector can deal with time series sampled at
irregular frequencies.

3.3.2 Time series anomaly detector φ(·)
Although Zn is in the form of a time series, we are not
concerned about the temporal order of observations when
detecting anomalies. This is because if the lithography ma-
chine is working under a normal production environment,

the occurrence of each log event should remain stable. There-
fore, we can apply a traditional anomaly detector designed
for tabular data on it. Specifically, we define Vns = φ(Zns) =
|Zns−med(Zn)|

std(Zn)
as the anomaly score for the sample point Zns

in the time series Zn, where med and std denote the median
and standard deviation of all sample points in Zn, respec-
tively.

3.3.3 Feature selection for fault detection
We perform feature selection for fault detection by compar-
ing obtained anomaly scores Uk and Vn. Assuming that
the robot works continuously for T days, for Vn we have
a value per day. However, for Uk, we may have multiple
values on some days, but no values on most days. To make
Uk and Vn comparable, we modify Uk as follows: for each
day, if there are multiple anomaly scores, we take the maxi-
mum of these scores as the final anomaly score; if there is no
anomaly score, we set the final anomaly score as zero. We
denote the modified Uk as Ûk, which has the same length
as Vn.

On this basis, we compute the Kendall’s τ coefficient [8] be-

tween Ûk and Vn for feature selection. We prefer Kendall’s
rank correlation measure over other correlation measures for
several reasons:

• it measures monotonicity relationships and has a straight-
forward interpretation;

• it does not require the tested features to follow a nor-
mal distribution, as anomaly scores usually do not fol-
low a normal distribution;

• it is robust to noise and can be calculated easily.

Suppose Vn = (α1, ..., αT ) and Ûk = (β1, ..., βT ), then
Kendall’s τ coefficient measures the similarity of orderings
of elements in Ûk and Vn. Specifically, we let (α1, β1) , ...,
(αT , βT ) be paired observations. Furthermore, (αi, βi) and
(αj , βj) are regarded as concordant if and only if one of the
following conditions are fulfilled:

• αi < αj and βi < βj ;

• αi > αj and βi > βj .

Otherwise, (αj , βj) are considered discordant. Kendall’s τ
coefficient is then defined as:

τ =
#concordant−#discordant

#concordant+#discordant
, (1)

where #concordant and #discordant represent the number
of concordant pairs and the number of discordant pairs, re-
spectively. Hence, τ can take a value in [−1, 1], with a high
absolute value indicating a high relevancy of log event Zn to
Yk for detecting faults. By setting a threshold τ0, we can
select a subset of log events that are considered to be the
most relevant for fault detection.

3.3.4 Feature selection for fault prediction based on
Kendall rank correlation test

For k ∈ {1, ...,K} and n ∈ {1, ..., N}, after obtaining Vn =

(α1, ..., αT ) and Ûk = (β1, ..., βT ) as described in Section
3.3.3, we achieve feature selection for fault prediction by
comparing Vn and the lagged values of Ûk. The underlying
rational is that if Zn is useful for predicting faults in Yk,
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Figure 2: An example showing the relevance of a specific log event (upper plot) to detecting and predicting faults of a
load robot based on sensor data (lower two plots). The shared x-axis represents the timestamp and the y-axes represent
the measured values of each feature. Note that the y-axes of P1 and P2 are intentionally hidden and their timestamps are
anonymized.

then the anomaly score vector Vn should be correlated with
the lagged values of anomaly score vector Ûk. In other
words, the value of Kendall’s τ coefficient between Vn and
Lag(Ûk, l) should be high for some l ∈ {1, 2, ..., T}, where
Lag(·, l) denotes the lag operator and l represents the the
number of lagged times. For instance,

Lag((β1, β2, β3, ..., βT−2, βT−1, βT ), 2) = (β3, β4, β5, ..., βT ).

Hence, the resulting vector is shorter than the original vec-
tor.

For a specific l, we calculate the Kendall’s τ coefficient be-
tween Vn and Lag(Ûk, l) as follows. We let (α1, β1+l) , ...,
(αT−l, βT ) be paired observations, and then count the num-
ber of concordant pairs and discordant pairs, followed by
using Equation (1) to obtain the corresponding value of τ .
A high value of τ indicates a high relevancy of log event Zn

to predict faults in Yk. Particularly, although l can take a
value in {1, 2, ..., T}, an overly large value will cause few ob-
servations, and may produce misleading results. Therefore,
we only consider l ∈ {1, 2, 3, 4, 5} in this work. Similarly,
this coefficient can take a value in [−1, 1], with a high ab-
solute value indicating a high relevancy of log event Zn to
predict Yk. By setting a threshold τ1, we can select a subset
of log events that are considered to be the most relevant for
fault prediction.

Our preliminary results suggest that only applying Kendall
rank correlation to select features for fault prediction may
not be sufficient. Given a value for l, we only consider a sin-
gle and equal number of lag operations at each time point.
Therefore, it may result in few features selected for predic-
tion. To mitigate this problem, we utilize Granger causality
test to select more features for fault prediction, as follows.

3.3.5 Feature selection for fault prediction based on
Granger causality test

The Granger causality test is widely used to determine whether
a time series is useful for predicting another time series
[14]. Formally, given an information set Ωt = (α, β) with
α = (α1, ..., αt) and β = (β1, ..., βt), α is said to Granger
cause β if and only if δ2f (βt −P (βt|βj:j<t, αi:i<t)) < δ2r(βt −
P (βt|βj:j<t)). Specifically, δ2f represents the variance of
prediction errors generated by the optimal linear predictor
P (βt|βj:j<t, αi:i<t) based on full information (αi:i<t, βj:j<t).
Meanwhile, δ2r denotes the variance of prediction errors gen-
erated by the optimal linear predictor P (βt|βj:j<t) based
on reduced information (βj:j<t). In other words, the ‘use-
fulness’ for prediction in Granger causality test means the
ability to increase the prediction accuracy. Therefore, the
Granger causality test is suitable for selecting log features
that can be used to more accurately predict faults.

More concretely, we specify the following linear prediction
equation:

βt = c+

I∑
i=1

aiαt−i +

J∑
j=1

bjβt−j + µt, (2)

where I and J represent the number of lagged operations
considered for α and β, respectively, while µt denotes the
corresponding residual. Intuitively, if

∑I
i=1 |ai| ̸= 0, we can

say α is useful for predicting β. Accordingly, we call Equa-
tion (2) the full or unrestricted regression model. Mean-
while, we call the following equation the reduced or re-
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stricted regression model:

βt = c+
J∑

j=1

bjβt−j + µt, (3)

Specifically, given two time series α = (α1, ..., αt) and β =
(β1, ..., βt), the Granger causality test calculates the follow-
ing F -statistic:

F =

SSRr−SSRf

J
SSRf

D−(I+J+1)

, (4)

where SSRr is the sum of squared residuals on the reduced
regression model and SSRf is the sum of squared residuals
on the full regression model. Besides, D denotes the degrees
of freedom (i.e., the number of observations), while I and J
have the same meaning as in Equation (2). Consequently,
a higher value of F indicates that α is more useful for pre-
dicting β. As a result, α is declared Granger causal for β if
the F -statistic is larger than the (1 − Sig)% quantile of an
F (J,D − (I + J + 1)) distribution, where Sig denotes the
significance level.

We should be aware that the Equation (4) requires sev-
eral explicit and implicit assumptions to effectively identify
Granger causality [14]:

• Linearity: the generating processes of the two time
series are linear, and their causal effects are also linear;

• Continuous-valued series: the two time series are supoosed
to have continuous-valued observations;

• Discrete-time: the two time series are sampled on a
discrete and regular manner;

• Stationarity: the statistical properties of these two
time series do not change over time;

• Known lag: the linear dependency on past values are
assumed to have a known order;

• Perfectly observed: the two time series do not have
measure errors;

• Complete system: there are no unmeasured confounders.

Overall, this subsection is summarized on Lines 5-23 in Al-
gorithm 1.

3.4 Removal of Redundant Features (Module
3)

After selecting a subset of relevant log events for detecting
and predicting faults in Module 2, we can further reduce
the number of selected log events by computing the corre-
lation between them. Specifically, we compute the pairwise
Kendall’s τ coefficient between selected log events and re-
move the redundant ones by setting a threshold τ2 for the
τ coefficient. More concretely, given two time series α and
β, if the absolute value of their pairwise τ coefficient ex-
ceeds the threshold, we randomly remove one feature. This
subsection is summarized on Lines 24-27 in Algorithm 1.

4. EXPERIMENTS AND RESULTS
To demonstrate the effectiveness and efficiency of our method,
we perform a series of experiments. The experimental setup,
results, and corresponding analysis are described as follows.

4.1 Data description
Given the novelty of the problems faced by this work, we
are not aware of any publicly available datasets that can be
used. The traditional benchmark datasets for log anomaly
detection, including HDFS [16], BGL [12], Spirit [12] and
Thunderbird [12], are mainly produced by complex systems
such as cloud service providers or supercomputers. As a
result, sensor data for monitoring hardware is often unavail-
able.

Therefore, we use 25 real-world datasets provided by our
industrial partners to test our method. Specifically, the 25
datasets were generated by 20 different test machines, of
which 16 machines each generated one dataset and the re-
maining 4 machines each generated at least 2 datasets. A
summary of the datasets is given in Table 3. These datasets
contain multiple types of faults, including gradual faults,
sudden faults, and some unknown types of faults. More-
over, these faults may occur in the loading and/or unload-
ing robot. In particular, for some machines it is unknown
whether the fault occurred in the unloading or loading robot.
Therefore, we examined the datasets of both robots to find
the robot most likely to have failed.

4.2 Baseline, parameter settings and perfor-
mance metrics

Based on domain knowledge and preliminary experiments,
in module 2 we set the threshold τ0 = 0.6 for the similarity
coefficient to select log events for fault detection. Further-
more, we set τ1 = 0.6 in the Kendall rank correlation and
Sig = 0.05 in the Granger causality test to select features
for fault prediction. In module 3, we further remove some
highly correlated log features by setting τ2 = 0.95.

After constructing the event count matrix based on the se-
lected features, we apply a commonly used unsupervised
anomaly detector on it: KNN [13]. To demonstrate the
necessity of feature selection, we also build an event count
matrix from all original features and then apply KNN on it
as a baseline. Specifically, a fault is considered detected if
at least one of the points with the highest anomaly scores
(we consider the top 3 points in our experiments) is on the
date of the known fault. Moreover, a fault is considered pre-
dicted if one of the points with the highest anomaly scores
is located slightly earlier (we consider 1-7 days) than the
date when the fault is known to occur. On this basis, as
a performance metric, we count the number of datasets in
which the faults are accurately detected and/or predicted.

4.3 Results and analysis
As shown in Table 3, our proposed feature selection method
can help improve log-based anomaly detection performance.
Specifically, based on the selected log features, KNN was
able to accurately detect or predict faults in 24 out of 25
machines. In contrast, KNN can only accurately detect or
predict faults in 17 out of 25 datasets based on all log fea-
tures. One possible reason is that logs from all subsystems
are entangled and the inclusion of many irrelevant log events
renders the detection/prediction of gradual faults difficult.

5. CONCLUSION AND FUTURE WORK
In this work we have proposed a simple yet effective fea-
ture selection method for log based anomaly detection. This
method has been empirically proven to be effective on 25
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Algorithm 1 Feature Selection for Fault Detection and Prediction (FS4FDP)

Input: Event log database Z = (Z1, ...,Zn, ...,ZN ); Sensor database Y = (Y1, ...,Yk, ...,YK); Anomaly detector φ(·) for
Zn; Anomaly detector ϕ(·) for Yk; Threshold parameters τ0, τ1, τ2 and Sig with τ0 = τ1 = 0.6, τ2 = 0.95 and Sig = 0.05
by default.

Output: Subset of log features F
1: procedure FS4FDP(Z,Y, φ(·), ϕ(·), τ0, τ1, τ2, Sig)
2: F ⇐ {}
3: U ⇐ {}
4: V ⇐ {}
5: for k ∈ {1, ...,K} do ▷ Obtaining anomaly score for each sensor time series
6: Uk = φ(Yk)
7: U.append(Uk)
8: end for
9: for n ∈ {1, ..., N} do ▷ Obtaining anomaly score for each log event time series
10: Vn = φ(Zn)
11: V.append(Vn)
12: end for
13: for Uk ∈ U and Vn ∈ V do
14: Ûk ⇐ Modify(Uk) ▷ Modifying the length of anomaly score vector of each sensor time series

15: if |τ(Ûk,Vn)| > τ0 then F.append(Zn) ▷ Feature selection for fault detection using Kendall rank correlation
16: end if
17: for l ∈ {1, 2, 3, 4, 5} do ▷ Feature selection for fault prediction using Kendall rank correlation on lagged values

18: if |τ(Lag(Ûk, l),Vn)| > τ1 then F.append(Zn)
19: end if
20: end for
21: if Pvalue(GrangerCausalityTest(Vn, Ûk)) < Sig then F.append(Zn) ▷ Feature selection for fault prediction

using Granger causality test
22: end if
23: end for
24: for Fi,Fj ∈ F with i ̸= j do ▷ Removing redundant features using Kendall rank correlation
25: if |τ(Fi,Fj)| > τ2 then F.delete(Fi)
26: end if
27: end for
28: return F
29: end procedure

real-world datasets. In the future, we plan to include more
datasets for testing, evaluating whether our approach gen-
eralizes to other settings, and investigating hyperparameter
tuning. More importantly, we will try more anomaly de-
tection methods when defining ϕ(·) and φ(·). Particularly,
the Equation (4) used in Granger causality requires sev-
eral explicit and implicit assumptions to effectively identify
Granger causal effects. Some of these assumptions may not
be fulfilled by our use-case though. Therefore, we will fur-
ther explore and improve Granger causality test [1] or other
similar techniques to find log events that can be used to
predict sensor time series anomalies. Furthermore, we have
not fully explored the causal relationships between differ-
ent log events. In the future, by constructing a causality
graph using techniques such as the PC-algorithm [15] on log
events, we can investigate the causal relationships between
log events. As a result, it might be possible to pinpoint the
root causes of anomalies.
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