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Chapter 10

SUMMARY AND DISCUSSION

An intact corneal endothelium is essential for corneal transparency as it regulates corneal nutrition and
hydration by balancing a semipermeable barrier activity with active ion transport mechanisms. The human
endothelium is thought to be an amitotic cell layer with a continuous and age-dependent loss of endothelial
cells of about 0.5 to 0.9% annually.[1] However, the endothelial cell loss can be accelerated due to corneal
diseases, damage by inflammatory processes or by mechanical trauma following intraocular surgery or
penetrating injury. Although the corneal endothelial cells (CEC) in low density conditions will display increased
cellular migration by decreasing contact inhibition, once the endothelial cell density (ECD) drops below a
minimum required to maintain the pumping function of the endothelium (typically around 400 — 500 cells/mm?),
it will result in corneal decompensation. In such cases, the damaged or diseased portion of the cornea is
surgically replaced either by a full thickness corneal graft (Penetrating Keratoplasty — PK) or a lamellar
endothelial cell layer graft (lamellar endothelial keratoplasty — EK). Descemet Membrane Endothelial
Keratoplasty (DMEK) is the most selective EK technique and nowadays the preferred treatment option for
endothelial diseases.

Similar to solid organ grafting, transplanted corneal tissue possesses a limited lifespan that is often related to
the density of cells transplanted. Grafts may display an acute (related to surgical technique or graft preparation)
or chronic endothelial cell loss (subclinical immunological reaction) that could lead to graft failure. Moreover,
due to the global deficit of donor corneas it is estimated that only 1 in 70 visually impaired patients that require
a corneal graft actually receive one.[2,3] In an effort to overcome tissue shortage, Hemi-[4-6] and Quarter-
DMEK[7-10] were developed to use the available donor tissue more efficiently. These techniques, like other
new treatment options to alleviate tissue shortage, are most appropriate for patients with still healthy
peripheral endothelial cells. Therefore, regeneration of the corneal endothelium by tissue engineering
techniques, administration of pharmacological modulators or synthetic alternatives is being researched to
overcome these problems.[11]

This thesis outlines the rapid progression of the corneal regeneration field, including an in-depth analysis of
wound healing pathways and biological modulators. In addition, in vitro studies were conducted to evaluate the
migration capacity of corneal endothelium before and after EK. These findings result in a better understanding
of endothelial cell migration and provided further knowledge for the ongoing research on endothelial graft
substitutes.

Early postoperative decrease in ECD after DMEK and DMEK graft viability prior to
transplantation

DMEK has become the gold standard to treat endothelial dysfunction owing to the rapid visual rehabilitation,
near-normal anatomical restoration of the cornea and a lower risk of allograft rejection.[12] Initially, the DMEK
technique was met with some reluctance as there were concerns regarding the technical aspects of graft
preparation and surgery.[13] Preparation of thin (10-15 um) grafts can be challenging and, together with
intraoperative graft handling, could potentially lead to either complete tissue loss especially during preparation
or to high postoperative endothelial cells loss and low graft survival rate.[14] Since ECD is fundamentally tied to
the longevity of endothelial keratoplasty, ECD decrease is considered one of the main outcome measures in the
investigation of the efficacy and safety of DMEK, as well as for predicting long-term graft survival.[14-16]
Postoperative ECD decrease for all endothelial keratoplasty techniques is usually reported for the six-month
follow-up and shows a drop of about 30-40%, comparative to preoperative values, followed by an annual
decrease of 7-9% thereafter.[17,18] Howeuver, it is unclear at what time point the decrease in ECD reported at
six months actually occurred, and whether it reflects a gradual decrease or a sudden drop. The results of a small
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case series at our institute showed a larger than 30% decrease in ECD within the first month after DMEK.[19]
This finding was substantiated in a follow-up study (Chapter 1) on a series of 24 DMEK eyes operated for Fuchs
endothelial cell dystrophy (FECD). In this study we were able to obtain specular microscopy images already 1
day and 1 week postoperatively due to the fast corneal clearance after DMEK and we could show that the 30%
ECD drop occurs within the first postoperative week; about 2/3 of the total decrease could already be observed
after the first postoperative day.[20] Such a rapid decrease cannot be explained by endothelial cell migration
and/or redistribution that usually requires more time.[21] Similarly, it is unlikely that such an early drop was
caused by an immune response, especially because an allograft rejection is generally considered to be a delayed
reaction.[22] Other possibilities for causing the sudden early onset drop in ECD after DMEK may be
intraoperative handling or an overestimation of preoperative viable cells on the graft. Since for most surgeries
in this study no intraoperative complications were reported, the larger portion of the ECD decrease within the
early postoperative phase after DMEK may primarily be explained by the overestimation of the eye bank viable
ECD. This led us to examine endothelial cell viability after graft preparation in more detail.

Evaluation of the cell viability and quality of endothelial grafts prepared in the eye bank has become the subject
of numerous studies. Endothelial cell loss was evaluated following various graft preparation methods or surgical
manipulations.[23-29] Current eye banking practices determine ECD based on the structural integrity of the
cells (assessed by trypan blue staining) though this does not exactly reflect the viable cell pool of corneal
endothelium allocated for transplantation. Our follow-up study (Chapter 2) on graft viability using surgery grade
DMEK grafts that could not be allocated (due to the Covid-19-related cancellation of elective surgeries),
demonstrated the need to perform a more accurate post-processing corneal endothelial cell analysis.[30]
Ideally, grafts should not only be evaluated based on live-dead analysis, but it should be differentiated between
various forms of cell death (apoptosis, necrosis, autophagy) since otherwise e.g. apoptotic cells are considered
as ‘live’ cells. For a better differentiation, multiple biochemical and functional assays should be applied. In this
regard, Calcein acetoxymethyl ester (Calcein-AM) has been used for studies of enzymatic activity, cell
membrane integrity, and long-term cell tracking due to its low cellular toxicity.[31,32] In our study, the cell
viability of five grafts scheduled for transplantation was assessed by Calcein-AM on the originally planned
surgery day and revealed that the percentage of central surface area covered by viable cells ranged from 57%
to 97%. Because of this scattered viability range, we continued with the viability analysis of 11 paired donor
corneas evaluated either directly post-preparation or after 3—7 days of storage. Our results showed that cell
viability of most DMEK grafts seems not to be affected by preparation and storage, while for some grafts
endothelial cell damage undetected by trypan blue could be observed within hours after graft preparation.
Because trypan blue can only identify dead cells, it fails to detect apoptotic or necrotic cells.[33] Therefore,
when ECD was evaluated after graft preparation by trypan blue staining (eye bank procedure), we observed an
average ECD difference of 10 (+21)% compared to ECD determined on the same grafts by Calcein-AM. This large
variability of endothelial cell loss observed by Calcein-AM after graft preparation supported our clinical
observation that the high endothelial cell loss detected in the early postoperative phase after DMEK can be
primarily explained by an overestimation of the graft’s viable endothelial cell population.

As an alternative to Calcein-AM, an annexin V-FITC assay has also been reported to detect early apoptosis by
targeting negatively-charged phosphatidylserine translocated from the inner membrane leaflet of viable cells
to the outer membrane surface during apoptosis.[34] Therefore, combining assays routinely used to
characterize cell apoptosis with membrane impermeable dyes such as trypan blue would allow for the detection
and quantification, in the same sample, of the apoptotic/necrotic and viable cell populations. However, these
assays are not yet approved for the use on transplantable tissue and therefore, there is a still a strong need to
develop and validate cell viability and cytotoxicity detection methods that analyze the functional status of the
corneal endothelial cells after graft preparation and provide an accurate cell count. Meanwhile, an additional
DMEK quality check by light microscopy performed within hour after graft preparation or just before surgery
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could help to detect grafts with doubtful endothelial quality and thus, reduce postoperative DMEK
complications and low postoperative ECD outcomes.

Perceiving the morphological changes and regenerative capacity of the corneal endothelium
in vivo and in vitro

Intracellular signaling in wound healing

Next to improving the quality of the available corneal donor tissue, current research is also focusing on non-
surgical treatments for restoration of corneal endothelium by first understanding the concepts and limitations
of clinical procedures. In this regard, the extensive review (Chapter 3) on signaling pathways involved in CEC
proliferation and migration could lead to new ideas on how to treat corneal endothelial dysfunction in the
future.[35]

Developing novel strategies to re-activate CEC regenerative capacity is challenging as CEC are blocked in the
GO0/G1 phase of the cell cycle in vivo and this is further hindered by endothelial-to-mesenchymal transition
(EMT). Literature and gene and genome data base analysis revealed a complex interplay of pathways regulating
the cell cycle and migration including among others the B-catenin and transforming growth factor (TGF-B)
pathways, the PI3K/Akt pathway, and the Rho-ROCK pathway.[36-43] Especially the Rho/ROCK pathway
regulates a wide spectrum of fundamental cellular events and is involved in a variety of pathological conditions;
its inhibition may trigger various signaling cascades and produce multiple biological effects such as enhanced
proliferation, increased motility, or cytoskeleton rearrangements.

In the process of wound repair, corneal endothelial cells may undergo EMT and transform to fibrogenic
myofibroblasts. Myofibroblast generation through EMT is largely modulated by the transforming growth factor
B (TGF-B)[44,45] that activates not only Smad signals but also other cytokines/growth factors such as mitogen-
activated protein kinase (MAPK), P38MAPK.[46—48] Because migration is a major component of wound healing
in the corneal endothelium, strategies to inhibit of the unfavorable EMT of the corneal endothelium should not
be accompanied with an impairment of cell migration.

The wound healing process of corneal endothelium considers that cells close the wounded gap mainly by
migration and increased cell spreading,[49] while cell division remains very low[34] with cells dividing mostly
amitotic with formation of binuclear cells.[50] Successful clinical options for replacing the diseased endothelium
include approaches that accelerate endothelial healing and suppress EMT through topical administration of
ROCK inhibitor eye drops. There is clear evidence that topical Rock inhibitor administered after removal of non-
confluent guttae (Descemet stripping only (DSO))[51,52] or after transplanting a devitalized DM([53] for treating
central FECD, sustained cornea clearance, improved endothelial cell density, while overall, cells displayed a
better architecture. ROCK inhibitors played also a major role in the clinical trial for injecting cultured human CEC
into the anterior chamber of the eye.[54,55]

Corneal endothelial cells migrate by transiently acquiring a fibroblast morphology reorganizing the actin into
stress fibers, events that are consistent with EMT. Furthermore, EMT may lead to fibrotic complications of
healing such as the formation of a retrocorneal fibrous membrane.[56] Inducers of EMT and fibrotic changes in
the endothelial layer include interleukine-1 beta (IL-1B) that may be released in response to many ‘pathogen
associated molecular patterns’ (PAMPs) and TGF-B. Although TGF-B can stimulate healing, it also promotes
fibrogenic changes including deposition of aberrant extracellular matrix (ECM).[57] To counteract the fibrogenic
response, inhibition of TGF-B signaling, viral-mediated overexpression of SMAD7[58] — a natural TGF- signaling
inhibitor, proved to suppress the inhibitory action of TGF-B on cell proliferation, which was mediated by
inhibition of SMAD2 phosphorylation and downregulation of p27Kip1.[59] SMAD7 therapy is being currently
considered useful for prevention and treatment of fibrogenic disorders in the corneal endothelium.[57]
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Clinical scenarios that require corneal endothelial cell migration

Clinical studies on endothelial healing are usually restricted to observations of cases with ocular chemical
burn,[60,61] or after replacement of the abnormal corneal endothelium with healthy donor tissue.[62,63] These
cases reported corneal recovery either through proliferation of endothelial progenitors from specific regions of
the eye (progenitor-enriched niche adjacent to the peripheral endothelium and named inner transition zone
(T2))[64] or combined migration of both donor and remaining recipient endothelial cells. However, the wound
healing process of corneal endothelium gives rise to many unanswered questions. For instance, endothelial cell
migration insights after Quarter-DMEK surgery (that is, a modified DMEK-technique in which a full-sized DMEK
graft is divided in quarters to treat 4 eyes),[8—10] did not succeed in confirming the presence of endothelium
progenitors residing in the area close to the limbus. All operated eyes cleared centrally, while the peripheral
bare stroma showed persistent edema.[8] The lack of cell migration from that specific region was attributed to
the arrangement of collagen fibrillary bands in the graft periphery acting as a barrier for cell migration[6] but
could also be caused by the removal of (progenitor) cells during Quarter-DMEK graft preparation. Typical, a
DMEK graft diameter of 8-8.5 mm, that is prepared using the no-touch peeling technique, has low chances to
show endothelial damage because trephination is performed outside the touched area during
preparation.[66,67] However, Quarter-DMEK graft preparation requires manual removal of trabecular
meshwork[9] and this technical step may be likely to deteriorate the quality of the peripheral endothelium.

The clinical results of Quarter-DMEK eyes showed a different corneal clearance pattern with clearing primarily
occurring adjacent to the radial cut graft edges but not along the ‘limbal’ round edge of the Quarter-DMEK grafts
and in the adjacent bare stromal areas.[8,10] This observation was mainly attributed to an asymmetric
endothelial cell migration over different anatomical corneal areas. To better understand the heterogenous cell
migration behavior, with migration almost entirely absent in the far periphery of the endothelium, we
performed in vitro studies to determine how Quarter-DMEK grafts may be positioned best onto the posterior
recipient stroma in order to create a more homogeneous corneal clearance pattern (Chapter 4).The main
experimental challenge was to keep a tissue, inherently inclined to curl, to stay flat in a fixed position on a
surface in fluid. While Quarter-DMEK grafts were sandwiched between two glass coverslips spatially separated
by a suture wire, the assembly was transferred to a culture plate and cell migration documented over 6 days.[68]
Although the experimental set up was rather restrictive for nutrient diffusion, endothelial cells migrated from
the radial cut edges but failed from the limbal round edge of the Quarter-DMEK grafts. This finding was mainly
attributed to Descemet membrane architecture that organizes the cells in small radial rows induced by the
furrow-like distribution of the underlying collagen fibers.[65] Also, it was suggested that endothelial cells
undergo, throughout life, a continuous slow centripetal migration from deeper niches toward the center and
lose their progenitor phenotype in response to contact with aqueous humor, the presence of TGF-B, and by cell
contact inhibition as soon as they form a monolayer.[65] Hence, endothelial cells in the periphery will unlikely
migrate outside from the graft area but might still possess residual proliferative capacity.[69,70]

Three-dimensional in vitro cell culture model: concept and its applications
Concept description

Given the success to reproduce a clinical observation using an in vitro system and research grade donor tissue,
we decided to improve the culture technique in order to gather more insight regarding the movement of corneal
endothelial cells. But to achieve more reproducible results and reduce the technical burden of the experiments,
further optimization of the explant culture system was required. Therefore, we developed a 3D culture
technique for explant tissue by using a temperature-reversible hydrogel system which was biocompatible, non-
toxic, 100% synthetic, pathogen-free and highly transparent for cell observation (Chapter 5). Also, the
temperature-dependent dynamic viscosity is an important characteristic that allows the gel to swell, become
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soft and flexible upon warming and liquefy upon cooling. This property is very useful to develop methods to
harvest cultured cells for specifically planned procedures[71,72] or develop techniques to preserve viable cells
within the gel,[73] with no need for an enzymatic treatment.[74] In this study, we expanded the scope of the
gel, from an effective culture matrix that provides mechanical support while directing cell adhesion to a
structure that adds weight when placed over the top of the biological sample without deteriorating its structure
and functionality. In our first in vitro cell migration study with Quarter-DMEK grafts sandwiched between two
glass slides cell migration could be studied for about 7 days before cells died due to the insufficient supply of
nutrients (Chapter 4).[68] The new adapted 3D explant culture protocol improved cell viability and collective
cell migration continued far longer (>3 weeks).[75] Also, the gel’s thermo-reversibility allowed the removal of
liquefied gel and enabled the detection of biomolecular markers in the tissue and migrated cell layer which was
not possible with the previous experimental set-up.

Study the capacity to induce CEC mitosis in the peripheral corneal endothelium, via the controlled disruption
of contact inhibition

Given the advantages of the new 3D culture method to enhance the viability and migration capacity of cells
from explant tissue, we continued with testing the effect of different types of peripheral Quarter-DMEK graft
modifications on endothelial cell migration (Chapter 6). The objective of the study was to further optimize the
Quarter-DMEK preparation in order to accelerate corneal clearance in patients along the round edge of the
graft. Quarter-DMEK grafts with intact and viable endothelial cells were embedded in a cooled biocompatible,
temperature-reversible polymer matrix and cultured over two weeks in a humidified atmosphere.[76] The
peripheral edge of Quarter-DMEK grafts was physically modified by either introducing radial cuts into the far
peripheral area or by removing parts of the far periphery with a trephine. Immunohistochemistry analysis
performed after the two-week culture on grafts retrieved from the polymer matrix, demonstrated the presence
of tightly packed and viable cells that showed high migratory ability at the leading edge of the monolayers
formed from the radial cut graft edges.

Next to better understanding the molecular pathways involved in endothelial migration (Chapter 3), current
research also focuses on understanding the structure-function relationships in the adhesive structures of an
endothelial monolayer that enable the cell to exert traction on its environment.[77,78] Cells spreading is a
process largely determined by two interdependent and interactive systems: the integrin-based apparatus for
substrate adhesion and the actin cytoskeleton characterized by distinct arrangements of actin filaments.[79-81]
Integrins and actin are coupled through a physical linkage, which provides traction for migration. In collective
cell migration cells carry out specialized functions according to their position within the group. Front-rear
polarization is an example in which one subset of leader cells at the front guides a larger group of follower cells
at the rear.[82] Leader cells typically exhibit a mesenchymal migration phenotype and function by degrading
and remodeling the ECM to create channels for the whole cell group to advance cohesively.[83,84] By contrast,
followers retain endothelial features such as apical-basolateral polarity and tight junctions and express relatively
low levels of guidance receptors. Importantly, cells are not dragged or pushed by neighbors, but actively sense
and respond to stresses imposed on them.

Endothelial cell migration from the limbal graft edge, however, was not triggered by increasing cell exposure to
free space through surgical modifications of the far periphery. Lack of migration from this area was also not due
to an absence of viable cells, since immunolocalization showed cells with expression of structural (zonula
occludens-1 (ZO-1) and vimentin) and functional markers (sodium/potassium pump (Na*/K* —ATPase)). At first
instance, the furrowed collagen microstructure of the peripheral cornea[65] might have acted as a barrier,
thereby preventing migration. At the same time, other stimulus-specific gene expression responses might be
required in order to prompt these cells to move. It is possible that important factors responsible for regulating
cell migration such as cell-matrix adhesion molecules (e.g., integrins, selectins, cadherins), the Rho family of
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small GTPases, and proteases (matrix-metallo proteases (MMPs)), are less expressed in the peripheral cells.
When functional integrins recognize ECM ligands (fibronectin, laminin) to form focal adhesion,[85] signaling
proteins are recruited to focal adhesion to regulate their assembly and disassembly.[86] Rho family of small
GTPases[87] have been reported as key regulators of focal adhesion dynamics by dictating contact association,
maturation, and turn over. The disassembly process through which cell adhesions are resealed could be
mediated by ECM degradation by MMPs[88,89] or cellular contractile machinery ,i.e., Rho and myosin I, that
cause cell rear detachment.[90,91] Taken together, cell migration framework outlines a complex map of
processes, with multiple cross-talks between members of different families that influence the cell movement
through mutually antagonistic pathways.[92]

Study the regenerative potential of the peripheral corneal endothelium

The failure of far peripheral EC to migrate, in spite of limbal area modifications, still limits the clinical application
of Quarter-DMEK. Understanding the nature of these peripheral endothelial cells, how they differ from the
central cells, and how to encourage them to migrate would greatly improve the pool of donor tissue available
for patients with an immediate need of a transplant.

After having explored the controlled mechanical perturbation of the peripheral endothelium as a possible
promoter of collective cell migration, we performed an in vitro study to evaluate the potential of ROCK-inhibitor
to stimulate peripheral endothelial cell migration. We first adapted the explant tissue shape from a pizza-pie
(Quarter-DMEK) to an open-ring (6.5 mm punched out endothelium with TM still attached) to create a better
system model for mimicking in vitro the in vivo effect of ROCK-inhibitor on cell migration outcomes after placing
a pie-shaped Quarter-DMEK graft in a circular descemetorhexis area or after DSO (Chapter 7). The curved outer
graft rims were mounted flat on a substrate, a central prerequisite for observing cell motility, and were cultured
in a 3D thermo-reversible hydrogel matrix for over a month. This enabled the assessment whether continuous
ROCK-inhibition creates long-term alteration in the migration characteristics of corneal endothelial cells. Our
results, described in Chapter 7, showed that all cultured rims remained viable and displayed either single regions
or collective areas of cell migration, regardless of the presence or absence of a ROCK-inhibitor. Rock-inhibitor,
on the other hand, seemed to enhance the morphological stability of the migrated cells. Interestingly, late-onset
cell migration from an area close to the limbus was observed. These late-onset cells grew fast into a contact
inhibited monolayer displaying the typical hexagonal cell morphology, first adopted a fibroblast-like morphology
before acquiring a cell phenotype with a regular morphology and appeared less differentiated compared to
other areas of migration. This late-onset cell population not only showed high proliferative capacity but also
emerged from outer rim grafts cultured without dysregulating the Rho-ROCK pathway. While it did not alter the
cell outgrowth from the outer graft rims, the presence of ROCK-inhibitor did appear beneficial for maintaining
the cell shape and cell-cell adhesion contacts during collective migration. The ability of ROCK-inhibitor to
promote corneal endothelial wound healing by enhancing endothelial remodeling, adhesion and cell migration
has been reported previously.[92]

The broad range of cell migration phenotypes, from non-invasive motility to single-cell mesenchymal style to
collective motility, differed in this study compared to previous migration studies of Quarter-DMEK grafts
(Chapter 6),[76]. The main distinctions in the experimental design were presence of TM that remained adhered
to endothelium and cell motility study-period that was considerably longer than two weeks. Thus, it is possible
that a particular cell type localized at the insert region of the TM required long-term culture before displaying
the characteristics of undifferentiated cells. When cell viability was evaluated on outer graft rims with the late-
onset cell population, the intensity of Calcein-AM signal varied over the sample wherein the lowest signal
intensity corresponded to the cell population that had emerged from the far periphery of the endothelium. We
suspect that this late-onset but fast growing cell population has a low intracellular esterase activity that does
not signal damaged membranes but rather low-level expression of esterase-specific genes that serves as a
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reliable indicator of undifferentiated cells.[93] Similar to our explant culture, Zhang et al.[94] demonstrated that
cells proliferated from peripheral corneal areas with similar morphological characteristics during cell growth,
timing, and end cell morphology. Furthermore, by using quantitative polymerase chain reaction (g-PCR), the
cultured cells in their study were initially found to express increased levels of stem cell genes and minimal levels
of pluripotency but these gene expression levels were reversed later during culture. The conclusion was that
cells residing in the Schwalbe's ring region, a transition area between the peripheral corneal endothelium and
the anterior non-filtering portion of the TM (collectively called the 'transition zone' [TZ]) displayed
characteristics of adult stem cells.

Generally, these cells seem to form a distinct cell population in the transition area displaying distinct
ultrastructural features and with a whorled-like pattern oriented circumferentially at the corneal periphery and
deep to the corneal endothelium lining of the anterior chamber.[95] Although they were proposed to have
neuroregulatory function in the anterior segment [96] they were also found responsible for the formation of an
aberrant endothelial membrane covering the anterior uveal meshwork in some patients treated for glaucoma
with argon laser trabeculoplasty (ALT).[97,98] In addition, increased cell density in the peripheral areas of the
cornea compared to the central area (average range 17%—23%)[99] also suggests that stem-like cells may be
present in the peripheral transition region to provide differentiated CEC. Also, it has been documented in the
literature that under some circumstances mitosis occurs in the endothelium of the adult human
cornea[100,101] and percentage of replication-competent cells is higher in the peripheral CEC than those in the
central cornea, which was independent of donor age.[102] These findings suggest that peripheral CEC possess
regenerative capacity and may be able to supply new cells for the corneal endothelium. Although molecular
marker studies for the stem cell niche at the transition zone provide supportive data,[103,104] there has not
been a stem cell signature established so far.[105] Also, attempts to isolate and propagate undifferentiated
progenitor cells using a sphere culture protocol have proved to be more effective in isolating young precursor
cells[106] from the peripheral corneal endothelium than the central region.[107-110] Therefore, it still remains
to be determined if the Schwalbe's cells, TZ cells, and precursors are the same cell type, the extent to which
they retain regenerative potential, and how cellular proliferation could be unlocked in vivo to repopulate
corneal endothelium in age and disease.

Improving surgical technique by integrating in vitro cell culture observations

While trying to understand and promote EC migration from the peripheral cornea, the low postoperative ECD
after Quarter-DMEK helped us to focus on continuous technique improvement. In an effort to address the
significant ECD decrease after Quarter-DMEK,[8,10] which was thought to be caused by the shape mismatch
between a round descemetorhexis and a triangular graft, a new surgical option was described, where small
diameter DMEK grafts were prepared to match a small descemetorhexis and validated through a series of in
vitro experimental conditions (Chapter 8). The main findings of this study were: (1) three circular mini-DMEK
grafts with a diameter of 4 mm can be successfully prepared from one donor cornea, (2) the surgical procedure
could be validated in vitro, and (3) small-diameter grafts embedded into a thermo-responsive hydrogel matrix
showed uniform cell migration around the entire circular graft edge with cells displaying typical hexagonal close-
packed morphology.[111] Similar to Quarter-DMEK, transplantation of a small-diameter graft offers the
theoretical benefit of reduced donor antigen load and may allow using donor corneas with multiple incisional
scars following cataract extraction. Initially, grafts as small as the 4 mm diameter (mini-DMEK) were reported
to treat acute corneal hydrops in keratoconus (i.e., rupture and detachment of the stiff DM due to progressing
ectasia of the corneal stroma).[112,113] Not only the shape and size of the DMEK grafts used to close the tear
in the DM were not standardized (5 mm round DMEK graft or razor blade cut graft with a width of 3 mm and a
length adjusted to the length of the tear in the recipients’ DM) but also the orientation of the graft was not
important for the surgery, presumably because the healthy host endothelium would easily repopulate the DM
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even if the graft was accidentally inverted.[113] In a more recent study, Handel et al.[114] utilized mini-DMEK
grafts to treat chronic focal corneal endothelial decompensation caused by tears in Descemet membrane after
intraocular surgeries or corneal edema in the area of Haab striae in buphthalmus. Therefore, corneas were
healthy and no disease except for the focal DM defect was present. The mini-DMEK grafts were trimmed from
remaining DM to a width and a length equal to the length of the tear in the recipient’s DM, while the central
DM was used for patients with FECD. Although cornea deswelling was observed in all cases, the role of
endothelial cells in small DM defects remained unclear.

It should also be noted that the small-diameter DMEK grafts have the potential to increase the use of one donor
cornea to benefit three recipients only for treating mild FECD with guttae confined to the 4 mm central area. To
avoid the ‘no-touch’ handling-related challenges of such small DMEK grafts, two alternative methods have been
clinically tested so far, namely DSO and transplantation of acellular DM (i.e., Descemet membrane
transplantation, DMT).[115-120] DSO represents a donor-independent strategy for central FECD, an approach
that has already extensively been discussed in Chapter 4, while DMT represents a strategy for using non-clinical
grade DMEK tissue. Although both techniques have the potential to treat FECD without the need for allogenic
cell transplantation and fear of graft rejection, DMT provides an appropriate substrate that supports host
endothelial cell migration with reduced risk for cells to enter endothelial-to-mesenchymal transition.[53] In
addition, it seals the stroma to avoid keratocyte activation close to the wound space by the aqueous TGF-$3,[121]
that may lead to fibrosis and increased risk for retrocorneal membrane formation.[122,123] However, both DSO
and DMT report a long recovery time with complete anatomical cornea restoration and visual rehabilitation not
earlier than 3 months postoperatively.

Small diameter DMEK grafts showed great surgical feasibility with improved graft characteristics (i.e., ECD, graft
viability, uniform cell migration capacity) and by having a matching shape to the circular descemetorhexis,
clinical recovery could be similar to conventional DMEK. However, results of clinical tests would provide greater
clarity about the efficiency of small diameter-DMEK grafts for treatment of mild FECD.

FUTURE PERSPECTIVES

DMEK is nowadays the gold standard for the treatment of corneal endothelial dysfunction. Since its
introduction, DMEK has proved superior to PK and other keratoplasty techniques in terms of faster visual
recovery, lower rejection rates, better refractive outcomes, and increased structural integrity.[124—-128]
Therefore, the number of DMEK procedures performed worldwide has increased, particularly, in patients with
Fuchs endothelial corneal dystrophy (FECD).[129,130]

By only replacing the diseased tissue, DMEK embodies conceptual simplicity and surgical sophistication.
Nonetheless, the main problem with endothelial keratoplasty is the chronic loss of endothelial cell density (ECD)
over time which is similar to PK.[124,131,132] The effect of several donor- and patient-related parameters on
endothelial cell loss has been evaluated in several studies in the literature, but with no consistent
outcome.[15,133-140] However, the intraocular handling of the 15-20 um thick membrane and the
preoperative manual graft preparation represent technical challenges that may affect the final outcome.

We performed studies to better understand the postoperative ECD decline, as described in this thesis. One
aspect regards the overestimation of graft viability in the eye bank,[30] which in turn results in an unrealistic
high drop in ECD in the early postoperative phase after DMEK.[20] Grafts seem to develop pronounced
endothelial cell damage even after an unremarkable preparation process, However, performing DMEK surgery
using tissue with suboptimal endothelium quality could increase the risk of graft detachment and early graft
failure.[14] While candidate fluorescent vital dyes can visualize life and apoptotic cells, regulatory and safety
concerns as well as economic considerations may prevent eye banks from implementing such a step in their
current protocol. One short-term solution could be to check the tissue quality just before releasing the graft for
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transplantation. Although implementing this step might lead to an increase in the discard rate of already scarce
tissue, it may result in a lower re-transplantation rate. An alternative strategy could be to improve the quality
of donated corneas, by boosting the storage media with pharmacological modulators able to promote corneal
endothelial regeneration and by maintaining a low level of oxidative stress. Furthermore, storing the cornea in
a bioreactor, and not just free floating in a sealed bottle, could recreate the pressure gradient equivalent to
intraocular pressure associated with a continuous renewal of storage medium, reduce stromal swelling, and
therefore improve EC viability.[141,142] However, further research is needed to evaluate the safety of such
storage methods and the therapeutical relevance of pharmaceutical agents.

In an effort to overcome tissue shortage, the use of Quarter-DMEK could potentially quadruple the pool of
donor tissue. However, the technique may benefit from some further modification to improve ECD outcomes.
In vitro studies on the endothelial cell migration included in this thesis showed that the round peripheral edge
of the Quarte-DMEK graft will constitute a physical barrier for cell migration[68,76] unless progenitor-like cells,
recently discovered in an area close to the limbus,[64] could be unlocked to induce sufficient corneal
deturgescence. Also, by adapting the graft preparation protocol to eliminate the round peripheral edge of the
Quarter-DMEK, small diameter-DMEK may provide a fast and uniform corneal clearance and become a viable
clinical option to treat central endothelial disease.[111]

The limited numbers of high-quality corneal donors, and the surgical complexity of DMEK has promoted
significant research interest in developing alternative techniques that either encourage a more efficient use of
donor tissue or completely eliminate the need for implanting donor tissue.

To date, no better therapeutic alternatives are available for the treatment of diseased endothelium than corneal
transplantation. However, current tissue engineering approaches for corneal replacement represent a
promising avenue for clinical applications. To overcome cornea donor shortage, researchers have adopted two
basic tissue-engineering approaches: a “cell-based” strategy to allow the cells to create their own extracellular
matrix, and “scaffold-based” strategies to provide strong and biocompatible matrices upon which to grow
cells.[143-146] Regardless of strategy, in vitro expansion or the de novo generation of corneal endothelial cells
(CEC) from pluripotent stem cells or other cell sources is required.[147,148] The main challenge for the in vitro
proliferation of terminally differentiated cells is to preserve their phenotype by avoiding endothelial-to-
mesenchymal transition (EMT), which can cause CEC to lose their normal cell morphology and induce cell
fibrosis. The alternative of differentiating CEC from pluripotent stem cells or other cell sources such as bone
marrow-derived endothelial precursors, neural crest cells, corneal stromal stem cells, skin-derived precursors,
or mesenchymal stem cells requires suitable culture protocols which have to comply with regulatory directives
to guarantee that the final cell source resembles CEC.[148-154] While good manufacturing practice directives
may differ depending on the country or region in which they are defined, there is an urgent need for
standardization of endpoint parameters that generated CEC should fulfil. Therefore, the list of quality criteria
should be reviewed for: (i) morphology assessment by checking cellular hexagonality upon reaching confluence
in culture, (ii) genotype and phenotype by examining structural and functional markers, (iii) karyotype
conservation by checking the integrity of the DNA to demonstrate the lack of gross chromosomal aberration,
and (iv) functionality checked in vitro by tools that measure ion permeability across a monolayer of cells, ex vivo
using corneas in a setting that mimics physiological conditions and allows the measurement of corneal thickness
and further correlate to cell functionality, or in vivo using animal models of corneal edema.[155]

After facing all challenges with CEC culture in terms of cellular profile, proliferative capacity, and downstream
analysis, cells must be delivered alive and with sufficient potential to adhere to the posterior part of the cornea.
The “cell-based” strategy proposes the delivery of CEC in a simple and minimal invasive manner via injection
into the anterior chamber of the eye.[155] After the procedure, placing the subject in a prone position for 3
hours allows gravity to increase the attachment of CEC to the posterior part of the cornea. The proof-of-concept
clinical study by Kinoshita and associates demonstrated that corneal edema could be reversed by injecting about
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1x10° cultured human CEC supplemented with ROCK inhibitor Y-27632 into the anterior chamber after
mechanical scrapping of the diseased endothelium; corneal clarity was maintained at least 5 years
postoperatively.[54,55] Additionally, the latest technique refinement suggests that injection therapy using
highly purified mature cultured human CEC for corneal endothelial failure is safer, provides rapid recovery of
corneal thickness, better ECD, and a low cell attrition rate over 3 years postsurgery.[156] However, larger,
prospective, randomised controlled trials are required to ensure the long term efficacy and safety.

The main challenge for the “scaffold-based” strategy is to obtain a monolayer of CEC on a biocompatible carrier
to produce bioengineered corneal endothelial grafts.[145] The use of a carrier that supports cell replication is
an attractive approach because it has the added advantage of delivering a contact-inhibited and functional cell
monolayer to the correct place and in a controlled manner. In addition, fewer cells are needed to populate the
carrier compared to cell injection, thereby increasing the number of patients that could benefit. Assuming a
surface area of 57 mm? (8.5 mm circular carrier) and a final ECD of 2300 cells/mm? (usual threshold value set up
by eye banks), an endothelial graft should contain about 1.3 x 10° CEC. Based on a simple calculation, the
expanded CECs used to treat 11 patients by cell injection could hypothetically populate 84 carriers and treat
patients by a delivery strategy similar to DMEK or DSEK. However, an ideal cell carrier should mimic key
architectural and functional features of the DM and therefore be dense, thick enough to provide sufficient
mechanical strength, relatively transparent, semi-permeable to aqueous humour, flexible enough to mould to
the curvature of the cornea, biocompatible, promote cell adhesion and phenotype, and maybe biodegradable
to enables cells to produce their own DM while simultaneously degrading the surrounding scaffold. Many in
vitro studies have reported promising research results when using either natural tissues such as decellulared
biological membranes (e.g., amniotic membrane, denuded DM or stroma of both human and animal origin,
human anterior lens capsule)[157-167] or polymeric materials (natural and synthetic).[161,168-192]
Subsequent in vivo testing of tissue-engineered corneal endothelial cell-carrier sheets in animal models has,
however, not proven any of the constructs suitable to progress into clinical practise.[160,193-195]

The option to eliminate the transplant altogether and allow a person’s own endothelial cells to redistribute was
introduced by Descemet stripping only (DSO) for the treatment of early FECD. In a primary analysis of DSO, the
removal of a 6mm diameter area of the diseased DM led to an incomplete recovery.[116,196] Better clearance
rates were reported where a smaller 4-5mm descemetorhexis was employed in selected cases of relatively
young patients with central guttae and an adequate peripheral endothelial reserve.[116,197] Despite these
limitations, DSO benefits from 0% rejection rate (no risk of immunologic graft rejection) and no need to use long
term topical corticosteroids to prevent graft rejection thereby reducing the side effect of intraocular pressure
elevation. However, DSO is not yet a replacement for DMEK for two primary reasons: clearing a smaller area
may still lead to suboptimal vision, and corneal edema may persist for months hindering visual recovery,
rendering its outcome unpredictable.[119] To improve its success, this technique may require the use of
pharmacological modulators such as Rho-associated protein kinase (ROCK) inhibitors.[118] Although the
biological action of ROCK-inhibitors is completely understood, they have been described to significantly speed
up the visual recovery and induce higher central endothelial cell counts in a restored endothelium and with an
improved cell architecture.[52] Therefore, DSO may be a suitable first-line surgical treatment option prior to
DMEK or small diameter-DMEK, for those willing to try if stripping alone will resolve their vision problems.
However, larger trials are still required to assess the effect of DSO in conjunction with pharmacological drugs
on longer-term clinical efficacy and drug safety.

A potential hybrid technique between DSO and conventional, circular DMEK employs the use of endothelial
graft substitutes comprising of tissue-derived or synthetic matrices.[120,198,199] Transplantation of an
acellular DM into a patient has recently been reported as part of a larger clinical trial in Singapore [identification
number NCT03275896]. The patient was transplanted with a 4 mm decellularized membrane and showed a
four-line improvement in acuity 6 month after transplant, with near to normal restauration of central corneal
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thickness and ECD values comparable to DSO.[120] Alternatively, a synthetic graft substitute (EndoArt) has been
implanted to reverse corneal enema and promote sight recovery.[198] Attached to the back of the cornea,
EndoArt should prevent the transfer of fluids into the cornea and inhibit the fluid accumulation leading to
edema. A summary of the first results for two patients as part of a multi-center, prospective feasibility clinical
study [identification number NCT03069521] showed that patients had a reduction of corneal edema with
transparency recovery after EndoArt implantation. Limitations of implanting this synthetic construct include: (i)
regular repositioning by rebubbling until complete adherence to the stromal bed, (ii) unclear timespan over
which the cornea will remain transparent and properly hydrated, (iii) long-term effect of restricting diffusion of
vitamin and essential nutrients from the aqueous humour to the cornea and (iv) inability of corneal endothelial
cells to migrate and populate the artificial layer. Overall, natural-derived or engineered graft substitutes will still
have to be evaluated in large clinical trials with long-term follow-up results to further determine their
implementation success and also identify the right target populations.

Another strategy to increase corneal endothelial graft availability is to treat the genetic disorder by replacing
the need for a corneal transplant. The current strategies able to correct the genetic alteration or avoid their
associated effects are gene augmentation therapy (GAT), antisense oligonucleotide-based modulation (AON),
and clustered regularly interspaced short palindromic repeats (CRISPR/Cas9)-based modulation.[200-205] It
has also been reported that FED pathophysiology manifests through a combination of various genetic and non-
heritable factors, such as channel dysfunction (e.g., solute carrier family 4 member 11 — SLC4A11), abnormal
extracellular matrix deposition (e.g., collagen type VIII alpha 2 chain — COL8A2), RNA toxicity, oxidative stress
(e.g., nuclear factor, erythroid 2 like 2 transcription factor — NRF2), and apoptosis (e.g., zinc finger e-box binding
homeobox 1 — ZEB1).[206,207] The most common genetic alteration in FECD is a microsatellite region
comprising CTG trinucleotide repeats (TNRs) in the fourth intron of the TCF4 gene to be abnormally expanded
and segregated. While the genetic mechanism responsible for the effect of this trinucleotide expansion on the
TCF4 gene is unclear, it will contribute to cellular dysfunction by triggering RNA mis-splicing. The genetic
modulation of TCF4 expression is done either by transferring a functioning copy of this defective gene aimed to
correct the disease, by introducing antisense oligonucleotides such as small interference RNA (siRNA) or micro-
RNA (miRNA) that could diminish the toxic effects associated with the defective gene, or by eliminating the CTG
expansion in order to revert the mutation causing FECD.[208-214] Further research is also needed to explore
the immune tolerance towards the transgene products following repeated administration in the anterior eye
chamber, find the most efficient and cost-effective delivery methods, and identity the off-target effects.

Over the past several years, the use of pharmaceutical agents for the treatment of corneal endothelial diseases
has been explored.[35] The working principle relies on promoting cell survival, proliferation, and migration with
a minimally invasive approach of intracameral or topical drug delivery. ROCK-inhibitors have been the most
studied drugs with great potential to trigger CEC repair in vivo in humans when administrated topically as an
adjuvant to DSO.[51,52] Worldwide clinical series report on ROCK-inhibitors success to reverse corneal edema
after surgical removal of diseased CEC, restore corneal anatomy after partially detached DM in BK eyes after
cataract surgery, and regenerate the corneal endothelium through a presumed increase in cell
proliferation.[118,215—-217] Also, promising research has been reported for other pharmaceutical drugs such as
epidermal growth factor, platelet-derived growth factor, or fibroblast growth factors.[218-220] However, they
should be administered with caution as they show a dual mechanism of action, i.e., regeneration potential with
the risk of causing an undesired EMT. Attention has also been directed to reduce oxidative stress by upregulating
transcription factors to promote the expression of antioxidative stress proteins thereby decreasing CEC
apoptosis.[221-226] Also, profiling new drug candidates require a systematic examination of the functional
effect in a variety of in vitro and in vivo assays. Furthermore, patient assignment in a clinical trial requires
extensive knowledge on the diseases to be treated. In order to conclude any beneficial effects of the drug
candidates mentioned above, it is mandatory to perform large, randomized control trials to generate higher
level evidence.
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Conclusive remarks

Despite significant progress towards therapies to promote corneal endothelial regeneration, there is still a long
way before such therapies are approved by regulatory bodies and become routine clinical practice. To date,
replacing the diseased endothelium by DMEK is still the most efficient treatment option for endothelial
dysfunction, but the number of procedures is still restricted by a worldwide shortage of suitable and available
human donors, especially in resource-poor parts of the world. Moreover, considering the COVID-19 pandemic,
tissue exclusion criteria have become even more stringent, limiting considerably the pool of available
donors.[227] It is essential to make the added value of the donation process clear to people, to have an incentive
to register for donation because they are more likely to gain from the system than to contribute to it,[228-230]
while in the meantime new treatment options are being developed and translated into clinical practice.
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