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Abstract
Purpose: Upper airway segmentation on MR images is a prerequisite step for
quantitatively studying the anatomical structure and function of the upper airway
and surrounding tissues.However, the complex variability of intensity and shape
of anatomical structures and different modes of image acquisition commonly
used in this application makes automatic upper airway segmentation challeng-
ing. In this paper, we develop and test a comprehensive deep learning-based
segmentation system for use on MR images to address this problem.
Materials and Methods: In our study,both static and dynamic MRI data sets are
utilized, including 58 axial static 3D MRI studies, 22 mid-retropalatal dynamic
2D MRI studies, 21 mid-retroglossal dynamic 2D MRI studies, 36 mid-sagittal
dynamic 2D MRI studies, and 23 isotropic dynamic 3D MRI studies, involving
a total of 160 subjects and over 20 000 MRI slices. Samples of static and 2D
dynamic MRI data sets were randomly divided into training, validation, and test
sets by an approximate ratio of 5:2:3. Considering that the variability of anno-
tation data among 3D dynamic MRIs was greater than for other MRI data sets,
we increased the ratio of training data for these data to improve the robust-
ness of the model. We designed a unified framework consisting of the following
procedures. For static MRI, a generalized region-of -interest (GROI) strategy is
applied to localize the partitions of nasal cavity and other portions of upper air-
way in axial data sets as two separate subobjects.Subsequently, the two subob-
jects are segmented by two separate 2D U-Nets. The two segmentation results
are combined as the whole upper airway structure. The GROI strategy is also
applied to other MRI modes. To minimize false-positive and false-negative rates
in the segmentation results, we employed a novel loss function based explicitly
on these rates to train the segmentation networks. An inter-reader study is con-
ducted to test the performance of our system in comparison to human variability
in ground truth (GT) segmentation of these challenging structures.
Results: The proposed approach yielded mean Dice coefficients of 0.84±0.03,
0.89±0.13, 0.84±0.07, and 0.86±0.05 for static 3D MRI, mid-retropalatal/mid-
retroglossal 2D dynamic MRI, mid-sagittal 2D dynamic MRI, and isotropic
dynamic 3D MRI, respectively. The quantitative results show excellent
agreement with manual delineation results. The inter-reader study results
demonstrate that the segmentation performance of our approach is statistically
indistinguishable from manual segmentations considering the inter-reader
variability in GT.

324 © 2021 American Association of Physicists in Medicine wileyonlinelibrary.com/journal/mp Med Phys. 2022;49:324–342.
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Conclusions: The proposed method can be utilized for routine upper air-
way segmentation from static and dynamic MR images with high accu-
racy and efficiency. The proposed approach has the potential to be
employed in other dynamic MRI-related applications, such as lung or heart
segmentation.

KEYWORDS
convolutional neural networks, dynamic MRI, image segmentation, static MRI, upper airway

1 INTRODUCTION

1.1 Background

Obstructive sleep apnea (OSA) is an increasingly
common respiratory disorder, characterized by the
narrowing and collapsibility of the pharyngeal air-
way during sleep.1 Untreated OSA may cause seri-
ous health issues, including cardiovascular disease,
metabolic disorders, and cognitive impairment, among
others.2 Common approaches for investigating OSA
include polysomnography (PSG) for recording phys-
iological data associated with sleep and breathing,3

drug-induced sleep endoscopy (DISE) for assessing
the airway for anatomical sites of airway narrowing or
obstruction,4 computed tomography (CT) for measuring
nasopharynx, oropharynx, and hypopharynx areas,5,6

and magnetic resonance imaging (MRI) for studying
the anatomical structure of the upper airway and sur-
rounding tissues.7,8 Compared with PSG, DISE, and CT,
MRI has the advantages of delineating upper airway
anatomy in OSA, locating sites of airway obstruction,
guiding surgical treatment,8 as well as lack of ionizing
radiation exposure (for DISE and MRI9), affording an
increasing popularity in OSA application.

In general, three MR image acquisition modes are
commonly employed in OSA––static 3D MRI, dynamic
2D MRI,wherein imaging is acquired rapidly in one slice
plane to study upper airway dynamics, and dynamic
3D MRI, wherein full volumetric images are acquired
rapidly.10 In such applications, the delineation of the
upper airway in the images is an essential first step for
quantitative analysis of the anatomical and functional
alterations. Manual contouring is labor-intensive and
observer-dependent. In clinical practice, there is an
urgent need for automatic, accurate, and efficient upper
airway segmentation algorithms. However, development
of robust algorithms for this purpose is challeng-
ing due to several factors: (1) complex variability of
grayscale intensity among different MR image acqui-
sition protocols, (2) shape variability of upper airway
across different patients and slice orientations, (3) low
image contrast between upper airway and surround-
ing tissues, and (4) often inadequate signal-to-noise
ratio.

1.2 Related work

Liu et al.11 designed a computerized system based on a
fuzzy connectedness algorithm12 to segment the upper
airway from axial T2-weigted MR images and tested the
software package on 40 patients, reporting a high accu-
racy rate of 0.97 and an average processing time per
case of about 4 min. A minimally interactive model for
4D dynamic MRIs based on an iterative relative fuzzy
connectedness delineation algorithm was proposed in
Ref. 13, where seeds need to be specified in the 3D
images of only the first time instance of the whole 4D
dynamic MRI. Yet, this method is affected by noise and
poor image contrast. Inspired by the powerful feature
learning ability of deep learning (DL) techniques,14 we
employed DL-based models to fully automatically delin-
eate the upper airway from 4D MRIs. In Ref. 15, we con-
structed a modified 2D U-Net16 by making full use of the
spatial and temporal information from the MR images
achieving a Dice cofficient of 0.88. However, this meth-
dology was applicable only to 4D MRIs.

In this study, we present a unified framework to
effectively handle upper airway segmentation from all
MR image acquisition approaches, whether static or
dynamic, or 2D or 3D. Several other machine learning-
based upper airway segmentation approaches have
been proposed in recent years. Ivanovska et al.17 devel-
oped a semiautomatic method to segment the pharyn-
geal structures in MRI, in which the initialization step
requires users to provide the locations of the starting
slice and the parapharyngeal fat pads. Javed et al.18 uti-
lized 3D region growing to construct a pipeline for delin-
eating the upper airway structure from dynamic 3D MRI,
which requires the user to locate the region-of -interest
(ROI) in the image and place two seeds in the upper
airway. Shahid et al.19 proposed an automatic method
to segment the pharynx from MRI by using traditional
image segmentation methods and machine learning
models. To study the mechanism of speech production,
Silva and Teixeira20 presented an unsupervised seg-
mentation model to segment the vocal tract airway from
real-time MRI based on an active appearance model. In
Ref. 21, Li et al. built a set of linked statistical shapes by
principal component analysis, then localized the upper
airway region by a hierarchical model-fitting algorithm,
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and finally segmented the head and neck upper airway
by a multifeature-level set contour propagation scheme.

Similarly, several DL-based upper airway segmenta-
tion approaches were proposed. For instance, Erattaku-
langara and Lingala22 utilized U-Net to segment the
vocal tract airway from mid-sagittal 2D MRI and Liu
et al.23 developed a synthetic MR-aided dual pyramid
network to segment multiorgan of head and neck from
CT images, including pharynx structure. However, the
above approaches have limitations:(1) limited efficiency:
semiautomatic methods often require much manual
intervention during the segmentation procedure, which
becomes impractical when dealing with dynamic MRI
data sets acquired over several respiratory cycles that
can include hundreds (in 2D dynamic MRI) or even thou-
sands (in 3D dynamic MRI) of slices in one study. (2)
Inadequate description and usage of anatomical knowl-
edge:the above approaches did not provide precise defi-
nitions of the upper airway body region and did not apply
anatomical knowledge in the model construction stage.
(3) Inadequate application scope:the above approaches
can segment the upper airway in only one type of spe-
cific MRI protocol without demonstrated generalizability.

A general system that can segment images from
any of the three modes of MR image acquisition in
this application area in a production mode is currently
lacking. In this paper, we propose a highly automated
general system based on an anatomy-guided deep
convolutional neural network (CNN) that operates on
all three modes and produces results that are in high
agreement with reference standard manual segmen-
tations. The main innovations and contributions of our
study are as follows: (1) a complete and unique system
for automatic and production-mode segmentation of
upper airway structures in different forms of static and
dynamic MRI commonly employed in the study of OSA.
(2) A precise anatomical definition of upper airway body
region in static and dynamic MRI for OSA application.
(3) A judicious design of a methodology combining
human-knowledge and DL techniques to tackle a very
challenging segmentation problem. (4) A loss func-
tion based on segmentation false positives (FPs) and
false negatives (FNs) that can force the DL model to
focus on the explicit reduction of FPs and FNs during
the training stage. (5) Demonstration of close to the
highest possible performance for the OSA application
considering the quality of images and the variability in
ground truth (GT). (6) Comparison with other methods
from the literature that can reflect the comprehensive
advantages of our study for OSA application.

The details about our approach are introduced in
Section 2, including data acquisition, anatomy-guided
DL principle, and segmentation network design. In
Section 3, we demonstrate results, including metric
values for quantitatively analyzing the segmentation
performance, and comparisons between our approach

and related studies. We summarize our conclusions in
Section 4.

A preliminary report on this work appeared in
the proceedings of the 2021 SPIE Medical Imaging
Conference.24 The present paper includes the following
enhancements over the conference paper: (1) a detailed
and comprehensive literature review about upper air-
way segmentation in MRI. (2) A full description of our
approach, including the definition of the upper airway
in three modes of MR image acquisition, a generalized
region-of -interest (GROI) strategy, and anatomy-guided
segmentation models. (3) A full summary of our experi-
mental results, including illustrative segmentation exam-
ples, quantitative evaluation metric values, inter-reader
study results, and comparisons with other approaches
in the literature.

2 MATERIALS AND METHODS

2.1 Method overview

Figure 1 is a schematic depiction of the main stages
in our study. In the preparatory stage, we acquired and
annotated static 3D, dynamic 2D, and isotropic dynamic
3D MRI scans.Each group contains four parts:data sets
for training, validation, testing, and inter-reader variabil-
ity study for evaluating the performance of our system.
The model-building stage involves the following steps:
(1) defining precisely the anatomical structure of the
upper airway of focus for our study for the above three
modes of MR image acquisition and dividing the upper
airway in static 3D MRI into two subregions due to the
great shape variability among different portions of the
upper airway; (2) developing a GROI strategy for local-
izing (recognizing) the upper airway based on the statis-
tics of the geometric layout of annotated data sets; (3)
designing two DL-based segmentation networks (mod-
els) for static and dynamic MRI guided by the anatomi-
cal knowledge of the upper airway; (4) constructing the
network based on U-Net and contextual information; (5)
devising a new loss function based on FN and FP con-
cepts; and (6) performing data augmentation and DL
model training. In the evaluation stage,we employed the
trained models to segment MRIs in the testing and inter-
reader sets.

2.2 Preparatory operations

2.2.1 Data acquisition

All data sets in this study were acquired on a Philips
3.0T MRI scanner, under an ongoing prospective IRB-
approved research study protocol at the Albert Einstein
College of Medicine. The deidentified image data sets
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Data acquisition, partition, and annotation for object O

Computation of the parameters of generalized region-of-
interest

Anatomic definition and parcellation for object O

Construction of the automatic segmentation model based 
on anatomic knowledge

Design of the network and loss function 

Data augmentation and DL model training

Testing of the model and computation of the metric values

Conduct of the inter-reader study

Preparatory Operations

Building Models

Evaluating Models

Training and 
validation set

Test set

Inter-reader
set 

F IGURE 1 Processing pipeline depicting the main stages of our study

TABLE 1 Summary of available upper airway MRI studies under various image acquisition protocols

Data type

3D Voxel size
(mm3)/2D pixel
size (mm2) Training Validation Testing Total subjects/frames

Static 3D MRI (T2 weighted) 0.50 × 0.50 × 3.30 30 6 22 58 (2133 slices)

Dynamic 2D MRI
(balanced SSFP, T1/T2
weighted)

mid-retropalatal 0.94 × 0.94 12 4 6 22 (1979 slices)

mid-retroglossal 0.94 × 0.94 11 4 6 21 (1962 slices)

mid-sagittal 0.94 × 0.94 20 6 10 36 (3440 slices)

Isotropic dynamic 3D MRI (gradient echo, T2*
weighted)

1.50 × 1.50 ×1.50 10 subjects
(164 3D
volumes
with 7544
slices)

3 subjects
(25 3D
volumes
with 1150
slices)

10 subjects
(40 3D
volumes
with 1840
slices)

23 subjects (229 3D
volumes with 10 534
slices)

were subsequently sent to and analyzed at the Univer-
sity of Pennsylvania.

The MRI sequences utilized are summarized in
Table 1. Further details about MR image acquisition are
as follows:

(i) Static MRI scans were from 58 subjects in the wake
condition (34 males, 24 females, age range 8–18
years, and mean age 14±2 years), including 29 with
OSA, using parameters: TE/TR = 80/3940 ms, echo
train length = 29, voxel size = 0.50 × 0.50 × 3.30
mm3, FOV = 240 × 240 mm2, SENSE factor = 2.0,

and acquisition time = 1.5 min. The number of axial
slices in each study was in the range 36–60.

(ii) Dynamic 2D MRI scans were at three locations:
(1) slice plane at mid-retropalatal region, which
is orthogonal to the airway centerline (11 sub-
jects, 5 females, age range 12–17 years, mean age
15±2 years, and 5 with OSA), (2) slice at mid-
retroglossal region (11 subjects, 5 females, age
range 12–17 years, mean age 15±2 years, and
5 with OSA), and (3) slice at mid-sagittal region
(18 subjects, 8 females, age range 12–18 years,
mean age 15±2 years, and 6 with OSA). In total,
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328 AUTOMATIC UPPER AIRWAY SEGMENTATION IN STATIC AND DYNAMIC MRI

this data set contained 22 mid-retropalatal dynamic
2D MRI sequences, 21 mid-retroglossal dynamic
2D MRI sequences, and 36 mid-sagittal dynamic
2D MRI sequences, which were acquired during
sleep and wake states. Considering that the dis-
crepancy of upper airway size, shape, and loca-
tion between dynamic 2D MRI sequences of the
mid-retropalatal and mid-retroglossal is minor, we
combined these two dynamic 2D MRI sequences
into one data set for segmentation purposes. The
number of time instances was 300 in each 2D
dynamic sequence. Three thousand nine-hundred
and forty-one slices of mid-retropalatal and mid-
retroglossal sequences, and 3440 slices of mid-
sagittal sequences were manually delineated. The
parameters for mid-sagittal acquisitions were as fol-
lows: TE/TR = 1.56/3.1 ms, flip angle = 35◦, sin-
gle slice, FOV = 180 × 180 mm2, temporal reso-
lution = 330 ms/frame, SENSE factor = 1.2, and
acquisition time = 2.4 min. The parameters for mid-
retropalatal (or mid-retroglossal) acquisitions were
as follows: TE/TR = 2.5/5.0 ms, flip angle = 35◦,
single slice, FOV = 180 × 180 mm2, temporal res-
olution = 330 ms/frame, SENSE factor = 1.2, and
acquisition time = 2.4 min.

(iii) Isotropic dynamic 3D MRI scans were from 23
completely different patients/controls (16 males, 7
females, age range 12–18 years, and mean age
15±2 years), including 16 with OSA, where 480
frames (3D volumes) were acquired during the
sleep state and 480 frames (3D volumes) were
acquired during the wake state in each subject,
and where each 3D volume contained a total of
46 sagittal reconstructed slices. Images in 229
frames (160 in sleep state and 69 in wake state)
in this data set were manually delineated. The
isotropic dynamic 3D MRI protocol was as follows:
TE/TR = 2.1/4.8 ms, FOV = 200 × 170 mm2, y-z
radial k-space traversal with golden-angle sampling,
and L1-ESPIRiT, compressed sensing reconstruc-
tion, acquisition time = 4 min.

The data sets used for training, validation, and test-
ing of the DL network are summarized in Table 1. Since
our DL method performs segmentation on 2D slices, we
also display the number of slices in each type of data
set. Overall, this study included a total of 20 048 image
slices.

2.2.2 Data annotation

Data annotation (manual segmentation) is one of the
essential procedures required for training a DL model.
Since public data sets for upper airway segmentation
are currently unavailable, our study team constructed
a sufficiently large database of manual segmentations

TABLE 2 Summary of the available upper airway MRIs for the
inter-reader study

Data type Subjects

Static 3D MRI 10 (997 slices)

Mid-retropalatal and mid-retroglossal
dynamic 2D MRI

10 (503 slices)

Mid-sagittal dynamic 2D MRI 10 (733 slices)

Isotropic dynamic 3D MRI 3 (12 frames with
552 slices)

for each of the three modes of MR image acquisition
by having trained members of our team perform data
annotations that were then checked by a radiologist with
over 20 years of experience in MRI. The open-source
software CAVASS25 was adopted for delineation. In
addition, we conducted an inter-reader study where we
randomly selected a subset of annotated MRI scans
for each mode of image acquisition, and had a different
trained team member to independently annotate these
data sets. In total, 2785 slices with two sets of data
annotation were included in the inter-reader study, as
shown in Table 2. The purpose of the inter-reader study
was to determine the variability in GT delineation and
how the performance of our system compared with this
variability.

2.3 Building models: anatomy-guided
DL

There are multiple anatomical structures in the acquired
MR images, including the upper airway, paranasal
sinuses, skeleton, tonsils, tongue, muscles, and so on,
where similarities in intensity distribution among them
might lead to FP segmentation results. Moreover, the
lack of a precise body region definition will result in great
variability among the manual annotation data.Therefore,
to enhance the specificity and effectiveness of our DL
networks in object delineation, following previously pro-
posed body-wide automatic anatomy recognition (AAR)
principles,26 we provide object recognition help guided
by human anatomical knowledge so that the DL net-
works will always operate in the consistently specified
region of the localized anatomy.

This knowledge is brought to bear in three stages: (1)
use of a standardized object definition; (2) anatomical
parcellation; and (3) use of a GROI. Based on anatom-
ical knowledge, we utilize DL networks to construct the
upper airway segmentation models for the three modes
of MR image acquisition.

2.3.1 Anatomical definition

We define a standardized body region definition for each
of the three modes of MR image acquisition, in order to
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TABLE 3 Summary of body region definition of upper airway for the three modes of MRI

Data type

Body region definition of upper airway
Superior boundary Inferior boundary Components of upper airway

Static 3D MRI Superior aspect of the
globes

Level of the true vocal
cords

Nasal cavity, lumen of nasopharynx,
oropharyngeal, hypopharyngeal, and
supraglottic/glottic laryngeal airway

Mid-retropalatal dynamic
2D MRI

At mid-retropalatal region in a plane orthogonal to nasopharynx airway centerline

Mid-retroglossal dynamic
2D MRI

At mid-retroglossal region

Mid-sagittal dynamic 2D
MRI

Superior most aspect of
the hard palate

Level of the true vocal
cords

Oropharyngeal, hypopharyngeal, and
supraglottic/glottic laryngeal lumen

Isotropic dynamic 3D MRI Inferior aspect of the
sphenoid sinus

Level of the true vocal
cords

Lumen of nasopharynx, oropharyngeal,
hypopharyngeal, and
supraglottic/glottic laryngeal airway

F IGURE 2 Illustration of the boundaries of the upper airway in static 3D MRI. The middle slices in top and bottom rows show the superior
aspect of the globes (arrows) and the level of the true vocal cords (arrows), respectively. The slices on the left and right are immediately inferior
and superior to the boundary slices in the middle

locate the upper airway precisely and remove adjacent
tissue regions, as described in Table 3. Note that the
region of focus of the upper airway is not necessarily the
same in these different modes of imaging. Accordingly,
the superior and inferior boundaries of the structure of
focus are defined.For static 3D MRI,we define the supe-
rior aspect of the globes (whichever is most superior)
as the superior boundary of the body region of interest,
and the inferior boundary to be the level of the true vocal
cords, as shown in Figure 2. For mid-sagittal dynamic
2D MRI, we define the superior most aspect of the hard
palate and the level of true vocal cords as the superior
and inferior boundaries of the upper airway, respectively,
as shown in Figure 3a. The mid-retropalatal and mid-
retroglossal dynamic 2D MR images were acquired from

the mid-retropalatal and mid-retroglossal regions during
dynamic image acquisition, as illustrated in Figure 3b.
For isotropic dynamic 3D MRI, we define the inferior
aspect of the sphenoid sinus and the level of the true
vocal cords as the superior and inferior boundaries of
upper airway, respectively, as shown in Figure 3c. Note
that there is slight discrepancy among the three modes
of MR image acquisition in terms of the components of
the upper airway covered in the definitions.

2.3.2 Anatomical parcellation

In static 3D MRI, the upper airway is composed of the
nasal cavity, lumen of nasopharynx, oropharyngeal,
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330 AUTOMATIC UPPER AIRWAY SEGMENTATION IN STATIC AND DYNAMIC MRI

F IGURE 3 Illustration of the upper airway
in (a) mid-sagittal dynamic 2D MRI, (b)
mid-retropalatal region and mid-retroglossal
dynamic 2D MRI, and (c) isotropic dynamic 3D
MRI. The red and green lines represent the
superior and inferior boundaries, respectively.
Blue solid lines labeled A and B represent the
orthogonal retropalatal and axial retroglossal
levels, respectively. The upper airway
boundaries are delineated in green

F IGURE 4 Illustration of anatomic parcellation of upper airway in static 3D MRI: (a) representative example of upper airway 3D surface
rendition (green arrow: the nasal cavity and lumen of nasopharynx, orange arrow: oropharyngeal, hypopharyngeal, and supraglottic/glottic
laryngeal airway, and red dotted line: boundary between two subobjects); (c) boundary slice between the two subobjects (red solid arrow: the
inferior aspect of the hard palate); (b) and (d) slices immediately inferior and superior to the boundary slice. The orange and green colors
represent the oropharyngeal airway and nasopharyngeal airway, respectively

hypopharyngeal, and supraglottic/glottic laryngeal air-
way. As shown in the 3D surface rendition in Figure 4a,
the upper airway is a tubular structure, where the air
passages in the nasal cavity are approximately at right
angles with respect to the other portions of the pha-
ryngeal and laryngeal airway. As such, in axial images,
the air passages in the nasal cavity are roughly in the
plane of acquisition,while those in the rest of the airway
are generally orthogonal to the scan plane. Therefore,
the variability in shape and appearance is significant
among different portions of upper airway in static 3D
MRI. This makes segmentation of the nasal cavity
much more challenging than for the rest of the airways.
We, therefore, divide the upper airway in static 3D MRI
into two subobjects: an upper portion, including the
nasal cavity and nasopharyngeal airway, and a lower
portion, including the oropharyngeal, hypopharyngeal,
and supraglottic/glottic laryngeal airway. The inferior

axial boundary of the first subobject is defined to be
the inferior aspect of the hard palate as shown in Fig-
ure 4c.The anatomical parcellation was not needed and
hence not applied in other modes of MR image acqui-
sition since the challenge for segmentation was not so
markedly different in different parts of the object being
segmented.

2.3.3 Generalized region-of-interest

Since the position of the upper airway is relatively fixed,
we exploit the spatial information of the annotated MRI
data set and devise a GROI strategy for recognizing
the main object of interest and reducing the negative
effect of the tissues located far away from the upper air-
way in the entire image. Since our segmentation strat-
egy is slice-by-slice, the GROI process described below
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F IGURE 5 Illustration of the GROI strategy: (a) representative examples of annotated objects, (b) bounding boxes of objects, (c)
normalized center points, (d) boundaries of objects, (e) maximum distance between center points and object boundary, (f) scatter plot of
distance values, and (g) window size of GROI

is applied to each 2D image (slice) in all modes of data
acquisition.

The training stage of the GROI strategy involves two
steps: (1) locating the center point of the ROI, and (2)
determining the window size of the ROI. Assume that
the annotated 2D MR slice Ii with size wi × hi involves an
upper airway object Obji. In the first step, we determine
a fitting bounding box for Obji to estimate the center
position (xi, yi) of Obji and normalize the horizontal and
vertical distance of the center position to the range [0,
1] by dividing the distance by the size of the original
image:(xi∕wi, yi∕hi),as shown in Figure 5a–c. In the sec-
ond step, we calculate the mean value of center posi-
tions of all samples of Obji as the center point of ROI:

{(xc, yc) | xc =
1

N

N∑
i = 1

xi

wi
, yc =

1

N

N∑
i = 1

yi

hi
}, where N is the

number of annotated samples of Obji. Then, we place
the center point in the original image Ii with the coor-
dinate values of (wixc, hiyc) and measure the maximum
distance between the center point and the bounding box
boundary of Obji in the horizontal and vertical directions
(dHi , dVi), as illustrated in Figures 5d and e. To refine
the size of the ROI, we utilize a scatter plot to analyze
the distribution of these x and y distance values taken
together and remove the outlier samples,as illustrated in
Figure 5f . The outliers are often generated by inconsis-
tent annotation data. Finally, we calculate the horizontal
and vertical maximum distance (dHm, dVm) among the
remaining samples, and utilize 2dHm × 2dVm as the win-
dow size of the ROI, as illustrated in Figure 5g. Consid-

ering that the max-pooling operations with stride 2 in the
proposed network narrow the resolution of input ROI to
1/16 of the original size, we make a small modification
of (2dHm, 2dVm) to ensure that (2dHm, 2dVm) are multi-
ples of 16, eliminating the rounding error.

In the application stage of the GROI strategy, the cen-
ter position of the ROI is varied with the image size,
while the ROI size is fixed and directly determines the
input data size for the proposed network. Given an MRI
slice with image size w × h, we utilize (wxc, hyc) and
2dHm × 2dVm as the center position and window size of
ROI, respectively, to draw an ROI in the MR image slice
automatically,which covers the upper airway adequately
in all three modes of MR image acquisition,as illustrated
in Figure 6.

2.3.4 Building DL models

As mentioned in Ref. 27, the same tissue in MR images
shows significant variability of intensity across patients
and scanners, leading to the poor segmentation perfor-
mance for automatic methods. To handle this problem,
we employed the intensity standardization approach28

to preprocess all acquired MR images, wherein the orig-
inal intensity scale is transformed to a standardized
scale.

We build two different DL models for static and
dynamic MRI as depicted in Figure 7. The static MRI
DL model (Figure 7a) consists of two pipelines––one
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F IGURE 6 Examples of automatic ROI placement in MR images: (a), (b) pharyngeal/laryngeal airway and nasal cavity in static 3D MRI; (c),
(d) oropharyngeal, hypopharyngeal, and supraglottic/glottic laryngeal lumen in dynamic 2D MRI; and (e) upper airway in isotropic dynamic 3D
MRI
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F IGURE 7 Illustration of anatomy-guided DL segmentation models for: (a) static MRI and (b) dynamic MRI

for segmenting the nasal cavity and nasopharyngeal
airway, and another for oropharyngeal, hypopharyngeal,
and supraglottic/glottic airway. First, the user localizes
the superior slice of nasal cavity and nasopharyngeal

airway, the inferior slice of the hard plate, and the
oropharyngeal, hypopharyngeal, and supraglottic/glottic
airway, which leads to two separated 3D subvolumes
as inputs for specific DL models. According to this
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AUTOMATIC UPPER AIRWAY SEGMENTATION IN STATIC AND DYNAMIC MRI 333

anatomical information, we intercept these two sepa-
rate portions of the upper airway from the static 3D
MR images and input them into the two pipelines. Then,
the proposed GROI strategies with learned parameters
are employed to localize the centers of the ROIs in
the slices for these two upper airway subvolumes. We
extract the ROI data from the slices by image cropping
and utilize the min–max normalization method to pre-
process the ROI data, rescaling the range of intensity
to [0, 1]. The min–max normalization is defined as:

Inorm (x) =
I (x) − Imin

Imax − Imin
, (1)

where I(x) denotes the standardized intensity value at
pixel x, and Imin and Imax represent the minimum and
maximum standardized intensity value among all pixels
in image I. Subsequently, the DL network extracts the
hierarchical features from the normalized ROI data and
classifies each pixel in ROI into two categories: upper
airway with label “1” and background with label “0.”
To keep the size of outputs the same as the original
input MR images, we utilize zero-padding to embed the
segmentations in the full image. Finally, we combine
the segmentations of the two pipelines together as the
complete upper airway segmentation result of the 3D
volume.

A similar approach is applied to segment other MRI
scans acquired using mid-retropalatal dynamic 2D MRI,
mid-retroglossal dynamic 2D MRI, mid-sagittal dynamic
2D MRI, and isotropic dynamic 3D MRI with the same
pipeline structure, as shown in Figure 7b. However, for
these modes, no manual separation of the subvolumes
is needed since the nasal cavity and nasopharyngeal
structures are not considered for segmentation.

2.3.5 Network architecture

CNNs have been widely used in image segmenta-
tion and object detection.29–31 The receptive field and
sharing weight characteristics allow CNNs to learn dis-
tinctive features from images. In this paper, we use the
2D U-Net as the basic architecture to construct the DL
network for all three modes of MRI acquisition utilized
in our application. As shown in Figure 8, the network
can be divided into two parts: the feature learning mod-
ules (left side of U) for extracting multiscale features
from the input images, and the feature fusion modules
(right side of U) for restoring the spatial information
of features and integrating the multiscale features in a
feature pyramid. The feature learning modules mainly
consist of 10 convolutional layers with 3 × 3 kernels and
4 max-pooling layers with stride 2. We also incorporate
five batch-normalization layers32 into the architecture
for improving the stability and performance of the net-
work. The feature fusion modules are made up of eight

convolutional layers, four concatenation layers, and
four deconvolutional layers with kernels of size 3 × 3.
To reduce the risk of model overfitting, we added five
dropout layers with rate 0.6 into the network.

Due to the small interslice spacing, the adjacent
slices in acquired static 3D and isotropic dynamic 3D
MRIs have strong spatial correlation. In addition, the
shape of the upper airway in mid-retropalatal, mid-
retroglossal, and mid-sagittal 2D dynamic MRI varies
smoothly over time. To take advantage of the contex-
tual information among adjacent slices in MRI, we uti-
lize spatially/temporally adjacent slices [It–1, It, It+1] and
the annotation data of t-th slice Gt as the input data
and GT for training the U-Net network to predict the
segmentation result of It. The adjacent-slice input strat-
egy enables U-Net to learn the contextual feature from
the slices immediately inferior and superior to the tar-
get slice, improving the segmentation accuracy. For 2D
dynamic MRIs, temporally adjacent slices are utilized.
For static 3D and isotropic dynamic 3D MRIs, the three
slices denote the three spatially adjacent slices.

2.3.6 Loss function based on FPs and
FNs

Cross-entropy and Dice coefficient are two common
loss functions utilized in image segmentation networks.
These functions can force the pixel classifier to increase
the true positive and true negative rates of the segmen-
tation results during the training stage.However, they are
less sensitive specifically to FP and FN classifications. In
this paper, to directly handle the segmentation trade-off
between FP and FN, we formulate loss as a direct func-
tion of FP and FN rates.

Let S(x) and G(x) denote the segmentation result and
GT as images, respectively, for an input image I(x). S(x)
denotes probabilistic (or fuzzy) value output at pixel x for
its classification, and G(x) denotes binary value at pixel
x. Then, the loss function to be minimized is defined as:

LFP,FN (G, S; W ) =

[∑
x𝜖Ω (1 − G (x)) S (x; W )∑

x𝜖Ω S (x; W ) + 𝜀

]2

+

[∑
x𝜖Ω (1 − S (x; W )) G (x)∑

x𝜖Ω G (x) + 𝜀

]2

, (2)

where the first and second terms are estimates of FP
and FN rates,𝜀 is a constant (set to 0.00001),and W and
Ω represent the parameters of the network and image
domain, respectively. The derivative of the loss function
with respect to W is available, which can be utilized in
the back-propagation process. We combined the Dice
coefficient loss function with the FP-FN loss function for
improving the true positive and true negative rates of
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334 AUTOMATIC UPPER AIRWAY SEGMENTATION IN STATIC AND DYNAMIC MRI

F IGURE 8 The architecture of the upper airway DL network

the segmentation result simultaneously. In addition, we
added a weighted regularization term into the loss func-
tion to reduce the risk of overfitting. The final loss func-
tion employed in our network is:

L (G, S; W ) = LFP,FN (G, S; W ) − 𝜆1

×
2
∑

x𝜖Ω G (x) S (x; W )∑
x𝜖Ω S(x; W ) +

∑
x𝜖Ω G(x) + 𝜀

+ 𝜆2||W1||, (3)

where || ⋅ ||1 is the L1-norm, and 𝜆1 and 𝜆2 serve as
trade-off parameters among the three terms.

2.3.7 Data augmentation

It is known that training a DL network requires abundant
data for reducing the risk of creating an overfit model.To
increase the number and diversity of training data, we
employed two data augmentation methods to process
each slice in MRI: (1) resizing the image with scale fac-
tors 0.8 and 1.2 by a bilinear interpolation method, and
(2) varying the intensity level of the image by multiplying
the pixel-wise intensity value with scale factors 0.9 and
1.1. Through the data augmentation process, the train-
ing data were enlarged to nine times their original size.

3 EXPERIMENTS, EVALUATION,
RESULTS, AND DISCUSSION

3.1 Experiments

We conducted the following six experiments:

(i) E1: Upper airway segmentation in static 3D MRI.
The original MRI was manually separated into two
portions: the nasal cavity and nasopharyngeal air-
way object and the oropharyngeal,hypopharyngeal,
and supraglottic/glottic airway object.

(ii) E2: Fully automatic upper airway segmentation in
mid-retropalatal and mid-retroglossal dynamic 2D
MRI.

(iii) E3: Similar to E2 but in mid-sagittal dynamic 2D
MRI.

(iv) E4:Similar to E2 but in isotropic dynamic 3D MRI. In
this experiment, the 22 080 3D MRI volumes coming
from 23 subjects in the data set were segmented by
our approach, including the labeled testing data.

(v) E5: Repeating the above experiments without the
GROI strategy.

(vi) E6: Repeating experiment E4 by utilizing cross-
entropy and Dice coefficient loss functions to train
the DL models.

The above experiments include two stages: (1) train-
ing stage for learning and optimizing the parameters
of the proposed networks, and (2) inference stage for
employing the trained models to process the testing
data.

At the training stage, we utilized the Python language
and open-source library TensorFlow33 to implement the
DL models. We assigned the trade-off parameters 𝜆1
and 𝜆2 in the loss function with values of 0.8 and 10,
respectively. We used the Adam optimization algorithm
to minimize the loss function with the following hyperpa-
rameters: batch size of training data (20), learning rate
(0.000001), number of iterations (1000), and dropout
rate (0.6). In addition,we employed the trained networks
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Analyze segmentation 
performance 

OutputF IGURE 9 A schematic depiction of the
inter-reader study

to compute the loss value on the validation data every
100 iterations for searching the optimized parameters
for the proposed networks.

At the inference stage, we utilized the GROI strategy
and min–max normalization method to process the test-
ing data, inputted the adjacent slices into the trained
network to obtain the pixel-wise probability map, and
applied a threshold value of 0.5 on the probability map to
generate the binary segmentation result. We integrated
the five networks together into a single software system
for the current OSA application to be able to handle any
of the image modalities that are commonly used.

3.2 Evaluation

To evaluate the segmentation performance of our sys-
tem, we applied two widely employed metrics on the
testing set, including Dice coefficient (DC) and modified
Hausdorff distance (HD), defined as follows:

DC (G, S) =
2 |S ∩ G||S| + |G| , (4)

HD (G, S) =

max
{

meang∈G (infs∈Sd(g, s)), means∈S(infg∈Gd(s, g))
}

,

(5)

where g ∈ G and s ∈ S denote the pixels/voxels in
binary GT and segmentation results as sets, respec-
tively,d(g, s) indicates the distance between g and s,and
mean and max indicate the average value and maximum
value, respectively. In the classical formulation of HD, the
maximum of minimum distances between the segmen-
tation result and GT is estimated. However, such a defi-
nition is very sensitive to small FP segmentation regions
that are far away from the object.This drawback reduces
the reliability of HD. To address this issue, we modified
HD by replacing the maximum of minimum by the aver-
age of minimum distances.

In addition, to assess the segmentation performance
of our system considering the variability in GT, we
designed an inter-reader study, as depicted in Figure 9.

The data set for this study was annotated by two experts
A and B. We denote the training data annotated by A
as MA and by B as MB. We employ the U-Net net-
works trained using GT MA to achieve the segmentation
results SA. Then, we estimate DC(MA, MB), DC(MA, SA),
and DC(MB, SA) and compare DC(MA, MB) with DC(MA,
SA), DC(MA, MB) with DC(MB, SA), and DC(MA, SA) with
DC(MB, SA).

3.3 Illustrative results

In Figure 10, we show one representative segmen-
tation example of the upper airway from static 3D,
mid-retropalatal dynamic 2D, mid-retroglossal dynamic
2D, mid-sagittal dynamic 2D, and isotropic dynamic 3D
MRIs. Most of the upper airway segmentation results
(shown in orange) have high similarity with the GT
(shown in green), especially for the dynamic 2D and
dynamic 3D MRIs. By comparing the first and seconds
rows in Figure 10,we observe that the segmentation per-
formance for the nasal cavity and nasopharyngeal air-
way is worse than for the oropharyngeal, hypopharyn-
geal, and supraglottic/glottic laryngeal airway on static
3D MRI. This is because the nasal cavity contains sev-
eral small and slender air-filled regions that increase the
segmentation difficulty for the DL models.Therefore, the
segmentation performance for the whole upper airway
is better than that for the nasal cavity and nasopha-
ryngeal airway and worse than that for the oropharyn-
geal, hypopharyngeal, and supraglottic/glottic laryngeal
airway. By comparing the third with the last column, we
note that the FPs and FNs for the DL model with GROI
are less than those for the DL model without GROI.
In Figure 11, we show two upper airway segmentation
examples from isotropic dynamic 3D MRI by the same
DL model using different loss functions. We observe
that the FPs from the DL model using FP&FN+DICE
loss function are less than those using other loss
functions.

To demonstrate the 3D segmentation effect of our
approach, we utilize CAVASS to display the manual and
automatic segmentation results of the static 3D and
isotropic dynamic 3D MRIs as 3D surface renderings.
Figure 12 shows four representative 3D visualization
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336 AUTOMATIC UPPER AIRWAY SEGMENTATION IN STATIC AND DYNAMIC MRI

F IGURE 10 Examples of upper airway segmentation. First row:
upper airway excluding nasal cavity and nasopharyngeal airway in
static 3D MRI. Second row: nasal cavity and nasopharyngeal airway
in static 3D MRI. Third row: upper airway in mid-retropalatal dynamic
2D MRI. Fourth row: upper airway in mid-retroglossal dynamic 2D
MRI. Fifth row: upper airway in mid-sagittal dynamic 2D MRI. Sixth
row: upper airway in isotropic dynamic 3D MRI. The green, yellow,
and orange colors represent segmentations from manual,
without-GROI, and with-GROI methods, respectively

examples.We observe that the 3D segmentation results
show good agreement with the GT, preserving the com-
plete anatomical structure of the upper airway with the
details. Considering that each subject dynamic 3D MRI
data set contains 480 3D frames in the sleep and wake
states, we utilized MATLAB software to batch imple-
ment 3D surface rendering for all frames and transfer
the frames into video for observing the dynamic varia-
tion of upper airway volume. We randomly selected 10
continuous time frames from one subject and displayed
in Figure 13.The complete video can be accessed in the
Supplementary Data.We observe that the dynamic seg-
mentation results depict the upper airway with its contin-
uously and smoothly varying shape and form.The above
results demonstrate the validity and robustness of our
segmentation system.

3.4 Quantitative results

To evaluate the reliability of the GROI strategy, we
treated the found ROIs as binary masks and estimated
the false-negative rate (FNR) between the GT ROIs and
the found ROIs, as shown in Table 4. The FNR on the
testing set for all three modes of MR image acquisi-
tion was less than 0.001, indicating that the region of
the annotated upper airway outside of the found ROIs is
exceedingly small. Note that we applied the GROI strat-
egy in the training, validation, and testing stages.

In Table 5, we summarize DC and HD values over
the test data sets. The proposed approach achieves
acceptably high DC values and low HD values for all
MRI modes. It is known that for small and highly sparse
objects (like nasal cavity), a DC value of 0.8–0.85 indi-
cates excellent segmentation, while for large space-
filling objects, excellent accuracy requires a DC value

F IGURE 11 Comparison of the impact of
different loss functions. First row and second
row: upper airway in two slices selected from
dynamic 3D MRI from two different subjects.
The green, red, yellow, and orange colors
represent manual segmentation and results
from the DL models trained by cross-entropy,
Dice coefficient, and FP&FN+DICE loss
functions, respectively
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AUTOMATIC UPPER AIRWAY SEGMENTATION IN STATIC AND DYNAMIC MRI 337

F IGURE 12 Illustration of upper airway 3D segmentation result: first row: from static 3D MRI. Second row: from isotropic dynamic 3D MRI.
First and third columns: GT segmentation. Second and fourth columns: automatic segmentation result. These results were from four subjects

F IGURE 13 Illustration of 10 continuous
time frames in a sample upper airway 4D
segmentation result

TABLE 4 Parameters of GROI for the different MRI protocols

GROI parameters

Data type (mode) center point window size
FNR on testing
set

Static 3D MRI––nasal cavity and
nasopharyngeal airway

(0.51, 0.25) 96 × 256 < 0.001

Static 3D MRI––oropharyngeal,
hypopharyngeal, and
supraglottic/glottic laryngeal airway

(0.49, 0.44) 96 × 128 < 0.001

Mid-retropalatal and mid-retroglossal
dynamic 2D MRI

(0.51, 0.48) 96 × 96 < 0.001

Mid-sagittal dynamic 2D MRI (0.60, 0.62) 112 × 128 < 0.001

Isotropic dynamic 3D MRI (0.67, 0.32) 96 × 192 < 0.001
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338 AUTOMATIC UPPER AIRWAY SEGMENTATION IN STATIC AND DYNAMIC MRI

TABLE 5 Segmentation accuracy on test data expressed as mean/standard deviation

Without GROI With GROI

Data type Object DC HD (pixels) DC HD (pixels)

p-Value between
DC with and
without GROI.
Second p-value is
for HD

Static 3D MRI Nasal cavity and
nasopharyngeal airway

0.75/0.03 3.26/3.13 0.80/0.03 2.11/0.86 < 0.001

0.004

Oropharyngeal,
hypopharyngeal, and
supraglottic/glottic
laryngeal airway

0.87/0.04 2.98/2.71 0.90/0.03 2.19/1.85 < 0.001

0.005

Whole upper airway 0.81/0.03 2.33/2.25 0.84/0.03 1.99/0.62 < 0.001

0.08

Mid-retropalatal and
mid-retroglossal
dynamic 2D MRI

Upper airway 0.84/0.14 3.44/6.26 0.89/0.13 2.10/2.15 < 0.001

< 0.001

Mid-sagittal dynamic 2D
MRI

Upper airway 0.79/0.11 6.53/10.55 0.84/0.07 3.72/1.86 < 0.001

< 0.001

Isotropic dynamic 3D MRI Upper airway 0.79/0.07 4.48/5.26 0.86/0.05 3.18/2.91 < 0.001

< 0.001
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F IGURE 14 DC and HD (in pixels) for upper airway in OSA, non-OSA, and all subjects. The bars represent mean values, and the whiskers
denote standard deviations

of > 0.9.34 In addition, the low standard deviation in DC
indicates that the proposed approach has good stabil-
ity and robustness. To explore the difference in perfor-
mance in OSA and non-OSA subjects, we compare in
Figure 14 results from these groups. From these and
other results not shown here, we find that our approach
achieves good accuracy for both groups and the differ-
ence between DC in OSA and non-OSA subjects is not
statistically significant.

Comparison between DC values obtained with and
without the use of GROI indicates that the proposed
anatomy guidance via GROI improves segmentation.
The sharp decline of HD values means that some FP
pixels far away from the GT are removed by the GROI
strategy. The improvements in DC and HD are statisti-
cally significant. In Table 6, we show results from the
use of different loss functions. The proposed FP&FN
with DICE loss function achieves the highest DC value
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TABLE 6 Segmentation accuracy (mean/standard deviation) by using different loss functions

Data type
Loss function
type Evaluation metrics p-Value for comparing DC

TP FP DC HD Cross-entropy
versus FP&FN +

DICE

DICE versus
FP&FN + DICEIsotropic dynamic

3D MRI
Cross-entropy 0.92/0.05 0.0027/0.0011 0.81/0.04 2.22/0.57

DICE 0.81/0.09 0.0008/0.0007 0.84/0.05 3.68/2.46

FP&FN+DICE 0.83/0.06 0.0007/0.0005 0.86/0.05 3.18/2.91 < 0.001 < 0.001

TABLE 7 Inter-reader study results showing three DC values expressed as mean/standard deviation and the p value for the three pairwise
comparisons

Object
DC(MA,
MB)

DC(MA,
SA)

DC(MB,
SA)

p Value DC(MA,
MB) versus
DC(MA, SA)

p Value DC(MA,
MB) versus
DC(MB, SA)

p Value DC(MA,
SA) versus
DC(MB, SA)

Nasal cavity and nasopharyngeal
airway in static 3D MRI

0.83/0.06 0.82/0.06 0.77/0.06 0.85 0.06 0.07

Oropharyngeal, hypopharyngeal,
and supraglottic/glottic
laryngeal airway in static 3D
MRI

0.88/0.04 0.89/0.10 0.85/0.09 0.69 0.39 0.34

Upper airway in mid-retropalatal
and mid-retroglossal dynamic
2D MRI

0.80/0.13 0.85/0.17 0.80/0.16 < 0.001 0.74 < 0.001

Upper airway in mid-sagittal
dynamic 2D MRI

0.77/0.09 0.87/0.07 0.76/0.09 < 0.001 0.024 < 0.001

Upper airway in isotropic dynamic
3D MRI

0.57/0.09 0.85/0.03 0.53/0.10 < 0.001 0.25 < 0.001

and lowest FP rate,meaning that the FP&FN-based loss
term is helpful to reduce the FPs. The difference in seg-
mentation performance among the three loss functions
is statistically significant (p < 0.001).

It is known that DC behaves nonlinearly with respect
to sparse and nonsparse objects;34 that is, a lower
DC for sparse and small objects indicates the same
level of segmentation quality as a higher DC for large
nonsparse objects. Additionally, intra and interoperator
variability in GT is known to be much higher for sparse
objects (with a DC comparing different GT segmenta-
tions in the range 0.8–0.85) than for nonsparse objects
(DC > 0.9).34 We postulated that our current results are
as good as GT, meaning that they are statistically indis-
tinguishable from GT if variability in GT is taken into
consideration.

To verify this hypothesis, we estimated GT variability
in our application by conducting the inter-reader study
outlined above. The results are summarized in Table 7.
We note that DC(MA, SA) is slightly lower than DC(MA,
MB) in static MRI, although the difference is statistically
not significant (p = 0.85, 0.69), demonstrating that our
autosegmentation in static 3D MRI is as good as GT.Not
surprisingly, the other two comparisons approach statis-
tical significance (p = 0.06 and 0.07) for the nasal cavity
and nasopharyngeal airway, suggesting that the varia-
tion between A and B is large enough for these subtle

objects to show significantly better performance with A
than with B.

For all dynamic modes, our system trained on MA per-
forms statistically significantly better (p < 0.001) than
the variability observed between A and B. The results
are also statistically significantly better (p < 0.001) when
MB is used as reference to evaluate accuracy, suggest-
ing that the outputs of our system favor A. In summary,
these upper airway structures are very subtle, and it is
very difficult to consistently create highly reliable GT. As
such, given the high variability in GT, it is very difficult to
achieve DC > 0.9, and the results will favor the GT(s)
that are utilized for training the models.

3.5 Computational considerations

All experiments were conducted on a PC with an Intel i7-
7700K CPU and two NVIDIA 1080 Ti GPUs. We aimed
to construct a unified system with high accuracy and
efficiency for segmenting the upper airway in static and
dynamic 2D and 3D MRI scans.To assess the efficiency
of our system, we compute the average segmentation
time per subject and slice, as shown in Table 8. We
observe that the segmentation time per subject and per
slice of our approach for static 3D and dynamic 2D MRI
is lower than 1.2 and 0.01 s, respectively. Note that the
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TABLE 8 Segmentation time in seconds (per subject and slice)
for our approach

Data type Per subject Per slice

Static 3D MRI 0.20 0.006

Mid-retropalatal and mid-retroglossal
dynamic 2D MRI

1.19 0.006

Mid-sagittal dynamic 2D MRI 1.09 0.009

Isotropic dynamic 3D MRI 396.93 0.009

average segmentation time for static 3D MRI does not
include the time for manual parcellation of upper airway,
which typically is about 10 s. The 960 3D volumes of
one subject in the isotropic dynamic 3D MRI data set
can be segmented in less than 6.7 min. The efficiency
of our approach even in this extreme case of high data
volume can meet the practical needs of image analysis
in OSA for clinical or research purposes.

3.6 Comparison with published
literature

We compare our approach with several state-of -the-art
methods as summarized in Table 9. Our work has sev-
eral advantages over published studies:

(i) Data type: The proposed approach can be
employed with three modes of MR image acqui-
sition with maximum demonstrable accuracy and
robustness. In contrast, other methods are applica-
ble to only one specific MRI protocol. Considering

the significant discrepancies among the different
modes of MR image acquisition, we designed a
general method and constructed five networks with
the same architecture. This strategy allowed each
DL model to focus on the specific MRI protocol,
improving the segmentation performance for our
approach.

(ii) Data size: In our work, we collected and annotated
data sets from 160 subjects with 20 048 MRI slices
as the experimental data, which is much greater
than that of other studies. In particular, the isotropic
dynamic 3D MRI data set includes 23 subjects with
229 annotated MRI frames (3D volumes). We ran-
domly selected 10 subjects, including 164 anno-
tated frames, and 10 subjects, including 40 anno-
tated frames from the subdata set for training and
testing our approach. In comparison, the largest
data set in the published literature23 contains 36
training and 9 testing cases. It is known that less
training data result in the strong possibility of model
overfitting and decrease the generalizability and
confidence of model evaluation.

(iii) Anatomy definition: Distinct from other studies,
we provide the precise anatomical definition of
the upper airway body region in three modes of
MR image acquisition, enabling uniformity of the
approach in all applications. In addition, we trained
two networks to segment two subobjects of the
upper airway in static MRI according to anatomical
parcellation of the upper airway. These design prin-
ciples effectively improve segmentation accuracy.

(iv) OSA application: The acquired static and dynamic
MRI data set includes 56 subjects with OSA. The

TABLE 9 Comparison with methods in the literature

Approach Data type (image contrast)
Number of
train/test cases Object

DC (mean/standard
deviation or
minimum–maximum)

Ivanovska et al.17 Static MRI (T1 weighted) NA/6 Pharynx 0.86/3.13

Javed et al.18 Sagittal real-time MRI NA/10 Upper airway 0.84–0.94

Shahid et al.19 Static MRI (T1 weighted) NA/16 Pharynx 0.89/NA

Silva and Teixeira20 Sagittal real-time MRI (T1 weighted) 51/50 slices Vocal tract 0.82/0.05

Li et al.21 Sagittal cine MRI 10/3 Upper airway 0.93/1.46

Erattakulangara and
Lingala22

Sagittal 2D MRI 75/20 slices Vocal tract 0.90/NA

Liu et al.23 CT and synthetic MRI (T1 weighted) 36/9 Pharynx 0.74/0.10

Proposed method Static 3D MRI (T2 weighted) 30/22 Upper airway 0.84/0.03

Mid-retropalatal and mid-retroglossal
dynamic 2D MRI (balanced SSFP,
T1/T2 weighted)

2073/1056 slices Upper airway 0.89/0.13

Mid-sagittal dynamic 2D MRI (balanced
SSFP, T1/T2 weighted)

1756/1041 slices Upper airway 0.84/0.07

Isotropic dynamic 3D MRI (gradient
echo, T2* weighted)

164/40 frames Upper airway 0.86/0.05

Abbreviation: NA, information not available.
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proposed approach achieves good segmentation
performance for both normal pediatric subjects and
pediatric patients with OSA. In contrast, other stud-
ies did not demonstrate the reliability of segmenta-
tion for subjects with OSA. Therefore, our approach
is more applicable in OSA investigation.

(v) Segmentation performance: Due to the differences
between test sets used in our approach and other
studies from the literature, a direct comparison of
performance is unavailable from Table 8. Main fac-
tors potentially influencing the segmentation perfor-
mance include the number of test cases, the qual-
ity of test cases, the definition of the upper airway,
the quality and variability of manual annotation,and
so on. We utilized the largest and independent data
set to estimate the metric values of performance for
our approach. The mean value of DC based on our
approach is competitive with that of other studies,
and its standard deviation is lower than that of most
other methods.

3.7 Limitations

There are some limitations in our approach. First, the
segmentation approach for the static 3D MRI requires
users to provide the initial location of the inferior, sepa-
ration, and superior boundary slices of the upper airway.
We are working on an automatic parcellation method
to implement this step. Second, it is difficult for our
approach to segment the slender regions of the nasal
cavity in static MRI, resulting in disconnected air pas-
sages in the result. A pixel-wise weighting strategy in
the loss function to increase the importance of the
intractable segmented regions is being tested.Third, the
parameters of GROI, learned from the training data,may
not be applicable to other test MRI data sets due to
differences in data acquisition from different centers.
A more general framework from body-wide AAR26,35

should further facilitate automatically localizing the
upper airway in MRI regardless of differences in data
acquisition based purely on geographic anatomic layout.

4 CONCLUSIONS

In this paper, we propose a novel comprehensive sys-
tem for automatic upper airway segmentation in static
3D, dynamic 2D, and dynamic 3D MRI for the study of
patients with OSA.Our approach is mainly comprised of
two parts: (1) a judicious design of methodology com-
bining human-knowledge and DL techniques to tackle
this incredibly challenging segmentation problem. (2) A
careful adaptation of the 2D U-Net network with a novel
loss function to try to achieve the maximum possible per-
formance for the OSA application given the low quality
of the images and low contrast and very subtle/sparse

nature of the structures. The experimental results on a
large and independent testing data set demonstrate that
our approach achieves excellent agreement with man-
ual segmentation and becomes indistinguishable from
it, often achieving better robustness than manual GT
segmentation. In addition, our approach shows several
advantages compared to those in the published litera-
ture as explained above. The proposed approach has
the potential to be utilized in other dynamic MRI-related
applications, such as for lung or heart segmentation
from dynamic MRI following similar design principles.
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