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A B S T R A C T

Background. The prevalence of end-stage renal disease
(ESRD) is increasing worldwide, with the majority of new
ESRD cases diagnosed in patients >60 years of age. These
older patients are at increased risk for impaired cognitive
functioning, potentially through cerebral small vessel disease
(SVD). Novel markers of vascular integrity may be of clinical
value for identifying patients at high risk for cognitive
impairment.
Methods. We aimed to associate the levels of angiopoietin-2
(Ang-2), asymmetric dimethylarginine and a selection of eight
circulating angiogenic microRNAs (miRNAs) with SVD and cog-
nitive impairment in older patients reaching ESRD that did not
yet initiate renal replacement therapy (n¼ 129; mean age
75.3 years, mean eGFR 16.4 mL/min). We assessed brain mag-
netic resonance imaging changes of SVD (white matter hyperin-
tensity volume, microbleeds and the presence of lacunes) and
measures of cognition in domains of memory, psychomotor
speed and executive function in a neuropsychological test battery.
Results. Older patients reaching ESRD showed an unfavourable
angiogenic profile, as indicated by aberrant levels of Ang-2 and
five angiogenic miRNAs (miR-27a, miR-126, miR-132, miR-
223 and miR-326), compared with healthy persons and patients
with diabetic nephropathy. Moreover, Ang-2 was associated
with SVD and with the domains of psychomotor speed and ex-
ecutive function, while miR-223 and miR-29a were associated
with memory function.

Conclusions. Taken together, these novel angiogenic markers
might serve to identify older patients with ESRD at risk of cog-
nitive decline, as well as provide insights into the underlying
(vascular) pathophysiology.

Keywords: ageing, angiopoietin-2, cerebral small vessel dis-
ease, cognitive dysfunction, microRNAs

I N T R O D U C T I O N

The number of patients reaching end-stage renal disease
(ESRD) is increasing worldwide, while half of the new ESRD
cases are patients �60 years of age [1, 2]. These older patients
are at increased risk for adverse health outcomes [3], including
impaired cognitive functioning [4], which decreases quality of
life and independently associates with increased mortality and
other adverse health outcomes [5, 6]. However, the underlying
pathophysiological mechanisms of cognitive impairment in this
group of patients are not fully understood.

Diseases affecting small arteries and arterioles in the brain,
also known as cerebral small vessel disease (SVD), play an im-
portant role in the development of cerebrovascular disease and
cognitive impairment [7, 8]. A history of vascular disease is a
determinant of cognitive impairment in patients reaching
ESRD (before receiving renal replacement therapy) [9, 10] and
SVD has been associated with impaired cognition [11]. Being
exposed to high-volume blood flow, the brain and kidney share
a high vulnerability for endothelial dysfunction and vascular
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damage [12]. Within the brain this can subsequently result in
cognitive impairment [13]. Furthermore, accumulation of urae-
mic toxins [such as asymmetric dimethylarginine (ADMA)]
may cause cerebral vascular injury and lead to neurodegenera-
tive damage in the brain affecting the cognitive domains of at-
tention and speed [14]. Microvascular destabilization factors
such as angiopoietin-2 (Ang-2), together with (circulating) an-
giogenic microRNAs (miRNAs), play a major role in mediating
vascular injury or maintaining microvascular integrity and have
also been linked to endothelial dysfunction in cerebral SVD
[15]. As such, they may provide insights into specific deregu-
lated molecular mechanisms [16, 17], but also represent prom-
ising markers of microvascular disease [17–20]. Assessing and
understanding these determinants of cognitive functioning in
older patients reaching ESRD may prove beneficial in treatment
decisions and may have implications for prevention of further
cognitive decline.

However, so far no studies have been performed on circulat-
ing levels of ADMA, Ang-2 and angiogenic miRNAs in the
older ESRD population or their relationship with SVD and cog-
nitive impairment in this population. The aim of this study was
to determine the levels of ADMA, Ang-2 and angiogenic
miRNAs and their association with brain magnetic resonance
imaging (MRI) markers of SVD and cognitive impairment in
older patients reaching ESRD.

M A T E R I A L S A N D M E T H O D S

Patient cohort

The full design, methods and baseline characteristics of the
Cognitive decline in Older Patients with End-stage renal disease
(COPE) study have been published previously [10, 21]. The

patients selected for this study were those patients for which a
cardiac MRI was available. In brief, the COPE study is a pro-
spective, multicentre cohort study based in the Netherlands
comprising patients�65 years of age reaching ESRD [estimated
glomerular filtration rate (eGFR) �20 mL/min/1.73 m2] before
receiving renal replacement therapy. Patients who were illiterate
were excluded. As part of the pre-dialysis nephrogeriatric work-
up, a physical examination, comprehensive geriatric assess-
ment, brain MRI and neuropsychological testing were per-
formed. Written informed consent was obtained from all
patients. The study protocol was approved by the medical ethics
committee (approval number NL46389.058.13) of all centres
that participated [Leiden University Medical Centre, Haga
Hospital (The Hague), Dialysis Centre Zoetermeer
(Zoetermeer; part of the Haga Hospital) and Reinier de Graaf
Groep (Delft)].

Renal care. eGFR was estimated using the Modification of
Diet in Renal Disease or Chronic Kidney Disease Epidemiology
Collaboration equation depending on the time of inclusion or
protocol used in the different hospitals. Vascular or non-
vascular cause of kidney disease was defined based on the
European Renal Association–European Dialysis and
Transplant Association primary renal diagnosis code, which
was determined by the treating nephrologist. A history of vas-
cular disease was defined as the presence of myocardial infarc-
tion and/or cerebral vascular incident (CVA) and/or peripheral
vascular disease.

Neuropsychological testing. A standardized neuropsycho-
logical test battery was administered by trained geriatric or dial-
ysis nurses. The tests were designed to assess different domains

KEY LEARNING POINTS

What is already known about this subject?

• Older patients reaching end-stage renal disease (ESRD) are at increased risk for impaired cognitive functioning.
• The underlying pathophysiological mechanisms of cognitive impairment in this group of patients are not fully

understood.
• Cerebral small vessel disease (SVD) plays an important role in the development of cerebrovascular disease and is associ-

ated with cognitive impairment.

What this study adds?

• Older patients reaching ESRD showed an unfavourable circulating angiogenic profile, as indicated by aberrant levels of
angiopoietin-2 (Ang-2) and five angiogenic microRNAs (miRNAs).

• Ang-2 and miRNA levels associate with SVD and impaired cognition.

What impact this may have on practice or policy?

• These novel angiogenic markers might serve to identify older individuals with ESRD at risk of cognitive decline, as well as
provide insights into the underlying (vascular) pathophysiology.

• Assessing and understanding these determinants of cognitive functioning in older patients reaching ESRD may prove
beneficial in treatment decisions and may have implications for prevention of further cognitive decline.
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of cognitive functioning, including global cognition, visuocon-
struction, memory, psychomotor speed and executive function,
which have been successfully used in several study cohorts [22–
24]. Global cognition was tested by the Mini-Mental State
Examination (MMSE), which ranges from 0 to 30 points, with
higher scores representing better cognitive performance [25].
Clock drawing was used to determine visuoconstructive abilities
and executive function, with scores ranging from 0 to 14 points,
where higher scores indicate better performance [26]. Memory
was tested using the 15-word verbal learning test (15WVLT),
where both immediate (total score after five trials) and delayed
recall were used, with higher scores representing better function
[27]. To test for long-term memory reproduction, we used the
Visual Attention Test, with better function indicated by higher
scores [28]. To test for psychomotor speed, the Letter Digit
Substitution Test (LDST) was used. The number of correct sub-
stitutions in 60 s was used, with higher scores representing bet-
ter function [29]. Executive function was assessed with the Trail
Making Test A and B (TMT-A and -B), with lower scores repre-
senting better function [30]. To distinguish between cognitive
flexibility and processing speed as the explanation for the test
result, the score on the TMT-B was corrected for the score on
the TMT-A. In addition, the Stroop Colour Word Test (SCWT)
was used to assess executive function, with lower scores repre-
senting better function [31]. To distinguish between cognitive
inhibition and processing speed as an explanation of this test re-
sult, the SCWT III score (interference card) was corrected for
the SCWT II score (colour naming card). The 15WVLT, TMT-
B and LDST were used for the association analyses as represen-
tative tests for the different neuropsychological domains of
memory, executive function and psychomotor speed,
respectively.

MRI. In 70 patients, a brain MRI scan was performed.
Patients were excluded if metal was present in their body, if
they suffered from claustrophobia, if no consent was given for
MRI or MRI was not available at the particular medical centre.
As previously published, the MRI protocol consisted of three-
dimensional (3D) fluid-attenuated inversion recovery, 3D T1-
weighted, T2-weighted turbo spin echo images, diffusion-
weighted imaging and susceptibility-weighted imaging sequen-
ces [21]. White matter hyperintensity (WMH) volume and in-
tracranial volume (in mL) were determined by an automated
method (Quantib Brain, Quantib, Rotterdam, The
Netherlands) after manual segmentation of infarcts and other
pathologies. WMH volume served as a marker of cerebral SVD.
The presence of lacunes and microbleeds was scored by a radi-
ologist according to the Standards for Reporting Vascular
Changes on Neuroimaging criteria [32]. In addition, we applied
the Scheltens scale to evaluate WMH [33]. Of note, this method
was chosen over the Fazekas scale because the Scheltens scale
provides a more detailed visual scale.

Reference cohorts. To compare our miRNA measurements
with healthy controls and patients with diabetic nephropathy
(DN) as a ‘young’ CKD group, we used archival data on circu-
lating miRNAs from a patient study that was set up at the
Leiden University Medical Centre, as previously described [20].

Laboratory assessments

For miRNA analysis, plasma was harvested by centrifugation
of ethylenediaminetetraacetic acid–anticoagulated blood for
10 min at 3000 rpm and subsequently stored at �80�C. At the
same time, blood was collected for analysis of serum Ang-2 and
ADMA. Both Ang-2 and ADMA were measured by enzyme-
linked immunosorbent assay (R&D Systems, Minneapolis, MN,
USA) according to the instructions of the manufacturer.

RNA isolation and measurements

Total RNA was isolated from 200mL of plasma followed by
miRNA profiling for miR-27a, miR-29a, miR-126, miR-132,
miR-137, miR-192, miR-223 and miR-326 using reverse tran-
scription quantitative polymerase chain reaction (miRCURY
LNA Universal RT microRNA polymerase chain reaction) per-
formed by Exiqon (Vaedbek, Denmark). For the RNA extrac-
tion of plasma, two pre-mixed RNA spike-ins (UniSp2 and
UniSp4), each at different concentrations in 100-fold incre-
ments, were added. This set of spike-ins was intended as an
RNA isolation control and to ensure that the quality of the in-
put RNA was sufficiently high for effective amplification. For
the reverse transcription step, one spike-in (UniSp6) was added.
This control was used to confirm that the reverse transcription
and amplification occurs with equal efficiency in all samples, in-
dicating similar and sufficient quality of the RNA. For normali-
zation of the data we applied the median of the assays detected
in all samples (n¼ 129 samples), as this was found to be the
most stable normalizer. For comparison with a previous cohort
[20] (Figure 1), data were normalized to miR-16. miR-16 was
used since we observed a strong correlation between the median
of all samples (the most preferable normalization method, but
not applicable in our comparison to other cohorts) and miR-16
(r¼ 0.92, P< 0.0001), suggesting that miR-16 is suitable as a
normalizer in this study. Moreover, in the original study that
described the DN group and healthy controls (where we com-
pared our results), we used miR-16 as a normalizer after careful
evaluation of their levels in different samples and different
groups and found it the most stable normalizer [20].

Selection of miRNAs

miRNAs to be assessed (miR-27a, miR-29a, miR-126, miR-
132, miR-137, miR-192, miR-223 and miR-326) were selected
based on their previously determined relation to vascular injury
and cognitive dysfunction (Supplementary data, Table S1).

Statistical analyses

Patient characteristics are presented as mean with standard
deviation (SD) when normally distributed. In the case of a
skewed distribution, data are presented as median with inter-
quartile range (IQR) or as number (n) with percentage (%).
Function in the different cognitive domains (memory, executive
function and psychomotor speed) is indicated as percentiles
(mean with IQR). miRNA, ADMA and Ang-2 levels are strati-
fied in tertiles and mean scores are presented as mean [standard
error of the mean (SEM)]. Associations between miRNA,
ADMA and Ang-2 levels as continuous variables with measures
from the brain MRI measurements and different cognitive tests
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were assessed via linear regression analyses adjusted for age and
gender. All analyses were carried out using SPSS version 23
(IBM, Armonk, NY, USA).

R E S U L T S

Patient cohort description

The clinical characteristics of the study population are pre-
sented in Table 1. The study population consisted of 129 partic-
ipants with a median age of 75.3 years and 85 (65.9%)
participants were male. At study enrolment, the mean eGFR
was 16.4 mL/min (SD 4.3) and the mean decline in eGFR in the
past 3 years was 9.2 mL/min (SD 7.3). In 80 (62.0%) patients the
primary kidney disease had a vascular cause, mainly hyperten-
sion or diabetes mellitus. Fifty-nine participants (45.7%) had a
history of vascular disease, defined by the presence of myocar-
dial infarction and/or CVA and/or peripheral vascular disease.

In Table 1 we also report the performance on global cogni-
tive function and different cognitive domains for this study
population. The population had a median MMSE score of 28
out of 30 points (IQR 27–29). Nine patients had an MMSE
score <25 (7.1%), a previously identified significant cut-off
value to diagnose cognitive dysfunction [34]. The mean score
on the immediate memory test (15WVLT) was 30.7 words re-
membered (SD 9.8). The mean score on the executive function
test (TMT-B) was 178.1 s (SD 76.0). The mean score on psycho-
motor speed (LDST) was 21.8 correct substitutions (SD 6.8).

miRNA, Ang-2 and ADMA measurements in older
patients reaching ESRD

To identify miRNAs that may associate with cognitive de-
cline we selected miRNAs that were previously described to
strongly associate with vascular injury and cognition
(Supplementary data, Table S1; detailed description can be
found in the Materials and methods section). As such, we se-
lected miR-27a, miR-29a, miR-126, miR-132, miR-137, miR-
192, miR-223 and miR-326 as well as vascular injury marker
Ang-2 and ADMA. Table 2 summarizes these measurements in
our cohort of 129 patients.

Comparison with younger healthy controls and CKD
patients

The miRNA levels in our cohort were first compared with
the miRNA levels measured in a healthy (young) control group
(n¼ 19, mean age 44 years) as well as in a group of patients
with DN (n¼ 21, mean age 44 years, mean eGFR 17 mL/min)
from an earlier study [20] (patient characteristics are described
in Table 3). For this comparison, data were available for miR-
223, miR-126, miR-132, miR-27a and miR-326, as these were
previously assessed (levels normalized to stable miR-16), and
we found that the patients from this study have strongly altered
miRNA levels as compared with both healthy young individuals
and patients with DN (Figure 1; these graphs are presented with
individual data points in Supplementary data, Figure S1).
Specifically, we found lower levels of miR-223, miR-126 and
miR-132, while miR-27a and miR-326 displayed higher levels
in older patients, confirming previous reports that renal failure
associated with vascular injury was linked to this change in cir-
culating miRNA levels [20]. In addition, mean Ang-2 levels
were 1901 and 5871 pg/mL in the healthy controls and patients
with DN, respectively. Here, mean Ang-2 levels were 3608 pg/
mL, indicating that Ang-2 levels in these older patients reaching
ESRD are higher than normal, but not as high as in a group of
(younger) DN patients. Next we compared the observed
ADMA levels to reference values, indicating that 0.74mmol/L is
higher than observed in healthy individuals but comparable to
other ESRD patient groups [35, 36].

Specific miRNAs and Ang-2 associate with cognitive
function

Next we aimed to determine whether circulating miRNA,
Ang-2 and ADMA levels associated with cognitive function in
different cognitive domains. To that end we grouped the ESRD
patients based on their ADMA, Ang-2 and miRNA levels in ter-
tiles (Tertile 1, lowest levels; Tertile 3, highest levels) and plotted
the cognitive test scores against the tertiles of these vascular
markers (Figure 2; these graphs are presented with individual
data points in Supplementary data, Figure S2). We found lower
levels of miR-223 (P¼ 0.006) and higher levels of miR-29a
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FIGURE 1: Comparison of miRNA levels in older patients with ESRD with (younger) healthy people and patients with DN. (A) Comparison
with younger healthy people. (B) Comparison with younger patients with DN. Values were normalized to miR-16. miRNAs included in this
analysis were those for which data were available from the patient cohort with healthy controls and patients with DN. Data are represented as
mean 6 SEM.
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(P¼ 0.011) significantly associated with worse memory func-
tion (15WVLT), while higher Ang-2 (P¼ 0.004) associated
with worse psychomotor speed (LDST). In addition, we found
several close to statistically significant associations; lower miR-
27a associated with worse memory (15WVLT; P¼ 0.067) and
executive function (TMT-B; P¼ 0.067), while higher Ang-2
(P¼ 0.057) and lower miR-326 (P¼ 0.08) associated with
worse executive function (TMT-B).

Ang-2 associates with imaging parameters of cerebral
SVD

Given that it was previously demonstrated that imaging
parameters of SVD are associated with measures of cognitive
dysfunction, we assessed the relation of circulating vascular
markers with MRI parameters of SVD. Figure 3A indicates
both the qualitative and quantitative data from 93 and 70
patients, respectively, for which MRI data were available.
Microbleeds were present in 56 patients (60.2%); the presence
of lacunes of presumed vascular origin was observed in 44 par-
ticipants (48%). The Scheltens score of the white matter hyper-
intensities (WMHs) was on average 15.8. The median of the
quantitative measurement of the WMH was 3.16 mL. We ob-
served no relation of ADMA, Ang-2 or miRNA levels with
microbleeds or lacunes (data not shown). In contrast, Ang-2
(P¼ 0.08, r¼ 0.21) and miR-29 (P¼ 0.02, r¼ 0.28) were both
(close to) significantly positively correlated with the Scheltens
WMH score. Moreover, Figure 3B (individual data points in
Supplementary data, Figure S3) illustrates that when we ana-
lysed quantitative measures of WMH, while no relationship
was found for miRNAs, Ang-2 levels significantly correlated
with quantitative WMH scores on MRI (P¼ 0.016).

D I S C U S S I O N

Our study in older patients with ESRD shows that five selected
circulating angiogenic miRNAs (miR-223, miR-126, miR-132,
miR-27a and miR-326) and Ang-2 display altered (unfavoura-
ble) levels as compared with younger CKD patients and healthy
controls. In addition, higher levels of Ang-2 and miR-29a and
lower levels of miR-223, miR-27a and miR-326 are associated

Table 1. Baseline characteristics of the included study population

Patient characteristics Values

Patients, N 129
Age (years), median (IQR) 75.3 (70.7–81.0)
Gender (male), n (%) 85 (65.9)
Caucasian origin, n (%) 113 (87.6)
Married/living together, n (%) 83 (64.3)
Higher educational level, n (%) 35 (27.1)
Current smoking, n (%) 18 (14.0)
Alcohol consumption, n (%) 69 (53.5)
BMI, median (IQR) 27.7 (24.7–31.8)
Systolic blood pressure (mmHg), mean (SD) 148 (24)
Diastolic blood pressure (mmHg), mean (SD) 81 (13)
Heart rate (bpm), mean (SD) 74 (15)
Disease specific
eGFR at study enrolment (mL/min/1.73 m2), mean

(SD)
16.4 (4.3)

D eGFRa (mL/min/1.73 m2), mean (SD) 9.2 (7.3)
Primary kidney disease, n (%)

Non-vascular cause 47 (36.4)
Vascular cause 80 (62.0)
Diabetes mellitus 56 (43.4)
History of malignancy 41 (31.8)
History of vascular disease 59 (45.7%)
Ankle–brachial index (right), mean (SD) 0.93 (0.22)

Biochemical
Haemoglobin (mmol/L), mean (SD) 7.5 (0.9)
Cholesterol (mmol/L), mean (SD) 4.6 (1.2)
Triglycerides (mmol/L), mean (SD) 2.0 (1.2)
HDL (mmol/L), mean (SD) 1.2 (0.4)
LDL (mmol/L), mean (SD) 2.6 (0.9)
Urea (mmol/L), mean (SD) 20.7 (6.1)
Calcium (albumin corrected; mmol/L), mean (SD) 2.4 (0.1)
Phosphate (mmol/L), mean (SD) 1.3 (0.2)
PTH (pg/mL), mean (SD) 16.0 (10.4)
Glucose (mmol/L), mean (SD) 6.5 (2.1)

Medication use, n (%)
Polypharmacy (the use of �5 medications) 118 (91.5)
Glucose-lowering medication 48 (37.2)
Antihypertensive medication 119 (92.2)
Diuretics 76 (58.9)
Cholesterol-lowering drugs 95 (73.6)
Vitamin D supplement 108 (83.7)

Performance on the different cognitive domains Score
MMSE score (points), median (IQR) 28 (27–29)

Visuoconstruction
Clock drawing, mean (IQR) 12 (11–13)

Memory
15WVLT (words remembered)

Immediate recall score, mean (SD) 30.7 (9.8)
Delayed recall score, mean (SD) 5.7 (3.0)
Visual Association Test (pictures remembered),

median (IQR)
11 (11–12)

Executive function
TMT-B (s), mean (SD)b 178.1 (76.0)
SCWT III, mean (SD) 172.9 (81.0)
SCWT III, corrected for SCWT II (s),

mean (SD)
88.9 (72.8)

Psychomotor speed
LDST (correct in 60 s), mean (SD) 21.8 (6.8)
TMT-A (s), mean (SD) 70.4 (39.6)
SCWT II (s), mean (SD) 84 (29.9)

aDeGFR, difference between eGFR 3 years before and at study enrolment. Primary kid-
ney disease unknown¼ 2.
b16 patients did not complete the total test. They have been assigned the maximum
number of 300 s.
BMI, body mass index.

Table 2. Levels of vascular markers in older patients with ESRD (N ¼ 129)

Markers Values

ADMA (mmol/L), mean (SD) 0.74 (0.21)
Ang-2, mean (SD), pg/mL 3608 (1501)
miRNAs (relative expression),a mean (SD)

miR-126 0.933 (0.275)
miR-132 0.010 (0.006)
miR-137 ND
miR-192 0.009 (0.016)
miR-223 3.713 (1.325)
miR-27a 0.118 (0.046)
miR-29a 0.026 (0.026)
miR-326 0.006 (0.006)

amiRNA values are median-normalized and indicate a relative expression to the me-
dian, indicating that among miRNAs, miR-223 has the highest expression levels. ND,
not determinable.
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with worse cognitive function (either psychomotor speed,
executive function or memory). Furthermore, while no relation
was found with microbleeds or the presence of lacunes, Ang-2
and miR-29a positively correlated with the Scheltens WMH
score, while Ang-2 levels also related to quantitative WMH vol-
ume on MRI as a marker of cerebral SVD.

We observed that higher Ang-2 levels associated with worse
cognitive function in the domain of psychomotor speed, but we
also found trends towards an association with worse memory
and executive function scores. Interestingly, Ang-2 was also
shown previously to associate with cognition in maintenance
haemodialysis patients [37]. Ang-2 is known to destabilize ves-
sels via negative interference with Ang-1-mediated Tie-2 signal-
ling, which disrupts pericyte–endothelial cell interaction [38],
resulting in abnormal microvascular remodelling and blood
flow [39]. Moreover, circulating Ang-2 levels and a disturbed
Ang-2/Ang-1 balance have been previously demonstrated to
strongly associate with vascular injury in the settings of CKD,
diabetes mellitus, acute coronary syndrome and other diseases
characterized by endothelial dysfunction and microvascular in-
flammation [38, 40, 41]. Given the observed associations of
Ang-2 with WMH (as an imaging parameter of SVD) and cog-
nitive function in our study, this suggests that vascular injury
may indeed be an important determinant of poor cognitive
function, while Ang-2 may also serve as a biomarker for cogni-
tive impairment in this population. This is also emphasized by
our finding that Ang-2 associated with quantitative measures of
WMH of presumed vascular origin, which are a manifestation
of SVD on MRI [32]. Indeed, the association between WMH
and cognitive dysfunction (among others with executive func-
tion) has been well-established [11, 42, 43]. However, we also
find that Ang-2 levels are higher in (younger) DN patients, indi-
cating that the suitability of Ang-2 as biomarker depends on pa-
tient characteristics and needs to be carefully evaluated.

Regarding the miRNAs, it is increasingly recognized that
circulating miRNAs are involved in cell–cell communication
and can be transferred to (vascular) target cells, thereby medi-
ating vascular (dys)function [16]. Circulating miRNAs are

carried in exosomes, lipoprotein complexes [mainly high-
density lipoprotein (HDL)] or associated to RNA-binding
proteins (Argonaute2). These carrier–miRNA complexes have
been described as being transferred to and functional in target
cells in various tissues [44, 45]. Furthermore, ‘brain miRNAs’
may be detected in the circulation, as the blood–brain barrier
does not block the passage of miRNAs between cerebrospinal
fluid and blood (although in lower concentrations) [46], while
in pathological states, miRNAs can pass from the brain tissue
into the blood through the injured blood–brain barrier [47].
As such, our hypothesis is that the circulating miRNAs we
identified may play a role in the pathophysiology of cognitive
decline and associated vascular injury in (older) ESRD
patients. One such potentially relevant miRNA that we identi-
fied is miR-223, where we observed that lower levels of miR-
223 were accompanied by impaired memory function.
Interestingly, miR-223 has been described to be neuroprotec-
tive by targeting glutamate receptors while the absence of
miR-223 leads to contextual memory deficits [48]. Other
studies have implicated miR-223 in inflammation and vascu-
lar injury, suggesting that miR-223 may play a role in the link
between vascular injury and inflammation in cognitive deficits
[49, 50]. For example, the fact that miR-223 promotes micro-
glia repair [51] could link its lower levels to ongoing injury
(or lack of a reparative response), as microglia are intimately
linked to memory [52]. We also observed an association of
higher miR-29a with poorer memory function and higher
WMH scores (Scheltens scale). This appears to be in contrast
with previous studies that described lower miR-29a levels in
Alzheimer’s disease [53] and loss of miR-29a causing neuro-
nal dysfunction [54]. Further studies are necessary to clarify
the relations between differential miRNA levels and cognitive
function.

We also found several non–statistically significant trends
for an association of Ang-2 or miRNAs with cognitive function
in the different domains of memory, executive function and
psychomotor speed. These might reflect real associations, but
the lack of statistical significance might be due to the relatively
small group size or more likely due to the fact that our cohort
comprises a rather homogeneous group of patients who al-
ready have severe kidney failure and comparable cognitive
(dys)function. Differences in levels of Ang-2 and miRNAs
might be greater if we were to compare these measurements to
similarly aged healthy people or patients spanning a larger
range of cognitive function. In fact, our comparison of the lev-
els of five angiogenic miRNAs (miR-27a, miR-126, miR-132,
miR-223 and miR-326) and Ang-2 in our population of older
patients with ESRD with those in young healthy people, as well
as with those in patients with DN, already indicate quite large
differences in the levels of circulating miRNAs and Ang-2, al-
though the group sizes of healthy controls and DN patients are
limited. We previously also showed that cognitive function in
the COPE cohort is impaired compared with people without
kidney failure of the same age [10], suggesting the combination
of old age and kidney failure contribute to changes in the levels
of Ang-2 and circulating miRNAs. Furthermore, in that com-
parison, altered miR-223, miR-126, miR-326 and miR-27a

Table 3. Characteristics of healthy controls and patients with DN

Patient characteristics Controls (n¼ 19) DN (n¼ 21)

Sex (male), n (%) 9 (47) 16 (76)
Age (years), mean 6 SD 44 6 11 44 6 5
BMI (kg/m2), mean 6 SD 25.2 6 3.8 25.4 6 3.2
HbA1c (%), mean 6 SD – 8.9 6 2.3
Glucose (mmol/L), mean 6 SD 5.3 6 1.0 13.8 6 6.4
eGFR (mL/min/1.73 m2), mean 6 SD 93 6 17 18 6 7
Proteinuria (g/24 h), median (IQR) – 0.72 (0.35–1.5)
Dialysis, n (%) – 3 (14)
History of vascular disease, n (%) 0 (0) 4 (19)
Smoking, n (%) 0 (0) 0 (0)
Acetylsalicylic acid, n (%) 0 (0) 2 (10)
Antihypertensive drugs, n (%)

ACE inhibitor – 14 (67)
Angiotensin-II antagonist –– 13 (62)
b-blocker – 9 (43)
Calcium antagonist – 11 (52)
Diuretics –– 13 (62)

ACE, angiotensin-converting enzyme; hbA1c, haemoglobin A1c.
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levels correspond to their previously demonstrated relation
with vascular injury [20]. Interestingly, circulating miR-126
levels have already been shown to decrease in older patients
with advanced CKD stage [55], while plasma miR-126 levels
have also been shown to increase with age [56], suggesting a
CKD-dependent decrease. Moreover, miR-126 has been dem-
onstrated to be deregulated in small brain vessels during CKD
[57]. miR-132 levels, however, were lower, while miR-132 was
expected to be higher when more vascular injury is present.
On the other hand, lower miR-132 levels have been extensively
associated with decreased cognition [58].

Taken together, although further studies are warranted to
understand the exact relation between circulating Ang-2 and
angiogenic miRNA levels, our data suggest that Ang-2 and
miRNAs might serve as biomarkers of cognitive function in
older patients reaching ESRD and may provide insights into the
underlying (vascular) pathophysiology.
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FIGURE 2: Association of miRNAs, Ang-2 and ADMA with cognitive function. ADMA, Ang-2 and miRNA values were divided into tertiles
(Tertile 1, lowest levels; Tertile 3, highest levels) and plotted versus (A) 15WVLT score, (B) TMT-B score and (C) LDST score. P-values repre-
sent continuous correlation adjusted for sex and age. Data are represented as mean 6 SEM.
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