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A B S T R A C T

Background: FMRI resting state networks (RSNs) are used to characterize brain disorders. They also show
extensive heterogeneity across patients. Identifying systematic differences between RSNs in patients, i.e.
discovering neurofunctional subtypes, may further increase our understanding of disease heterogeneity.
Currently, no methodology is available to estimate neurofunctional subtypes and their associated RSNs
simultaneously.
New method: We present an unsupervised learning method for fMRI data, called Clusterwise Independent
Component Analysis (C-ICA). This enables the clustering of patients into neurofunctional subtypes based on
differences in shared ICA-derived RSNs. The parameters are estimated simultaneously, which leads to an
improved estimation of subtypes and their associated RSNs.
Results: In five simulation studies, the C-ICA model is successfully validated using both artificially and
realistically simulated data (N = 30–40). The successful performance of the C-ICA model is also illustrated
on an empirical data set consisting of Alzheimer’s disease patients and elderly control subjects (N = 250). C-
ICA is able to uncover a meaningful clustering that partially matches (balanced accuracy = .72) the diagnostic
labels and identifies differences in RSNs between the Alzheimer and control cluster.
Comparison with other methods: Both in the simulation study and the empirical application, C-ICA yields
better results compared to competing clustering methods (i.e., a two step clustering procedure based on single
subject ICA’s and a Group ICA plus dual regression variant thereof) that do not simultaneously estimate a
clustering and associated RSNs. Indeed, the overall mean adjusted Rand Index, a measure for cluster recovery,
equals 0.65 for C-ICA and ranges from 0.27 to 0.46 for competing methods.
Conclusions: The successful performance of C-ICA indicates that it is a promising method to extract neuro-
functional subtypes from multi-subject resting state-fMRI data. This method can be applied on fMRI scans of
patient groups to study (neurofunctional) subtypes, which may eventually further increase understanding of
disease heterogeneity.
1. Introduction

An important and emerging challenge in the field of clinical neu-
roscience pertains to revealing differences and similarities in resting
state functional connectivity networks (RSNs) between patients. Het-
erogeneity in patients’ RSNs suggests the presence of neurofunctional
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subtypes and these neurofunctional subtypes may, in turn, be related
to clinically determined disease subtypes (e.g., types of dementia,
see Gili et al., 2011). Moreover, disclosing these functional subtypes
allows for a categorization of diseases based on brain information
that may complement the commonly used categorizations based on
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clinical symptoms (e.g., the Diagnostic and Statistical Manual of Mental
Disorders; American Psychiatric Association, 2013).

RSNs are related to areas in the brain that are involved in cognitive
processes such as, for example, executive functioning, auditory process-
ing and memory (Beckmann et al., 2005). Disruptions in the integrity
of RSNs are associated with neurodegenerative diseases and psychiatric
disorders such as Parkinson’s disease (Olde Dubbelink et al., 2013),
Major Depression Disorder (Greicius et al., 2007), schizophrenia (Lynall
et al., 2010) and Alzheimer’s disease (AD) (Gili et al., 2011). For
example, AD patients have disrupted RSNs when compared to healthy
control subjects (Greicius et al., 2004; Zhang et al., 2010). Moreover,
differences in RSNs are also implicated for different clinical subtypes
of dementia, like early onset AD and late onset AD (Gour et al., 2014).
These disruptions in RSNs integrity often precede grey matter atrophy,
which is a key aspect of AD (Gili et al., 2011). This implies that such
RSNs differences are very relevant for the early detection of diseases
and their clinical subtypes.

A frequently used technique to disclose the most apparent RSNs
underlying resting state fMRI (rs-fMRI) data is (spatial) Independent
Component Analysis (ICA; see Hyvärinen et al., 2001; Beckmann and
Smith, 2004; Van de Ven et al., 2004). ICA is a decomposition technique
that separates a multivariate signal (e.g., fMRI data) into spatial com-
ponents that are statistically independent and a linear mixing matrix.
These spatially independent components, also denoted as RSNs or
spatial maps, are sets of voxels that are functionally connected, whereas
the mixing matrix contains information regarding the underlying time
course for each independent RSN (a statistical description is presented
in Appendix A).

A promising way to automatically uncover neurofunctional subtypes
from multi-subject rs-fMRI data consists of clustering patients based on
ICA derived shared RSNs (for a related example, see Drysdale et al.,
2017). The goal of this paper is to introduce a novel unsupervised clus-
tering method for multi-subject rs-fMRI data that combines a clustering
technique with ICA into a single analysis method. Note that the com-
bination of clustering with a decomposition method has already been
successfully developed for and applied in other research areas such as
psychology (De Roover et al., 2012b, 2017; Wilderjans et al., 2017),
sensory profiling (Wilderjans and Ceulemans, 2013; Wilderjans and
Cariou, 2016; Cariou and Wilderjans, 2018) and marketing (Bougeard
et al., 2018).

The proposed method in this paper, which will be called Cluster-
wise Independent Component Analysis (C-ICA), clusters the subjects
into homogeneous groups (i.e., neurofunctional subtypes) based on
the similarities and differences in the (shared) RSNs underlying each
subject’s data. In particular, subjects with similar shared RSNs will be
automatically clustered together, whereas subjects exhibiting RSNs that
are qualitatively different will be allocated to different clusters. Note
that the goal is to cluster (in an unsupervised way) patients and not
oxels, brain regions or RSNs directly (as in ICASSO, see Himberg et al.,
004).

The remainder of this paper is organized as follows: in the next
ection, the mathematical formulation of the novel C-ICA model will be
ntroduced and relationships to other (clustering) methods for multi-
ubject data, such as Group-ICA (Guo and Pagnoni, 2008; Calhoun
t al., 2009), will be elaborated upon. Next, in the Data Analysis
ection, an appropriate Alternating Least Squares (ALS) algorithm to
stimate the parameters of the C-ICA model will be presented, along
ith a procedure to select the optimal number of clusters and ICA
SNs. In the fourth section, the C-ICA model is validated in a series
f studies. More specifically, the performance of the C-ICA algorithm is
valuated in four simulation studies that differ in terms of how realistic
he rs-fMRI data are simulated. Additionally, comparisons to existing
trategies for clustering patients into functional subtypes (e.g., a cluster-
ng procedure based on Group ICA plus dual regression) are presented.
n a fifth study, the performance of the proposed procedure for model
2

election will be assessed. In the fifth section, an empirical data set
consisting of Alzheimer’s disease patients and elderly controls will be
analysed to illustrate the C-ICA model. Also here, C-ICA’s performance
will be compared to other clustering procedures. Finally, implications
of the C-ICA model and directions for future research will be discussed.

2. Clusterwise independent component analysis (C-ICA)

2.1. Model formulation of C-ICA

Starting from multi-subject (rs-)fMRI data, which are illustrated in
Fig. 1, in order to cluster subjects based on similarities and differences
in underlying RSNs, the C-ICA generative model assumes that data of
𝐼 subjects 𝐗𝑖 (𝑖 = 1,… , 𝐼) fall apart into 𝑅 mutually exclusive clusters
(i.e., a hard partitioning), which are unknown a priori and thus have to
be estimated from the data, with each 𝐗𝑖 containing the (rs-)fMRI data
(𝑇 time points × 𝑉 voxels) of subject 𝑖. Thus, as presented in Fig. 1,
C-ICA decomposes each 𝐗𝑖 as:1

𝐗𝑖 =
𝑅
∑

𝑟=1
𝑝𝑖𝑟𝐀𝑖𝐒𝑟 + 𝐄𝑖 (1)

where the elements 𝑝𝑖𝑟 denote the entries from the binary partition
matrix 𝐏 (𝐼 × 𝑅) which equal 1 when subject 𝑖 is assigned to cluster
𝐶𝑟 and 0 otherwise. Note that the 𝑝𝑖𝑟 elements are parameters of
the C-ICA generative model that need to be estimated from the data,
which implies that the clustering of the subjects is part of the C-ICA
generative model. Similar as in the ICA model for a single subject (see
Appendix A), 𝐀𝑖 (𝑇 ×𝑄, with 𝑄 being the number of RSNs, which is kept
equal across subjects and clusters) denotes the mixing matrix (i.e., time
courses) for subject 𝑖 and 𝐒𝑟 (𝑄×𝑉 ) represents a matrix where the rows
ontain the spatially independent components or RSNs for cluster 𝐶𝑟
𝑟 = 1,… , 𝑅). Note that the cluster specific RSNs in 𝐒𝑟 are shared RSNs
hat represent the data 𝐗𝑖 for all subjects 𝑖 belonging to the cluster in

question.2 Hence, the C-ICA generative model assumes that only the
hared RSNs for each cluster contain information that is relevant to
luster the subjects. 𝑄 thus refers to the number of shared RSNs that
ontribute to the subject clustering. This also (implicitly) means that
diosyncratic or subject-specific RSNs do not contribute to the subject
lustering and thus are considered as obfuscating noise (i.e., C-ICA
s not designed to extract these subject-specific RSNs). Moreover, in
ccordance to ICA for a single subject, the RSNs in 𝐒𝑟 are assumed to be
on-normally distributed and mutually statistical (spatially) indepen-
ent. It is important to note that in the C-ICA generative model, the
ime courses 𝐀𝑖 are allowed to differ for each subject but that the data
rom all subjects that belong to the same cluster can be described in
erms of a set of RSNs 𝐒𝑟. Additionally, the generative model contains
n error term 𝐄𝑖 for each data block 𝑖 (Stegeman and Mooijaart, 2008).
ote that the C-ICA generative model is defined for a given value of

he number of clusters 𝑅 and number of components 𝑄. The C-ICA
lgorithm, that will be described in Section 3.2, will estimate the C-ICA
arameters for that given value of 𝑅 and 𝑄. Determining the optimal
alue of 𝑅 and 𝑄, which is discussed in Section 3.3, is a model selection
roblem that constitutes a separate step in the analysis and thus is
ot part of the C-ICA algorithm. As a final note, C-ICA selecting for a
ingle cluster (𝑅 = 1) is equivalent to performing Group ICA (Calhoun
t al., 2001b), whereas C-ICA with all clusters being singletons (𝑅 = 𝐼),
mplying that each subject is allocated to a separate cluster, yields ICA
or each subject separately (also see Section 2.2). As such, C-ICA (with
< 𝑅 < 𝐼) takes an intermediate position on a continuum with Group

1 The C-ICA generative model can also be formulated as 𝐗𝑖 = 𝐀𝑖
∑𝑅

𝑟=1 𝑝𝑖𝑟𝐒
𝑟+

𝐄𝑖 = 𝐀𝑖𝐒𝑟𝑖 +𝐄𝑖 for 𝑖 ∈ 𝐶𝑟 with 𝐶𝑟 denoting the 𝑟th cluster (which is the cluster
to which subject 𝑖 belongs).

2 As for Group ICA, also for C-ICA, a back-reconstruction method can
be applied to project the cluster specific RSNs to the data of each subject

separately.
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Fig. 1. Graphical illustration of Clusterwise Independent Component Analysis (C-ICA). In the left panel (I), Time × Voxel matrices of multiple subjects 𝑖 (𝑖 = 1… 𝐼) are presented.
The different colours refer to the true, albeit unknown a priori, clusters which are based on differences in shared RSNs. Note that these cluster do not necessarily correspond with
the known diagnostic labels (indicated by D = diseased and H = healthy) which are based on disease symptoms. In panel II, a depiction of the C-ICA algorithm (see Section 3.2)
is given. During iteration 0, separately for each cluster of a (randomly) given partition, the Time × Voxel matrices are concatenated together and ICA is performed. Next, the
data matrices are re-grouped by determining which data matrix optimally belongs to which cluster and again, for each cluster separately, ICA is performed on the concatenated
data matrices. This procedure of re-grouping and re-estimating cluster specific ICA parameters is repeated until convergence. After convergence, as shown in panel III, subjects are
allocated to their optimal cluster and each cluster 𝑟 is described by a cluster specific set of RSNs 𝐒𝑟 and subject specific time courses 𝐀𝑖, again by performing ICA on concatenated
data.
ICA (𝑅 = 1) and subject specific ICA’s (𝑅 = 𝐼) as extremes, and –
when comparing the cluster specific 𝐒𝑟’s to each other – allows for
describing subject similarities and differences based on their RSNs in
a parsimonious way.

The C-ICA model suffers from four sources of non-uniqueness or
ambiguities; scaling, reflection, component/RSN permutation and clus-
ter permutation non-uniqueness (see Appendix B). Here, the first three
sources of non-uniqueness also hold for ICA of a single subject (Hyväri-
nen et al., 2001, p.154), whereas cluster permutation non-uniqueness
specifically applies to C-ICA. Cluster permutation non-uniqueness im-
plies that cluster labels cannot be uniquely defined as the order of the
clusters is arbitrary. Note that this source of non-uniqueness – also
known as the label switching problem – holds for almost all existing
clustering procedures.

2.2. Relationships to other (clustering) models for multi-subject data

C-ICA bears interesting relationships to other analysis methods for
multi-subject data. The analysis methods most closely related to C-ICA
will be discussed here. These methods fall into two main categories: ICA
procedures that do not involve clustering and procedures that combine
clustering with ICA or a similar decomposition method. Note that
methods that incorporate clustering in ICA but only can be applied to
single-subject fMRI data, like Mixture ICA (Lee et al., 2000), subspace
ICA (De Ridder et al., 2000) and NSMM-ICA (Zhu and Hunter, 2019),
will not be discussed. Also, methods that aim at clustering voxels, brain
regions or ICA components instead of subjects, like ICASSO (Himberg
et al., 2004) and self-organizing Group ICA (Esposito et al., 2005), will
not be considered.

2.2.1. ICA procedures without a clustering procedure
In order to extract RSNs from multi-subject rs-fMRI data (see Fig. 1),

several ICA analysis strategies can be used (for an overview see, Cal-
houn et al., 2009). These strategies mainly differ in whether the RSNs
(i.e., 𝐒) and/or the time courses (i.e., 𝐀) are allowed to be specific for
each subject or are restricted to be representative for an a priori defined
group of subjects. Three of those strategies, relevant for a theoretical
comparison to C-ICA, are discussed below.
3

Subject specific RSNs and time courses. The first analysis strategy
for multi-subject brain data consists of performing ICA to the data
of each subject separately. A possible nuisance of such a strategy is
that different RSNs and time courses for each subject are obtained,
which necessitates a computationally intensive post-hoc matching of
RSNs across subjects in order to identify systematic differences and
similarities in shared RSNs between subjects. Indeed, obtaining a one-
to-one matching of RSNs across multiple subjects is a tedious endeavour
as, due to the model ambiguity (i.e., component permutation non-
uniqueness) of ICA (see Appendix B), RSNs and associated time courses
are arbitrarily and differently ordered across subjects. Note that such a
post-hoc matching step boils down to a Linear Sum Assignment Problem
(LSAP) for which some algorithm was proposed by Kuhn (1955). As
a second nuisance, applying the separate ICA’s analysis strategy may
complicate the detection of shared RSNs as these shared RSNs may
become overshadowed by the presence of multiple unique subject-
specific RSNs. An example of such a strategy is shown in Calhoun et al.
(2001a); the authors performed ICA separately on each subject and
manually labelled the estimated RSNs.

Note that when these subject specific RSNs are labelled properly,
one could form a ‘group’ RSNs by simply averaging the RSNs across
subjects. Here, the groups should be known a priori and thus no
data-driven clustering (i.e., unsupervised) of subjects is performed.
As mentioned before, performing ICA on each subject separately is
equivalent to performing C-ICA with 𝑅 = 𝐼 .

Group RSNs and subject specific time courses. A second analysis strat-
egy is Group ICA (Guo and Pagnoni, 2008; Calhoun et al., 2009).
In Group ICA, multi-subject fMRI data (after possibly pre-processing
and reducing the data dimensionality by means of PCA) of subjects
belonging to the same – a priori known – group (e.g., disease subtype
or neurofunctional subtype) are concatenated in the temporal domain
and ICA is performed on the concatenated data matrix.

Here, each subject is characterized by a set of RSNs that are shared
by all subjects belonging to the same group and a subject specific set
of associated time courses. Often, a back-reconstruction step (Calhoun
et al., 2001b; Erhardt et al., 2011) or dual regression procedure (Beck-
mann et al., 2009; Nickerson et al., 2017) is employed in order to
project the estimated group RSNs to each subject’s data space, resulting

in a different set of RSNs for each subject.
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Contrary to single subject ICA, a one-to-one comparison of RSNs
and associated time courses across (groups of) subjects is possible and
straightforward as these RSNs are uniquely ordered because of their
link with the group RSNs, which as such accounts for the aforemen-
tioned ICA model ambiguity.

Note that performing Group ICA is equivalent to performing C-ICA
with a single cluster (𝑅 = 1) and thus does not involve a clustering of
the subjects. By performing Group ICA on (known) groups of subjects
separately, Group ICA allows to study heterogeneity in RSNs between
a priori known groups. C-ICA, however, enables researchers to identify
unknown subject groups and to study RSNs heterogeneity between
these unknown subject groups that are hidden in the data.

Group RSNs and Group time courses. A third method is Tensor Proba-
bilistic ICA (Tensor PICA) which was proposed by Beckmann and Smith
(2005). In Tensor PICA, multi-subject fMRI data is decomposed as a
trilinear product of group spatial maps, associated group time courses
and subject specific weights. Consequently, Tensor PICA results in a
set of RSNs representative of the whole group and a set of associ-
ated time courses that, due to multiplication with the subject specific
weights, are allowed to differ between the group members but only in
a restrictive way. In particular, the time courses are constrained to be
proportional to each other (i.e., parallel profiles), which, in general, is
too restrictive for rs-fMRI data as large differences in brain functioning
between subjects can be expected when imaging the brain at rest. C-
ICA, as opposed to Tensor PICA, does not pose any restriction on the
subject specific time courses. Moreover, unlike Tensor PICA and the
other abovementioned ICA strategies, C-ICA involves a clustering of the
subjects in order to capture heterogeneity between subjects (clusters)
in RSNs.

2.2.2. Clustering procedures
Clusterwise Simultaneous Component Analysis (De Roover et al.,

2012b), which – as C-ICA – especially aims at clustering multivariate
multi-subject data, is a first clustering method that will be discussed.
This method combines clustering with Simultaneous Component Anal-
ysis (SCA; Millsap and Meredith, 1988; ten Berge et al., 1992; Timmer-
man and Kiers, 2003), which can be conceived as a method for group
PCA (i.e., the PCA counterpart of Group ICA). When concatenating the
data of subjects along the temporal dimension, SCA estimates a loading
matrix (i.e., source matrix in ICA) and subject specific component score
matrices (i.e., mixing matrices in ICA). By combining clustering with
SCA, Clusterwise SCA is able to partition the subjects into homogeneous
clusters such that the subjects within each cluster are characterized
by the same (cluster specific) component loading matrix. Note that
the data can also be concatenated along the spatial dimension, like in
temporal Group ICA, resulting in (cluster specific) component scores
and subject specific component loadings.

A major difference with C-ICA is that in (Clusterwise-) SCA the
components (i.e., RSNs in ICA) are only assumed to be orthogonal
– which is closely related to uncorrelated – but not, as in (C-)ICA,
non-Gaussian and statistically independent. As a consequence, the com-
ponents in (Clusterwise-) SCA often have a distribution that is closer
to a Gaussian distribution than the components obtained with C-ICA.
Therefore, as also demonstrated in Durieux and Wilderjans (2019),
(Clusterwise-) SCA is not able to retrieve meaningful RSNs from rs-fMRI
data. Indeed, previous studies (e.g., Beckmann et al., 2005) showed that
relevant RSNs can successfully be uncovered with ICA based methods
that search for independent components. This is presumably due to
the non-Gaussian properties and mutually statistical independence of
the estimated ICA components/RSNs, which implies that imposing the
independence restriction is necessary to retain relevant brain related
RSNs.

A second clustering method related to C-ICA is Clusterwise Parafac
(Wilderjans and Ceulemans, 2013), which, as Clusterwise SCA, com-
bines clustering with component analysis. Similar as in Clusterwise SCA
4

and C-ICA, Clusterwise Parafac clusters the subjects into homogeneous
groups. A difference for this method is that the data within each cluster
are modelled with Parafac (Harshman, 1972; Harshman and Lundy,
1994) instead of with SCA or (Group) ICA. Similar as in Tensor PICA,
the Parafac model decomposes a three-way data array into a trilinear
combination of time courses, RSNs and subject specific weights (for an
interesting discussion about the similarities and differences between
Tensor PICA and Parafac for multi-subject fMRI data, see Stegeman,
2007). Here, as is true for Tensor PICA, the subject specific weights
constrain the time courses of the subjects to be proportional to each
other.

However, similar as in Clusterwise SCA, the components that are
obtained by Clusterwise Parafac are not assumed to be non-Gaussian
and statistically independent, which implies that Clusterwise Parafac
will not easily capture meaningful brain related RSNs. Moreover, Clus-
terwise Parafac, like Tensor PICA, is too strict for rs-fMRI data as one
cannot expect that the differences in brain functioning between subjects
in rest can be fully captured by proportional time courses.

A third related method is two-step clustering (Durieux and Wilder-
jans, 2019). This method consists of a two-step procedure in which
subjects are partitioned based on the RSNs underlying their rs-fMRI
data. In the first step, a single subject ICA – with a fixed number of
RSNs – is performed on each subject’s data separately in order to obtain
subject specific RSNs. In the second step, for each pair of subjects,
the similarity between the RSNs of the pair members is computed by
means of the modified RV-coefficient, which is a correlation statistic for
matrices (Smilde et al., 2009). Note that this statistic circumvents the
aforementioned component/RSN permutation model ambiguity. That
is, the modified RV-coefficient computes the agreement between the
two subspaces spanned by the RSNs of pair members and is invariant
under permutations of the RSNs. Next, a hierarchical clustering is
performed on the pairwise (dis)similarities in order to partition the
subjects in homogeneous groups based on similarities and differences
in RSNs.

Drawbacks of this two-step procedure are that several arbitrary
choices have to be made that seriously may impact the resulting clus-
tering (e.g., which measure to compute similarity and which method
to cluster the similarity matrix) and that the estimation is performed
in a sequential fashion in that the RSNs are obtained separately from
the subject clusters. Such a sequential procedure, which is known in
the literature as tandem analysis, does not guarantee that the extracted
RSNs are optimal for clustering the subjects (De Soete and Carroll,
1994; Arabie and Hubert, 1996; Vichi and Kiers, 2001; Timmerman
et al., 2010; Steinley et al., 2012). Because RSN extraction (first) and
clustering (second) are performed in two separate/sequential steps it
is not guaranteed that the RSNs that contain cluster information are
extracted and, as a consequence, the true clusters are disclosed. Indeed,
in the RSN extraction (first step) the optimized loss function is not
aimed at clustering. Hence, a suboptimal estimation of RSNs in step
1 could lead to a suboptimal clustering in step 2. C-ICA, however,
simultaneously estimates the subject clusters, RSNs and time courses
in an optimal way (see Section 3.2). Here, potentially suboptimal
estimated RSNs can be corrected during the iterations of the C-ICA
algorithm. In the simulation studies (see Section 4.3), this two-step
method will be compared to C-ICA.

A fourth method is Generalized RAICAR (Yang et al., 2012). This
method allows for a discovery of sub-groupings of subjects based on the
reproducibility of ICA components; this is investigated by performing
ICA on the same data set using different starting conditions or apply-
ing ICA on bootstrapped data sets. In this method, multiple fastICA
analyses are performed on the (bootstrapped) data of each subject and
a large similarity matrix is computed that represents both the intra-
subject and inter-subject similarities between components. In a next
step, components are matched across all subjects in order to produce a
set of ’group-level’ aligned components. Non-parametric permutation
tests are then used to estimate the confidence level of assigning a

subject specific component to a group level aligned component, which
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indicates the relevance of a person’s component for each group-level
assigned component. This implies that for each group-level aligned
component, multiple subject level components may pass the threshold
and that the associated subjects may reflect a possible sub-group within
the data. A difference between Generalized RAICAR and C-ICA is that
a subject may belong to different sub-groups as his/her components
may be linked to different group-level aligned components, whereas
in C-ICA subjects are restricted to belong to a single cluster only.
Hence, Generalized RAICAR and C-ICA aim at achieving a different
goal. Moreover, no explicit clustering procedure is actually performed
in this method (i.e., no objective function is minimized). In C-ICA,
however, a single subject partitioning is estimated by minimizing a
least squares loss function (see Section 3.1).

3. Data analysis

3.1. Aim of C-ICA and loss function

Given multi-subject rs-fMRI data 𝐗𝑖 (𝑇 time courses × 𝑉 voxels)
for subject 𝑖 (𝑖 = 1,… , 𝐼 subjects), as presented in Fig. 1, and a pre-
specified number of clusters 𝑅 and independent RSNs 𝑄, the aim of

-ICA3 is to estimate a partitioning matrix 𝐏 (𝐼 × 𝑅), subject specific
ixing matrices 𝐀𝑖 (𝑇 × 𝑄) (𝑖 = 1,… , 𝐼) and cluster specific RSNs 𝐒𝑟

𝑄 × 𝑉 ) (𝑟 = 1,… , 𝑅) such that the C-ICA loss function is minimized:

(𝐏,𝐒𝑟,𝐀𝐢) =
𝐼
∑

𝑖=1
‖𝐗𝑖 −

𝑅
∑

𝑟=1
𝑝𝑖𝑟𝐀𝑖𝐒𝑟‖2 (2)

Moreover, in accordance with the C-ICA model (see Eq. (1)), the
RSNs within each cluster 𝐒𝑟 should be (maximally) mutually statistical
ndependent and non-Gaussian (although one single RSN – at most –
er cluster is allowed to be Gaussian, see Hyvärinen, 1999; Hyvärinen
t al., 2001). Note that by minimizing the loss function from Eq. (2),
ubjects are clustered and for each cluster a different subspace is
etermined that optimally approximates the data of that cluster in a
east squares sense. By requiring 𝐒𝑟 to be (maximally) independent

and non-Gaussian, the RSNs (i.e., ICA components) that determine the
subspace of each cluster can be identified, herewith allowing the RSNs
to be different between subject clusters.

Before analysing a data set with C-ICA, it is advised to pre-process
the data by column-wise centring each data block 𝐗𝑖. As a consequence,
for each voxel, the data has a mean of zero across time. Moreover, it
is advised to normalize each data block such that each data block has
an equal amount of variability. This is simply achieved by multiplying
each element of a data block by the square root of a common integer
(e.g., 1000) divided by the sum of squared elements of a data block:
𝐗𝑖 ×

√

1000
‖𝐗𝑖‖2

. The rationale for this normalization step is that there are
sually large scale differences in the observed BOLD response between
ata blocks, which are arbitrary and are not related to the actual RSNs
f interest. The normalization of each data block results in an equal
um of squares for each data block, and therefore, ensures that one
articular (subject) data block does not dominate any other data block
n the analysis (Wilderjans et al., 2009). Note that this block scaling
ethod only removes scale differences between data blocks but keeps
ifferences within a data block intact, like between voxel differences
n the variability of the BOLD response. Note that the loss function
rom Eq. (2) is minimized for a fixed (given) value of 𝑅 and that an
ptimal solution with a larger value of 𝑅 will always fit the data better
r at least as good (i.e., have a smaller or at least equal value of the loss
unction from Eq. (2)) than an optimal solution with a smaller 𝑅 value.

similar reason applies to the number of components 𝑄. The optimal
alue of 𝑅 and 𝑄, therefore, is determined by a separate model selection

3 With the term C-ICA we mean the procedure/algorithm that estimates the
arameters of the C-ICA generative model (for a given value of 𝑅 and 𝑄) as
escribed in Section 2.1.
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rocedure (see Section 3.3) that balances the fit of the model to the data
ith model complexity (which partially depends on the value of 𝑅). As

uch, optimizing 𝑅 and 𝑄 is not part of the C-ICA algorithm (presented
n Section 3.2), which prevents the algorithm from always selecting the
rivial solution with 𝑅 = 𝐼 clusters, which will always yield the lowest
oss function value.

.2. Alternating Least Squares (ALS) algorithm for C-ICA

In order to achieve an optimal subject clustering with the C-ICA
odel and to determine the associated subject specific mixing matrices

nd cluster specific RSNs, an Alternating Least Squares (ALS) type
f algorithm is constructed. Here, the algorithm alternates between
pdating partitioning matrix 𝐏 (conditionally upon 𝐀𝑖 and 𝐒𝑟) and re-
stimating the ICA parameters 𝐀𝑖 and 𝐒𝑟 (conditionally upon 𝐏) until

convergence is reached. Note that the most famous algorithms for k-
means clustering also imply alternatingly (conditionally) updating the
clustering and (conditionally) re-estimating the parameters (i.e., cen-
troids) per cluster. Note further that each updating step results in the
loss function from Eq. (2) decreasing or staying the same (which implies
convergence). More specifically, the C-ICA algorithm consists of the
following four steps:

1. Initialize partition matrix 𝐏. Here, each subject data block 𝑖
(𝑖 = 1,… , 𝐼) is allocated to one of the clusters, with each
data block having the same probability of being assigned to
each cluster (i.e., 1

𝑅 ). Note that this procedure is repeated until
all clusters are non-empty (i.e., it is guaranteed that exactly 𝑅
clusters are obtained). As such, this procedure yields a starting
subject partition with more or less equally sized clusters. Besides
using a random initial partition, it is also possible to seed the
algorithm with a user-defined starting partition or to employ
a data-driven starting subject partition, like, for example, the
partition obtained from the procedure of Durieux and Wilderjans
(2019).

2. Estimate the C-ICA parameters for each cluster (conditionally
upon 𝐏). First, all data blocks 𝐗𝑖 that belong to cluster 𝐶𝑟 are
concatenated along the temporal dimension into a large matrix
𝐗𝑟. Next, spatial (Group) ICA by means of fastICA (Hyvärinen,
1999) with 𝑄 RSNs is performed on each of the concatenated
data blocks 𝐗𝑟 (𝑟 = 1,… , 𝑅) in order to estimate the C-ICA
parameters for each cluster (i.e., the 𝑄 cluster specific RSNs 𝐒𝑟
and the 𝑄 𝐀𝑖’s for the subjects 𝑖 of that cluster). Note that fastICA
implements ICA through the maximization of the negentropy of
the independent RSNs after – possibly – data reduction and a pre-
processing step known as whitening (for more information, see
Appendix A) and is performed using the R package ica (Helwig,
2018). Note, however, that other types of ICA implementations,
such as ICA that uses the Infomax algorithm (Bell and Sejnowski,
1995) can be used. Applying fastICA to 𝐗𝑟 (which is a concatena-
tion of the 𝐗𝑖’s of subjects 𝑖 belonging to cluster 𝐶𝑟) and asking
for 𝑄 RSNs (which is lower than the maximum number of RSNs
that could be extracted from 𝐗𝑟) results in the 𝐀𝑖’s and 𝐒𝑟 that
minimize ∑

𝑖∈𝐶𝑟
‖𝐗𝑖 − 𝐀𝑖𝐒𝑟‖2, with 𝐶𝑟 denoting the 𝑟th subject

cluster. Indeed, for small(er) 𝑄, fastICA involves a data reduction
(minimizing ‖𝐗𝑟−𝐀𝑟𝐒𝑟‖2 with 𝐀𝑟 being a large matrix consisting
of the concatenated 𝐀𝐢

′𝑠 of subject 𝑖 belonging to cluster 𝐶𝑟 and
the rank of 𝐀𝑟𝐒𝑟 being 𝑄) plus a whitening step along with a
rotation step (in which negentropy is maximized) to find the
independent RSNs for cluster 𝐶𝑟 As a consequence, applying
fastICA to each 𝐗𝑟 will decrease the loss function (Eq. (2)) and
will retain the RSNs for each cluster. After computing the cluster
specific C-ICA parameters, the C-ICA loss function is evaluated.



Journal of Neuroscience Methods 382 (2022) 109718J. Durieux et al.

r
t
b
B
1
o
p
p
t
a
t
a
A
r
b
s
s
c
A
c
t
r
s
s
o
l
r
t
r
C

r
E
e

3. Update partition matrix 𝐏 subject (data block) by subject (data
block) conditionally upon 𝐀𝑖 and 𝐒𝑟. Here, the optimal cluster
membership for data block 𝐗𝑖 is determined by evaluating for
each cluster 𝐶𝑟 the fit of the data block 𝐗𝑖 under consideration to
that cluster by means of the partition criterion 𝐿𝑖𝑟 = ‖𝐗𝑖−𝐗̂(𝑟)

𝑖 ‖

2;
each data block 𝐗𝑖 is assigned to the cluster 𝐶𝑟 (𝑟 = 1,… , 𝑅) for
which 𝐿𝑖𝑟 is minimal. More specifically, for each data block 𝐗𝑖
and each cluster 𝐶𝑟 an estimated 𝐗̂(𝑟)

𝑖 is computed through the
formula 𝐗̂(𝑟)

𝑖 = 𝐀̂(𝑟)
𝑖 𝐒𝑟, where 𝐒𝑟 is given by the previous fastICA

estimate of 𝐒𝑟 in step 2 of the algorithm and 𝐀̂(𝑟)
𝑖 is computed

via 𝐀̂(𝑟)
𝑖 = 𝐗𝑖𝐒𝑟

𝑇 (𝐒𝑟𝐒𝑟𝑇 )−1 with (… )−1 denoting matrix inversion
and 𝐒𝑇 the transpose of a matrix; 𝐀̂(𝑟)

𝑖 is the associated mixing
matrix for subject 𝑖 when that subject is considered to belong to
cluster 𝐶𝑟 (𝑟 = 1,… , 𝑅). This reassignment step implies that the
C-ICA loss function (Eq. (2)) decreases or – when convergence
is reached – stays at the same value. Note that after reassigning
all subject data blocks to their optimal cluster, it could occur
that some clusters are empty. In order to avoid empty clusters,
a procedure is applied that puts the data block with the worst
fit into an empty cluster (when this creates a new empty cluster,
the next worst fitting data block is chosen). In particular, the
data block with the largest 𝐿𝑖𝑟 (for optimal 𝑅) is assigned to an
empty cluster. This procedure is continued until all clusters are
non-empty.

4. Convergence criterion. Steps 2 and 3 are repeated until the
decrease in the C-ICA loss function value (Eq. (2)) between
two evaluations is smaller than the convergence criterion (e.g.,
.000001). Note that, instead of an absolute, it is also possible to
choose a relative convergence criterion, like 𝐿

.000001 .4

Applying this ALS algorithm, which belongs to the class of block
elaxation algorithms, produces a nonincreasing sequence of loss func-
ion values (see Eq. (2)), which – due to the loss function being bounded
elow by zero – is convergent under mild conditions (de Leeuw, 1994).
ecause the C-ICA algorithm, as is true for almost all ALS (de Leeuw,
994) and clustering algorithms (Brusco, 2006), may yield a local
ptimal solution, a multi-start procedure is strongly advised. In this
rocedure, several different runs (e.g., 30) of the C-ICA algorithm are
erformed, each run starting with a different random initialization of
he partition matrix 𝐏. Additionally, in order to lower the risk of the
lgorithm ending in a suboptimal solution, it also makes sense to start
he algorithm with rational and pseudo-random starting partitions (for

discussion of different types of starts, see Ceulemans et al., 2007).
rational start can be obtained by using the subject partition that

esults from the two-step procedure (see Section 2.2) that was proposed
y Durieux and Wilderjans (2019). Specifically, in this procedure a
ingle-subject ICA with 𝑄 RSNs is performed on the data of each
ubject and the similarity in RSNs, quantified by the modified RV-
oefficient (Smilde et al., 2009), is calculated for each subject pair.

rational subject partition is next obtained by applying hierarchical
lustering using Ward’s method to these (dis)similarities and cutting
he resulting dendrogram such that 𝑅 clusters are retained. A pseudo-
andom start can be attained by perturbing the rationally obtained
tarting partition through assigning at random a small number of
ubjects – like 10% – to another cluster. After running a combination
f random, rational and pseudo-random starts, the solution with the
owest C-ICA loss function value (Eq. (2)) encountered across all runs is
etained as the final solution. The aim of this procedure is to minimize
he possibility that a local optimum of the C-ICA loss function is
etained. Note that an open source (pilot version of an) R-package for
-ICA is available on CRAN.5

4 After convergence, as an additional step, one can employ a back-
econstruction procedure (See Calhoun et al., 2001b; Beckmann et al., 2009;
rhardt et al., 2011) to project the cluster specific RSNs on the data space of
ach subject.

5 https://cran.r-project.org/web/packages/CICA/index.html.
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3.3. Model selection

When performing C-ICA, the number of clusters 𝑅 and number
of RSNs 𝑄 per cluster – which will be assumed to be equal across
clusters – should be specified a priori. In general, however, no a priori
information regarding the optimal number of clusters or RSNs per
cluster is present. A way to determine these numbers consists of running
C-ICA with increasing numbers of RSNs (e.g., from one up to seventy)
and clusters (e.g., from one up to six) and then use a model selection
heuristic to identify the optimal number of clusters and RSNs.

To address this problem, we propose to use a sequential model se-
lection procedure that consists of the following two steps: (1) determine
the optimal number of clusters 𝑅 and, next, (2) select, conditional upon
the optimal 𝑅, the optimal number of RSNs 𝑄 (for similar procedures,
see De Roover et al., 2012a; Wilderjans and Ceulemans, 2013). In both
steps, a procedure based on scree ratios is used to determine the optimal
number of clusters/RSNs in an automated way (Ceulemans and Kiers,
2006; Wilderjans et al., 2013). Here, for the first step, the scree ratio
for a certain number of clusters 𝑟 (keeping the number of RSNs fixed
at 𝑞) is computed as follows:

𝑠𝑟𝑟|𝑞 =
𝐿𝑟−1,𝑞 − 𝐿𝑟,𝑞

𝐿𝑟,𝑞 − 𝐿𝑟+1,𝑞
, (3)

where 𝐿𝑟,𝑞 is the C-ICA loss function value from Eq. (2) for a C-ICA
model with 𝑟 clusters and 𝑞 RSNs. Large 𝑠𝑟𝑟|𝑞 values are preferred
because such a large scree ratio value implies that a model with one
cluster less (𝑟−1) than the considered model fits the data substantially
worse (i.e., 𝑠𝑟𝑟|𝑞 has a large numerator), whereas a model with one
extra cluster (𝑟 + 1) does not fits the data considerably better (i.e., a
small denominator). After computing 𝑠𝑟𝑟|𝑞 in Eq. (3) for each possible
𝑟 (𝑟 = 𝑅𝑚𝑖𝑛 + 1,… , 𝑅𝑚𝑎𝑥 − 1) and each 𝑞 (𝑞 = 𝑄𝑚𝑖𝑛,… , 𝑄𝑚𝑎𝑥), the
optimal number of clusters 𝑅 is determined by averaging 𝑠𝑟𝑟|𝑞 over all
considered number of RSNs 𝑞 and selecting the number of clusters 𝑟 that
has the largest averaged 𝑠𝑟𝑟|𝑞-ratio. Note that a procedure based on the
scree ratio does not allow to select the smallest (i.e., 𝑅 = 𝑅𝑚𝑖𝑛) and
largest number (𝑅𝑚𝑎𝑥) of clusters considered, as the ratio is not defined
for these values. As such, 𝑅𝑚𝑎𝑥 should be chosen large enough and 𝑅𝑚𝑖𝑛
small enough such that the optimal 𝑟 is ensured to lie in between 𝑅𝑚𝑖𝑛
and 𝑅𝑚𝑎𝑥 (Wilderjans et al., 2013). Next, in the second step, conditional
upon the optimal number of clusters 𝑅 derived in step 1, the optimal
number of RSNs 𝑄 is determined by selecting the number of RSNs 𝑞
(𝑞 = 𝑄𝑚𝑖𝑛 + 1,… , 𝑄𝑚𝑎𝑥 − 1) that maximizes the following 𝑠𝑟𝑞|𝑅-ratio:

𝑠𝑟𝑞|𝑅 =
𝐿𝑞−1,𝑅 − 𝐿𝑞,𝑅

𝐿𝑞,𝑅 − 𝐿𝑞+1,𝑅
(4)

Also here, 𝑄𝑚𝑖𝑛 and 𝑄𝑚𝑎𝑥 cannot be selected by the model selection
procedure and should thus be chosen wisely in order to not miss the
optimal 𝑞.

Note that increasing either 𝑄 or 𝑅 cannot result in a decrease of fit
(i.e., a larger loss function value), unless, however, a very bad locally
optimal solution is retained. Such suboptimal solutions should either
be ignored or, preferably, restarted with more random, pseudo-rational
and rational starts in order to prevent the locally optimal solution
being retained. As a consequence, the numerator and denominator
of Eq. (4) will always be nonnegative. Also note that it can happen that
no clusters are present in the data (i.e., true 𝑅 = 1). In order to check
whether this might be the case, the mean modified-RV can be computed
between RSNs across cluster pairs (for 𝑅 > 1). Here, a mean modified-
RV close to one (i.e., all cluster-specific 𝐒𝑟 being almost identical) might
be an indication that there is no cluster structure present in the data.
Finally, as in all model selection procedures, the final decision about
model retention should also be based on the interpretability of the
C-ICA solution.

https://cran.r-project.org/web/packages/CICA/index.html
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4. Validation of the C-ICA method

In this section, in order to validate the C-ICA method, four simula-
tion studies are presented that vary in the degree to which the fMRI
data are realistically simulated (i.e., contain properties of empirical
fMRI data). The rationale and principles behind these four simulation
studies align with the five principles (i.e., declaration of intent, fairness
to used model, control of key aspects, start with simplicity and increase
complexity gradually and make realistic simulations) discussed in Silva
et al. (2014). Furthermore, in a fifth study, the proposed sequential
procedure for selecting the optimal number of clusters and RSNs (see
Section 3.3) is investigated. In the first simulation study, the C-ICA
algorithm is evaluated with respect to its ability to correctly estimate
the subject clusters and the underlying cluster specific RSNs and subject
specific time courses in relatively easy clustering situations. Also, the
influence of several systematically varied data characteristics on the
recovery performance of C-ICA is studied and C-ICA’s performance is
compared to two other clustering procedures.

In the second simulation study, the C-ICA algorithm is evaluated on
more realistically simulated resting-state fMRI data. In particular, RSNs
are generated based on a template with existing RSNs (e.g., the default
mode network; DMN), time courses are simulated with fluctuation
frequencies commonly encountered in resting-state time courses and
more realistic error structures are used to generate the noise in the data.

In the third study, C-ICA is evaluated in situations in which the
clustering is harder to uncover from the data. Here, data sets with
spatially overlapping cluster specific RSNs and noise patterns that
obfuscate the true simulated clustering are generated. Moreover, the
performance of the C-ICA algorithm is compared to the aforementioned
two-step clustering procedure developed by Durieux and Wilderjans
(2019) and also to a variation of that approach using Group ICA plus
dual regression instead of separate subject-specific ICAs.

In the fourth study, a multi-subject rs-fMRI data set is generated
by selecting data from an existing empirical rs-fMRI data set such that
two groups of subjects are created that substantially vary in underlying
RSNs. By adopting this data selection strategy, C-ICA is performed
and compared to the two other clustering procedures on empirical
(non-simulated) data in which a clear two-group cluster structure is
present.

Finally, in a fifth study, the sequential model selection procedure
from Section 3.3 is tested on some of the generated data sets from the
second simulation study. The goal of the fifth study is to see whether
the proposed model selection procedure is able to select the correct
number of RSNs and clusters underlying a (simulated) data set. Note
that all R-code for conducting the simulation studies can be found
online at https://github.com/jeffreydurieux/cica_simulation

4.1. Simulation study 1

4.1.1. Problem
In the first simulation study, data were generated under a C-ICA

model with a – known – true number of clusters 𝑅 and a true number
of independent RSNs 𝑄 and these generated data sets were subjected to

C-ICA analysis using only the true number of clusters 𝑅 and RSNs 𝑄.
First, it is investigated to which extent the C-ICA algorithm succeeds
in avoiding local optimal solutions. Secondly, the C-ICA algorithm is
evaluated with respect to goodness of recovery, that is, whether (1)
the clustering of the subject data blocks (𝐏) is successfully recovered,
(2) the cluster specific RSNs 𝐒𝑟 are correctly disclosed and (3) the time
ourses 𝐀𝑖 are accurately retrieved.

Furthermore, it is examined whether the performance of the algo-
ithm depends on characteristics of the data (e.g., the number of voxels)
nd/or on the complexity of the true underlying C-ICA model (e.g., the
umber of underlying clusters/RSNs) and/or on the amount of noise
n the data. Based on previous research, expectations are that the C-
7

CA algorithm will perform better when the data contain more time
points (i.e., realized samples of the independent RSNs) as this implies
more available information (Brusco and Cradit, 2005; De Roover et al.,
2012b). Furthermore, it can be postulated that the goodness of recovery
will deteriorate with increasing complexity (i.e., more clusters and
independent RSNs) of the underlying C-ICA model (Milligan et al.,
1983; De Roover et al., 2012b; Wilderjans et al., 2012a,c, 2017) and
when the data contain more noise (Wilderjans et al., 2008, 2011,
2012b; De Roover et al., 2012b; Wilderjans and Ceulemans, 2013).

Finally, focusing on the recovery of the clustering, the C-ICA per-
formance is compared to the performance of the two step procedure
of Durieux and Wilderjans (2019) and a Group ICA with dual regression
procedure with an additional clustering step.

4.1.2. Design and procedure
In order to not have an overly complex design, the number of

subjects was fixed at 40 and only clusters of equal size (i.e., 40 divided
by the number of clusters 𝑅) were considered. Furthermore, five factors
were systematically varied in a full five-factorial randomized design in
which all factors were considered as random factors (i.e., the selected
values for each factor were considered as sampled at random from a
wider population of possible levels for that factor):

1. Number of voxels 𝑉 , at two levels: 500 and 2000;
2. Number of (share) independent components or RSNs 𝑄, at three

levels: 2, 5 and 20;
3. Number of (equally sized) clusters 𝑅, at two levels: 2 and 4;
4. Dimension of the mixing matrices 𝐀𝑖 (𝑇 × 𝑄), which affects

the number of time points 𝑇 , at 2 levels: square (𝑇 = 𝑄) or
non-square (𝑇 = 100);

5. The amount of Gaussian and independent noise 𝜖 in the data, at
three levels: 5%, 20% and 40%.

With regard to the fourth factor, in the case of a square mixing
atrix, the dimensions of all subject specific 𝐀𝑖’s depend on the number

f independent RSNs 𝑄 (i.e., 𝐀𝑖 has dimensions either 2 × 2, 5 × 5
r 20 × 20). In the non-square conditions, however, the number of
bserved mixtures (i.e., time points 𝑇 ) was held constant at 100, a
umber larger than the number of independent RSNs, resulting in the
ixing matrices having dimensions either 100 × 2, 100 × 5 or 100 × 20.
he subject specific mixing matrices 𝐀𝑖 were generating by drawing val-
es at random and independently from a uniform distribution 𝑈 (−2, 2).
ote that in empirical practice, the dimensionality of the data is often

educed with PCA before performing ICA, which results in a square ICA
ixing matrix.

Furthermore, as in the general ICA model, the C-ICA model assumes
hat the independent RSNs are non-Gaussian. Therefore, the 𝑄 RSNs
or a particular cluster specific 𝐒𝑟 were independently generated from
double exponential distribution, which implies a super-Gaussian dis-

ribution (i.e., a distribution where most voxels will have activation
evels near zero), with a rate parameter 𝜆 =

√

2. We simulated from
his particular distribution since it provides a good representation of
SNs encountered in empirical research (Calhoun and Adalı, 2006;
shby, 2011). To this end, the R function icasamp() from the ica

package (Helwig, 2018) was used. This function ensures that the gen-
erated RSNs are independent and non-Gaussian and have a mean of
zero. Next, the independent RSNs were mixed with the subject specific
mixing matrices 𝐀𝑖 according to the C-ICA model from Eq. (1), resulting
in the true data blocks 𝐓𝑖.

Later, a noise matrix 𝐄𝑖 (𝑇 × 𝑉 ) was added to each true data block
𝐓𝑖 (𝑇 ×𝑉 ), with 𝐓𝑖 = 𝐀𝑖 𝐒𝑟 and 𝑟 denoting the cluster to which subject 𝑖
belongs. Here, each noise matrix 𝐄𝑖 was constructed by independently
drawing numbers from  (0, 1). Next, the noise matrices were rescaled
such that their sum of squared entries (SSQ) equalled the SSQ of the
corresponding noiseless data block 𝐓𝑖. After equalling the SSQ of the
noiseless data and the noise matrix, an appropriate rescaling of 𝐄𝑖

ensures that all data blocks 𝐗𝑖 contain the required percentage of noise.

https://github.com/jeffreydurieux/cica_simulation


Journal of Neuroscience Methods 382 (2022) 109718J. Durieux et al.

√

a

t
t
b
t
t
i
l
=
c

c
o
l
t
p
r
m
m
1
t
l

t
r
c
R
a
(
f
o
f
s
c
a
c
b
t

a
a
i
p
c
w
a
f
o
n
(
a
v
N
R
t
(
a

i
R
d
t
a
e
d

More specifically, a weight parameter 𝑤 was used to manipulate the
percentage of noise in the data blocks 𝐗𝑖 = 𝐓𝑖 + 𝑤𝐄𝑖, where 𝑤 =

𝑛𝑜𝑖𝑠𝑒
1−𝑛𝑜𝑖𝑠𝑒 and 𝑛𝑜𝑖𝑠𝑒 equals .05, .20 and .40 for the desired percentage of

noise of 5%, 20% and 40%, respectively. Note that the noise percentage
levels of 5%, 20% and 40% used in the current procedure refer to a
signal to noise ratio of 19, 4 and 1.5, respectively, which is defined here
as 1−𝑛𝑜𝑖𝑠𝑒𝑙𝑒𝑣𝑒𝑙

𝑛𝑜𝑖𝑠𝑒𝑙𝑒𝑣𝑒𝑙 (with the noise level being expressed as a proportion).
Lastly, for each cell in the five-factorial design, 10 replication data

sets were generated. Thus, in total, 2 (number of elements) × 3 (number
of independent RSNs) × 2 (number of clusters) × 2 (dimension of
mixing matrix) × 3 (error) × 10 (replications) = 720 C-ICA data sets
were generated. Each data set was analysed with the C-ICA algorithm
with true 𝑅 and 𝑄 and with 30 random starts, and the solution with the
lowest value on the C-ICA loss function L (see Eq. (2)) was retained.

All 720 data sets were also analysed, using the true 𝑅 and 𝑄, with
the two step procedure of Durieux and Wilderjans (2019) using Ward’s
hierarchical clustering method and subjected to a Group ICA plus dual
regression analysis with an additional hierarchical clustering step using
Ward’s method. As Group ICA plus dual regression does not produce
a clustering of the subjects, we computed for each subject pair the
modified-RV coefficient between the RSNs of the pair members and sub-
jected the resulting dissimilarity matrix to Partitioning Around Medoids
(PAM) and Ward’s hierarchical clustering with 𝑅 = 2. This procedure is
the same as the two step procedure of Durieux and Wilderjans (2019)
with the only difference being that in the latter procedure the input
RSNs are based on single subject ICA’s instead of on (subject specific)
RSNs obtained by Group ICA plus dual regression (see Fig. 5).

4.1.3. Results
Local optima of the C-ICA loss function. Two indications can be used

to determine whether or not the C-ICA algorithm returned a local
optimal solution. First, a solution that is locally optimal is not expected
to be retained in many of the multiple (random) starts of the algorithm.
As a consequence, encountering the optimal solution across most of the
multiple starts increases the probability that this solution is globally
optimal. Second, a solution retained by C-ICA is for sure only locally
(and not globally) optimal when it has a loss function value that is
larger than the loss function value from the solution that is obtained
by seeding the C-ICA algorithm with the true clustering (which in the
case of a simulation is known). Note that the second indication can be
considered a sanity check for the C-ICA algorithm. Regarding the first
indication, for each simulated data set, we computed the percentage
of multi starts that yielded the same solution as the solution retained
by C-ICA (which is the solution with the lowest loss value across the
30 random starts). As can be seen from Table 1, the mean percentage
across all simulated data sets equals 77.30% (SD = 22.70%). This
indicates that, for our data, a relatively large proportion of random
starts ends up in the same optimal solution. Note that the percentage
decreases, meaning the algorithm has more difficulties to avoid local
minima, when the dimension of the mixing matrix is square (mean
is 68.61%) compared to non-square (mean is 85.98%) and when the
amount of noise present in the data increases (means are 80.63%,
77.06% and 74.21% for 5%, 20% and 40% of noise, respectively). With
respect to the second indication, for all 720 simulated data sets except
one,6 the solution retained by C-ICA has a loss function value that is
lower or equal to the loss function value of the solution (before and
after ALS iterations) that is obtained by running C-ICA analyses with
the true subject partition as a rational start. In fact, when seeding C-
ICA with the true partition, ALS iterations did not improve this true
partitioning. In sum, these results suggest that the C-ICA algorithm, for
the current simulation study (with relatively easy clustering situations),
does not suffer from a serious local optima problem.

6 For this data set, the algorithm did not converge to the global minimum
nd the associated ARI equals .933.
8
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Recovery of the clustering of the data blocks (𝐏). In order to evaluate
he goodness of recovery for the clustering of the subject data blocks,
he Adjusted Rand Index (ARI; Hubert and Arabie, 1985) is computed
etween the true partition of the data blocks and the estimated parti-
ion (i.e., the partition that yields the lowest loss function value across
he 30 random starts used). The ARI equals 1 if two partitions are
dentical and 0 when the overlap between both partitions is at chance
evel. The overall mean ARI, across all 720 data sets, equals .9999 (SD

.0026). It can be concluded that the C-ICA algorithm recovers the
lustering of the data blocks to a very large extent.

To study how the recovery of the clustering of the data blocks
hanges as a function of the manipulated factors, Table 1 gives an
verview of the mean ARI (and standard deviation of ARI) for each
evel of the five manipulated factors. From this table, it can be seen
hat when the amount of noise is low or moderate (i.e., 5% or 20%), a
erfect recovery is encountered for each data set. Moreover, a perfect
ecovery of the simulated partitioning is achieved when the mixing
atrix is non-square. Finally, recovery decreases when the mixing
atrix becomes square (i.e., 𝑄 = 𝑇 ) instead of non-square (i.e., 𝑄 < 𝑇 =
00), when the number of RSNs and voxels becomes smaller and when
he number of clusters and the amount of noise in the data becomes
arger.
Recovery of the cluster specific independent RSNs 𝐒𝑟. To evaluate

he extent to which the true independent components or RSNs were
ecovered, for each RSN separately, the Tucker congruence coeffi-
ient (Tucker, 1951) is computed between the simulated independent
SN and the corresponding estimated independent RSN. To arrive at
single Tucker congruence value for each 𝐒𝑟, for each of the Q RSNs

i.e., columns of 𝐒𝑟) the Tucker value is computed (after accounting
or the C-ICA ambiguities, see further) and the mean across these Q
btained Tucker values is calculated. To obtain a single Tucker value
or each generated data set, the (mean) Tucker values of the cluster
pecific 𝐒𝑟 were averaged across the 𝑅 clusters. Tucker‘s congruence
oefficient equals the normalized inner product between two vectors
nd ranges from −1 to 1, with 1 indicating perfect recovery and 0
hance level. A value in the range of .85-.94 denotes a fair similarity
etween the two vectors, whereas a value of .95 or larger indicates that
he two vectors are very similar (Lorenzo-Seva and Ten Berge, 2006).

Determining the degree to which the simulated independent RSNs
re recovered by the estimated independent RSNs is not straightforward
s the C-ICA model suffers from four ambiguities (see Appendix B): scal-
ng ambiguity, reflectional ambiguity and component/RSN and cluster
ermutational freedom ambiguity. To take these ambiguities into ac-
ount when computing Tucker’s congruence, the following procedure
as followed: (1) the absolute value of the Tucker coefficient is taken to
ccount for reflectional freedom; (2) to account for the permutational
reedom of both the RSNs and the clusters, all possible combinations
f cluster and RSN permutations are considered and for each combi-
ation of these permutations the associated mean Tucker congruence
averaged across RSNs and 𝐒𝑟’s) is computed. Next, the combination of
cluster and a RSN permutation with the largest Tucker congruence

alue is retained and the associated averaged Tucker value is reported.
ote that as the Tucker coefficient is invariant under a scaling of the
SNs with a positive scalar, this coefficient automatically accounts for

he scaling ambiguity of the C-ICA model. By taking the absolute value
see reflectional ambiguity), also scaling with a negative number is
ccounted for.

As the overall mean Tucker congruence equals .9826 (SD = .0197),
t can be concluded that the C-ICA algorithm recovers the independent
SNs very good. The mean Tucker congruence value (and standard
eviation) for each level of each factor can be found in Table 1. From
his table it can be seen that the mean Tucker congruence varies as

function of the amount of error, with recovery deteriorating when
rror increases. Similar as for the partitioning recovery results, a small
eterioration in recovery of the independent RSNs is encountered when

he mixing matrix is square compared to non-square. Finally, recovery
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Table 1
Mean ARI (cluster recovery), Tucker’s congruence (cluster specific spatial maps 𝐒𝑟 and subject specific time courses 𝐀𝑖 recovery) and percentage multi-starts resulting in the same
lowest loss function value (and standard deviation) for each level of the manipulated factors of the first simulation study.

Factor Level ARI 𝐒𝑟 recovery 𝐀𝑖 recovery Percentage

Number of voxels 500 0.9998 (0.0036) 0.9754 (0.0235) 0.9809 (0.0210) 77.0278 (22.7216)
2000 1 (0.000) 0.9897 (0.0112) 0.9964 (0.0036) 77.5648 (22.7163)

Number of 2 0.9997 (0.0044) 0.9903 (0.0159) 0.9980 (0.0045) 62.3472 (30.6341)
RSNs 5 1 (0.0000) 0.9889 (0.0110) 0.9952 (0.0034) 88.9167 (12.0101)

20 1 (0.0000) 0.9685 (0.0223) 0.9727 (0.0211) 80.6250 (9.8491)

Number of 2 1 (0.0000) 0.9865 (0.0154) 0.9891 (0.0158) 84.1389 (20.6562)
Clusters 4 0.9998 (0.0036) 0.9795 (0.0229) 0.9881 (0.0180) 70.4537 (22.6244)

Dimension of the Square 0.9998 (0.0036) 0.9758 (0.0219) 0.9881 (0.0180) 68.6111 (27.0020)
Mixing matrix Non-square 1.000 (0.000) 0.9893 (0.0145) 0.9892 (0.0158) 85.9815 (12.3309)

Amount of noise 0.05 1.000 (0.000) 0.9895 (0.0132) 0.9909 (0.0132) 80.6250 (20.8474)
0.20 1.000 (0.000) 0.9847 (0.0151) 0.9895 (0.0151) 77.0556 (22.8356)
0.40 0.9997 (0.0044) 0.9735 (0.0252) 0.9855 (0.0210) 74.2083 (23.9580)

Overall 0.9999 (0.0026) 0.9826 (0.0197) 0.9886 (0.0169) 77.2963 (22.7047)
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also decreases when the number of voxels decreases and the number of
RSNs and clusters increases.

Recovery of the subject specific time courses 𝐀𝑖. In order to evaluate to
hat extent the time courses (i.e., mixing matrices) 𝐀𝑖 are recovered,
ucker’s congruence coefficient is computed between the simulated and
stimated mixing matrices. This measure is computed in a similar way
s was done for determining the recovery of the independent RSNs,
erewith also accounting for the C-ICA ambiguities (see Appendix B)
xcept for the cluster permutation non-uniqueness as the 𝐀𝑖’s are

subject specific and not cluster specific.
The mean Tucker congruence for the mixing matrices across all data

sets is .9886 (SD = .0169). Therefore, it can be concluded that the C-ICA
algorithm recovers the underlying time courses to a very large extent,
albeit to a slightly lesser extent than the independent RSNs. As can be
seen in Table 1, the recovery especially decreases when the number of
RSNs 𝑄 increases. Further, analogue to the results of the other recovery
indices, the time courses are recovered less accurately when the mixing
matrix is square (compared to non-square) and when the data contain
more noise, more clusters and less voxels.

Analysis of variance. To evaluate potential main and interaction
effects between the manipulated factors, three separate analyses of
variance (ANOVA) were performed. In these analyses, the aforemen-
tioned five factors pertaining to data characteristics (see Section 4.1.2)
were treated as between-subjects factors and the ARI and Tucker’s
congruence coefficients for the RSNs and the time courses were used
as the dependent variables (i.e., each outcome measure was used in a
separate ANOVA).

When discussing the results of these analyses, only significant effects
with a medium effect size as measured by the generalized eta squared
𝜂2𝐺 (Olejnik and Algina, 2003) are considered (i.e., 𝜂2𝐺 > .15). Main
effects and interaction effects from the ANOVA’s with 𝑝 < .05 and 𝜂2𝐺 >
.15 are displayed in Table 2 (for the recovery of the RSNs) and Table 3
(for the recovery of the time courses). Note that no results are presented
for the ANOVA with ARI as dependent variable as no significant main
and interaction effects were encountered for that outcome measure.
This is caused by the very large mean ARI’s – indicating the almost
perfect cluster recovery for all generated data sets – which results in a
negligible variation in ARI’s (see also Table 1).

From Table 2, which presents all significant main and interaction
effects with an effect size larger than .15, it appears that the recovery of
the cluster specific RSNs mainly depends on the number of components
(𝜂2𝐺 = .74) and to a lesser extent on the number of voxels (𝜂2𝐺 = .60),
the amount of noise present in the data (𝜂2𝐺 = .57) and the dimensions
of the mixing matrix (𝜂2𝐺 = .57); the number of clusters present in
the data only plays a minor role (𝜂2𝐺 = .22). However, as shown in
Table 2, these main effects are qualified by four two-way interactions.
First, as can be seen in the upper left panel of Fig. 2, the recovery of the
9

RSNs deteriorates when the number of components 𝑄 increase, but this s
Table 2
ANOVA table resulting from the ANOVA with Tucker congruence of the cluster specific
spatial maps 𝐒𝑟 as the dependent variable (first simulation study), considering only
significant (at 𝛼 = .05) main and interaction effects with an effect size 𝜂2𝐺 > .15.

Effect SS effect SS error DF
effect

DF
error

F 𝜂2𝐺

# voxels .036 .025 1 648 955.10 .60
# RSNs .071 .025 2 648 932.86 .74
# Clusters .007 .025 1 648 178.40 .22
Dim. mixing matrix .033 0.25 1 648 858.98 .57
Amount of noise .033 .025 2 648 428.18 .57

# voxels × .035 .025 2 648 453.67 .58
# RSNs
# Clusters × .005 .025 1 648 137.44 .17
Dim. mixing matrix
# Clusters × .005 .025 2 648 65.08 .17
Amount of noise
Dim. mixing Matrix × .022 .025 2 648 290.53 .47
Amount of noise

Note. Dim. mixing matrix = dimension of mixing matrix (square or non-square).

eterioration is slightly more pronounced when the data contain less
oxels (𝜂2𝐺 = .58). Further, the upper right panel of Fig. 2 shows that
he recovery of the RSNs becomes worse when noise intensifies, with
his effect being more pronounced when the mixing matrix is square
ompared to non-square (𝜂2𝐺 = .47). Next, as presented in the bottom
eft panel of Fig. 2, the decline of the recovery due to the increase of
oise ameliorates when less clusters are present in the data (𝜂2𝐺 = .17).
inally, the bottom right panel of Fig. 2 demonstrates that the recovery
f the RSNs deteriorates slightly when the number of clusters increases
nd that this effect is more obvious when the mixing matrix is square
nstead of non-square (𝜂2𝐺 = .17).

In Table 3, the significant main and interaction effects with an effect
ize larger than .15 are presented for the ANOVA on the recovery of the
ime courses. It appears from this table that, in terms of main effects,
he recovery of the subject specific time courses mainly depends on
he number of RSNs (𝜂2𝐺 = .89), number of voxels (𝜂2𝐺 = .79) and the
mount of noise present in the data (𝜂2𝐺 = .25). These main effects,
owever, are qualified by two two-way interactions (see Table 3 and
ig. 3). Similar as for the recovery of the spatial maps, the recovery of
he subject specific time courses depends on the interaction between the
umber of voxels and the number of RSNs (𝜂2𝐺 = .80). More specifically,
s showed in the left panel of Fig. 3, the mean Tucker congruence
ecreases when the number of RSNs increases, but this decrease is more
ronounced when the number of voxels is low. Finally, the second two-
ay interaction effect pertains to the effect of the number of RSNs and

he amount of noise in the data (𝜂2𝐺 = .21). Here, as shown in the
ight panel of Fig. 3, the recovery of the subject specific time courses
ecreases when there is more noise in the data, but this decrease is

tronger when more RSNs are present in the data.
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Fig. 2. Four two-way interaction effects from the analysis of variance of the first simulation study with Tucker’s congruence coefficient between the simulated and estimated RSNs
as outcome variable: (upper left panel) Congruence as a function of the number of simulated RSNs and the number of voxels; (upper right panel) Congruence as a function of
the percentage of noise added to the data and the dimension of the mixing matrix (either square or non-square); (bottom left panel) Congruence as a function of the percentage
of noise and the number of underlying clusters in the data; (bottom right panel) Congruence as a function of the dimension of the mixing matrix and the number of underlying
clusters. Error bars represent two times the standard error (SE).
Fig. 3. Two two-way interaction effects from the analysis of variance of the first simulation study with Tucker’s congruence coefficient between the simulated and estimated time
courses as outcome variable: (left panel) Congruence as a function of the number of voxels and the number of simulated RSNs; (right panel) Congruence as a function of the
percentage of noise added to the data and the number of simulated RSNs. Error bars represent two times the standard error (SE).
Table 3
ANOVA table resulting from the ANOVA with Tucker congruence of the subject specific
time courses 𝐀𝑖 as the dependent variable (first simulation study), considering only
significant (at 𝛼 = .05) main and interaction effects with an effect size 𝜂2𝐺 > .15.

Effect SS effect SS error DF
effect

DF
error

F 𝜂2𝐺

# voxels .043 .011 1 648 2502.59 .79
# RSN .092 .011 2 648 2661.89 .89
Amount of noise .003 .011 2 648 109.59 .25

# voxels × .045 .011 2 648 1306.80 .80
# RSN
# RSN × .003 .011 4 648 41.93 .21
Amount of noise

Note. Dim. mixing matrix = dimension of mixing matrix (square or non-square).

Comparison of C-ICA with two other clustering methods. Results indi-
cate that both the two-step method of Durieux and Wilderjans (2019)
and a cluster analysis based on results of Group ICA plus dual regression
recover the simulated clustering to a very large extent. The overall
mean ARI (computed over all 720 analyses) for the two-step method
10
using Ward’s hierarchical clustering equals 1 (SD = 0), indicating that
all simulated clusterings were correctly estimated irrespective of the
manipulated factors. These results are comparable to the results of C-
ICA (overall mean ARI = 0.9999; SD = 0.0026). The overall mean ARI
for Ward’s hierarchical clustering using information from a Group ICA
plus dual regression equals 0.7986 (SD = 0.2744), implying that this
procedure recovers the correct clustering to a substantially smaller ex-
tent than C-ICA. When the results were computed for each manipulated
factor, a strong effect was found for the dimension of the mixing matrix
factor. The mean ARI for data sets with a square underlying mixing
matrix equals 0.5973 (SD = 0.2637), whereas the mean ARI conditional
on a non-square mixing matrix equals 1 (SD = 0).

It can be concluded that for randomly simulated data the C-ICA
algorithm does not suffer from a serious local optima problem and
recovers the underlying clusters, RSNs and time courses to a very
large extent. Moreover, although for some data sets the difference
is negligible, C-ICA outperforms a cluster procedure based on the
results of Group ICA plus dual regression in terms of uncovering the
underlying clusters. C-ICA yields comparable results to the two-step
method of Durieux and Wilderjans (2019) for the current simulation
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study. A possible reason for these very good recovery results could be
that clusters were generated in such a way that they did have a very
small amount of spatial overlap in RSNs and thus are relatively easy to
uncover from the data and to separate from each other. The relatively
good performance of Group ICA plus dual regression and the two-step
clustering method can also be attributed to this. In the third simulation
study, therefore, we will generate data with noise that obfuscates the
true clustering and with cluster with more spatial overlap in RSNs.
We expect that the C-ICA performance will drop a (little) bit but that
the performance of the other two clustering methods will deteriorate
drastically.

4.2. Simulation study 2

4.2.1. Problem
In the second simulation study, C-ICA is evaluated on more re-

alistically simulated resting-state fMRI data and noise structures. As
in the previous simulation study, data were generated according to
the C-ICA model with a (known) true number of clusters 𝑅 and a
rue number of RSNs 𝑄. Contrary to the first simulation study, the
imulated time courses were not randomly generated numbers from a
niform distribution, but simulated rs-fMRI time courses that are often
bserved in empirical data. Moreover, instead of randomly generated,
he RSNs were simulated based on four existing functional connectivity
etworks that are described in Beckmann et al. (2005). Finally, more
ealistic error structures were used to generate the noise in the data.
n particular, besides Gaussian noise (as in the first simulation, see
ection 4.1), also autoregressive temporal and spatial noise structures
ere adopted. In this simulation, it is evaluated whether C-ICA – with

he true 𝑅 and 𝑄 – is able to recover the clustering of the patient data
locks (𝐏), the cluster specific RSNs (𝐒𝑟) and the subject specific rs-fMRI

time courses (𝐀𝑖) underlying the simulated data.

4.2.2. Procedure
For this simulation study, we fixed the following simulation param-

eters: the number of subjects 𝐼 at 30, the number of clusters 𝑅 at 3, the
umber of true shared RSNs 𝑄 at 4, the number of voxels 𝑉 at 4761
nd the number of time points (mixtures) 𝑇 at 150. Further, we only
dopted equally sized clusters of 10 subjects each and only used non-
quare mixing matrices 𝐀𝑖 (of size 150 × 4). To generate realistic RSNs,
e used 𝑄 = 4 template RSNs from Beckmann et al. (2005)7 that corre-

pond with known disease related brain networks (for a visualization of
hese RSNs, see the most left column of Fig. 4): the medial visual net-
ork, the right frontoparietal network, the left frontoparietal network
nd the default mode network. In order to create cluster specific RSNs
𝑟 that differ between the 𝑅 = 3 clusters, we manually removed some
ctive voxels from each of the four template RSNs, herewith obtaining
isrupted RSNs. As such, we created a cluster representing healthy
ubjects, a cluster with moderately diseased patients and a cluster with
everely diseased patients, with the latter two clusters having less or
ore severely disrupted RSNs. More specifically, as can be seen in

he three most left columns of Fig. 4, for the first ‘‘healthy’’ cluster
first column) we took the template RSNs. For the second ‘‘moderately
iseased’’ (second column) and third ‘‘heavy diseased’’ cluster (third
olumn) we deactivated (i.e., replaced with a value of zero) about
.74% and 8.30% of the voxels (averaged over the four networks)
rom the four template RSNs, respectively. Note that the procedure
f deactivating voxels might have resulted in RSNs being not fully
ndependent anymore (Silva et al., 2014), which violates an assumption
f both the ICA and C-ICA model (i.e., the components/RSNs being
utually statistically independent). As a consequence, this results – to

ome extent – in data being generated that do not fully comply with a

7 These networks can be downloaded from http://www.fmrib.ox.ac.uk/
atasets/royalsoc8/.
11
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C-ICA model. The current simulation study could therefore also be seen
as a – to some extent difficult – test case for C-ICA.

The average modified-RV statistic (a matrix correlation statistic,
see Smilde et al., 2009) between all pair-wise cluster specific RSNs
equals .65, indicating that there is some spatial overlap between the
simulated RSNs. More specifically, the modified-RV between the RSNs
of the healthy and the moderately diseased cluster equals .80, between
the moderately and the severely diseased cluster .63 and between the
healthy and the severely diseased cluster .52.

Further, in line with the C-ICA model, we simulated 𝐼 = 30 subject
pecific resting-state time courses 𝐀𝑖 (each with a length of 𝑇 = 150
cans) for each of the 𝑄 = 4 RSNs, yielding non-square mixing matrices.
he time courses were generated with the neuRosim package (Welvaert
t al., 2011) and a repetition time of 2 s was used. We linearly
ombined these subject specific time courses with the cluster specific
SNs. As we used an equal cluster size of 10 subjects per cluster, this
esulted in 30 noise-free data sets 𝐓𝑖.

Next, we generated a noise structure that is – more – realistic for
s-fMRI data and added this noise to the noise-free data sets 𝐓𝑖. In
articular, we added either a Gaussian or a first-order autoregressive
oise structure (AR1) to the data. For the Gaussian noise structure, we
dded (and scaled) Gaussian noise in the same way as we did for the
irst simulation study (see Section 4.1) such that in total 10%, 30% or
0% of the data pertains to noise. The noise percentage levels of 10%,
0% and 70% used in the current simulation study refer to a signal
o noise ratio of 9, 2.33 and .43, respectively. In order to simulate a
ealistic autoregressive noise structure, we generated both an AR(1)
tructure in the temporal domain (i.e., column-wise by simulating 𝑉
oxels with an autoregressive time series of length 𝑇 , which represents
orrelated time points for each voxel) and an AR(1) structure in the
patial domain (i.e., row-wise by generating 𝑇 autoregressive time
eries of length 𝑉 that indicate correlated voxels at each time point). In
rder to manipulate the amount of autocorrelation of the noise in the
ata, we varied the AR correlation parameter – which was kept always
he same for the spatial and temporal noise – as 𝜌 = .5 or .7. Note that
etting 𝜌 to 0 would result in simulating noise very similar to Gaussian
oise. Next, in order to manipulate the amount of noise in the data, we
caled the spatial and temporal noise structure such that both sources
f AR(1) noise have an equal sum of squared entries and we added
oth noise structures together. Subsequently, we scaled this aggregated
oise matrix (i.e., the sum of spatial and temporal noise) and added this
atrix to the noise-free data matrix 𝐓𝑖, herewith assuming that both

djacent time points and adjacent voxels are autocorrelated to the same
xtent and both types of noise being equally strong. Here, we scaled the
ggregated noise using the same levels as in the Gaussian noise case.
hat is, we scaled the aggregated AR(1) noise such that either 10%,
0% of 70% of the data pertains to AR(1) noise.

In sum, we generated noise-free data 𝐓𝑖 and added several types of
oise to this noise-free data. That is, we added a small, intermediate
r large amount of Gaussian or AR(1) noise (with 𝜌 being .50 or .70.)
o the data. We replicated the noise generating part 10 times, keeping
he generation of the 𝐀𝑖’s and 𝐒𝑟’s fixed. This resulted in a total of 2
AR(1) 𝜌 noise) × 3 (amount of noise) × 10 (replications) = 60 data
ets with AR(1) noise, and 3 (amount of noise) × 10 (replications) = 30
ata sets with Gaussian noise. These data sets were analysed with C-ICA
sing the true number of 𝑅 = 3 clusters and 𝑄 = 4 RSNs and adopting
0 random starts. Next, similar as for the first simulation study, the
rue and estimated C-ICA parameters were compared and the recovery
easures (i.e., ARI and Tucker congruence) were computed, herewith

ccounting for the ambiguities of the C-ICA model (see Appendix B).

.2.3. Results
From Table 4, which displays the average recovery values for each

evel of the two manipulated factors, one can see that for each noise
tructure C-ICA recovers the true underlying subject partition perfectly

𝑟
i.e., mean ARI = 1). Further, C-ICA uncovers the true RSNs 𝐒 to a very

http://www.fmrib.ox.ac.uk/datasets/royalsoc8/
http://www.fmrib.ox.ac.uk/datasets/royalsoc8/
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Fig. 4. Axial images (taken at coordinate 𝑧 = 45) of four (A–D, in the rows) cluster
specific true RSNs (first three columns) and C-ICA estimated cluster specific RSNs (last
three columns) for 𝑅 = 3 clusters. Each column refers to one of the 𝑅 = 3 clusters,
with the first true cluster (column 1) denoting healthy subjects and the second and
third true cluster (column 2–3) consisting of moderately and severely diseased patients
with moderately and severely disrupted RSNs. The true RSNs from the first (healthy)
true cluster are templates taken from Beckmann et al. (2005) and refer to four brain
networks: (A) default mode network, (B) medial visual network, (C) right frontoparietal
network and (D) left frontoparietal network. The true RSNs for the second and third
cluster are obtained by removing some active voxels from the four templates. The
estimated cluster specific RSNs (column 4–6) were obtained by analysing one of the
simulated data sets to which 30% Gaussian noise was added (see Section 4.2) with
C-ICA with true 𝑅 and 𝑄. Note that the label switching problem inherent to clustering
is clearly demonstrated here as the first (column 4), second (column 5) and third
(column 6) retained cluster corresponds to the third (column 3), second (column 2)
and first (column 1) true cluster, respectively.

large extent as indicated by the mean Tucker congruence being .93−.96.
As an example, for a single selected data set with 30% Gaussian noise,
in Fig. 4, the true (column 1–3) and estimated (column 4–6) cluster
specific RSNs are displayed, which demonstrates that C-ICA is able to
retrieve the true RSNs to a large extent. The mean Tucker congruence
value decreases when the strength of the noise autocorrelation (𝜌 for
AR(1) noise) and the percentage of noise increases, with this effect
being a little bit stronger for Gaussian noise than for AR(1) noise.
Finally, the results show that C-ICA is also able to recover the subject
specific time courses 𝐀𝑖 to a very large extent, with mean Tucker
congruence values around .99. Similarly to the recovery of the RSNs, the
decline in time courses recovery with increasing noise is smaller for the
auto-regressive noise structure than for the Gaussian noise structure.
In sum, the results of the second simulation study with more realistic
rs-fMRI noise structures and true RSNs and time courses show that C-
ICA accurately estimates the underlying subject partition and discloses
the underlying cluster specific spatial maps and subject specific time
courses to a very large extent.

When comparing the results of both simulation studies, it appears
that in both studies the recovery of the true subject partition is (almost)
perfect. The reason for this is that the true clusters are simulated such
that they do not show a large amount of spatial overlap in RSNs, which
facilitates their recovery. In particular, the average RV coefficient of
RSNs across cluster pairs for all generated data sets equals .00 and
.65 for the first and second simulation study, respectively. Further,
in the second simulation study the RSNs are recovered to a slightly
lesser extent than in the first simulation study (i.e., a mean Tucker
congruence around .95 and .96, respectively). A possible explanation
for this minor discrepancy between the results of both simulation
studies is the different way in which the RSNs per cluster are generated.
Whereas in the first simulation study RSNs were generated randomly
(from a double exponential distribution), in the second study the RSNs
are created by using existing RSN templates and deactivating voxels
12
Table 4
Mean ARI (cluster recovery) and Tucker’s congruence (RSN and TC recovery) value
(and standard deviation) for all levels of the manipulated noise structures of the second
simulation study.

Factor 𝜌𝐴𝑅 Noise level ARI RSN recovery TC recovery

AR .50 10% 1 (0) .9607 (.0001) .9915 (.0004)
AR .70 10% 1 (0) .9607 (.0001) .9914 (.0004)
AR .50 30% 1 (0) .9602 (.0001) .9912 (.0004)
AR .70 30% 1 (0) .9602 (.0001) .9909 (.0004)
AR .50 70% 1 (0) .9607 (.0001) .9915 (.0004)
AR .70 70% 1 (0) .9593 (.0001) .9905 (.0004)

Gaussian – 10% 1 (0) .9432 (.0001) .9917 (.0004)
Gaussian – 30% 1 (0) .9425 (.0001) .9914 (.0004)
Gaussian – 70% 1 (0) .9385 (.0003) .9901 (.0004)

Overall 1 (0) .9540 (.0090) .9911 (.0006)

Note. − = no 𝜌𝐴𝑅 parameter was manipulated; AR = autoregressive noise, ARI =
Adjusted Rand Index, RSN = Resting state network, TC = subject specific time courses.

from these templates. The voxel deactivation procedure used could – to
a varying degree for each cluster – have resulted in a model assumption
violation of the C-ICA model (i.e., statistically independent RSNs). This,
in turn, could have resulted in a slightly suboptimal recovery of the
simulated RSNs, however, without affecting the uncovering of the true
clustering (i.e., ARI = 1 for all data sets). The effect on the recovery of
the time courses is minimal (i.e., a Tucker congruence around .99) as
the time courses are uncovered almost perfectly.

4.3. Simulation study 3

4.3.1. Problem
In the previous two simulation studies, the recovery of the clustering

(and the other C-ICA parameters) was excellent and this had a two-
fold reason. First, clusters were generated which did have (almost) no
spatial overlap in RSNs and thus were relatively easy to detect. Second,
random noise was added in which no information was present that ob-
fuscated the true cluster structure, which also facilitated the discovery
of these true clusters. Therefore, the goal of this simulation study is
to test C-ICA in more difficult circumstances in which the true clusters
are harder to uncover from the data. In particular, clusters that show
a considerable amount of spatial overlap in RSNs will be generated
and structured noise that is targeted at obfuscating the true cluster
structure will be added to a varying degree. The performance of C-ICA
in terms of cluster recovery will be evaluated in these more difficult
circumstances. Moreover, for these harder clustering conditions, C-ICA
will also be compared to two other clustering methods: the two step
procedure of Durieux and Wilderjans (2019) and the Group ICA plus
dual regression clustering procedure (see Fig. 5).

4.3.2. Procedure
To not make the simulation study too complex, we kept the follow-

ing simulation parameters constant: the number of subjects 𝐼 at 20, the
number of equally sized clusters 𝑅 at 2, the number of true shared RSNs
per cluster 𝑄 at 4, the number of voxels 𝑉 at 1000 and the dimension
of the mixing matrices at 𝑇 = 50 (i.e., non-square mixing matrices).
Next, three factors were systematically varied in a full three-factorial
design:

1. The amount of spatial overlap between cluster specific shared
RSNs, at two levels: medium and large spatial cluster overlap;

2. The strength of the obfuscating noise that contains a cluster
structure that obfuscates the true clusters, at two levels: equal
obfuscating noise and larger obfuscating noise;

3. The amount of independent Gaussian noise, at two levels: 70%
and 90%.
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Fig. 5. Graphical illustration of the two step procedure (Durieux and Wilderjans, 2019) and a clustering procedure using Group ICA and dual regression estimated RSNs as
input. In the left panel, Time × Voxel matrices 𝐗𝑖 of multiple subjects 𝑖 (𝑖 = 1… 𝐼) are presented. The different colours refer to the true, albeit unknown a priori, sub groups
(i.e., clusters), whereas the letter in the top right corner of each matrix refers to the diagnostic label (which not necessarily perfectly matches with the true sub groups): H (healthy)
or D (diseased). In the upper middle panel, a depiction of the two step procedure is given. Here, ICA is performed on each of the data matrices 𝐗𝑖 separately in order to estimate
subject specific RSN matrices 𝐒𝑖. In the lower panel, a depiction of Group ICA including dual regression is given. Here the Time × Voxel matrices 𝐗𝑖 of multiple subjects are
temporally concatenated in order to estimate a group RSN matrix 𝐒𝐺 . These group RSNs are used in the first stage of dual regression in order to estimate time course matrices 𝐀𝑖
for each subject. In the second dual regression stage, the subject specific time course matrices 𝐀′

𝑖𝑠 are used in order to estimate subject specific RSN matrices 𝐒𝑖. In the upper right
panel, a (dis)similarity matrix is constructed by computing the modified-RV coefficient between all possible pairs of the estimated 𝐒𝑖 matrices (obtained by the two step or the
Group ICA plus dual regression procedure). To obtain a subject clustering, a cluster analysis method such as hierarchical clustering using Ward’s method or Partitioning Around
Medoids is performed on this (dis)similarity matrix.
With respect to the first factor, in order to obtain spatially overlapping
RSNs between clusters, we adopted a similar data generation scheme
as used in Durieux and Wilderjans (2019). We first generated a set of
RSNs 𝐒𝑏𝑎𝑠𝑒 by sampling from a uniform distribution 𝑈 (−1, 1). Note that,
although RSNs usually follow a super-Gaussian distribution, the current
simulation study uses RSNs that are generated from a sub-Gaussian
distribution. This, however, is not an issue for C-ICA since a logcosh
contrast function is used within the fastICA estimation procedure,
which is a well performing general purpose contrast function for the
estimation of both super- and sub-Gaussian RSNs (Hyvärinen, 1997).

Next, a temporary RSNs 𝐒𝑟𝑡𝑒𝑚𝑝 matrix was sampled for each cluster
(𝑟 = 1,… , 𝑅) from a uniform distribution 𝑈 (−1, 1); next, these tem-
porary RSNs matrices were added to 𝐒𝑏𝑎𝑠𝑒: 𝐒𝑟 = 𝐒𝑏𝑎𝑠𝑒 + 𝑤𝐒𝑟𝑡𝑒𝑚𝑝. By
varying 𝑤, spatial cluster overlap was manipulated. For this study, we
choose a 𝑤 value of .23 and .15 as a pilot study indicated that using
these weights results in an average modified-RV coefficient between
cluster specific RSNs of .90 and .95, respectively (hence the factor
levels; medium and large spatial cluster overlap).

Regarding the second factor, obfuscating noise was added by gen-
erating a C-ICA model with 𝑄 = 20 and 𝑅 = 20. Note that in this case
𝑅 = 𝐼 and therefore this obfuscating noise (only) consists of subject
specific RSNs which do not contain any clustering information. We
added this type of noise in order to obfuscate the true clustering, which
is defined by the (spatially overlapping) cluster specific RSNs that are
mentioned above, and make it harder for C-ICA to retrieve the true
clusters. As such, the data generating model for a subject (𝐗𝑖) is defined
as:

𝐗𝑖 =
𝑅
∑

𝑟=1
𝑝𝑖𝑟𝐀

𝑠𝑖𝑔𝑛𝑎𝑙
𝑖 𝐒𝑟 + 𝐀𝑛𝑜𝑖𝑠𝑒

𝑖 𝐒𝑖 + 𝐄𝑖 (5)

where 𝐀𝑠𝑖𝑔𝑛𝑎𝑙
𝑖 denotes the time courses of subject 𝑖 that are used to

mix the cluster specific RSNs 𝐒𝑟 (of the cluster 𝐶𝑟 to which subject
𝑖 belongs) and 𝐀𝑛𝑜𝑖𝑠𝑒

𝑖 denotes the time courses of subject 𝑖 used for
mixing the subject specific RSNs 𝐒𝑖 of subject 𝑖. Similar as in the second
simulation study, the time courses 𝐀𝑠𝑖𝑔𝑛𝑎𝑙

𝑖 and 𝐀𝑛𝑜𝑖𝑠𝑒
𝑖 were generated

with the neuroSim package (Welvaert et al., 2011). The 𝐒𝑟 and 𝐒𝑖
matrices were generated by sampling random numbers from U(−1,1).
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Note that Eq. (5) can be written as 𝐗𝑖 =
∑𝑅

𝑟=1 𝑝𝑖𝑟 𝐗𝑠𝑖𝑔𝑛𝑎𝑙,𝑟
𝑖 + 𝐗𝑛𝑜𝑖𝑠𝑒

𝑖 +
𝐄𝑖. Here 𝐗𝑠𝑖𝑔𝑛𝑎𝑙,𝑟

𝑖 represents the mixed data of subject 𝑖 based on the
cluster specific RSNs 𝐒𝑟 and thus contains information about the true
cluster structure, whereas 𝐗𝑛𝑜𝑖𝑠𝑒

𝑖 represents the mixed data based on the
subject specific RSNs of subject 𝑖 and contains obfuscating clustering
information. Note further that 20 + 4 = 24 RSNs are present in each
subject’s data and that only 𝑄 = 4 of these RSNs are shared across
subjects, which is somewhat unrealistic as normally a larger proportion
of the RSNs present in the data is expected to be shared across subjects.
However, we believe that increasing the number of shared RSNs across
subjects will not substantially change the performance results.

In order to vary the strength of the obfuscating noise, we scaled
𝐗𝑠𝑖𝑔𝑛𝑎𝑙,𝑟
𝑖 and 𝐗𝑛𝑜𝑖𝑠𝑒

𝑖 by a factor
√

2000×(1−𝑧)
‖𝐗𝑠𝑖𝑔𝑛𝑎𝑙,𝑟

𝑖 ‖

2
and

√

2000×𝑧
‖𝐗𝑛𝑜𝑖𝑠𝑒

𝑖 ‖

2 , respectively,

and manipulated 𝑧 with the following values: 𝑧 = .5 or .6 (correspond-
ing to the factor levels equal and larger strength of the obfuscating
noise). As a consequence, when 𝑧 = .5, both 𝐗𝑠𝑖𝑔𝑛𝑎𝑙,𝑟

𝑖 and 𝐗𝑛𝑜𝑖𝑠𝑒
𝑖 have

a sum of squares of 1000, whereas a 𝑧 value of .6 results in the sum
of squares of 𝐗𝑛𝑜𝑖𝑠𝑒

𝑖 being larger than the sum of squares of 𝐗𝑠𝑖𝑔𝑛𝑎𝑙,𝑟
𝑖

(i.e., 1200 vs. 800), which means that the obfuscating noise will mask
the true cluster structure to a large extent.

Similarly as in the previous simulation studies, after scaling the
two matrices 𝐗𝑠𝑖𝑔𝑛𝑎𝑙,𝑟

𝑖 and 𝐗𝑛𝑜𝑖𝑠𝑒
𝑖 , a noise matrix 𝐄𝑖 is added in such a

way that it has the desired percentage of independent Gaussian noise
of either 70% or 90% (i.e., low signal to noise ratios of .43 and .11
respectively)

Lastly, for each of the 8 cells in the three-factorial design (i.e., 2
amount of spatial cluster overlap × 2 strength of structured noise × 2
noise levels), 10 replication data sets were generated, resulting in 80
simulated data sets. Each data set is analysed with C-ICA selecting for
𝑅 = 2 clusters and 𝑄 = 4 RSNs, which equals the amount of shared true
RSNs across subjects in the data, and with 30 random and (pseudo-)
rationally defined starts. The rationally defined starts (2 in total) are
determined by the two-step clustering procedures and the Group ICA
plus dual regression clustering procedure. Pseudo-rationally defined
starts (28 in total) are determined by perturbating 10% of the cluster
labels from the rational starts. Additionally, in order to investigate the
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effect of an overestimation of the number of RSNs, we also analysed
each data set selecting for 𝑅 = 2 clusters, 𝑄 = 10 and 𝑄 = 24 RSNs
(note that the true shared 𝑄 = 4). Finally, for comparative purposes,

e also performed the clustering procedure described in Durieux and
ilderjans (2019) and a Group ICA plus dual regression clustering

rocedure (see Section 4.1.2.) on these data sets. Here, we selected for
= 4, 𝑄 = 10 and 𝑄 = 24 RSNs and applied PAM and a hierarchical

lustering procedure using Ward’s criterion on the dissimilarity matrix,
oth selecting for 𝑅 = 2 clusters (also see Fig. 5).

.3.3. Results
In Table 5, the mean ARI (and standard deviation) between the

rue partition and the estimated partition obtained from C-ICA, the two
tep and the Group ICA plus dual regression clustering procedure is
resented for each manipulated factor level of the design conditional
n either 𝑄 = 4 (upper part), 𝑄 = 10 (middle part) and 𝑄 = 24
bottom part). The overall means (bottom row; averaged across all
imulated data sets and values of 𝑄 used in the analysis) indicate that
-ICA (mean ARI of .637) outperforms both the Group ICA plus dual
egression (mean ARI of .225 and .179 for HCL and PAM, respectively)
nd the two step (mean ARI of .517 and .431 for HCL and PAM,
espectively) clustering procedure. When the true number of shared
SNs (𝑄 = 4) is selected, C-ICA clearly outperforms (mean ARI of .695)

he two step procedure (mean ARI of .329 and .327 for HCL and PAM,
espectively) and to a lesser extent the Group ICA plus dual regression
lustering procedure (mean ARI of .623 and .495 for HCL and PAM,
espectively). In general, the recovery of the clustering deteriorates
hen the amount of independent Gaussian noise increases, when the

patial cluster overlap increases and when the strength of the structured
oise becomes larger.

When selecting more RSNs (𝑄 = 10 or 𝑄 = 24) than the true number
f shared RSNs (𝑄 = 4), C-ICA has a similar performance as the two
tep procedure using HCL when 𝑄 = 10 (mean ARI of .594 versus .600,
espectively) but slightly outperforms the two step procedure using HCL
hen 𝑄 = 24 (mean ARI of .662 vs. .621). For both 𝑄 values, C-

CA has a better performance than the two step procedure using PAM
mean ARI of .496 and .470 for 𝑄 = 10 and 𝑄 = 24, respectively).
he performance of the Group ICA plus dual regression for both HCL
nd PAM completely fails (mean ARI’s close to 0 for each condition
nd 𝑄 = 10 or 𝑄 = 24). This indicates that an overestimation of the
umber of RSNs for this procedure in these difficult conditions, results
n a random clustering that does not map the true clustering at all.
roup ICA plus dual regression works relatively well with 𝑄 = 4 and

or the condition with a larger strength of the structured noise since
t concatenates all subjects and the sum of squares of shared RSNs
s accumulated and this is retained in the group PCA results. On the
ther hand, the failure for Group ICA plus dual regression when spatial
verlap in RSNs is large is likely due to cluster differences being too
mall and therefore the clustering fails. The good performance of the
wo step procedure with HCL suggests to always run C-ICA with a (too)
arge 𝑄. It should be noted however that (1) selecting a (too) large 𝑄
ncreases the computation time of all clustering procedures, thus also
or C-ICA in which the computationally intensive fastICA has to be run

times per iteration (see Section 3.2)8 and (2) the true number of
SNs is never known (i.e., even a large 𝑄 may be smaller than the

rue (shared) 𝑄, which is a situation where the two step procedure
ails and C-ICA may fail due to an under-specification of the shared 𝑄).
ote further that often the two step procedure with HCL is performed
nyways as it is often used to obtain a good (rational) starting partition
or C-ICA (see Section 3.2). Similar as in the 𝑄 = 4 condition, an alike

8 It is advised, especially when one also wants to do model selection
i.e., determining the optimal 𝑅 and 𝑄), to perform these analyses on a

parallel computer infrastructure, where, for example, the different starts can
be performed in parallel.
14
pattern for the manipulated factors occurs for C-ICA and the two step
procedure. That is, cluster recovery deteriorates when the amount of
independent Gaussian noise increases, when the spatial cluster overlap
increases and when the strength of the structured noise becomes larger.

In sum, results of this simulation study show that C-ICA performs
– compared to the other clustering procedures – well under very diffi-
cult circumstances (i.e., large amounts of independent Gaussian noise,
structured subject specific noise and spatial cluster overlap). Moreover,
given that the true number of RSNs 𝑄 is always unknown, C-ICA is the
safest option as it performs the best when the data are analysed with
the true (shared) 𝑄 and as good as the two step procedure using HCL
when a larger 𝑄 is selected.

4.4. Simulation study 4

4.4.1. Problem
In this subsection, the C-ICA method is evaluated on a sub selection

of the subjects of an empirical multi-subject rs-fMRI data set (for a
full description of this data set, see Section 5). This empirical data set
contains samples of two subpopulations, namely, patients that are di-
agnosed with Alzheimer’s disease (AD, 77 patients) and elderly control
subjects (EC, 173 subjects). In order to evaluate the performance of C-
ICA in retrieving an underlying cluster structure, we took a subsample
of the subjects of this empirical data set in such a way that two groups
of subjects were retained that differ the most as possible in RSNs.
More precisely, we selected the 20 AD patients and 20 EC subjects that
show the largest differences (between groups) in underlying RSNs. The
rationale behind this procedure is that we now can apply C-ICA to an
actual rs-fMRI data set – instead of simulated data as before – in which –
due to the sub selection – a clear underlying cluster structure is present.
Note that the information regarding the true (clinically defined) cluster
structure, although known in this case, will not be used in the clustering
analysis.

4.4.2. Procedure
In order to select two groups of subjects that differ the most (be-

tween groups) in terms of RSNs from the empirical data set, we per-
formed a Group ICA on the group of AD patients and EC subjects
separately. Here, for each group, data were concatenated along the
temporal dimension and ICA was performed and 20 RSNs were ex-
tracted, resulting in a set of RSNs that are representative for the group
of AD patients and EC subjects separately. Next, subject specific RSNs
were extracted by applying a single-subject ICA with 20 RSNs to each
subject’s data block separately (i.e., 250 ICA analyses in total). Then,
for each subject, we computed the mean Tucker congruence between
the subject specific RSNs for the subject in question and the representa-
tive Group ICA RSNs for both groups, which yielded two mean Tucker
congruence values per subject; these Tucker values indicate how good
the RSNs of a subject resemble the RSNs of each group (i.e., AD or EC)
of subjects. The 20 AD patients and 20 EC subjects that had the largest
absolute difference between these two mean Tucker congruence values
were retained for the current analysis. As such, subjects were selected
that are representative for one group of subjects (i.e., AD or EC) but
are the most as possible dissimilar from the other group of subjects in
terms of RSNs.

The data sub selection with 20 AD patients and 20 EC subjects was
analysed with C-ICA, extracting 𝑄 = 20 RSNs and 𝑅 = 2 clusters –
which is the true number of clusters here – and using 30 random starts.
Additionally, for comparative purposes, the data was also analysed
with the two step clustering procedure and the clustering procedure
using Group ICA and dual regression estimated RSNs, both selecting
for 𝑅 = 2 clusters and different values of 𝑄. More specifically, for
the Group ICA with dual regression clustering procedure 𝑄 = 5, 10, 15
and 20 were selected and for the two step clustering procedure 𝑄 =
20, 25, 30 and 35 were selected. These selected values were chosen since,

based on the results of the third simulation study (see Section 4.3),
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Table 5
Mean ARI (and standard deviation) for C-ICA, two step clustering and G-ICA DR clustering for all combinations of levels of the manipulated factors of the third simulation
study.

Q C-ICA GICA DR HCL GICA DR PAM Two step HCL Two step PAM

Medium overlap 4 0.912 (0.178) 0.872 (0.279) 0.708 (0.322) 0.545 (0.373) 0.509 (0.369)
High overlap 4 0.478 (0.442) 0.373 (0.465) 0.283 (0.365) 0.114 (0.245) 0.144 (0.259)
SS equal 4 0.724 (0.373) 0.604 (0.473) 0.577 (0.410) 0.415 (0.423) 0.433 (0.401)
SS larger 4 0.667 (0.427) 0.641 (0.444) 0.414 (0.384) 0.244 (0.317) 0.220 (0.295)
70% noise 4 0.890 (0.304) 0.840 (0.361) 0.698 (0.394) 0.491 (0.420) 0.498 (0.404)
90% noise 4 0.500 (0.392) 0.406 (0.441) 0.293 (0.300) 0.168 (0.254) 0.155 (0.218)

Overall mean 𝑄 = 4 4 0.695 (0.400) 0.623 (0.456) 0.495 (0.403) 0.329 (0.381) 0.327 (0.366)

Medium overlap 10 0.798 (0.309) 0.059 (0.139) 0.072 (0.126) 0.783 (0.295) 0.655 (0.347)
High overlap 10 0.390 (0.455) 0.002 (0.054) 0.009 (0.074) 0.416 (0.437) 0.338 (0.344)
SS equal 10 0.698 (0.412) 0.016 (0.091) 0.031 (0.082) 0.698 (0.399) 0.504 (0.385)
SS larger 10 0.489 (0.441) 0.045 (0.123) 0.050 (0.128) 0.501 (0.410) 0.489 (0.377)
70% noise 10 0.875 (0.291) 0.014 (0.068) 0.035 (0.102) 0.879 (0.273) 0.777 (0.301)
90% noise 10 0.312 (0.374) 0.047 (0.136) 0.046 (0.114) 0.320 (0.335) 0.216 (0.196)

Overall mean 𝑄 = 10 10 0.594 (0.437) 0.030 (0.108) 0.041 (0.108) 0.600 (0.414) 0.496 (0.379)

Medium overlap 24 0.832 (0.303) 0.023 (0.078) 0.000 (0.062) 0.823 (0.265) 0.630 (0.401)
High overlap 24 0.412 (0.447) 0.020 (0.074) 0.003 (0.078) 0.420 (0.420) 0.310 (0.313)
SS equal 24 0.690 (0.386) 0.013 (0.082) −0.008 (0.055) 0.665 (0.398) 0.487 (0.391)
SS larger 24 0.554 (0.473) 0.030 (0.069) 0.011 (0.081) 0.578 (0.418) 0.453 (0.397)
70% noise 24 0.895 (0.244) 0.024 (0.069) −0.006 (0.059) 0.895 (0.208) 0.761 (0.292)
90% noise 24 0.350 (0.413) 0.019 (0.083) 0.009 (0.079) 0.348 (0.366) 0.179 (0.227)

Overall mean 𝑄 = 24 24 0.662 (0.435) 0.021 (0.076) 0.001 (0.070) 0.621 (0.404) 0.470 (0.392)

Overall mean 0.637 (0.424) 0.225 (0.392) 0.179 (0.331) 0.517 (0.420) 0.431 (0.385)

Note. Overlap = spatial cluster overlap, SS = strength of the structured noise (.6 and .5 for SS larger and SS equal, respectively), Noise = independent Gaussian noise, Q = number
of cluster specific RSNs, ARI = Adjusted Rand Index, C-ICA = Clusterwise Independent Component Analysis, HCL = hierarchical clustering (Ward’s criterion), PAM = Partitioning
Around Medoids, Two step = two step method of Durieux and Wilderjans (2019), GICA DR = Group ICA plus dual regression.
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it can be conjectured that the two step procedure might benefit from
selecting a relatively large number of RSNs, whereas Group ICA with
dual regression might benefit from extracting a relatively low number
of RSNs.

4.4.3. Results
Table 6 shows a cross-tabulation of the true partition versus the

estimated C-ICA partition (with 𝑅 = 2 and 𝑄 = 20 on the empirical
ata sub selection). As can be seen in this confusion table, 19 AD
atients are allocated to cluster A and 21 subjects – consisting of 20
C subjects and 1 AD patient – are allocated to cluster B. Comparing
he true to the estimation partition gives a balanced accuracy (García
t al., 2009) of .976 and an ARI of .90, which implies that C-ICA
ncovered the true subject partition almost perfectly (i.e., 1 AD patient
s erroneously marked as an EC subject). Note that the analysis is
ompletely unsupervised as no information about the diagnostic labels
as used in the C-ICA estimation. An interpretation of the obtained

ubject clusters and cluster specific RSNs is left for Section 5.
When comparing C-ICA to the other clustering procedures, it ap-

ears that C-ICA clearly outperforms these other procedures in terms
f uncovering the true clustering. In particular, the ARI for the two
tep clustering procedure (Durieux and Wilderjans, 2019) using Ward’s
ierarchical clustering and PAM, selecting for 𝑄 = 20, equals .81 and

35, respectively. When the number of RSNs was increased in steps of
for the two step procedure (i.e., 𝑄 = 25, 30 and 35) the performance

of the two step procedure slightly increased for Ward’s hierarchical
clustering (ARI = .90 for every selected 𝑄, the same results as for C-
CA selecting for 𝑄 = 20 RSNs) but completely failed for PAM (ARI =
for every selected 𝑄). As such, the two step procedure using Ward’s
ethod is able to find a similar subject clustering as C-ICA but needs a
ore complex (i.e., less parsimonious) model with more RSNs to obtain

his. For the Group ICA plus dual regression clustering procedure, the
RI for both Ward’s hierarchical clustering and PAM, selecting for
= 20, equals -.015. The same pattern occurred when a lower number

f RSNs was selected. In particular, the ARI for Group ICA with dual
egression using Ward’s hierarchical clustering equals −0.013, −0.014
nd −0.015 for 𝑄 = 5, 10 and 15, respectively. For Group ICA with dual
egression adopting PAM, the ARI equals 0, 0 and 0.805, respectively.
15
Table 6
Confusion matrix of the diagnostic labels (AD versus EC; in the rows) against the
estimated clustering (labelled as A and B; in the columns) from a C-ICA with 𝑄 = 20
and 𝑅 = 2 on the data sub selection (fourth simulation study).

A B Sum

AD 19 1 20
EC 0 20 20

Sum 19 21 40

The latter solution has two subjects that were erroneously clustered
when compared to the diagnostic labels. The results show that Group
ICA with dual regression does not retrieve – except when 𝑄 = 15 is
elected in conjunction with PAM clustering – the relevant clustering
nformation in the data, resulting in clusters that do not resemble the
iagnostic (patients) groups at all.

It can be concluded that when a clear cluster structure with substan-
ial differences in underlying RSNs is present in the data, C-ICA is able
o uncover this subject clustering, whereas other clustering procedures
hat make use of ICA (e.g., Group ICA with dual regression) do this to
(way) lesser extent or need a more complex solution with a larger 𝑄

to do so.

4.5. Evaluating the sequential model selection procedure

4.5.1. Problem
To perform C-ICA, one has to specify the number of clusters 𝑅

nd RSNs 𝑄 a priori to the C-ICA analysis. However, often no prior
nformation regarding the optimal number of clusters and/or RSNs is
vailable and thus the optimal 𝑅 and 𝑄 should be estimated based

on the data set at hand by using some model selection procedure.
Therefore, in this fifth study, it is investigated whether the proposed
sequential model selection procedure (see Section 3.3) is able to select
the optimal number of clusters 𝑅 and RSNs 𝑄 underlying a data set.
In this procedure, first the optimal number of clusters 𝑅 is determined
and next, conditional on the optimal 𝑅, the optimal number of RSNs 𝑄
is estimated.
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Table 7
Result of the sequential model selection procedure applied to the selected simulated
data set from the second simulation study. Computed scree ratios 𝑠𝑟𝑟|𝑞 from step 1 of
the procedure are displayed in the columns 𝑅 = 2 to 𝑅 = 4 for all values of 𝑄 (rows)
and averaged across 𝑄 (bottom row). The computed scree ratios 𝑠𝑟𝑞|𝑅 – conditional on
he optimal 𝑅 – from step 2 of the procedure are presented in the last column.

𝑅 = 2 𝑅 = 3 𝑅 = 4 Optimal 𝑄

𝑄 = 2 1.31 8.11 2.45 –
𝑄 = 3 1.30 4.95 4.70 1.55
𝑄 = 4 1.32 64.10 1.05 111.27
𝑄 = 5 2.53 21.16 1.06 1.01
𝑄 = 6 3.88 8.60 1.06 1.01
𝑄 = 7 5.81 3.48 1.21 –

Average 2.69 18.40 1.92

Note. In the first step of the sequential model selection procedure, the scree ratios are
not defined for 𝑅𝑚𝑖𝑛 = 1 and 𝑅𝑚𝑎𝑥 = 5, whereas, similarly for the second step, the
scree ratios are not defined for 𝑄𝑚𝑖𝑛 = 2 and 𝑄𝑚𝑎𝑥 = 7. The largest average scree ratio
𝑠𝑟𝑟|𝑞 is highlighted in bold (bottom row), with the corresponding 𝑅 = 3 denoting the
optimal number of clusters. The largest scree ratio 𝑠𝑟𝑞|𝑅 conditional upon the optimal
𝑅 is highlighted in bold (last column), indicating that 𝑄 = 4 is the optimal number of
RSNs.

4.5.2. Procedure
For this study, we selected the data sets from the second simulation

study that contained a moderate amount – 30% – and a large amount
– 70% – of Gaussian noise. We then applied C-ICA using 30 random
starts to these data sets with a range of RSNs going from 2 to 7 and the
number of clusters ranging from 1 to 5. We selected these ranges for 𝑅
and 𝑄 as we know in this case that these ranges contain the correct 𝑅
and 𝑄, which is 𝑅 = 3 clusters and 𝑄 = 4 RSNs. In practice, however, no
information about the optimal number of clusters and RSNs is available
and it is advised to investigate a larger range for the number of RSNs
and clusters.

After obtaining the loss function value for each combination of a
number of RSNs 𝑄 and clusters 𝑅, we applied the sequential model
selection procedure as described in Section 3.3. Here, in the first step,
the optimal number of clusters 𝑅𝑜𝑝𝑡 is determined by computing the
𝑠𝑟𝑟|𝑞 values from Eq. (3) and selecting the 𝑅 that yields the largest mean
𝑠𝑟𝑟|𝑞 value, with the mean computed across all considered values of 𝑄.
Next, in the second step, the optimal number of RSNs 𝑄𝑜𝑝𝑡 is selected
conditional on the optimal number of clusters 𝑅𝑜𝑝𝑡 by selecting the 𝑄
that maximizes the 𝑠𝑟𝑞|𝑅 scree ratio from Eq. (4).

4.5.3. Results
For demonstration purposes, we first show the working and result

of the sequential model selection procedure when applied to one of the
data sets with 30% Gaussian noise. Next, the results for all analysed
data sets are presented. Table 7 shows the computed scree ratios 𝑠𝑟𝑟|𝑞
(columns 𝑅 = 2, 𝑅 = 3 and 𝑅 = 4) for each value of 𝑄 (rows)
and averaged across 𝑄 (bottom row). Note that the scree ratios for
𝑅𝑚𝑖𝑛 = 1 and 𝑅𝑚𝑎𝑥 = 5 are not displayed as these ratios are undefined,
implying that the sequential model selection procedure does not allow
to select the smallest and largest considered value for 𝑅 (Wilderjans
et al., 2013). The largest averaged scree ratio (displayed in the bottom
row of Table 7) indicates the optimal number of clusters 𝑅, which in
this case is 𝑅 = 3 clusters. To select the optimal number of RSNs 𝑄,
conditional on the optimal number of clusters 𝑅 = 3 (i.e., the second
step of the model selection procedure), the 𝑠𝑟𝑞|𝑅 values from Eq. (4)
are displayed in the last column of Table 7. Note that the scree ratios
for 𝑄𝑚𝑖𝑛 = 2 and 𝑄𝑚𝑎𝑥 = 7 are not defined and are thus not displayed.
It appears that, as 𝑠𝑟𝑞|𝑅 is maximal for 𝑄 = 4, the optimal number of
RSNs 𝑄 equals four. In sum, the sequential model selection procedure
applied to the selected simulated data set retains the solution with
𝑅 = 3 clusters and 𝑄 = 4 RSNs. As such, the sequential model selection
procedure selected the correct solution as this solution has the true
number of clusters and RSNs for this data set.

In Table 8, the mean variance accounted for (VAF) and standard
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deviation, computed across the 20 analysed data sets, is displayed for
Table 8
Mean variance accounted for (VAF) and standard deviation (between brackets), com-
puted across all simulated data sets from two design cells (Upper panel: 30% Gaussian
noise; lower panel: 70% Gaussian) of the second simulation study, for each number of
RSNs 𝑄 and number of clusters 𝑅.

R = 1 R = 2 𝐑 = 𝟑 R = 4 R = 5

Q = 2 44.84 (0.61) 47.98 (0.59) 50.28 (0.62) 50.47 (0.62) 50.54 (0.58)
Q = 3 52.77 (0.49) 56.42 (0.38) 59.00 (0.41) 59.31 (0.43) 59.40 (0.40)
𝐐 = 𝟒 57.61 (0.35) 61.73 (0.19) 64.54 (0.22) 64.58 (0.22) 64.62 (0.22)
Q = 5 60.22 (0.18) 63.40 (0.20) 64.59 (0.22) 64.65 (0.22) 64.70 (0.22)
Q = 6 61.64 (0.22) 64.01 (0.22) 64.64 (0.22) 64.71 (0.21) 64.78 (0.22)
Q = 7 62.68 (0.21) 64.38 (0.22) 64.69 (0.22) 64.77 (0.22) 64.85 (0.22)

R = 1 R = 2 𝐑 = 𝟑 R = 4 R = 5

Q = 2 19.27 (0.27) 20.64 (0.26) 21.65 (0.27) 21.75 (0.27) 21.82 (0.26)
Q = 3 22.69 (0.22) 24.29 (0.16) 25.44 (0.18) 25.61 (0.19) 25.70 (0.19)
𝐐 = 𝟒 24.79 (0.15) 26.59 (0.08) 27.86 (0.10) 27.96 (0.10) 28.05 (0.10)
Q = 5 25.93 (0.08) 27.39 (0.09) 27.98 (0.10) 28.11 (0.10) 28.23 (0.10)
Q = 6 26.57 (0.10) 27.67 (0.10) 28.09 (0.10) 28.21 (0.09) 28.35 (0.10)
Q = 7 27.04 (0.09) 27.88 (0.10) 28.06 (0.09) 28.21 (0.11) 28.33 (0.10)

Note. True underlying model: 𝑅 = 3 and 𝑄 = 4.

each combination of 𝑄 and 𝑅.9 Note that the VAF is displayed instead of
the original loss function values since the VAF values are more intuitive
due to their 0%–100% range (with the VAF and the original loss
function values being inversely proportionally related to each other).
Note that the VAF values in Table 8 are increasing relatively fast from
a less complex model (i.e., 𝑄 < 4 and 𝑅 < 3) to the true model (𝑄 = 4
nd 𝑅 = 3), compared to the increase in VAF for more complex models
i.e., 𝑄 > 4 and 𝑅 > 3). In other words, the proposed model selection
rocedure automatically searches for this ‘tipping point’. For all 20
imulated data sets, the model selection procedure indicated that the
ptimal number of RSNs equals 4 (i.e., 𝑄 = 4) and the optimal number
f clusters equals 3 (i.e., 𝑅 = 3). These results show that the proposed
odel selection procedure may be a valuable tool for selecting the

ptimal number of RSNs and clusters for a C-ICA analysis.

. Illustrative application of the C-ICA model

.1. Motivation and data

In this section, the proposed C-ICA model will be illustrated on
n empirical multi-subject rs-fMRI data set that consists of a total
f 77 clinically diagnosed Alzheimer patients (AD) and 173 elderly
ontrols (EC). The goal of the current application is to cluster the
ubjects based on similarities and differences in the RSNs and time
ourses underlying their data. It has to be stressed that this analysis
s performed completely unsupervised, implying that no information
bout the diagnostic labels is used. After clustering the subjects, the
iagnostic labels will only be used to interpret and validate the derived
lustering (i.e., classification is not the goal of this analysis). To further
alidate the obtained clustering, an ad hoc procedure is adopted in
hich the cluster specific RSNs in each cluster are matched to eight
nown template RSNs described in Beckmann et al. (2005).

The AD patient data was collected in the prospective registry on de-
entia (PRODEM, see Seiler et al., 2012). Participants from the control

roup were scanned as part of the Austrian Stroke Prevention Family
tudy. For both groups, an equal scanning protocol was used and the
canning took place at the same site (i.e., the Medical University of
raz). For a more thorough description of the data, see de Vos et al.

2018).
Participants were scanned on a Siemens Magnetom TrioTrim 3T

RI scanner. For the rs-fMRI session, 150 volumes were acquired with

9 The VAF can be computed as follow; 𝑉 𝐴𝐹 = ‖

̄
𝐗‖2−𝐿
‖

̄
𝐗‖2 ×100, where 𝐿 is the

loss function value of a C-ICA analysis and ‖

̄
𝐗‖2 the total sum of squares of a
multi-subject data set.
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TR = 3000 ms, TE = 30 ms, flip angle = 90◦, 40 axial slices and
n isotropic voxel size of 3 mm. During the rs-fMRI session, partic-
pants were instructed to lie still with their eyes closed and to stay
wake. No tasks were performed before acquiring the rs-fMRI data and,
herefore, no task related after-effects could potentially compromise the
SNs (Grigg and Grady, 2010).

The data were pre-processed using the FMRIB Software Library (FSL,
ersion 5.0; Jenkinson et al., 2012; Smith et al., 2004). Here, for the
s-fMRI data, the pre-processing steps included brain extraction and
otion correction (Jenkinson et al., 2002), temporal high-pass filtering
ith a cut-off point of 100 s and 3 mm FWHM spatial smoothing. More-
ver, the ICA-based Xnoiseifier (FIX, version 1.06) from FMRIB with
he standard provided training data was used in order to automatically
dentify and remove statistically independent noise components from
he data (Salimi-Khorshidi et al., 2014). The subject’s fMRI scans were
egistered to MNI152 space in a two step procedure. In a first step, the
ubject’s fMRI scans were linearly registered to the subject’s structural
RI scan, only allowing for translation and rotation (in x, 𝑦 and z

irection). In a second step the subject’s structural MRI was nonlinearly
egistered to MNI152 space. These two steps were then combined to
egister the fMRI volumes to MNI152 space. These steps resulted in
re-processed data (in MNI space) with a voxel size of 2 × 2 × 2 mm.

Lastly, to make the analysis computationally more feasible, we
own sampled the data of each subject using the subsamp2 command
rom fslmath. This means that the dimension of each voxel changed
rom 2 × 2 × 2 mm (i.e., the original size) to 8 × 8 × 8 mm. Additionally,

mask is applied such that only voxels that are part of the brain
re included in the analysis, resulting in a total of 2553 voxels being
sed for this analysis. Finally, as noted in Section 3.1, we applied
columnwise) mean-centring, resulting in each voxel having an average
ctivation of zero over time, to the data of each subject. Moreover,
y block scaling the data we ensured, in order to remove trivial scale
ifferences between subjects, that each subject’s data block had the
ame variability (i.e., equal sum of squared values).

.2. Procedure

We applied C-ICA on the data set with 𝑄 = 20, 25, 30 and 35
SNs and a range of number of clusters 𝑅 going from 1 to 5. We

nitialized the C-ICA algorithm with 1 rational and 30 random starts
see step 1 in Section 3.2). For the rational start, we used the subject
artition obtained by the clustering procedure described in Durieux and
ilderjans (2019). Here, a single-subject ICA with 𝑄 RSNs is performed

n the data of each subject and the similarity in RSNs, quantified
y the modified RV-coefficient (Smilde et al., 2009), is calculated for
ach subject pair. A rational subject partition is obtained by applying
ierarchical clustering using Ward’s method to these (dis)similarities
nd cutting the resulting dendrogram such that 𝑅 clusters are retained.
or each C-ICA analysis, the run with the lowest C-ICA loss function
alue (see Eq. (2)) was kept as the final solution. These optimal loss
unction values for all considered number of RSNs 𝑄 and number of
lusters 𝑅 were used in the sequential model selection procedure (see
ection 3.3 and the simulation example from Section 4.4) in order to
etermine the optimal number of clusters and RSNs for this data set.
o validate the clustering results (i.e., the neurofunctional subtypes),
he obtained subject clusters (i.e., for each model with 𝑅 = 2 to 𝑅 = 5)
re compared to the diagnostic labels (i.e., AD versus EC). Additionally,
o validate the estimated cluster specific RSNs, we applied an ad hoc
rocedure where we matched the estimated RSNs for each cluster
o a template with eight known RSNs that are thoroughly described
n Beckmann et al. (2005). As such, a one-to-one matching of RSNs
cross clusters is obtained, which facilitates the interpretation of the
luster specific RSNs.
17

t

.3. Results

.3.1. Clustering P
The result of the sequential model selection procedure, which is pre-

ented in Table 9, indicates that the optimal C-ICA solution is a model
ith 𝑅 = 2 clusters and 𝑄 = 25 RSNs. This optimal C-ICA solution was
btained from the C-ICA run in which the algorithm was seeded with
he subject clustering from the two step procedure using Ward’s method
i.e., rational start). Note that the optimal solution has a loss function
alue of 175 144.2 (after ALS iterations), whereas the solution obtained
rom the two step procedure adopting Ward’s method (i.e., the solution
efore ALS iterations) has a clearly larger loss value of 175 354.9. The
-ICA algorithm needed 5 ALS iterations to converge to this optimal
olution. As such, the optimal C-ICA solution is better (i.e., lower loss
alue) than the subject partition obtained from the two step clustering
rocedure. Table 10 shows four crosstabulations in which the diagnos-
ic labels are presented against the derived clustering for 𝑅 = 2,… , 5
lusters with 𝑄 = 25 RSNs. As can be seen in the upper left panel (𝑅
2) of this table, C-ICA allocates predominately elderly control (EC =

39) subjects to cluster A and predominately Alzheimer patients (AD
51) to cluster B. Again, note that the allocation of the subjects by

-ICA is done completely unsupervised, that is, no information of the
iagnostic labels is used when estimating the clusters. Comparing the
btained clusters to the diagnostic labels, the balanced accuracy (BA)
quals .72 and the ARI equals .26. Note that we used the balanced
ccuracy – instead of the regular accuracy – since this measure is more
uitable for situations with imbalanced classes (García et al., 2009).
oth measures show a clear above chance performance and indicate
hat C-ICA retains clusters that can be matched to the diagnostic labels
o a substantial extent. Also note that the unsupervised C-ICA method
BA of .72) retrieves the diagnostic labels almost as good as a supervised
enalized regression classifier (BA of .79) that uses derived resting
tate fMRI features (e.g., functional connectivity between brain regions
r amplitude of low frequency fluctuations) computed from the same
ata set as input (de Vos et al., 2018). The obtained C-ICA clustering,
owever, does not perfectly match the diagnostic labels, which should
ot be surprising given the noisy nature of rs-fMRI data and the fact
hat the obtained clustering is based on differences in RSNs, whereas
ainly clinical information is used to obtain the labels (i.e., separate
D from EC).

As a comparison, we also employed the two step (Durieux and
ilderjans, 2019) and the Group ICA plus dual regression clustering

rocedure mentioned in Section 4.3 on the empirical data. Note that
he two step clustering procedure was already performed in order to
ind the rational starts to seed the C-ICA algorithm. For both analyses,
n order to make a fair comparison, we selected 𝑅 = 2 clusters and
= 25 RSNs. The results show that Group ICA plus dual regression

ields a cluster structure that does not match the diagnostic labels at
ll (i.e., ARI equals .02 and .05 and the BA .60 and .60 for Ward’s
ierarchical clustering and PAM, respectively). Also the two step clus-
ering procedure gives a subject clustering that matches the diagnostic
abels only to a very small, although larger than Group ICA plus dual
egression, extent (i.e., ARI of .15 and .01 and BA of .68 and .63 for HCL
nd PAM, respectively). Comparing the clustering retained by the three
lustering procedures (see Table 11), it appears that the C-ICA clusters
re very different then the clusters obtained by the Group ICA plus dual
egression (ARI of .02 and .04 for HCL and PAM, respectively) and the
wo step (ARI of .29 and .08 for HCL and PAM, respectively) procedure.

It can be concluded that, when selecting for 𝑄 = 25, C-ICA extracts a
eaningful clustering, although not perfectly matching the diagnostic

abels, from an empirical multi-subject fMRI data set, whereas the other
wo clustering procedures yield more random clusters that are hard to
nterpret.

Based on the results from the third simulation study (see Sec-
ion 4.3), it can be expected that for Group ICA with dual regression
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Table 9
Result of the sequential model selection procedure applied to the empirical data set.
Computed scree ratios 𝑠𝑟𝑟|𝑞 from step 1 of the procedure are displayed in the columns

= 2 to 𝑅 = 4 for all values of 𝑄 (rows) and averaged across 𝑄 (bottom row).
The computed scree ratios 𝑠𝑟𝑞|𝑅 – conditional on the optimal 𝑅 – from step 2 of the
procedure are presented in the last column.

𝑅 = 2 𝑅 = 3 𝑅 = 4 Optimal 𝑄

𝑄 = 20 2.38 0.84 0.67 –
𝑄 = 25 2.32 0.83 0.54 1.21
𝑄 = 30 2.18 0.74 0.48 1.11
𝑄 = 35 2.02 0.74 0.51 –

Average 2.26 0.79 0.53

Note. In the first step of the sequential model selection procedure, the scree ratios are
not defined for 𝑅𝑚𝑖𝑛 = 1 and 𝑅𝑚𝑎𝑥 = 5, whereas, similarly for the second step, the scree
ratios are not defined for 𝑄𝑚𝑖𝑛 = 20 and 𝑄𝑚𝑎𝑥 = 35. The largest average scree ratio
𝑠𝑟𝑟|𝑞 is highlighted in bold (bottom row), with the corresponding 𝑅 = 2 denoting the
optimal number of clusters. The largest scree ratio 𝑠𝑟𝑞|𝑅 conditional upon the optimal
𝑅 is highlighted in bold (last column), indicating that 𝑄 = 25 is the optimal number
of RSNs.

clustering a relatively lower number of RSNs may be beneficial for esti-
mating the subject clustering. Conversely, selecting for a larger number
of RSNs may be beneficial for the two step clustering procedure.
Therefore, we also selected for 𝑄 = 5, 10, and 15 for the Group ICA with
dual regression clustering procedure and 𝑄 = 30 and 35 for the two step
clustering procedure. Results indicate that for the Group ICA with dual
regression clustering procedure the clustering performance improves
but stays below C-ICA’s performance when 𝑄 = 5 (i.e., the ARI equals
.13 and .12 for Ward’s hierarchical clustering and PAM, respectively).
No improvement in clustering performance is encountered for Group
ICA with dual regression when 𝑄 = 10 (i.e., ARI of .03 and .07 for
Ward’s hierarchical clustering and PAM, respectively). Finally, when
𝑄 = 15, Group ICA with dual regression only improves the clustering –
but still below the level of C-ICA – when PAM is used (i.e., ARI of .14 for
PAM and ARI of 0 for Ward’s hierarchical clustering). The associated BA
values for the Group ICA with dual regression clustering solutions range
from .03 to .65, which is clearly below the BA value obtained with
C-ICA (𝐵𝐴 = .72). When adopting the two step clustering procedure
and selecting for a larger 𝑄 value, no improvement in the clustering is
observed. In particular, nor using Ward’s method (ARI of .06 and .09 for
𝑄 = 30 and 𝑄 = 35, respectively), nor adopting PAM (ARI of -.02 and -
04 for 𝑄 = 30 and 𝑄 = 35, respectively) yields a better subject partition
BA values range from .62 to .64). In conclusion, for these data, both the
roup ICA with dual regression clustering procedure and the two step
lustering procedure were not able to find a clustering that matches
he diagnostic labels when selecting for either a relatively low number
f RSNs (for Group ICA with dual regression clustering) or a relatively
arge(r) number of RSNs (for the two step clustering procedure).

We also investigated how the derived clustering for a C-ICA model
ith 𝑅 = 2 and 𝑄 = 25 differs from C-ICA models with a lower number

of RSNs (𝑄 = 20) and larger number of RSNs (𝑄 = 30 and 𝑄 = 35) for
= 2. To this end, we computed the ARI between the optimal model

𝑅 = 2 and 𝑄 = 25) and the abovementioned C-ICA models. Results
ndicate that the derived subject partition shows a large stability when

is decreased or increased. In particular, the ARI for comparing the
ptimal model with 𝑄 = 25 to models with 𝑄 = 20, 30 and 35 equals .87,
79 and .76, respectively (BA values of .97, .93 and .92, respectively).

An interesting aspect of C-ICA is that one can investigate how the
ubject clustering changes when a larger number of clusters is retained.
s can be seen in the upper right panel of Table 10, when 𝑅 = 3,

he estimated clusters A and C resemble the derived clusters from
he two-cluster solution. However, a new cluster (cluster B) emerges
ith mainly elderly controls (i.e., 24 EC and 4 AD subjects). As this

luster almost exclusively contains EC subjects, this cluster can be
onsidered as a ‘‘predominantly healthy’’ cluster, whereas cluster A can
e conceived as a ‘‘subjects at risk’’ cluster. For 𝑅 = 4, a small cluster
(i.e., 6 AD and 9 EC subjects) emerges, which contains a subset of
18
Table 10
Crosstabulations of the diagnostic labels (AD versus EC) against the subject clustering
obtained by applying C-ICA to the empirical data set with 𝑄 = 25 RSNs and 𝑅 = 2
first table), 𝑅 = 3 (second table), 𝑅 = 4 (third table) and 𝑅 = 5 (fourth table)

clusters.
A B Sum

AD 26 51 77
EC 139 34 173

Sum 165 85 250

A B C Sum

AD 21 4 52 77
EC 118 24 31 173

Sum 139 28 83 250

A B C D Sum

AD 20 4 47 6 77
EC 116 24 24 9 173

Sum 136 28 71 15 250

A B C D E Sum

AD 14 4 15 38 6 77
EC 106 24 5 29 9 173

Sum 120 28 20 67 15 250

Note. AD = Alzheimer’s disease patients, EC = elderly control subjects.

Table 11
Crosstabulation of the subject clustering obtained by C-ICA (always presented in the
rows) against the subject clustering obtained by Two Step HCL (first table), Two Step
PAM (second table), GICA DR HCL (third table) and GICA DR PAM (fourth table).

A B Sum

A 161 4 165
B 50 35 85

Sum 211 39 250

A B Sum

A 78 87 165
B 75 10 85

Sum 153 97 250

A B Sum

A 163 2 165
B 81 4 85

Sum 244 6 250

A B Sum

A 62 103 165
B 48 37 85

Sum 110 140 250

Note. HCL = Hierarchical clustering using Ward’s method, PAM = Partitioning Around
Medoids, Two Step = two step method of Durieux and Wilderjans (2019), GICA DR
= Group Independent Component Analysis with Dual Regression. The labels A and B
refer to the estimated clusters (for C-ICA in the rows, for the other methods in the
columns).

subjects from cluster C from the three-cluster solution. For 𝑅 = 5, an
extra cluster with mainly AD subjects appears (i.e., cluster C with 15
AD and 5 EC subjects).

5.3.2. Cluster specific spatial maps 𝐒𝑟

To interpret and compare the underlying cluster specific RSNs 𝐒𝑟,
we matched these RSNs per cluster to a set of template RSNs that are
related to known brain regions. In Fig. 6, we plotted each template
RSNs (most left column) against the matched RSN for each cluster of
the C-ICA solution with 𝑅 = 2 clusters and 𝑄 = 25 RSNs (middle
panel, column 2–3) and the C-ICA solution with 𝑅 = 3 clusters and
𝑄 = 25 RSNs (right panel, column 4–6). The RSNs are matched to the
template RSNs by, first, computing the Tucker congruence between the
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templates10 and the cluster specific RSNs. Next, for each template, the
estimated RSNs with the largest (absolute) Tucker congruence value
are selected from each cluster, resulting in a one-to-one mapping of the
RSNs across all clusters. Note that this matching procedure provides a
solution to the RSN/component permutation ambiguity of (C-)ICA (see
Appendix B).

As can be seen in the middle panel of Fig. 6, which presents the
two-cluster C-ICA solution, subtle differences between (some) RSNs
of both clusters exist. For example, a difference is visible between
the estimated executive network (template T6 in Fig. 6) of the first
cluster (middle panel, column A, predominately EC) and the second
cluster (middle panel, column B, mainly AD patients). In particular, the
executive network seems to have an intensified functional connectivity
for the second cluster (predominantly AD patients) compared to the
first cluster (mostly EC subjects). Moreover, differences in functional
connectivity are visible in the right frontoparietal network (template
T7), for which subjects from the second cluster (cluster B; mainly AD)
show more widespread connectivity than subjects belonging to the
first cluster (cluster A; mainly EC). The opposite pattern occurs for
the lateral visual network (template T2) and the sensorimotor network
(template T4). That is, subjects from cluster A show slightly more
widespread activity than subjects allocated to cluster B.

The estimated RSNs of the three-cluster solution (see right panel of
Fig. 6, columns 4–6) also show subtle differences between clusters in
terms of matched RSNs. For example, a subtle difference in activation
pattern can be observed between the estimated salience networks of the
three clusters (template T3). Further, for the executive network (tem-
plate network T6), the matched RSN from the first cluster (cluster A)
is quite different from the corresponding template, implying that none
of the RSNs from that cluster really correspond to this template (for
this specific 𝑧 coordinate). Further, for network T2, the corresponding
RSN from cluster B shows connectivity in the visual areas of the human
cortex, which is not the same in the matched RSN of cluster A and C. To
fully capture the differences between the obtained clusters, we strongly
advise to inspect all 𝑄 = 25 estimated RSNs per cluster. Indeed, the
derived clustering is based not only on the eight ad hoc matched RSNs
but on all 25 cluster specific RSNs and associated subject specific time
courses.

6. Discussion

In this paper, the C-ICA model was presented, which is a novel un-
supervised clustering model that combines a clustering technique with
ICA in order to cluster patients based on differences and similarities
in underlying RSNs. In this model, patients are clustered into homo-
geneous groups (or neurofunctional subtypes) such that patients from
the same group have the same RSNs that are representative for that
group and patients belonging to different groups can be characterized
using RSNs that are qualitatively different. Additionally, to estimate
the parameters of the C-ICA model, an Alternating Least Squares (ALS)
algorithm was constructed. Further, in order to determine the optimal
number of clusters and RSNs underlying a data set at hand, a sequential
model selection procedure was proposed. This sequential procedure
consists of two steps in which, first, the optimal number of clusters
𝑅 is determined, and, next, conditional on this optimal number of
clusters, the optimal number of RSNs/components 𝑄 is selected. Here,
an automated scree test like procedure based on computing ratios of
the loss function values for several solutions with varying 𝑅 and 𝑄 is
used in both steps.

The novel C-ICA model and its associated ALS algorithm were suc-
cessfully validated in four extensive simulation studies that differed in

10 If no template(s) is available, a matching of RSNs across clusters can also
be obtained by selecting one cluster as the reference cluster and comparing
the RSNs from the other cluster(s) to the RSNs from this reference cluster.
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Fig. 6. Axial images of the cluster specific RSNs – matched to template RSNs in terms
of Tucker congruence value – obtained by applying C-ICA with 𝑅 = 2 and 𝑅 = 3 clusters
and 𝑄 = 25 RSNs to the empirical data set. In the most left column, eight known RSNs
from a template from Beckmann et al. (2005) are displayed (in the rows, indicated
by T1–T8). These eight known template RSNs refer to eight important brain networks:
(T1) medial visual network, (T2) lateral visual network, (T3) salience network, (T4)
sensorimotor network, (T5) default mode network, (T6) executive control network, (T7)
right frontoparietal network and (T8) left frontoparietal network. In the middle panel
(column 2–3), the corresponding estimated cluster specific RSNs of the two cluster
C-ICA solution are presented. Note that the second column belongs to cluster 1 and
the third column to cluster 2, with these RSNs being the most similar ones in terms
of Tucker congruence to the template patterns. In the right panel (column 4–6), the
estimated cluster specific RSNs – matched to the templates – for the three cluster C-ICA
solution are displayed, with the fourth, fifth and sixth column belonging to the first,
second and third cluster of this C-ICA solution, respectively. Note that the 𝑧 coordinates
of the eight rows are: 8, 0, −8, 50, 32, 30, 50, 46 and are equal across columns. For
each estimated RSN, only values above 2.3 or below −2.3 are shown.

how realistically the data were generated in terms of underlying RSNs,
time courses and noise structures. The results of the first simulation
study demonstrated that C-ICA can accurately estimate the underlying
cluster structure, cluster specific RSNs and subject specific time courses.
These C-ICA parameters were successfully estimated under a wide vari-
ety of data characteristics, such as, noisiness of the data and a varying
number of clusters and RSNs. Moreover, although the difference being
small for some conditions, C-ICA outperformed a clustering procedure
based on Group ICA plus dual regression and the two step procedure
of Durieux and Wilderjans (2019). In the second simulation study, C-
ICA was tested under conditions that are more realistic for rs-fMRI data.
In particular, four known RSNs were used as true underlying RSNs and
time courses and noise structures were generated in a more realistic
way. Similar to the first simulation study, the C-ICA method recovered
the C-ICA parameters to a very large extent. In the third simulation
study, the uncovering of the clustering was made harder as the RSNs,
generated from a sub-Gaussian distribution for this simulation study,
for each cluster were allowed to overlap spatially and subject specific
noise that obfuscated the true cluster structure – which C-ICA is not
designed to recover – was added to the data. The results indicated that
also in these more difficult situations C-ICA yields an excellent recovery
performance (except in the extremely hard conditions) and outperforms
the other two clustering procedures. The latter is also true when larger
values for the number of RSNs (𝑄) than the true number of shared RSNs
is used, except for the two step clustering procedure adopting Ward’s
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method. In the fourth simulation study, in which rs-fMRI data derived
from an existing data set with a clear underlying cluster structure
was used, it was shown that C-ICA is able to retrieve this clustering
almost perfectly. Thus, when a cluster structure with clear differences
in RSNs is present in a data set, C-ICA can correctly identify this
cluster structure. Also here, C-ICA outperforms the other two clustering
procedures, also when varying the number of RSNs except for the two
step procedure with Ward’s method. In a fifth study, we successfully
tested the sequential model selection procedure, implying that this
procedure can be employed to aid the user in selecting the optimal
number of RSNs and clusters for a data set at hand.

Finally, C-ICA was illustrated on an empirical rs-fMRI data set
consisting of Alzheimer’s disease patients (AD) and elderly controls
(EC). The results showed that C-ICA retrieved a meaningful subject
clustering with differences in RSNs between the clusters. Moreover,
the obtained clustering partially matched the clinically determined
diagnostic labels (i.e., AD-EC), however, without making use of these
labels when estimating the clustering. Applying the two other clustering
procedure to the empirical data set resulted in a less meaningful
clustering that (almost) did not match the diagnostic labels. This was
also true when other values for the number of RSNs were tested.
One benefit of applying C-ICA is the possibility to discover within
group-heterogeneity which may point at the existence of an unknown
neurofunctional subtype(s) in the data. Indeed, the three cluster C-ICA
solution revealed a small third cluster that mainly contained healthy
elderly controls along with a cluster containing ‘subjects at risk’. In a
follow up study, more information regarding the subjects should be
used (e.g., clinical information and behavioural measures) such that
the obtained clustering can be better validated and, as such, becomes
more insightful. One potential limitation of the current application is
that the voxel resolution was down-sampled such that the analysis
was more computationally feasible. Future research should incorporate
higher voxel resolution data sets, such that C-ICA may disclose more
fine-grained differences in RSNs between subject clusters.

From the validation studies and the empirical application, it can
be concluded that C-ICA to a very large extent retrieves the subject
clusters that are present in multi-subject fMRI data. As such, C-ICA
uncovers heterogeneity in RSNs between (a priori unknown groups
of) subjects, whereas the Group ICA with dual regression and the two
step clustering procedure are substantially worse at detecting subject
partitions under the several conditions evaluated here in this study.
This implies that these two clustering procedures cannot easily identify
the subject clusters underlying the data for the conditions tested in
our study. In sum, C-ICA offers a structured way to discover a natural
subject partition present in the data, which cannot be obtained by these
other two clustering procedures as they are not designed to do this.

6.1. Limitations and directions for future research

Although its good performance on simulated and empirical data, the
C-ICA model has some limitations, which may be used as starting points
for future research regarding model improvements and extensions. A
first limitation of the C-ICA model is that it does not specifically account
for longitudinal data. Here, longitudinal refers to the collection of
data for the same group of individuals at different moments in time
(e.g., follow up scans every year). Collecting and analysing longitudinal
fMRI data is particularly interesting for the field of developmental
psychology and the study of neurodegenerative diseases. For example,
the analysis of individual growth trajectories and individual differences
ultimately leads to a better understanding of brain development (Crone
and Elzinga, 2015). In a similar way, analysing longitudinal imaging
data of neurogenerative diseases, such as AD, may lead to a more
profound understanding of cognitive decline and may point to biomark-
ers that are sensitive for these neurodegenerative diseases (Staffaroni
et al., 2018). Note, however, that it is possible to perform C-ICA
20

on each follow up scan separately and to investigate whether the N
clusters estimated by C-ICA on baseline remain stable or change over
time. Perhaps more interestingly to study is whether healthy subjects
allocated to a separate cluster would later on move to a cluster with
clinically diagnosed patients, allowing to detect healthy subjects at risk
for the disease. These subjects and their associated RSNs could provide
valuable information about disease progression. A better option, how-
ever, would be to construct a clustering method that groups the subjects
based on changes in profiles over time in RSNs, which would imply an
extension of C-ICA to longitudinal multi-subject fMRI data.

A final limitation of C-ICA pertains to the fact that only data from
a single brain modality can be analysed. In this paper, we used rs-fMRI
data as previous research clearly demonstrated that disruptions in RSNs
are related to (mental) diseases and disease subtypes (Rombouts et al.,
2005; Greicius et al., 2007; Greicius, 2008; Pievani et al., 2011; Kaiser
et al., 2015). Of course, C-ICA can also be used, albeit maybe with
some model adjustments, to analyse data from other brain modalities
as long as can be expected that patient groups show – disease related
– differences regarding the brain modality under study and ICA is able
to uncover meaningful patterns from this brain modality. As patient
groups also differ on other modalities, such as structural MRI (Plant
et al., 2010; Cuingnet et al., 2011) and diffusion-weighted MRI (Nir
et al., 2015), information from these modalities can be considered as
complementary to the rs-fMRI information (Calhoun et al., 2006; Sui
et al., 2011). As such, combining information from multiple modalities
may help in uncovering the cluster structure underlying the data.
Indeed, by incorporating several modalities in C-ICA, a more robust
cluster structure can be estimated, yielding an improvement over a
cluster structure that is based on a single modality only. To incorporate
multiple modalities in the C-ICA method, one starting point is the
joint ICA method (Calhoun et al., 2007), which enables the estimation
of a single mixing matrix that is identical for both modalities and
a source matrix that contains multi-modal components (i.e., features
from different modalities). To cluster patients based on multi-modal
data, a clusterwise version of joint ICA could be developed in which
subjects are clustered based on similarities and differences in multi-
modal components. As such, each subject cluster can be described by a
different set of multi-modal components which enables the discovery of
heterogeneity in multi-modal features between subject clusters. Based
on these results, hypotheses could be generated regarding multi-modal
biomarkers that then can be tested and confirmed in a follow-up study.
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Appendix A. Independent component analysis for single-subject
(rs-)fMRI data

In ICA for a single subject, a multivariate – observed – signal
(e.g., the BOLD response for a set of voxels measured over time, see
Fig. 1) is decomposed into a set of statistically independent components
– also called spatial maps or RSNs – and their associated time courses.
In the context of fMRI data, in most cases, independent components
are sought for that are spatially independent (i.e., spatial ICA) as
brain functioning is conceptualized as activity that is organized in spa-
tially independent brain regions consisting of voxels that covary over
time (Calhoun et al., 2009); sometimes, however, researchers prefer
to uncover temporally independent components (i.e., temporal ICA).
As such, ICA is able to separate systematic signal information from
noise and irrelevant sources of variability that usually compromise the
BOLD signal. Here, the systematic signal information refers to sets of
correlated voxels which represent functionally connected brain regions,
whereas irrelevant sources of variability refer to artefacts such as subtle
head movements and cardiac pulsations. As a consequence, because of
their ability to separate signal from noise, ICA based methods (Griffanti
et al., 2014; Pruim et al., 2015) are often used in (rs-)fMRI studies as a
pre-processing step in order to improve signal quality (for an example,
see Feis et al., 2015). Moreover, ICA is also often employed to disclose
the RSNs underlying subjects’ fMRI data to study, for example, differ-
ences between subjects (groups) in brain functioning (e.g., comparing
diseased patients to healthy controls in terms of RSNs).

Technically, ICA is a multivariate analysis technique that aims at
finding a linear representation of non-Gaussian data in such a way
that the statistical dependency between the underlying non-Gaussian
source components is minimized. In the basic ICA model (Jutten and
Herault, 1991; Comon, 1994; Hyvärinen et al., 2001), an (underlying)
𝑛-dimensional random vector of non-Gaussian independent source sig-
nals 𝐬 = (𝑠1,… , 𝑠𝑛)𝑇 is recovered from an 𝑛-dimensional random vector
of observed signal mixtures 𝐱 = (𝑥1,… , 𝑥𝑛)𝑇 . The observed mixed
signals in 𝐱 are obtained by a linear mixing by means of an 𝑛×𝑛 mixing
matrix 𝐀 (with elements 𝑎𝑖𝑗) of the independent source signals in 𝐬.
Thus, the general ICA decomposition can be written as:

𝐱 = 𝐀𝐬 (6)

The unknown source signals 𝐬 can be computed by multiplying the
(pseudo-) inverse of the (unknown) mixing matrix 𝐀 – called the
unmixing matrix 𝐖 with elements 𝑤𝑖𝑗 – with the observed mixed
signals 𝐱:

𝐬 = 𝐀†𝐱 = 𝐖𝐱 (7)

with † denoting the pseudo-inverse of a matrix.
Therefore, in order to find the underlying independent components

𝐬, the unmixing matrix 𝐖 has to be determined. To this end, one often
searches for the matrix 𝐖 that makes the components 𝐬 as non-Gaussian
as possible; due to the Central Limit Theorem (CLT), these maximally
non-Gaussian components are also – as much as possible – statistically
independent (for more information, see Hyvärinen et al., 2001). As
several measures for nongaussianity can be adopted (e.g., measures
based on kurtosis, negentropy, mutual information or cumulants), sev-
eral classes of ICA algorithms to estimate the independent components
have been proposed (for more information, see Hyvärinen et al., 2001).
A popular implementation of ICA, known as fastICA, determines 𝐖 with
a fast fixed-point algorithm such that the estimated latent sources 𝐬 are
maximally non-Gaussian. To this end, fastICA maximizes an informa-
tion theoretic quantity known as negentropy, which is a normalized
version of differential entropy (Hyvärinen, 1999; Hyvärinen et al.,
2001) that indicates how distant a distribution is from the Gaussian
distribution. In particular, negentropy, which is always non-negative,
equals 0 for a Gaussian distribution (Hyvärinen et al., 2001) and gets
larger when the distribution becomes less and less Gaussian. As a
21

consequence, maximizing the negentropy of projected data 𝐖𝐱 gives
source variables 𝐬 that are maximally non-Gaussian (and due to the CLT
also maximally statistically independent).

As estimating negentropy is computationally very difficult, often
an approximation of negentropy is used and optimized, which is com-
putationally less demanding. A commonly adopted approximation of
negentropy (for a univariate random variable) is

𝐽 (𝑠) ∝ [𝐸{𝐺(𝑠)} − 𝐸{𝐺(𝑣)}]2 (8)

here, 𝑣 is a standardized Gaussian variable, 𝑠 is the independent com-
ponent that is sought for, E{} is the expectation operator and 𝐺 is any
nonquadratic contrast function. Useful choices for G are

𝐺1(𝑠) =
1
𝑎1

log cosh 𝑎1𝑠(where 1 ≤ 𝑎1 ≤ 2) (9)

and

𝐺2(𝑠) = − exp(−𝑠2∕2) (10)

ometimes, the following more sophisticated approximation of negen-
ropy is warranted:

(𝑠) ≈ 𝑘1(𝐸
{

𝐺1(𝑠)
}

)2 + 𝑘2(𝐸
{

𝐺2(𝑠)
}

)2 − 𝐸
{

𝐺2(𝑣)
}2 (11)

ith 𝑣 and 𝑠 defined as above, 𝑘1 and 𝑘2 being positive integers and 𝐺1
nd 𝐺2 being respectively an odd and an even nonquadratic contrast
unction.

In order to greatly reduce the numerical complexity of ICA, fas-
ICA employs a pre-processing step known as whitening (i.e., data
ecorrelation). After this whitening step, the independent components
ecessarily lie in an orthogonal space. This implies that instead of an
nrestricted mixing matrix 𝐀 with all its parameters (see Eq. (6)), one
nly has to estimate an orthogonal mixing matrix 𝐀̃ (note: 𝐀̃𝑇 𝐀̃ =
̃ 𝐀̃𝑇 = 𝐈 where 𝐈 is the identity matrix), which has way less parameters
o estimate (Hyvärinen et al., 2001). Indeed, after whitening the data,
he independent components can easily be estimated by finding the
otation matrix that maximizes the negentropy of 𝐬. To uniquely define
he independent components, also a unit norm constraint is imposed
n each latent source 𝐬. Note that, as fastICA with a small(er) 𝑄 also
nvolves data reduction, the fastICA estimates of 𝐀 and 𝐬 yield a solution
o the minimization of ‖𝐱 − 𝐀𝐬‖2 (with the rank of 𝐀𝐬 being 𝑄).

ppendix B. Ambiguities for the (C-)ICA model

The C-ICA model suffers from four sources of non-uniqueness/
mbiguity (see Hyvärinen et al., 2001), with the first three also holding
or the ICA model and the fourth one being specific for C-ICA. First,
caling ambiguity, which implies that a scaling of an independent com-
onent in 𝐒𝑟 can be compensated by counter scaling the corresponding
ime course in 𝐀𝑖 (and vice versa), resulting in the product 𝐀𝑖𝐒𝑟
eing unchanged. This is because in (C-)ICA both the mixing matrix
nd the independent components have to be estimated and only their
roduct shows up in the ICA (and C-ICA) loss function. Here, any scalar
ultiplier applied to one of the sources 𝑠𝑟𝑞 can be cancelled in 𝐀𝑖𝐒𝑟 by
ividing the row corresponding to that source in all associated 𝐀𝑖’s by
hat scalar. As noted by Hyvärinen et al. (2001), this non-uniqueness
an be accounted for during (C-)ICA estimation by enforcing that the
ndependent components 𝐒 all have unit variance (i.e., 𝐸

{

𝑠2𝑞
}

= 1).
his, however, does not solve the sign ambiguity of the components
see further).

A second ambiguity is reflectional or sign ambiguity, which pertains
o the possibility to change the sign of an estimated independent
omponent. Indeed, multiplying one of the estimated components (in
𝑟) by −1 does not affect the (C-)ICA model (6) as long as this is
ompensated for in the associated 𝐀𝑖 's (i.e., multiplying the associated
ime course with −1). Note that reflectional ambiguity is a special case
f scaling ambiguity (i.e., scaling with a factor of −1). Constraining
he variance of the independent components to one, however, does
ot solve for reflectional ambiguity. A solution here could be to select
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for each independent component that reflection of the component that
yields the smallest number of negative elements.

Third, since both the components 𝐒𝑟 and mixing matrix 𝐀𝑖 are un-
known, the order of the components in the (C-)ICA model can be freely
interchanged. To see why this is possible, consider the basic ICA model
from (6). Here it is possible to change the order of the components (and
corresponding time courses) by introducing a permutation matrix 𝐏 and
its inverse 𝐏−1 into the basic ICA model:

𝐱 = (𝐀𝐏)(𝐏−1𝐬) = 𝐀∗𝐬∗ = 𝐀𝐬 (12)

Here, 𝐬∗ = 𝐏−𝟏𝐬 denotes the latent source signals 𝐬 permuted by the
binary entries of 𝐏−1 and 𝐀∗ = 𝐀𝐏 contains the similarly permuted
time courses. In other words, the order of the latent components in 𝐬
(and corresponding vectors of 𝐀) can be permuted without affecting the
linear sum 𝐱 = 𝐀𝐬. Note that by enforcing unit scaling on each element
of 𝐬, the variance of each independent component 𝑠𝑞 cannot be used
anymore to order the 𝑠𝑞 ‘s. As a way out, the variance in the associated
time courses in 𝐀 can still be used to somehow order the components.

A fourth ambiguity, which solely applies to the C-ICA model (and
not to ICA), is that the cluster indices of the 𝐒𝑟 's can be permuted freely.
Thus, not only the independent components 𝐒 can be permuted into
𝑄! ways (see third ambiguity) but also the clustered source signals
𝐒𝑟 can be permuted into 𝑅! different ways. Note that this ambiguity,
which is often indicated as the labelling problem, pertains to almost all
clustering procedures.
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