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Abstract
Introduction: In autosomal dominant polycystic kidney dis-
ease (ADPKD) patients, predicting renal disease progression 
is important to make a prognosis and to support the clinical 
decision whether to initiate renoprotective therapy. Con-
ventional markers all have their limitations. Metabolic profil-
ing is a promising strategy for risk stratification. We deter-
mined the prognostic performance to identify patients with 
a fast progressive disease course and evaluated time-depen-
dent changes in urinary metabolites. Methods: Targeted, 
quantitative metabolomics analysis (1H NMR-spectroscopy) 
was performed on spot urinary samples at two time points, 
baseline (n = 324, 61% female; mean age 45 years, SD 11; 
median eGFR 61 mL/min/1.73 m2, IQR 42–88; mean years of 

creatinine follow-up 3.7, SD 1.3) and a sample obtained after 
3 years of follow-up (n = 112). Patients were stratified by their 
eGFR slope into fast and slow progressors based on an an-
nualized change of > −3.0 or ≤ −3.0 mL/min/1.73 m2/year, 
respectively. Fifty-five urinary metabolites and ratios were 
quantified, and the significant ones were selected. Logistic 
regression was used to determine prognostic performance 
in identifying those with a fast progressive course using 
baseline urine samples. Repeated-measures ANOVA was 
used to analyze whether changes in urinary metabolites 
over a 3-year follow-up period differed between fast and 
slow progressors. Results: In a single urinary sample, the 
prognostic performance of urinary metabolites was compa-
rable to that of a model including height-adjusted total kid-
ney volume (htTKV, AUC = 0.67). Combined with htTKV, the 
predictive value of the metabolite model increased (AUC = 
0.75). Longitudinal analyses showed an increase in the myo-
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inositol/citrate ratio (p < 0.001) in fast progressors, while no 
significant change was found in those with slow progres-
sion, which is in-line with an overall increase in the myoino-
sitol/citrate ratio as GFR declines. Conclusion: A metabolic 
profile, measured at a single time point, showed at least 
equivalent prognostic performance to an imaging-based 
risk marker in ADPKD. Changes in urinary metabolites over a 
3-year follow-up period were associated with a fast progres-
sive disease course. © 2022 The Author(s).

Published by S. Karger AG, Basel

Introduction

Autosomal dominant polycystic kidney disease (AD-
PKD) is the most common inherited renal disease [1, 2]. 
The disease is characterized by progressive growth of 
multiple bilateral renal cysts over time, resulting in loss of 
functioning nephrons and decline in glomerular filtra-
tion rate. ADPKD frequently leads to end-stage renal dis-
ease (ESRD), but progression is associated with a high 
inter- and intrafamilial variability in disease course [3, 4]. 
The advent of a disease-modifying treatment for ADPKD 
[5] has emphasized the need for early risk stratification. 
Identifying patients at high risk of fast progression is im-
portant because these patients may benefit most from 
treatment [6]. Conventional risk assessment strategies 
currently used to predict disease progression all have 
their limitations. Estimated glomerular filtration rate 
(eGFR) indexed for age is less sensitive in early-stage dis-
ease, when renal function remains preserved, because 
progressive cyst formation and loss of nephrons precede 
kidney function decline [7]. Gene type mutation (PKD1 
vs. PKD2) [4, 8] and total kidney volume (TKV) measure-
ment [9, 10] are more reliable, but assessment is laborious 
and expensive. Therefore, there is an unmet clinical need 
for alternative markers that associate with the rate of pro-
gression and that could eventually be used either alone or 
in combination with the conventional markers to support 
risk assessment in patients with ADPKD.

Cross-sectional analyses of urinary metabolites have 
been reported previously [11]. In the current study in 
patients with ADPKD (PKD1), the aim was twofold; first, 
to validate the prognostic performance of urinary me-
tabolites measured at a single time point to identify pa-
tients with a fast progressing disease course and second, 
to assess whether there is a difference over time in the 
change in urinary metabolites between fast and slow pro-
gressors.

Materials and Methods

Study Cohort
Patients with chronic kidney disease (all ADPKD-related) were 

recruited from the DIPAK observational study. For the current 
longitudinal cohort study, we included patients with reliable se-
quential eGFR data, defined as having a follow-up time of at least 
2 years with at least three sequential serum creatinine measure-
ments. Furthermore, only patients with a confirmed PKD1 muta-
tion were included to increase homogeneity. Subjects were exclud-
ed if the baseline (BL) urine sample was not available and/or if they 
used a vasopressin V2R-antagonist or somatostatin analog at BL 
or during follow-up.

The DIPAK observational study is an ongoing longitudinal 
multicenter study of more than 600 patients with ADPKD (Ravine 
criteria [12]) in the Netherlands, aged ≥18 years. Inclusion started 
in 2012 and patients will be followed for >6 years. Exclusion crite-
ria included ESRD, renal replacement therapy, and medical condi-
tions, other than ADPKD that negatively affect the natural course 
of ADPKD. Blood and urine samples were collected annually. Se-
rum creatinine was measured with an enzymatic assay (IDMS-
traceable method; Modular, Roche Diagnostics) at the relevant 
study center. GFR was estimated for each time point using the 2009 
Chronic Kidney Disease EPIdemiology equation [13]. Abdominal 
magnetic resonance imaging was performed at BL and every 3 
years using a standardized protocol without the use of intravenous 
contrast. TKV was measured on magnetic resonance imaging-de-
rived T2-weighted coronal images by an artificial multi-observer 
deep neural network model for fully automated segmentation [14]. 
TKV was adjusted for patients’ height (height-adjusted TKV [htT-
KV]). Genetic analysis was performed at BL using combined pro-
tocols [15–17].

Renal Outcomes
Individual eGFR slopes were calculated as absolute progression 

rate in mL/min/1.73 m2/year using linear regression slopes through 
serial eGFR measurements. These were expressed as annualized 
changes in eGFR. Patients were stratified into fast (eGFR slope 
greater than −3.0 mL/min/1.73 m2/year) and slow progressors 
(eGFR slope less than or equal to −3.0 mL/min/1.73 m2/year). This 
is in-line with the established cutoff to define fast progressing dis-
ease in ADPKD, although the field lacks a conclusive definition 
[18–26]. The ERA-EDTA risk assessment algorithm includes a 
definition for fast progressing disease based on a documented de-
cline in eGFR of ≥5 mL/min/1.73 m2 in 1 year (adopted from the 
KDIGO CKD Guideline [27]) and/or ≥2.5 mL/min/1.73 m2/year 
over a period of 5 years [6], which is comparable to the eGFR de-
cline in class 1C patients of the Mayo classification [10].

Urine Sample Collection and NMR Analysis
We used spot urine samples that were obtained at BL and at 

year three for our analyses. Sampling, processing, and analysis us-
ing nuclear magnetic resonance (NMR) spectrometry were per-
formed as previously reported [11]. In short, early morning-void-
ed fasting urine samples were centrifuged directly after collection, 
and the aliquoted supernatant was stored at −80°C until analysis 
took place. Sampling of fresh urine to measure pH was not part of 
the protocol. For NMR analysis, urine samples were manually or-
dered in random order (study number and time point), thawed, 
transferred into 96 deep-well plates, and centrifuged at 1,550 g for 
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5 min. Of each sample, 565 µL was mixed with 70 µL of pH 7.4 po-
tassium phosphate buffer (1.5 M) in 100% D2O containing 4 mM 
TSP and 2 mM NaN3, after which a modified Gilson liquid handler 
was used to transfer the samples to 5-mm Bruker SampleJet NMR 
tubes. Subsequently, the tubes were stored in the SampleJet autos-
ampler at 6°C while queued for measurement. 1H-NMR NO-
ESY1D and JRES spectra were acquired on a Bruker 600-MHz 
AVANCE II spectrometer equipped with a 5-mm TCI cryogenic 
probe head and a z-gradient system using identical experimental 
parameters as in our earlier report.

Metabolic Profiling of Urine
The quantification of each metabolite was performed by inte-

gration of its proton peaks in the NMR spectrum using the decon-
volution fitting algorithm of Chenomx NMR Suite (9.0). The fit-
ting was performed in semiautomatic mode, and the output was 
curated manually. To compensate for urine dilution differences, 
the data were normalized using probabilistic quotient normaliza-
tion, a normalization routine specifically developed for complex 
NMR data. Data were scaled on the basis of the most probable di-
lution, which is estimated from the analysis of the reference spectra 
[28]. This normalization method is similar to normalization for 
urine creatinine or urine osmolality [11].

Statistical Analysis
Continuous variables with normal distribution were expressed 

as mean ± standard deviation (SD), nonnormally distributed vari-
ables were summarized by median and interquartile range (IQR), 
and categorical data were given as proportions. Differences be-
tween BL variables were tested using an independent t test in the 
case of normally distributed data, a Mann-Whitney U test when 
data were not normally distributed, and a χ2 test in the case of cat-
egorical data. For logistic regression and ANOVA analysis, data 

were log transformed to meet the assumption of normality. The 
efficiency of the transformation was assessed by the Shapiro-Wilk 
test. For imputation of the missing htTKV values, a multivariate 
imputation by chained equations algorithm was used (R package 
mice 3.14.0).

For cross-sectional analyses, logistic regression analysis was 
performed with fast versus slow progressors as the dependent vari-
able. The reported model description included the model coeffi-
cients and their standard errors, odds ratios, area under the curve 
(AUC), χ2 statistics (Chisq), and its probability (Pr > Chisq). To 
address a possible confounding effect due to gender, all the models 
that are included in this report were compared with a gender cor-
rected model using an ANOVA test. For all these models the H0 
could not be rejected. Therefore, the simplest model (without gen-
der) was used. Relevant clinical variables that were significantly 
different in univariate analysis were included as independent vari-
ables (BL eGFR, BL log htTKV) in multifactorial models. In addi-
tion, age was also included, because in combination with BL eGFR 
and/or htTKV it is an important risk factor for future disease pro-
gression; although in our cohort it was not found to be significant-
ly associated with the univariate analysis.

For longitudinal analyses, to determine whether changes in uri-
nary metabolites between a urine sample at BL and a subsequent 
sample after 3 years differed between fast and slow progressors, we 
used a repeated measure ANOVA analysis (a base R aov function). 
An individual model was built for each metabolite or metabolite 
ratio.

Data analysis and visualization were performed with R versions 
3.6.3 and 4.1.2., and Python version 2.7.12. For calculation of the 
logistic regression metrics, the following packages were used: car 
3.0, caret 6.0, broom 0.7.10., and lsmeans 2.3. The ggplot 3.3.5 li-
brary was used for visualization of data. For longitudinal modeling 
a nlme package (3.1) was used.

Table 1. BL characteristics of ADPKD patients

Variable All patients Fast progressors Slow progressors p value

n 324 193 131
Female sex, n (%) 199 (61) 113 (59) 86 (66) 0.20
Age, years 45±11 45±11 44±12 0.63
Height, cm 176±10 177±10 176±10 0.57
BMI, kg/m2 26±5 26±5 26±4 0.25
SBP, mm Hg 129±13 131±13 126±13 0.001
DBP, mm Hg 80±9 81±9 78±9 0.04
AHT, n (%) 273 (84) 173 (90) 100 (76) 0.005
RAASi, n (%) 261 (81) 166 (87) 95 (73) 0.008
eGFR, mL/min/1.73 m2 61 (42–88) 54 (37–88) 73 (47–91) 0.002
htTKV, mL/m 822 (512–1,305) 964 (666–1,458) 649 (403–986) <0.001
Urine ACR, mg/mmol 2.6 (1.1–5.7) 3.3 (1.5–6.5) 1.5 (0.8–3.6) <0.001

Variables are presented as mean ± SD or as median (IQR) in case of nonnormal distribution. p values for fast ver-
sus slow progressors were calculated using the independent sample t test in case of normal distribution, Mann-
Whitney U in case of nonnormal distribution, and χ2 in case of categorical data. Progressors and nonprogressors 
were defined as patients with an annual change in eGFR less than or equal to −3.0 or greater than −3.0 mL/min/1.73 
m2, respectively. ACR, albumin-creatinine ratio; AHT, antihypertensive therapy; BMI, body mass index; SBP, systolic 
blood pressure; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; htTKV, height-adjusted 
total kidney volume; RAASi, RAAS inhibitor.
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Results

Study Cohort and Descriptive Data of the Metabolites
BL characteristics are summarized in Table 1. We in-

cluded 324 ADPKD patients, 61% female. The mean age 
was 45 years (SD 11) and the median eGFR was 61 mL/
min/1.73 m2 (IQR 42–88). The mean follow-up time was 
3.7 years (SD 1.3) in which patients had a mean annual 
change in eGFR of −3.5 mL/min/1.73 m2/year (SD 3.0). 
Measurement of htTKV at BL was available for 283 pa-
tients. Median htTKV was 822 mL/m (IQR 512–1,305). 
The cohort was stratified into 193 fast progressors and 
131 slow progressors as defined by the cutoff value for the 
eGFR slope of at least −3 mL/min/1.73 m2/year. As can be 
expected in fast progressors, their htTKV, urinary albu-

min-creatinine ratio, and blood pressure were higher, use 
of antihypertensive treatment more frequent, and eGFR 
lower as compared to those with a slow progressive 
course.

Thirty-eight urinary metabolites and seventeen physi-
ologically relevant metabolite ratios were analyzed in this 
study (in total 55 variables). Descriptive data of the me-
tabolite concentrations are summarized in online supple-
mentary Table S1 (for all online suppl. material, see www.
karger.com/doi/10.1159/000524851).

Part 1: Urinary Metabolites Showed Prognostic Value 
for Distinguishing Fast from Slow Progressors Based 
on a Single Sample
Cross-sectional analyses were performed on BL sam-

ples from all patients included in this study (n = 324) to 
select the best predictors of progression when evaluated 
in a single urine sample. First, we made a univariate over-
view of the differences in the measured metabolites and 
metabolite ratios between fast (n = 193) and slow (n = 
131) progressors. Figure 1 shows that, in agreement with 
our previous report [11], the alanine/citrate ratio is sig-
nificantly higher in the group of fast progressors. Next, a 
logistic regression model was built for each variable sepa-
rately, with fast and slow progressors as the dependent 
variable. Figure 2 summarizes the odds ratios and confi-
dence intervals for all variables. To find the best subset of 
metabolite predictors for distinguishing fast from slow 
progressors, we used a model optimization routine and 
found that an optimal combination consists of two me-
tabolites (betaine and phenylacetylglycine) and one me-
tabolite ratio (alanine/citrate). Table 2 shows a numeric 
summary for the metabolite model built on the best sub-
set of urinary metabolites, and models including conven-
tional clinical predictors (age, BL eGFR, log HtTKV) to 
identify patients with fast progressive disease course. The 
metabolite model (AUC = 0.72, Chisq = 49.19, Pr > Chisq 
= <0.001) clearly outperformed the models built on age 
and BL eGFR in distinguishing fast from slow progres-
sors. It showed better prognostic performance as com-
pared with an imaging-based model (log htTKV, AUC = 
0.67, Chisq = 26.37, Pr > Chisq = <0.001). When the uri-
nary metabolite subset was combined with the imaging-
based model, the fit of the model improved (AUC = 0.75, 
Chisq = 62.29, Pr > Chisq = <0.001). The model fit did not 
improve when BL eGFR (Table 2) and age were added. 
Nor did albuminuria perform better than a random mod-
el (data not shown). Figure 3 shows the receiver operating 
characteristic curves for the models presented in Table 2. 
In online supplementary Figure S1 summarizes the dif-
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Fig. 1. Vulcano plot of all quantified metabolites and metabolite 
ratios (n = 55). This plot represents a univariate overview of the 
differences in the measured metabolites and metabolite ratios be-
tween fast (n = 193) and slow (n = 131) progressors in the BL co-
hort. The degree of significance was presented in different colors. 
The most statistically significant variables were represented by the 
green dots. The urinary alanine/citrate ratio is significantly higher 
in the group with fast progressive disease. Notes: p values correct-
ed for multiple testing (Benjamini-Hochberg correction) were 
used. Fast and slow progressors were stratified based on an annu-
alized change in eGFR of > or ≤ −3.0 mL/min/1.73 m2/year, respec-
tively.



Dekker et al.Am J Nephrol 2022;53:470–480474
DOI: 10.1159/000524851

Valine
Urea

Tyrosine
Tyr_Val

Trimethylamine_N_oxide
Trimethylamine

Trigonelline
Tartrate

Succinate
Pyruvate

Pyr_Cit
Oxypurinol

n3_Hydroxyisovalerate
n3_Hydroxybutyric_acid
n2_Hydroxyisobutyrate
N_Phenylacetylglycine
N_N_Dimethylglycine

myo_Inositol
Myo_Cit

Methylsuccinate
Methanol

Lactate
Lac_Pyr
Lac_Cit
Lac_Ala

Isobutyrate
Hippurate

Guanidoacetate
Glycolate

Glycine
Glucose
Glc_Pyr
Glc_Cit

Formate
Dimethylamine

Creatinine
Creatine

Cre_Creat
Citrate

cis_Aconitate
bOHbut_AcA

bOHbut_Ac
Betaine
Alanine
Ala_Val
Ala_Tyr
Ala_Pyr
Ala_Glc
Ala_Cit

Acetylsalicylate
Acetone

Acetoacetate
Acetate

Acetaminophen
Ac_AcA

0.4 0.8
Odds ratios, 95% CI

1.2 1.6

log10 (p-value)

–1
–2
–3
–4

Fig. 2. Forest plot of all quantified metabolites and metabolite ratios (n = 55). This plot represents a summary of 
the logistic regression models for each BL metabolite and metabolite ratio. In the models, fast (n = 193) and slow 
(n = 131) progressors were the dependent variables. The side color bar shows the degree of significance. Note: 
Fast and slow progressors were stratified based on an annualized change in eGFR of > or ≤ −3.0 mL/min/1.73 
m2/year, respectively.
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ferences in individual predictors between fast and slow 
progressors for the most optimal composite (metabolites 
and the imaging data) model.

Part 2: Changes in Urinary Metabolites over Time 
Associated with Fast Progressing Disease
For the longitudinal analysis, we included patients 

who supplied both a BL and subsequent urine sample af-
ter 3 years of follow-up: n = 112 (fast progressors, n = 56; 
slow progressors n = 56). In this cohort 55% were female, 
mean age 44 years (SD 13), median BL eGFR 71 mL/
min/1.73 m2 (IQR 44–93), median BL htTKV 744 mL/m 
(480–1,176). To evaluate whether there is a difference 
over time in the change in urinary metabolites between 
the fast and slow progressors over a 3-year follow-up pe-
riod, we used, for every metabolite and metabolite ratio, 
an individual two factor (time and progression) repeated 
measure ANOVA model. Values were log transformed to 
comply with the modeling method assumptions. Using F 
factor and p value of the ANOVA models as selection cri-
teria, we found that only a single metabolite ratio namely 
myoinositol/citrate passed a significance cutoff on the in-
teraction term (F = 3.6, p = 0.05). Figure 4 gives a visual 
summary of the difference in this urinary metabolite ratio 

between the two time points at the individual level within 
each progressor group. It clearly demonstrates that in fast 
progressors, after 3 years of follow-up, the urinary myo-
inositol/citrate ratio increased significantly as compared 
to the BL value (relative rise in the ratio of 68%, p < 0.001, 
Fig. 4a), whereas in slow progressors the relative rise in 
the myoinositol/citrate ratio was 6% (p = 0.38; Fig. 4b). In 
fast progressors, this phenomenon was driven by an in-
crease in myoinositol, combined with a decrease in citrate 
over time (online suppl. Fig. S2). We also calculated the 
change (slope, Δ) in the myoinositol/citrate ratio between 
the two time points (BL and year 3). In online supplemen-
tary Figure S3 shows that fast progressors have a signifi-
cantly higher change in metabolite ratio over time than 
slow progressors (p = 0.008).

Discussion

In the current study, we reproduced the prognostic 
performance of a urinary metabolite profile taken at a sin-
gle time point [11] to predict a fast progressive course of 
disease. When measured in a urine sample at BL, we 
found that the prognostic value to distinguish fast from 

Table 2. Summary of the logistic regression models for distinguishing fast from slow progressors in the BL cohort 
(n = 324)

Variables St. β (SE) OR (95% CI) AUC (95% CI) Chisq Pr > Chisq

Model with a single predictor
Age −0.01 (0.11) 1.00 (0.98–1.02) 0.51 (0.44–0.57) 0.01 0.94
BL eGFR 0.28 (0.12) 1.01 (1.00–0.02) 0.59 (0.52–0.65) 5.22 0.02
Log htTKV −0.63 (0.13) 0.38 (0.25–0.55) 0.67 (0.61–0.73) 26.37 <0.001

Metabolite model
Betaine −0.60 (0.13) 0.43 (0.30–0.63)

0.72 (0.66–0.77) 49.19 <0.001Phenylacetylglycine 0.51 (0.14) 2.38 (1.53–3.78)
Alanine/citrate ratio −0.59 (0.13) 0.47 (0.33–0.65)

Composite models
Betaine −0.58 (0.14) 0.44 (0.30–0.64)

0.75 (0.69–0.80) 62.29 <0.001
Phenylacetylglycine 0.48 (0.13) 2.25 (1.44–3.60)
Alanine/citrate ratio −0.49 (0.13) 0.54 (0.38–0.76)
Log htTKV −0.50 (0.14) 0.47 (0.30–0.71)
Betaine −0.62 (0.13) 0.42 (0.29–0.61)

0.72 (0.66–0.77) 51.35 <0.001
Phenylacetylglycine 0.52 (0.14) 2.39 (1.54–3.81)
Alanine/citrate ratio −0.54 (0.14) 0.50 (0.35–0.70)
BL eGFR 0.19 (0.13) 1.01 (1.00–1.02)

St. β, OR, AUC, and Pr > Chisq were calculated using logistic regression analysis. Dependent variable: fast versus 
slow progressors, defined as patients with an annual change in eGFR less than or equal to −3.0 or greater than −3.0 
mL/min/1.73 m2, respectively. AUC, area under the curve; Chisq, chi-square test; CI, confidence interval; eGFR, esti-
mated GFR; htTKV, height-adjusted total kidney volume; OR, odds ratio; Pr > Chisq, χ2 probability; St. β, standardized 
β.
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slow progressors of urinary metabolites was similar to 
currently more established risk markers, such as htTKV. 
Combining htTKV and the metabolite model predicted 
fast progressing disease better than these markers indi-
vidually. Furthermore, we demonstrated that changes in 
the urinary myoinositol/citrate ratio over a follow-up pe-
riod of 3 years were associated with a faster progressive 
course of disease in patients with ADPKD. This probably 
reflects the association of myoinositol and citrate with 
GFR. In general, in CKD, urine myoinositol rises and 
urine citrate falls as GFR declines.

In current clinical practice in ADPKD, conventional 
classification parameters, including eGFR indexed for 
age, htTKV adjusted for age, and genetic testing are fre-
quently used for patient risk assessment. They all have 
their limitations. In literature, varying data on their prog-
nostic performance for identifying patients with fast pro-

gressing diseases have been reported [8, 10, 29, 30]. In our 
study, the value of the urinary myoinositol/citrate ratio 
(AUC = 0.72) was at least equivalent to that of the estab-
lished risk model htTKV (AUC = 0.68). Urinary bio-
markers improved the prediction model when added to 
the imaged-based predictor (AUC = 0.75), which is in 
agreement with other data [26, 29]. The predictive power 
of our image-based model (AUC = 0.68) was comparable 
to that of two recent studies in large ADPKD cohorts for 
distinguishing fast from slow progressors, as defined by 
the eGFR slope (AUC = 0.61 [29] and AUC = 0.65 [26]). 
In line with our data, the prognostic performance was 
better when conventional risk models were combined 
with a urinary risk score (AUC = 0.73 [29] and AUC = 
0.72 [26]) than of each of the predictors separately.

The two metabolite ratios that we found to be most 
important in ADPKD progression both included urinary 
citrate as their denominator. This strengthens its well-
documented role in chronic renal dysfunction [31–37]. 
Citrate is freely filtered by the glomerulus and excretion 
is regulated by reabsorption, which is mostly influenced 
by tubular pH. Urinary citrate decreases under condi-
tions of acidosis [38]. Hypocitraturia and acidosis are 
commonly found in patients with CKD and ADPKD. In 
ADPKD, acidosis is associated with a greater risk of wors-
ening kidney function [39]. A recent study showed that 
urinary citrate inversely correlates with more advanced 
ADPKD progression as reflected by TKV and that its role 
as a calcium chelator in preventing tubular crystal forma-
tion may directly influence the pathophysiology of cyst 
formation [32]. We showed that a model, including ci-
trate as a single predictor, was not informative enough for 
risk assessment. A stable or opposite functioning metabo-
lite as nominator was needed to provide sufficient con-
trast. There is only limited mention of urinary alanine 
excretion in the literature on chronic renal dysfunction 
[35, 40]. More data are available on the association be-
tween myoinositol and renal function [37, 41, 42]. Myo-
inositol is mainly synthesized in the kidney, which is an 
important renal osmolyte involved in protecting cells 
from hyperosmotic stress. Under healthy conditions, re-
nal myoinositol increases when interstitial osmolality in-
creases, which is mainly driven by elevated tubular reab-
sorption rather than local production [37]. It is suggested 
that the reabsorption of myoinositol in damaged renal 
cells is decreased, resulting in elevated urinary myoinosi-
tol excretion. A recent study including 227 patients with 
varying stages of CKD showed data on the prognostic val-
ue of urinary myoinositol in predicting rapid CKD pro-
gression from those with stable disease (AUC = 0.78) 
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Fig. 3. ROC curves of conventional and metabolite models to dis-
tinguish fast from slow progressors in the BL cohort (n = 324). A 
model including BL log htTKV (green line; AUC = 0.67 [95% CI: 
0.61–0.73]) showed a similar prognostic performance as compared 
with a model including the urinary subset of metabolites (purple 
line; AUC = 0.72 [95% CI: 0.66–0.77]) for distinguishing fast from 
slow progressors. The prognostic value was improved when add-
ing the metabolite profile on top of log htTKV (orange line; AUC 
= 0.75 [0.69–0.80]). A model with BL eGFR or age as a single pre-
dictor (red and blue lines) showed limited prognostic value. Note: 
Fast and slow progressors were stratified based on an annualized 
change in eGFR of > or ≤ −3.0 mL/min/1.73 m2/year, respectively. 
ROC, Receiver operating characteristic.
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[37]. The fact that both citrate and myoinositol are com-
monly reported in literature in the context of chronic re-
nal disease strengthens our finding of these two metabo-
lites as an interesting combination for staging of disease 
and making a prognosis.

Our study has a number of strengths. First, we includ-
ed a phenotypically well-defined, large, homogeneous 
(only PKD1) cohort with standardized longitudinal data 
and htTKV measurements. Second, the calculation of in-
dividual eGFR slopes was based on a mean follow-up du-
ration of almost 4 years and at least three standardized 
sequential measurements of serum creatinine to allow re-
liable slope calculation [26]. Third, urine sampling, pro-
cessing, and storage were standardized, limiting potential 

bias. Last, an established NMR-based platform was used 
for biomarker assessment. NMR spectrometry offers 
quantification and reliable analytical reproducibility. It 
also allows the measurement of large numbers of samples, 
qualifying this approach for clinical application.

Our study also has limitations. First, the use of hard 
study endpoints including ESRD or doubling of serum 
creatinine was not feasible because the follow-up period 
was shorter than in some other studies [23, 43]. The use 
of such outcomes strengthens the reliability and perfor-
mance for predicting disease progression. Seeing that our 
cohort does not differ from other studies in other re-
spects, we expect to find similar results for the predictive 
value of htTKV when the duration of follow-up is extend-
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Fig. 4. Changes in the urinary myoinositol/citrate ratio over time 
at an individual level within the progressor groups (n = 112). After 
3 years of follow-up, the myoinositol/citrate ratio increased in fast 
progressors (a) (n = 56, p < 0.001), while in slow progressors (b) 
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for BL versus year 3 (Y3) were calculated using the Mann-Whitney 

U test (paired version). The dark red dots represent the scaled me-
dian values (fast progressors BL = −0.66, Y3 = −0.21; slow progres-
sors BL = −0.86, Y3 = −0.83). Fast and slow progressors were strat-
ified based on an annualized change in eGFR of > or ≤ −3.0 mL/
min/1.73 m2/year, respectively.
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ed. Considering that the urinary biomarkers that we 
found improve the predictive value of htTKV, but are still 
not perfectly discriminative, it would be of great interest 
to test these biomarkers on a cohort with a longer dura-
tion of follow-up. Second, the current study did not in-
clude a validation cohort for the longitudinal part of this 
study because a cohort of sufficient size for validation was 
not available. For splitting of the cohort into a training 
and validation cohort, the numbers were not large enough. 
However, with respect to the cross-sectional analysis, this 
is our second study investigating urinary metabolites, and 
while we were using another technique to identify prog-
nostic markers we were able to validate our previous find-
ings. Last, our study design is not suitable for an unequiv-
ocal causal or mechanistic interpretation of the identified 
urinary metabolites. The metabolites that we identified 
may play a role in renal dysfunction in general and not be 
specific to ADPKD. Future studies are needed to further 
unravel their role in pathophysiology and should evaluate 
the response of biomarker levels to treatment.

In conclusion, urinary metabolic profiling holds 
promise as an easy-to-perform strategy for risk stratifica-
tion in ADPKD patients. When urinary biomarkers were 
combined with an imaging-based predictor, the predic-
tive performance was improved beyond that of single pre-
dictors.
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