Clinical outcomes of preterm infants while using automated controllers during standard care: comparison of cohorts with different automated titration strategies

Citation

Version: Publisher's Version
License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)
Downloaded from: https://hdl.handle.net/1887/3485316

Note: To cite this publication please use the final published version (if applicable).
Clinical outcomes of preterm infants while using automated controllers during standard care: comparison of cohorts with different automated titration strategies

Hylke H Salverda, Dianthe M L Beelen, Sophie J E Cramer, Steffen C Pauws, Nicoline Schalij-Delfos, Arjan B te Pas

ABSTRACT

Objective To compare short-term clinical outcome after using two different automated oxygen controllers (OxyGenie and CLiO2).

Design Propensity score-matched retrospective observational study.

Setting Tertiary-level neonatal unit in the Netherlands.

Patients Preterm infants (OxyGenie n=121, CLiO2 n=121) born between 24+0–29+6 weeks of gestation.

Results Fewer infants in the OxyGenie group received laser coagulation for ROP (1 infant vs 10; risk ratio 0.1 (95% CI 0.0 to 0.7); p=0.008), and infants stayed shorter in the neonatal intensive care unit (NICU) (28+3 (26+3.5–29+0) vs 27+5 (26+5–28+3) in the CLiO2 cohort, respectively 42% and 46% of infants were male and mean (SD) birth weight was 1034 (266) g vs 1022 (242) g.

Interventions Inspired oxygen was titrated by OxyGenie (SLE6000) or CLiO2 (AVEA) during respiratory support.

Main outcome measures Mortality, retinopathy of prematurity (ROP), bronchopulmonary dysplasia and necrotising enterocolitis.

Conclusions In this propensity score-matched retrospective study, the OxyGenie epoch was associated with less morbidity when compared with the CLiO2 epoch. There were significantly fewer infants that received treatment for ROP, received less intensive respiratory support and, although there were more supplemental oxygen days, the duration of stay in the NICU was shorter. A larger study will have to replicate these findings.

Introduction

Very preterm infants undergo a long undertaking from birth to discharge from the hospital out of which few arise unscathed. Four in 10 of these infants experience a serious adverse outcome such as in-hospital mortality, bronchopulmonary dysplasia (BPD), retinopathy of prematurity (ROP) requiring treatment or severe neurological injury. As demonstrated by a post hoc analysis of the data from NeOProM meta-analysis, these outcomes are likely to be at least partly affected by the degree of success in targeting a specific oxygen saturation range (SpO2, TR).

Targeting the SpO2, TR is done by carefully titrating the administered supplemental oxygen during respiratory support, either manually by bedside staff or by an automated oxygen controller (AOC). There are currently multiple systems commercially available for automated titration of the supplied oxygen. All current evidence
points towards more overall success for AOCs on achieved time within the SpO₂ TR.

However, the available controllers employ different algorithms and it is unclear which of these algorithms lead to better long-term and short-term outcome. The one algorithm X may on average keep oxygen saturation higher and have fewer desaturations at the cost of more hyperoxaemia, whereas the other algorithm Y may adhere better to the defined oxygen saturation limits at the cost of more short but frequent desaturations. Both, the increase in hyperoxaemia with algorithm X could increase the risk for ROP, and the higher incidence of intermittent hypoxaemia with algorithm Y could yield similar effects. Furthermore, the amplitude of SpO₂ fluctuations and the duration of the episodes will most likely also be a factor of influence. Both factors can be influenced by choice of algorithm, for example, by algorithm design, pulse-oximeter settings and choice of SpO₂ TR. A similar conundrum may exist for BPD, neurodevelopmental and other long-term outcomes. Studies comparing these clinical outcomes for different AOCs are lacking.

Two controllers employing distinctly different algorithms, the CLiO₂ algorithm implemented in the AVEA ventilator (Vyair, Yorba Linda, California, USA) and the OxyGenie algorithm (VDL 1.1) embedded in the SLE6000 ventilator (SLE, South Croydon, UK) were used in the neonatal unit of Leiden University Medical Center (LUMC). Both algorithms have been described in detail in a recent publication. We recently demonstrated that the OxyGenie algorithm was more effective in keeping SpO₂ within the SpO₂ TR, preventing hyperoxaemia and just as effective in preventing hypoxaemia. While using the CLiO₂ algorithm there was less time spent in the SpO₂ range of 80%–90%, possibly due to the lower median SpO₂ during OxyGenie control (93% vs 94%) on the steeper part of the oxygen-haemoglobin dissociation curve. We hypothesised that these differences in achieved performance may affect short-term clinical outcome. Both systems have been used as standard of care for over a year in our unit, which prompted us to describe short-term clinical outcomes of preterm infants in a matched cohort study.

METHODS
Study design
We performed a propensity score-matched observational study with electronic patient record data from the LUMC, a tertiary hospital with 25 neonatal intensive care unit (NICU) beds and around 100 admissions per annum of infants born under 30 weeks of gestation. The medical ethical research committee of Leiden Den Haag Delft provided a statement of no objection for obtaining and publishing the anonymised data. Protocol was filed under reference number G19.075.

To ensure equal distribution of patient characteristics that can confound with outcome, we matched infants that received respiratory support from the SLE6000 ventilator, born in-hospital between 1 November 2018 and 15 March 2020 (OxyGenie cohort), to infants from a cohort supported by the AVEA ventilator born between 18 October 2015 and 31 April 2018 (CLiO₂ cohort). We matched on sex, birth weight and gestational age using propensity score matching with a match tolerance of 0.1. All infants were born at a gestational age 24 + 0 until 29 + 6 weeks. Infants with major congenital malformations were excluded.

Automated oxygen controllers
In August 2015, automated oxygen titration by the CLiO₂ algorithm was introduced as standard of care. The CLiO₂ algorithm was set to target an SpO₂ TR of 90%–95%. In November 2018, the AVEA ventilators were replaced with SLE6000 ventilators with the OxyGenie option for automated oxygen control. The OxyGenie uses a narrower SpO₂ TR of 91%–95%. The CLiO₂ algorithm is of a rule-based design. To determine a fraction of inspiratory oxygen (FiO₂) adjustment CLiO₂ incorporates the difference between the SpO₂ TR and the measured SpO₂, the severity of lung disease and the SpO₂ trend. The OxyGenie algorithm is an adaptive proportional-integral-derivative controller—also employed in automotive cruise-control and rockets—with several enhancements to account for the physiology of a neonate and account for the limitations of pulse oximetry.

Data collection and outcome measures
Patient records are kept digitally in our patient data management system (Metavision; IMDSoft, Tel Aviv, Israel). The following outcomes were noted from either these records or from the discharge papers from the regional hospital where the infant resided before being discharged home: mortality until 1 month after corrected term age, ROP, BPD, necrotising enterocolitis (NEC), culture-proven sepsis, intraventricular haemorrhage (IVH), periventricular leukomalacia (PVL) and length of NICU stay. The duration of respiratory therapy and supplemental oxygen (measured FiO₂ above 0.21) and the mean of inspiratory oxygen during the first week and entire admission were calculated from our patient data management system which routinely samples clinical parameters and ventilator settings once per minute. High flow nasal cannula (HFNC) was available in SLE6000, not in AVEA. The device we used for HFNC during the first week did not allow for automatic data storage or for automated oxygen titration. Therefore to minimise biased results, the duration of supplemental oxygen therapy was analysed both with and without periods of HFNC. The ophthalmologists in our hospital implemented the early treatment of retinopathy of prematurity study (ETROP) classification for findings of retinal examination in 2013 and ROP was defined according to this classification. Laser coagulation for treatment of severe ROP is first choice, avascular endothelial growth factor (VEGF) injections are not standard of care. When retinal findings were described otherwise, researcher HHS classified according to the ETROP criteria retrospectively, assisted by an ophthalmologist where necessary. An assessment for BPD was made at 36 weeks postmenstrual age classified as either none, mild, moderate-to-severe according to adapted criteria from the 2000-National Institute of Child Health and Human Development (NICHD) consensus. We chose to combine the moderate and severe classifications as discharge papers from regional hospitals sometimes did not indicate which respiratory therapy was applied at what time. NEC was defined according to the modified Bell staging criteria. IVH was classified according to the classification adapted by Papile et al., PVL according to the classification by de Vries et al.

Analysis
Data are presented as mean (SD), median (IQR) or (range) or number (percentage) as appropriate. Standard tests for normality (visual assessment, Kolmogorov-Smirnov, Shapiro-Wilk) were done. Statistical comparison was performed using a related-samples Wilcoxon signed rank test with Hodges-Lehman median difference CI or related-samples McNemar test as appropriate. Outcomes with more than two categories were analysed using a test by Bhapkar. Risk ratios (RRs) and CIs were calculated according to the method described by Algresti and Min to retain the matching of the data. Statistical analyses were
performed by IBM SPSS Statistics for Mac, V25 (IBM, Armonk, New York, USA) and R V4.1.0 (R Core Team (2021). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/). Two-tailed p values of <0.05 were considered statistically significant.

RESULTS
One hundred fifty-eight infants were born between November 2018 and March 2020, of which 121 were eligible for inclusion in the OxyGenie cohort. These were then matched with infants born in the period October 2015–April 2018 to form the control, or CLiO2, cohort (n=121) (table 1). In the OxyGenie cohort 51 infants were male (42%), there was a median gestational age at birth of 28 weeks and 3 days (26 weeks and 3.5 days–29 weeks) and a birth weight of 1034 (266) g. In the CLiO2 cohort there were 55 males (46%), there was a median gestational age of 27 weeks and 5 days (26 weeks and 5 days–28 weeks and 3 days) and a birth weight of 1022 (242) g. As our centre is a referral centre for fetal treatment, we have a relatively large number of multiple pregnancy (45 in the OxyGenie cohort vs 41 in the CLiO2 cohort). There were no statistically significant differences in number of infants who received inhaled nitric oxide, dexamethasone or surfactant.

Table 1 Patient characteristics

<table>
<thead>
<tr>
<th>Patient characteristics</th>
<th>OxyGenie cohort</th>
<th>CLiO2 cohort</th>
<th>P value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=242</td>
<td>N=121</td>
<td>N=121</td>
<td></td>
</tr>
<tr>
<td>Gestational age in weeks (IQR), median</td>
<td>28 (26.3–29)</td>
<td>27 (26–28)</td>
<td>0.09</td>
</tr>
<tr>
<td>Birth weight in g, mean (SD)</td>
<td>1034 (266)</td>
<td>1022 (242)</td>
<td>0.60</td>
</tr>
<tr>
<td>Small for gestational age, n (%)</td>
<td>12 (10.1)</td>
<td>8 (6.6)</td>
<td>0.30</td>
</tr>
<tr>
<td>Males, n (%)</td>
<td>51 (42.1)</td>
<td>55 (45.5)</td>
<td>0.60</td>
</tr>
<tr>
<td>Antenatal corticosteroids, n (%)</td>
<td>107 (92.2)</td>
<td>106 (88.1)</td>
<td>0.50</td>
</tr>
<tr>
<td>Caesarean delivery, n (%)</td>
<td>64 (52.9)</td>
<td>66 (54.5)</td>
<td>0.90</td>
</tr>
<tr>
<td>Multiple pregnancy, n (%)</td>
<td>45 (37.2)</td>
<td>41 (33.9)</td>
<td>0.70</td>
</tr>
<tr>
<td>Of which monochorionic twins, n (%)</td>
<td>22 (48.9)</td>
<td>26 (63.4)</td>
<td></td>
</tr>
<tr>
<td>Perinatal asphyxia, n (%)</td>
<td>5 (1.1)</td>
<td>1 (0.8)</td>
<td>0.22</td>
</tr>
<tr>
<td>Apgar score at 5 min, median (range)</td>
<td>8 (0–10)</td>
<td>8 (2–10)</td>
<td>0.79</td>
</tr>
</tbody>
</table>

*Statistical analysis with related-samples Wilcoxon signed rank test or related-samples McNemar test as appropriate.

Table 2 Respiratory therapies

<table>
<thead>
<tr>
<th>Respiratory therapies</th>
<th>OxyGenie cohort</th>
<th>CLiO2 cohort</th>
<th>P value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invasive ventilation, days, median (IQR)</td>
<td>0 (0–4.2)</td>
<td>2.1 (0–8.4)</td>
<td>0.012</td>
</tr>
<tr>
<td>CPAP days, median (IQR)</td>
<td>8.4 (4.8–19.4)</td>
<td>16.7 (6.3–31.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>HFNC days, median (IQR)</td>
<td>10 (4.2–17.2)</td>
<td>8.2 (2.7–14.6)</td>
<td>0.20</td>
</tr>
<tr>
<td>Supplemental oxygen days, median (IQR)</td>
<td>17.3 (6.0–31.1)</td>
<td>7.0 (1.1–26.1)</td>
<td>0.045</td>
</tr>
<tr>
<td>Excluding nasal high flow, median (IQR)</td>
<td>8.5 (2.8–22.6)</td>
<td>7.0 (1.1–26.1)</td>
<td>0.52</td>
</tr>
<tr>
<td>Mean inspired oxygen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>During first week, median (IQR)</td>
<td>22.9 (21.8–25.0)</td>
<td>22.6 (21.4–24.8)</td>
<td>0.33</td>
</tr>
<tr>
<td>During entire admittance, median (IQR)</td>
<td>22.9 (21.8–25.3)</td>
<td>23.4 (21.6–27.0)</td>
<td>0.21</td>
</tr>
<tr>
<td>High frequency oscillation, n (%)</td>
<td>23 (19.0)</td>
<td>26 (21.5)</td>
<td>0.76</td>
</tr>
<tr>
<td>Inhaled nitric oxide, n (%)</td>
<td>13 (10.7)</td>
<td>15 (12.4)</td>
<td>0.85</td>
</tr>
<tr>
<td>Dexamethasone, n (%)</td>
<td>15 (12.4)</td>
<td>15 (12.4)</td>
<td>1.00</td>
</tr>
<tr>
<td>Surfactant, n (%)</td>
<td>67 (55.7)</td>
<td>69 (57.0)</td>
<td>0.89</td>
</tr>
<tr>
<td>via intubation, n (%)</td>
<td>28 (41.8)</td>
<td>38 (55.1)</td>
<td>0.32</td>
</tr>
<tr>
<td>via minimally invasive technique, n (%)</td>
<td>39 (56.2)</td>
<td>31 (44.9)</td>
<td></td>
</tr>
</tbody>
</table>

Average inspired oxygen while on respiratory support.

*Statistical analysis with related-samples Wilcoxon signed rank; Bhapkar or related-samples McNemar test as appropriate.

Respiratory therapies
The OxyGenie cohort had significantly more time during which they received supplemental oxygen (table 2; 17.3 (95% CI 6.0 to 31.1) days vs 7.0 (95% CI 1.1 to 26.1); p=0.045). High flow was not available in the AVEA ventilator, when excluding periods where infants were supported using high flow from the analysis there was a non-statistically significant difference (8.5 (95% CI 2.8 to 22.6) days OxyGenie group vs 7.0 (95% CI 1.1 to 26.1) CLiO2 group, p=0.52). The mean inspired oxygen in the first week of life was similar in both groups (22.8 (95% CI 21.8 to 25.0) OxyGenie vs 22.6 (95% CI 21.4 to 24.8); p=0.33), as was mean inspired oxygen during the entire stay (22.9 (95% CI 21.8 to 25.3) OxyGenie vs 23.4 (95% CI 21.6 to 27.0); p=0.21). Infants in the OxyGenie cohort had fewer days of continuous positive airway pressure (8.4 (95% CI 4.8 to 19.8) days vs 16.7 (95% CI 6.3 to 31.1) days; p<0.001) and fewer days of invasive ventilation (0 (95% CI 0 to 4.2) vs 2.1 (95% CI 0 to 8.4); p=0.012) while the duration of nasal high flow was similar. There were no significant differences in number of infants who received inhaled nitric oxide, dexamethasone or surfactant.

Clinical outcomes
Fewer infants received laser coagulation for ROP in the OxyGenie cohort (table 3; 1 vs 10; relative RR 0.1, 95% CI 0.0 to 0.7; p=0.008), no infants were treated with anti-VEGF injections. There were no statistically significant differences in mortality (RR 2.3, 95% CI 0.6 to 9.0), culture-proven sepsis, BPD (RR 1.0 95% CI 0.7 to 1.3), NEC (≥stage 2A, RR 1.1 95% CI 0.5 to 2.6), IVH (≥stage 2, RR 1.5 95% CI 0.8 to 2.7) and PVL (≥stage 2, RR 0.9 95% CI 0.0 to 2.2). Infants had a significantly shorter duration of stay in the NICU in the OxyGenie cohort (28 (95% CI 15 to 42) days vs 40 (95% CI 25 to 61) days; median difference 13.5 days (95% CI 8.5 to 19.5); p<0.001).

DISCUSSION
In this observational study, infants in the OxyGenie group had less morbidity. Fewer infants needed laser coagulation for ROP in the OxyGenie cohort when compared with the CLiO2 cohort. On average, administered supplemental oxygen was of a modest proportion in both groups and with the exception of a shorter duration of continuous positive airway pressure and invasive mechanical ventilation, the durations on other modes of respiratory support were not significantly different. Infants in the OxyGenie cohort had a significantly shorter duration of stay in...
In a recent epoch, however the upper gestational age criterion was added to 48 hours per studied infant, there is no reason why those results cannot be generalised largely to the rest of the admission data in our patient data management system, precluding the retrospective nature of this study precludes us from drawing definite conclusions on the causal effect of choice of algorithm on short-term clinical outcome. Further research is warranted to replicate these findings, preferably in a large multicentre randomised trial.

CONCLUSION
In this observational study, the OxyGenie epoch was associated with less morbidity when compared with the CLiO2 epoch. There were significantly fewer infants that received treatment for ROP, received less intensive respiratory support and although there have been no other major changes in standard care besides type of ventilator, we cannot rule out that there are unmeasured changes that can influence results in either direction.

Importantly, some outcomes were rare (eg, mortality and PVL) and it should be noted that the power of the study may not be sufficient to observe a difference in these outcomes between the groups. This is reflected in the broad relative risk CIs, indicative that the true effect may be markedly different. Ultimately, the retrospective nature of this study precludes us from drawing definite conclusions on the causal effect of choice of algorithm on short-term clinical outcome. Further research is warranted to replicate these findings, preferably in a large multicentre randomised trial.

Table 3 Clinical outcomes

<table>
<thead>
<tr>
<th></th>
<th>OxyGenie cohort</th>
<th>CLiO2 cohort</th>
<th>RR (95% CI)</th>
<th>P value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Died, n (%)</td>
<td>7 (5.8)</td>
<td>3 (2.5)</td>
<td>2.3 (0.6 to 9.0)</td>
<td>0.34</td>
</tr>
<tr>
<td>Culture-proven sepsis, n (%)</td>
<td>45 (37.2)</td>
<td>56 (46.3)</td>
<td>1.2 (0.9 to 1.7)</td>
<td>0.18</td>
</tr>
<tr>
<td>Necrotising enterocolitis (≥stage 2A), n (%)</td>
<td>9 (7.4)</td>
<td>8 (6.6)</td>
<td>1.1 (0.5 to 2.6)</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Intraventricular haemorrhage according to classification by Papile et al; days on NICU until transfer to regional hospital or discharge; bronchopulmonary dysplasia classification according to Dutch paediatric guidelines.

Bronchopulmonary dysplasia: ≥ stage 2. Lower gestational age was associated with an increased rate of ROP.11 12 26 Early after preterm birth, a varying oxygenation of the retina might lead to decreased retinal vascular growth and blood vessel loss, leaving the retina more susceptible to damage due to hypoxia. In a later phase, this increases the risk of uncontrolled neovascularisation and retinal detachment.25 However, the occurrence of laser coagulation in the OxyGenie group was much lower than our expectations. Nevertheless, given for at least 12 hours to be counted towards the 28 days required for the diagnosis of BPD. During automated oxygen control, the administered proportion oxygen may be only intermittently be above 0.21 in a 24-hour period, and this may not be predictive of BPD, for example, when these brief moments are linked to apnoea events. Depending on what criteria are used to define BPD, significantly more infants would be classified as having BPD.

Several measures were taken to minimise the risk of bias associated with retrospective chart studies, such as missing data from patients in regional hospitals. Given that the data are relatively recent and thanks to the modest cohort size, we were able to have two independent researchers check all electronic patient records and discharge papers from regional hospitals for the outcomes. Furthermore, respiratory support data were based on automatically stored data in our patient data management system, precluding human error. In 2017, our unit changed to single room care,28 and although there have been no other major changes in standard care besides type of ventilator, we cannot rule out that there are unmeasured changes that can influence results in either direction.

The applied definition of BPD16 may prove unsuitable for infants receiving automated oxygen titration. The general consensus is that during a day supplemental oxygen should be given for at least 12 hours to be counted towards the 28 days required for the diagnosis of BPD. During automated oxygen control, the administered proportion oxygen may be only intermittently be above 0.21 in a 24-hour period, and this may not be predictive of BPD, for example, when these brief moments are linked to apnoea events. Depending on what criteria are used to define BPD, significantly more infants would be classified as having BPD.

Several measures were taken to minimise the risk of bias associated with retrospective chart studies, such as missing data from patients in regional hospitals. Given that the data are relatively recent and thanks to the modest cohort size, we were able to have two independent researchers check all electronic patient records and discharge papers from regional hospitals for the outcomes. Furthermore, respiratory support data were based on automatically stored data in our patient data management system, precluding human error. In 2017, our unit changed to single room care,28 and although there have been no other major changes in standard care besides type of ventilator, we cannot rule out that there are unmeasured changes that can influence results in either direction.

Importantly, some outcomes were rare (eg, mortality and PVL) and it should be noted that the power of the study may not be sufficient to observe a difference in these outcomes between the groups. This is reflected in the broad relative risk CIs, indicative that the true effect may be markedly different. Ultimately, the retrospective nature of this study precludes us from drawing definite conclusions on the causal effect of choice of algorithm on short-term clinical outcome. Further research is warranted to replicate these findings, preferably in a large multicentre randomised trial.

The applied definition of BPD16 may prove unsuitable for infants receiving automated oxygen titration. The general consensus is that during a day supplemental oxygen should be
Data availability statement

Patient consent for publication

Competition of interests

Funding

Competing interests

Provenance and peer review

Data availability statement

ORCID ID

References

Contributors

Funding

Contributors

Competing interests

Provenance and peer review

Data availability statement

ORCID ID

References

Contributors

Funding

Contributors

Competing interests

Provenance and peer review

Data availability statement

ORCID ID

References

Contributors

Funding

Contributors

Competing interests

Provenance and peer review

Data availability statement

ORCID ID

References