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PREFACE 
The human eye has millions of functional cells, and is considered the second most complex organ in the body 
after the brain. The eyes dominate emotional communication, governing interactions between the brain and 
the heart and capturing a lifetime of an individual’s views. Although, we can interpret emotions (e.g., anger, 
disgust, fear, happy, sad, surprise, and to a lesser extent contempt, embarrassment, interest, pain, and shame) 
by analyzing the expression of the face and eyes, our view is modified by social learning and culture. The fine 
work of the renowned French photographer Rehahn illustrates ethnic culture, landscapes and portraits with 
emotions. His most praised works include a close-up shot of a 103-year-old Rengao woman who reveals - 
through her warm and sparkling eyes - satisfaction and happiness, attesting to a rich life story. Moreover, the 
eyes can offer a unique glimpse into the body’s health and by regular monitoring, an eye doctor may be able to 
spot systemic medical conditions potentially leading to early diagnostic and treatments. The retinal blood flow 
and vessels can, for instance, signal a risk for stroke or high blood pressure, and a yellow sclera may be a sign of 
hepatitis.  

The eye is protected from germs, dust, harmful objects, and to some extent, from the damaging ultraviolet 
wavelengths in sunlight by the eyelids and the cornea. The cornea also acts as the eye’s outermost refractive 
surface focusing the light that will reach the brain as electrical signals which are then translated further into 
images. In order for a person to see well, all five main layers of the cornea must be free of any cloudy or opaque 
areas. The cornea can recover from minor injuries on its own, however, deep injuries will take longer to heal 
and might also cause pain, blurred vision, extreme sensitivity to light, and in some cases even corneal scarring. 
Also, corneal dystrophies can affect one or more parts of the cornea through accumulation of foreign material 
that will cause the cornea to lose its transparency, potentially leading to loss of vision. To restore vision in such 
cases, a cornea transplant (i.e., keratoplasty) is performed in which (a part of) the defective cornea is replaced 
with healthy corneal tissue from a deceased donor. In cases in which the inner most layer of the cornea (i.e., 
endothelium) is affected, it is mostly restored by performing a Descemet Membrane Endothelial Keratoplasty 
(DMEK) procedure. However, the global shortage of available corneal donor grafts and a rise in the ageing 
population cause a shortness in potential  transplants. Thus, a considerable clinical interest exists for developing 
tissue-engineered constructs and new cell therapies using cultivated cells.  

More than 9 years have passed since I became fascinated by this clear window of the eye. The story begins in 
Rotterdam where I was doing a six-month internship at the Netherlands Institute for Innovative Ocular Surgery 
(NIIOS) center located in the vicinity of the Erasmus Bridge. Before completing a 2-year program  and being 
awarded the degree Professional Doctorate in engineering (PDEng) at the Delft University of Technology, I was 
referred to set up a protocol for culturing a cell type with a rare nesting behavior. But applying these results 
into clinical practice is another challenge and if you fast-forward the time, you will still find me trying to explain 
paradigms that show-up while digging for answers. For a successful implementation of regenerative therapies 
for the corneal endothelium, we need  to understand the dynamic cellular changes that occur in vivo in both 
normal and diseased tissue. Only after this, can effective solutions be proposed to reduce the global shortage 
of donor corneas. 

In this thesis, I will focus on the in vivo and in vitro behavior of corneal endothelial cells before and after 
endothelial keratoplasty. Regenerative strategies for the treatment of Fuchs endothelial corneal dystrophy, the 
most common corneal disorder requiring transplantation, will be tackled from a dual perspective, i.e., 
regeneration without allogeneic corneal endothelial cell transplantation and targeted activation of endogenous 
self-repair mechanisms. 
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GENERAL INTRODUCTION  
Posterior lamellar keratoplasty techniques have gained increasing acceptance over the past two decades to 
become the leading form of corneal transplantation. Initially described by Melles et al in 1998 , there have been 
multiple technical modifications, culminating in Descemet membrane endothelial keratoplasty (DMEK).[1,2] 
These technical refinements have allowed endothelial keratoplasty to gain not only widespread acceptance but 
to make it the treatment of choice for endothelial diseases.[3,4] The selective transplantation of the 
endothelium through a small incision allows for faster and more complete visual rehabilitation, with minimized 
interface haze and antigen load, less astigmatism and fewer suture-related complications.[5,6] Fuchs 
endothelial corneal dystrophy is the most common indication for corneal transplantation.[7,8] It is characterized 
by deterioration of endothelial cells, from the center towards the corneal periphery, and the development of 
characteristic basement membrane excrescences known as guttae. Interestingly, the diseased endothelial cells 
have demonstrated an increased migration speed compared to normal corneal endothelial cells, which may 
impact the healing response to surgical procedures under pathological conditions.[9] 

The research presented in this thesis focusses on in vivo and in vitro corneal endothelial cell migration from 
shape-adapted corneal grafts for the treatment of corneal endothelial disorders. A greater understanding of the 
cell migration mechanisms from phenotypically distinct regions of the endothelium may assist in selecting the 
optimal donor tissue and predicting in vivo cell behavior. Understanding cell migration in vivo has clinical 
implications for corneal transplantation, for instance when  pharmaceutical cell modulation may further 
improve the patient outcomes. In this introduction, we will discuss the corneal anatomy, the basic physiological 
function of the corneal endothelium, surgical approaches, and available treatment options for mitigating 
endothelial cell dysfunction.  

 

THE HUMAN EYE 
The eye consists of three basic structural layers, which enclose the optically clear aqueous humour, lens, and 
vitreous body. The outermost layer is a tough collagenous structure comprised of the cornea and the sclera. The 
middle layer is highly vascular and is known as the uvea. This layer contains the main blood supply to the eye 
and consists, from posterior to anterior, of the choroid, the ciliary body, and the iris. The innermost layer is the 
retina, which rests on the choroid and lines the inside of the posterior segment. The retina is one of the most 
metabolically active tissues in the body, receives most of its nourishment from the vessels within the choroid, 
and is responsible for the perception of images (Figure 1). To reach the retina, light must pass through and be 
refracted by the cornea which is responsible for two thirds of the refractive power of the eye.  

 

The Cornea 

The cornea is a transparent avascular tissue about 520 µm thick which acts as a primary barrier against infection 
and mechanical damage to the internal structure of the eye.[10] The role of the cornea in the refraction of light 
requires it to be both optically transparent and sufficiently curved to bend light rays with minimal light 
scattering. Normally, more than 90% of the incident light is transmitted through the cornea.[11] Maintaining 
corneal transparency is of prime importance for visual function. Since the cornea lacks blood vessels, the 
anterior surface receives nutrients via diffusion from the tear fluid, the periphery from scleral vessels while the 
posterior side is supplied by the aqueous humor. The cornea is also supplied by neurotrophins via the nerve 
fibers that innervate it. Its anatomic structure is relatively simple consisting of three cellular layers, namely the 
epithelium, the stroma and the endothelium which contain epithelial cells, keratocytes and endothelial cells, 
respectively. In addition, there are two important acellular interfaces: the Bowman layer between the 
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epithelium and the stroma, and the Descemet membrane (DM) between the stroma and endothelium 
(Figure 2). 

 

Figure 1| Anatomy of the eye – sagittal section.  

Source: https://basicmedicalkey.com/ophthalmic-drug-delivery/ 

 

 
Figure 2| The human cornea. (A) Photomicrograph of a cornea stained with hematoxylin-eosin (H&E) with emphasis on (B) 
epithelium – formed  by superficial squamous cells, wing cells and a single layer of inner columnar basal cells, Bowman 
layer – an acellular tough membrane situated between corneal epithelium and stroma, (C) stroma – the layer that gives 
the cornea strength and gives it its curved shape, (D) Descemet membrane – the innermost surface of the cornea that acts 
as a basement membrane for the inner endothelium – a monolayer of homogeneous, closely packed, hexagonal cells; 
original magnification: (A) 100 µm, (B-D) 400 µm. (E-G) confocal microscopy images of epithelial cells, stromal keratocytes 
and endothelial cells.  

1 
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The epithelium 

The epithelium is a five-to-seven layered cell sheet that serves a number of functions. It helps to keep the 
corneal surface optically smooth and provides a barrier to external biological agents and chemical damage.[12] 
It represents about 10% (~ 50 µm) of the total corneal thickness and it is constantly sloughed off and 
regenerated, which helps the eye to heal itself from mild trauma or abrasions. The epithelium consists of flat 
superficial differentiated cells, deeper winged cells (daughter cells of the basal layer which are pushed 
anteriorly), and an underlying monolayer of columnar basal cells. The differentiated squamous cells have 
surface microvilli and occupy the outer 1 – 3 cell layers of the epithelium (Figure 2, A, B, and E). The function of 
the microvilli is to increase the cell surface area allowing a close association with the tear film. The underlying 
basal cells have wing-like extensions, rarely undergo division and migrate superficially to differentiate into 
squamous cells. The innermost basal cell layer consists of a single layer of columnar cells with important 
functions including the generation of new wing cells and maintenance of the epithelial organization, and acting 
as a scaffold on which cells can migrate. The transparency of the normal epithelium is the result of the 
homogeneity of the refractive index of cells throughout this cellular layer.[13] When an excessive accumulation 
of fluid (edema) occurs, the epithelium loses its homogeneity and the corneal surface becomes irregular. Any 
surface irregularity can cause a reduction in vision along with symptoms of glare, photophobia, and halos around 
lights due to light scatter. 

 

The Bowman layer 

The Bowman layer forms the anterior boundary between the epithelium and the stroma and consists of 
randomly oriented collagen type I fibrils supported within a proteoglycan matrix. This interconnecting network 
of the anchoring fibrils in the anterior cornea confers considerable strength and resistance to trauma and helps 
the cornea to maintain its shape (Figure 2, A and B). However, once damaged, it cannot be regenerated.[14] 

 

The stroma 

The stroma is a structured lattice of collagens and proteoglycans deposited in sheets known as lamellae and 
maintained by specialized keratocytes (Figure 2, A, C, and F).[15] The keratocytes are scattered throughout the 
stroma and are linked to one another via dendritic processes.[16] Keratocytes are typically dormant in the 
quiescent stroma but can become active and then produce and turnover crystalline proteins to maintain corneal 
transparency.[17] The unique arrangement of evenly-spaced collagen fibrils provides structural strength, shape, 
stability, and transparency to the cornea.[18]  

 

The Descemet membrane 

The Descemet membrane (DM) is a thin acellular layer that acts as the basement membrane of the endothelial 
cells. It is continuously produced and deposited by the endothelial cells, resulting in a thickness increase 
throughout life at a rate of about 1 to 2 µm per decade reaching about 10 µm in older adults (Figure 2, A and 
D).[19,20] In adults, the DM consists of two ultrastructurally distinct layers: an anterior, highly organized banded 
layer of collagen lamellae and proteoglycans formed during gestation, and a posterior, more amorphous layer 
produced by the extracellular matrix deposition of the endothelial cells.[21] The gradual increase in thickness 
of the posterior layer suggests that either there is no degradation of its constituents or the rate of synthesis of 
constituents is higher than the degradation rate.[22] The wide-spaced collagen fibers found in the DM do not 
adhere strongly to the stroma, and so a surgical cleavage plane can be created allowing the DM to be peeled 
and dissected as a sheet.[23] 
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The endothelium 

The endothelium is a thin monolayer of hexagonal cells covering the posterior surface of DM, lining the inner 
surface of the cornea, and maintained by nutrients from the aqueous humor (Figure 2, A, D, and G). Despite 
their simple hexagonal appearance, endothelial cells are quite complex in function. Adjacent cells communicate 
through intracellular junctions[24–27] that mediate electrical and chemical coupling between neighboring cells, 
whereas the basal cell margins adjacent to DM are ruffled, with tightly-joined interdigitating foot processes, 
some of which appear to insert into neighboring cells.[28,29] The whole assembly allows the endothelium to 
function as a “leaky” barrier, forming resistance to the permeability of solutes and fluid through paracellular 
transport routes,[27,30] but allowing the passage of nutrients from the aqueous humor to feed the avascular 
cornea.[31] The corneal endothelium (CE) counteracts the osmotic tendency of the corneal stroma to swell by 
removing excess stromal fluid via the activity of proton pumps, which are located mainly on the basolateral side 
of the membrane.[32,33] The dynamic balance between the barrier and active pump of the endothelium is 
essential for maintaining the relatively dehydrated state of the stroma required for transparency (i.e., stromal 
deturgescence).[34] Once the endothelial monolayer is compromised, the relative balance between the leak 
rate and metabolic pump rate is lost.  

 

 
Figure 3| Slit-lamp photograph showing a transparent cornea (A, slit lamp image overview) optimally hydrated by a 
healthy endothelium (B, specular microscopy image showing an endothelium characterized by hexagonal cells with highly 
uniform polygonal morphology). Corneal endothelial decompensation (D, specular microscopy image showing empty 
spaces in the endothelial mosaic) leading to overhydration of the cornea (C, slit lamp image overview).   

 

Endothelial cell density (ECD) begins at about 5000-6000 cells/mm2 at birth, but as the cornea grows the cells 
spread out and the density declines to about 3500 cells/mm2 in the young adult. From the second to the eighth 
decade, the cell density further decreases to about 2600 cells/mm2 with an attrition rate of approximately 0.6% 
per year.[35–37] Human corneal endothelial cells (hCEC) are not thought to have a significant capacity for in 
vivo regeneration, thus making them unable to replace significant numbers of dead or damaged cells.[38] While 
the cells do not appear to have the capacity to proliferate, hCEC can respond to minor damage by stretching 
and centripetal migration into the injured area, to maintain proper structure and function.[26,35] The 
phenomenon of cell spreading can be associated with the variability in cell size (polymegathism) and cell shape 
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(pleomorphism) observed in older individuals. Given the importance of its function, damage to the endothelium 
is potentially more serious than that to the other corneal layers and can result in cell loss and loss of vision.[40] 
However, the age-associated decline of the CE does not usually affect the critical barrier and pump function.[41] 
In contrast, acute hCEC loss due to conditions such as endothelial dystrophies, chemical burn, or previous 
refractive or intraocular surgeries may lead to corneal decompensation.[42–48] When the hCEC density 
decreases below the critical threshold range of 500 to 1000 cells/mm2 the pump function may be compromised, 
and the cornea can become edematous and cloudy (Figure 3).[49] In such cases, corneal transplantation is 
currently the only effective option to improve vision and reduce pain. The gold standard treatment is to replace 
the ineffective endothelium selectively with healthy, functional donor CE through a corneal transplant. 

 

ADVANCES IN ENDOTHELIUM TRANSPLANTATION AND REGENERATION   
Cornea transplantation is an operation used to remove all or only the damaged part of the cornea to replace it 
with healthy cornea tissue (the transplant) of a suitable deceased donor. Fuchs endothelial corneal dystrophy 
(FECD) is a common form of corneal endothelial dystrophy and the most common indication for cornea 
transplantation worldwide.[50] FECD dystrophy progresses slowly and is characterized by a progressive loss of 
central corneal endothelial cells, thickening of DM and deposition of basement membrane excrescences in the 
form of guttae (Figure 3, C and D).[51]  

Before cornea transplantation can be performed, the donor tissue should be harvested, disinfected, assessed, 
prepared and stored, a highly regulated process most often performed by an eye bank. Since the first successful 
transplantation in 1905 by Zirm,[52] for many years, the procedure of choice to manage corneal disorders was 
penetrating keratoplasty (PK), i.e., a full-thickness graft in which all corneal layers are replaced (Figure 4, top). 
Although improvements in the visual acuity were achieved with PK, frequent complications were reported: 
(i) denervation, (ii) suture-related complications such as astigmatism, infection and increased risk of immune-
mediated graft rejection, (ii) and a significant increase in the prevalence of glaucoma following 
transplantation.[53] Moreover, since visual acuity outcomes after PK were not predictable, the procedure was 
usually only performed after the patient’s visual acuity level had dropped to levels below 0.3.[54,55] These 
drawbacks of PK led to the development of posterior lamellar keratoplasty techniques to replace PK with less 
invasive surgical interventions for the treatment of endothelium-related corneal diseases.[56–59] 

 

 

Figure 4| Fundamental developments in endothelial keratoplasty. Cartoon images of the PK, DS(A)EK, and DMEK 
principles (Left) and the post operative view of the cornea after the three procedures (Scheimpflug image – Pentacam), 
respectively (Right).[60-62]  
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One of the keystones of modern endothelial keratoplasty (EK) was laid by Melles et al.[63] in 1998, where he 
described the posterior lamellar keratoplasty (PLK), an initially mid-stromal approach to replace the posterior 
cornea. Since the removal of the diseased tissue for PLK was technically still challenging, in 2002, Melles 
introduced the ‘descemetorhexis’  procedure, during which the diseased host Descemet membrane with its 
endothelium is selectively removed (‘stripping’).[64] This enabled the introduction of Descemet stripping 
(automated) endothelial keratoplasty (DS(A)EK), a procedure that became adopted by corneal surgeons all over 
the world (Figure 4, middle).[65] Compared to PK, DS(A)EK resulted in a faster visual rehabilitation and more 
predictable refractive outcome, while suture and wound-related problems could be avoided. DS(A)EK allows 
the retention of a better structural integrity of the eye and allograft rejection rates were reduced.[66,67] 
However, thickness irregularities of the donor graft or stromal interface haze causing optical aberrations could 
sometimes result in variable visual acuity outcomes.[67] Following the widespread adoption of DS(A)EK, the 
Melles group further revised its approach and reported the results of a newer procedure that eliminated the 
variability of the stroma by producing a stroma-less graft in the form of Descemet Membrane Endothelial 
Keratoplasty (DMEK).[68–70] In DMEK, the normal corneal anatomy is restored by selective replacement of the 
diseased corneal layer only (Figure 4, bottom). Although initially challenging, recent developments have 
facilitated tissue handling in a “no-touch” manner. As a result, the procedure is designed with reproducible, 
standardized steps, that can be implemented by most corneal surgeons in any clinical settings and with relatively 
low costs.[71]  

Compared to PK, lamellar keratoplasty procedures provide faster recovery, better visual results, with less 
scarring and fewer optical stromal aberrations. In addition, lower rates of post-operative endothelial cell loss 
have been reported in long-term outcome studies. [72] 

Globally, the main barrier to patients receiving these treatments is the lack of suitable donor tissue. To cope 
with global shortage of donor corneas, the concept of using one donor cornea for the treatment of multiple 
patients was realized with the introduction of the ‘Hemi-DMEK’[73–75] and ‘Quarter-DMEK’.[76–79] These 
approaches use one donor cornea to prepare two semi-circular or four quadrant-shaped DMEK grafts with the 
potential to double or quadruple the availability of endothelial grafts. These techniques are surgically similar to 
standard DMEK and achieved comparable visual acuity outcomes, however, the initial case series showed  
higher rates of graft detachment and relatively low postoperative endothelial cell density.[80,81] Another 
limitation of these techniques, particularly for Quarter-DMEK, is that the surgical indication is mostly restricted 
to cases of Fuchs endothelial corneal dystrophy with central corneal guttata (Figure 5B) and without peripheral 
corneal edema on slit-lamp examination.  

Clinical reports of patients who achieved corneal clearing despite failure of graft adhesion after endothelial 
keratoplasty[82,83] stimulated research into an entirely different concept – the possibility of cell free 
treatments. The initial cases with corneal clearance despite graft detachment were followed by reports of 
endothelial regeneration after Descemet's Stripping Only (DSO) procedures, also known as Descemetorhexis 
without endothelial keratoplasty (DWEK), that has emerged as a new tissue-free treatment option for patients 
with central FECD.[84–86] Like any surgical technique, DSO has also evolved over time. Currently, only a small 
area of diseased DM with a diameter of about 4–6mm, along with its endothelial cells and guttae in the visual 
axis, is removed. The bare area is then left to clear by the migration of peripheral endothelial cells. The presence 
of healthy peripheral cells is therefore a pre-requisite for successful DSO treatment but despite improvements 
in high resolution imaging technologies to determine the peripheral cell density reserve, some patients still do 
not clear after DSO.[87] The complexity of determining not only the density but the migration capacity and 
quality of the peripheral endothelial cell reserve in order to define the ideal candidate for DSO, may be the 
major limiting factor on the widespread use of this approach[88] which shows a 12-month failure rate of 8% - 
18%.[89–94]  Recently, studies have reported on the topical administration of Rho-kinase inhibitors (ROCK-
inhibitors) in combination with DSO.[95–96] It has been shown that the use of ROCK-inhibitors promotes the 
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recovery of ECD, of visual quality, and supports the concept of peripheral endothelial cell proliferation and/or 
migration by decreasing peripheral ECD loss. Therefore, by combining DSO with ROCK inhibitors an important 
economical saving for society could take place as it does not require donor tissue nor expensive post-operative 
care.   

 

 
Figure 5| In vivo confocal microscopy images: (A) healthy corneal endothelium (B) mild FECD: guttae appear rather 
scattered and appear in only a small portion of the endothelial area, and (C) severe FECD: confluent guttae visible across 
the entire endothelium. 

 

DSO/DWEK is likely to only be an option for milder FECD cases and will not eliminate the demand for corneal 
tissue. With this in mind, other alternatives for donor graft material are being investigated. Several clinical trials 
are underway evaluating approaches to using corneal endothelial cell replacement therapy through the 
injection of cultivated cells from a donor in the presence of mitogens[97,98] or even loaded with magnetic 
nanoparticles.[99] Expanding cells in culture allows far more patients to be treated by a single corneal donor. 
The longest-running trial using cell injection delivery has enrolled more than 60 participants in Japan[100] and 
recently reported its 5-year follow-up of the first 11 patients.[101] The most recently reported clinical trial with 
cultured endothelial cells was conducted from November 2020 to May 2021 at the Quesada Clinic in San 
Salvador, El Salvador, and the investigators injected cultured cells of two donor corneas into 50 affected eyes 
with the goals of reducing corneal edema and restoring vision. Although official data is not yet available, the 
investigators have confidence in the procedure’s efficiency.[102] Figure 6 summarizes the current and 
developing regenerative medicine therapies to treat corneal endothelial disease. 
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AIM AND THESIS OUTLINE 
The thesis focuses on the in vivo and in vitro behavior of corneal endothelial cells before and after endothelial 
keratoplasty. The first part of the project concentrates on the ECD decrease after DMEK and DMEK graft viability 
prior to transplantation. The second part focusses on regenerative strategies for the treatment of FECD by 
developing and applying in vitro cell migration assays. In vitro cell migration from DMEK grafts of various sizes 
and shapes are investigated in a 3D cell culture system aiming to identify critical parameters for the successful 
clinical application of corneal endothelial therapies. 

The first two chapters focus on the pre- and postoperative ECD measurements of DMEK grafts. In Chapter 2, we 
analyse ECD decrease after DMEK and demonstrate that about half of the observed ECD decrease at 6 months 
after DMEK is an in vivo decline from 1 day to 6 months postoperatively. The remaining decrease between 
preoperative and 1 day postoperative ECD values may be attributed to measurement error in the eye bank. In 
Chapter 3, we further examine the high ECD drop in the early postoperative phase after DMEK by analyzing the 
effect of graft preparation and organ-culture storage on ECD and viability of DMEK grafts prior to their release 
for transplantation.   

The next six chapters focus on obtaining a better understanding of the regenerative capacity of the corneal 
endothelium by collecting the latest updates on the corneal endothelial wound process and performing explant 
outgrowth assays using a novel 3D culture technique. In Chapter 4, we summarize what is currently known 
about the wound healing characteristics from a biochemical level in the lab to the regenerative features seen in 
the clinic. In Chapter 5, cell migration of shape-adapted DMEK (Quarter-DMEK) grafts is replicated in an in vitro 
culture system and possible reasons for the lack of endothelial cell migration from the peripheral round edge of 
Quarter-DMEK grafts are examined. In Chapter 6, a novel 3D culture technique for an improved studying in vitro 
cell migration from explant tissue is tested. The technical ‘ins and outs’ of the proposed culture system and the 
cell ability to remodel the artificial matrix during migration while the explant tissue is maintained and fixed on 
a rigid position are analysed. In Chapter 7,  we use  the 3D culture system to explain the migration capacity of 
the peripheral endothelium, to provide more effective graft modifications prior to clinical implementation. In 
Chapter 8, we determine the migration of peripheral corneal endothelial cells in the presence and absence of 
mitogens to better understand the cell migration mechanism from phenotypically-distinct regions of the 
endothelium. In Chapter 9, a new preparation process and surgical testing of small diameter DMEK grafts are 
investigated. Additionally, by engaging the 3D hydrogel system, the surgical effect on endothelial cell density, 
viability, and migration capacity is evaluated.
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ABSTRACT 
Purpose: To evaluate endothelial cell density (ECD) in the first 6 months after Descemet membrane endothelial 
keratoplasty (DMEK) by eliminating method error as a confounding variable. 

Methods: From 24 DMEK eyes operated for Fuchs endothelial corneal dystrophy, from which specular 
microscopy images could be taken at 1 day and 6 months postoperatively, ECD values were compared between 
these 2 time points. 

Results: Using the 1-day ECD measurement as baseline, mean ECD decreased from 1913 (±326) cells/mm2 to 
1524 (±393) cells/mm2 at 6 months, a decline of -18 (±19)%. With the 1-week ECD as baseline [1658 (±395) 
cells/mm2], the decline at 6 months was -6 (±19)% and when using preoperative ECD as baseline [2521 (±122) 
cells/mm2], the decline was -39 (±16)% at 6 months. 

Conclusions: After DMEK, ECD shows an in vivo decline of 18% from 1 day to 6 months postoperatively, with a 
sharp 13% drop in the first week, and a slower decrease thereafter. The remaining difference of 20% from 
preoperative ECD values may be attributed to a measurement error in the eye bank with an overestimation of 
the graft’s viable endothelial cell population and/or intraoperative trauma to the graft.
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INTRODUCTION 
Descemet membrane endothelial keratoplasty (DMEK) is currently the most selective endothelial keratoplasty 
technique, by which only the diseased Descemet membrane (DM) and endothelium are replaced by a healthy 
donor.[1,2] With growing experience, DMEK may increasingly be preferred over Descemet stripping endothelial 
keratoplasty/ Descemet stripping automated endothelial keratoplasty owing to better visual outcomes,[3,4] a 
lower risk of interface haze, and a reduced chance of allograft rejection.[5,6] 

Endothelial cell density (ECD) has been found to show a postoperative decrease comparable with earlier 
endothelial keratoplasty techniques, that is, 30% to 40% within the first 6 months after surgery followed by an 
annual decrease of 7% to 9% thereafter.[7–9] A postoperative ECD decrease for all endothelial keratoplasty 
techniques is usually reported for 6-month follow-up,[8,10,11] and it is therefore not known whether the 
perceived drop in ECD relates to the measurement error (light microscopy in the eye banks versus in vivo 
specular microscopy after surgery), intraoperative trauma to the graft, or a drop in central ECD in the first 
months after surgery. 

Because DMEK often provides enough corneal deturgescence within the first 24 hours to enable specular 
microscopy, the purpose of our study was to use the 1-day ECD (instead of preoperative values) as baseline to 
evaluate the in vivo change in ECD within the early postoperative phase and to determine at which time points 
any change in in vivo ECD might occur. 

 

METHODS 
Of 46 consecutive DMEK surgeries performed for Fuchs endothelial corneal dystrophy, successful ECD images 
could be taken for 24 eyes of 24 patients on the first postoperative day, and these eyes were included in the 
study (Figure 1). For these 24 eyes, 13 patients (54%) were women and 11 were men with a mean age of 69 
(±11) years (range 42–94 years). Six eyes (25%) were phakic and 18 (75%) pseudophakic (Table 1). All patients 
signed an institutional review board-approved informed consent form for research participation, and the study 
was conducted according to the Declaration of Helsinki.  

 

Donor tissue protocol 

The procedure for harvesting a DMEK graft has been previously described in detail.[12,13] Briefly, corneoscleral 
buttons were excised from donor globes obtained less than  36 hours postmortem and stored in organ culture 
medium at 15 to 31°C (CorneaMax, Eurobio, Courtaboeuf, France). After on average 1 week of culture, 
endothelial cell morphology and viability were evaluated again, and a 9.5 mm-diameter Descemet sheet with 
its endothelium was carefully stripped from the posterior stroma. Each “Descemet-roll” was then stored in 
organ culture medium until the time of transplantation (Table 1).[12] Preoperative donor ECD was assessed in 
vitro in the eye bank (Axiovert 40 inverted light microscope, Zeiss, Göttingen, Germany) after provoked swelling 
and staining with 0.04% trypan blue (Hippocratech, Rotterdam, The Netherlands)[12,13] and determined by 
manual counting according to the fixed-frame method. 

 

Surgical protocol 

All surgeries were performed according to the previously described DMEK technique.[2] After performing 
“descemetorhexis” under air,[14] a 3.0-mm tunnel incision was made for the insertion of the graft. The 
“Descemet-roll” was inserted endothelial side down (donor DM facing the recipient posterior stroma) into the 
recipient anterior chamber and then unfolded over the iris and positioned against the recipient posterior 
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stroma.[2] The anterior chamber was left completely filled with air for 60 minutes, followed by air-liquid 
exchange to pressurize the eye while leaving 30% to 50% air fill in the anterior chamber. Patients were instructed 
to remain supine for 48 to 72 hours after surgery. Postoperative medication included 0.5% chloramphenicol, 
5 mg/mL ketorolac, and 0.1% dexamethasone eye drops for 4 weeks followed by a routine steroid tapering 
(fluorometholone) regimen over the course of a year. 

 

Measurements and statistics 

Routine follow-up examinations were performed at 1 day, 1 week, and at 1, 3, and 6 months after surgery. In 
vivo postoperative ECD was evaluated using noncontact specular microscopy (Topcon Medical Europe BV, 
Capelle a/d IJssel, The Netherlands). ECD analysis was performed by multiple trained technicians. For all 
endothelial images of the central corneal window, the automatically delineated cell borders (ImageNet 
software, Topcon Medical Europe BV) were carefully checked and in case they were not correctly assigned by 
the program, a “manual correction” was applied to reassign the cell borders. For every analysis, the largest 
possible part of the image was used, and measurements of 3 central images were averaged per follow-up time. 

A paired t test was performed for ECD data comparison between preoperative and postoperative follow-up 
measurements. P < .05 was considered statistically significant. 

 

 
Figure 1| Specular microscopy images taken at 1 day and 6 months DMEK. One-day (upper row) and 6 months (bottom 
row) postoperative specular microscopy images are displayed for 4 cases. ECD decrease compared with preoperative donor 
ECD and with the 1 day ECD count are listed for each case. 
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Table 1. Demographics of DMEK Eyes 

Patient and Donor Information 
Group with successful 

1d ECD count 
Patient data 

No. of eyes (patients) 
 

24 (24) 
Gender  
   Female 
   Male 

 
13 (54%) 
11 (46%) 

Mean age (±SD) (range), yrs. 69 (±11), (42–94) 
Preoperative lens status 
    Pseudophakic 
    Phakic 
Mean preoperative pachymetry (±SD), μm 

 
18 (75%) 
6 (25%) 

661 (±56) 
Donor data  

Gender  
     Female 
     Male 
Mean age (±SD) (range), yrs.  

 
7 (29%) 

17 (71%) 
69 (±10), (46–82) 

Mean storage time (±SD) (range), days 14 (±3), (8–20) 
Mean time between last ECD evaluation and 
surgery (±SD) (range), days 

9 (±3), (6–14) 

Cause of death 
Cardio/Stroke 
Trauma 
Respiratory  
Cancer 
Other 

Mean donor ECD (±SD), cells/mm2 

 
13 (54%) 

2 (8%) 
5 (21%) 
2 (8%) 
2 (8%) 

2521 (±122) 

 

RESULTS 
Average central ECD decreased from 2521 (±122) cells/mm2 preoperatively to 1913 (±326) cells/mm2 at 1 day, 
to 1658 (±395) cells/mm2 at 1 week, to 1629 (±367) cells/mm2 at 1 month, to 1592 (±369) cells/mm2 at 3 months, 
and to 1524 (±393) cells/mm2 at 6 months. This corresponded to an ECD decrease of -39 (±16)% at 6 months 
compared with the preoperative value (Table 2, Figure 2).  

When using the 1-day ECD measurement as a baseline value, mean ECD decreased by -13 (±14)% at 1 week, by 
-14 (±17)% at 1 month, by -15 (±19)% at 3 months, and by -18 (±19)% at 6 months. Using the 1-week ECD value 
as baseline, the ECD decrease was 0 (±16)% at 1 month, -3 (±19)% at 3 months, and -6 (±19)% at 6 months. 

When comparing the average ECD between the consecutive follow-up time points, the initial decline between 
preoperative/1 day was -24 (±12)%, between 1 day/1 week -13 (±14%), between 1 week/1 month 0 (±16)%, 
between 1 month/3 months -3 (±10)%, and between 3 months/6 months -3 (±5)% (P > 0.05 for all paired time 
point comparisons after 1 week). 

Although the average ECD decrease between 1 day/6 months was -18% (median 15%) within the study group, 
there was a large variation in the ECD decrease for this time interval ranging from +7% to -78% (Table 2). 
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Table 2. ECD and ECD decrease (∆ECD) after DMEK 

Patient data ECD, cells/mm2 ΔECD 

Case Age, yrs. Lens Status Preop. 1 d FU 1 w FU 6 mo FU 
6 mo FU vs. 
Preop., % 

6 mo FU vs. 
1 d FU, % 

6 mo FU vs. 
1 w FU, % 

1 94 Pseudophakic 2400 1768 NA 1432 -40% -19% NA 
2 70 Pseudophakic 2700 2293 1734 1889 -30% -18% +9% 
3 73 Pseudophakic 2600 2438 2440 2355 -9% -3% -3% 
4 87 Pseudophakic 2600 2065 2327 1911 -26% -7% -18% 
5 62 Pseudophakic 2700 2396 1457 536 -80% -78% -63% 
6 79 Pseudophakic 2300 1870 1010 881 -62% -53% -13% 
7 72 Pseudophakic 2600 1957 1413 1089 -58% -44% -23% 
8 80 Pseudophakic 2400 2003 1852 2143 -11% +7% +16% 
9 68 Phakic 2400 2120 1945 1789 -25% -16% -8% 

10 68 Pseudophakic 2400 1265 942 1395 -42% +10% +48% 
11 49 Phakic 2500 1956 1333 1220 -51% -38% -8% 
12 71 Pseudophakic 2500 1237 1242 1222 -51% -1% -2% 
13 42 Phakic 2600 1799 1882 1638 -37% -9% -13% 
14 54 Pseudophakic 2500 1645 1409 1253 -50% -24% -10% 
15 73 Pseudophakic 2500 1630 1629 1518 -39% -7% -7% 
16 74 Pseudophakic 2300 1588 1410 1267 -45% -20% -10% 
17 63 Pseudophakic 2400 2206 2097 1633 -32% -26% -22% 
18 67 Pseudophakic 2800 2380 2225 2020 -28% -15% -9% 
19 51 Phakic 2600 2163 1768 1821 -30% -16% +3% 
20 76 Pseudophakic 2500 1822 1355 1182 -53% -35% -13% 
21 69 Phakic 2500 1607 1452 1396 -44% -13% -4% 
22 66 Phakic 2600 1828 1793 1846 -29% +1% +3% 
23 78 Pseudophakic 2600 1644 1369 1515 -42% -8% +11% 
24 67 Pseudophakic 2500 2240 2059 1978 -21% -12% -4% 

Average  2521 1913 1658 1524 -39% -18% -6% 
Standard Deviation   122 326 395 393 ±16% ±19% ±19% 
Median 2500 1913 1629 1516 -40% -15% -8% 

ECD, endothelial cell density; FU, Follow-up; NA, not available; Preop, preoperative; ΔECD, ECD decrease. 

 

DISCUSSION  
Commonly, ECD decrease is considered one of the main outcome parameters in the evaluation of corneal 
transplantation procedures, both as a measure of efficacy and for predicting long-term graft survival.[15–17] For both 
Descemet stripping endothelial keratoplasty/Descemet stripping automated endothelial keratoplasty and DMEK, 
multiple studies have described an approximate 30% to 40% drop in ECD at 6 months after surgery, compared with 
preoperative values. So far, it has been unknown whether the ECD at 6 months reflects solely surgical trauma to the 
graft[3,17,18] or in vivo cell loss or redistribution. Also, it has been unknown at what time point any in vivo decrease in 
ECD might occur, and whether it reflects a gradual decrease or a sudden drop. In a small case series, we previously 
found a significant decrease in ECD within the first month after DMEK.[8] This finding triggered the current study that 
aimed to overcome the lack of reliable measurements in the early postoperative phase, using 1-day postoperative 
specular microscopy readings as baseline for in vivo ECD analysis. 

Interestingly, our study showed that a -18% in vivo drop in ECD after DMEK occurred within the first 6 months after 
surgery and particularly within the first week after surgery. This finding may shed a different light on various causes that 
are hypothesized for the drop in ECD after DMEK, including endothelial cell migration and/or redistribution, after 
surgical inflammation or a subclinical immunological response and would indicate that approximately half of the 
apparent drop in ECD at 6 months occurs in vivo, that is, after transplantation. 
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Figure 2| Preoperative and postoperative ECD after DMEK. ECD was measured preoperatively, and at 1 day, 1 
week , 1 month, 3 months, and 6 months postoperatively. The highest ECD drop was observed at 1 day after 
surgery. Error bars represent SD. The t test was used for paired consecutive follow-up time points: *: P≤.05. 
 

On average, in vivo ECD dropped from day 1 to 1 week postoperatively by -13%, whereas the decrease between 1 week 
and 6 months was only -6%, indicating that different mechanisms may cause the in vivo ECD decrease. Endothelial cell 
migration and/or redistribution may contribute to the ECD drop within the first postoperative week, whereas the lower 
ECD decrease after 1 week may be caused by a subclinical immune reaction that had also been suggested to cause an 
ECD decrease in the longer term.[11,15,19,20] However, application of higher-dose steroids in the first postoperative 
week does not seem to influence postoperative ECD as shown in a recent study by Hoerster et al.[21]  

When approximately half of the observed ECD decrease at 6 months occurs in vivo, the remaining decline in ECD as 
observed at 1 day postoperatively may be attributed to intraoperative trauma to the graft and/or a measurement error 
in the eye bank with an overestimation of the graft’s viable endothelial cell population.[22–25] The latter has been 
addressed in a study by Pipparelli et al., which showed for endothelial grafts pre-dissected by eye banks that the actual 
pool of viable endothelial cells on the graft is commonly overestimated.[22] The same group showed in another study 
with paired organ cultured donor corneas, in which 1 cornea was used for penetrating keratoplasty (PK) and the 
contralateral cornea was used to determine the number of viable endothelial cells in vitro, that the number of viable 
cells counted in vitro was virtually similar to the ECD measured 5 days after PK.[23] Assuming that the number of viable 
cells is similar between eyes of the same pair, this suggests that the observed -30% drop in ECD at 5 days after PK was 
caused by a substantial overestimation of the number of viable endothelial cells on the graft. This is further 
substantiated by a recent study by Bhogal et al. in which global endothelial cell viability of DMEK grafts was assessed 
after preparation, and it was concluded that an early postoperative ECD reduction of up to -25% may be expected from 
tissue preparation alone.[25] 

In conclusion, our study demonstrated that approximately half of the observed ECD decrease at 6 months after DMEK 
is an in vivo decline from 1 day to 6 months postoperatively, with a sharp -13% drop in the first week, and a slower 
decrease thereafter. The remaining decrease between preoperative and 1 day postoperative ECD values may be 
attributed to a measurement error in the eye bank with an overestimation of the graft’s viable endothelial cell 
population and/or intraoperative trauma to the graft.
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ABSTRACT  
Aim: To evaluate the effect of graft preparation and organ-culture storage on endothelial cell density (ECD) and 
viability of Descemet membrane endothelial keratoplasty (DMEK) grafts. 

Materials and methods: DMEK grafts (n = 27) were prepared at Amnitrans EyeBank Rotterdam from 27 corneas 
(15 donors) that were eligible for transplantation but could not be allocated due to the Covid-19-related 
cancellation of elective surgeries. Cell viability (by Calcein-AM staining) and ECD of five grafts originally 
scheduled for transplantation were evaluated on the originally planned surgery day, whereas 22 grafts from 
paired donor corneas were evaluated either directly post-preparation or after 3–7 days of storage. ECD was 
analyzed by light microscopy (LM ECD) and Calcein-AM staining (Calcein-ECD). 

Results: Light microscopy (LM) evaluation of all grafts showed an unremarkable endothelial cell monolayer 
directly after preparation. However, median Calcein-ECD for the five grafts initially allocated for transplantation 
was 18% (range 9–73%) lower than median LM ECD. For the paired DMEK grafts, Calcein-ECD determined by 
Calcein-AM staining on the day of graft preparation and after 3–7 days of graft storage showed a median 
decrease of 1% and 2%, respectively. Median percentage of central graft area populated by viable cells after 
preparation and after 3–7 days of graft storage was 88% and 92%, respectively. 

Conclusion: Cell viability of most of the grafts will not be affected by preparation and storage. Endothelial cell 
damage may be observed for some grafts within hours after preparation, with insignificant additional ECD 
changes during 3–7 days of graft storage. Implementing an additional post-preparation step in the eye bank to 
evaluate cell density before graft release for transplantation may help to reduce postoperative DMEK 
complications
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INTRODUCTION 
Descemet membrane endothelial keratoplasty (DMEK) is an increasingly popular treatment option for patients 
with corneal endothelial dysfunction, optimizing visual out- comes, recovery time, and rejection risk relative to 
previous generation of corneal transplantation, such as penetrating keratoplasty (PK) and Descemet stripping 
(automated) endothelial keratoplasty (DSAEK). Typical endothelial cell loss rates within the first 6 months after 
DMEK are reported to be 25–40%, followed by a slower decrease thereafter.[1–5] The majority of the observed 
cell loss after DMEK, however, actually occurs within the first week after DMEK.[6] At the same time, it was 
shown that endothelial cell loss after DMEK showed a high degree of variability between patients. Several 
studies tried to identify donor, recipient and surgery-related risk factors for endothelial cell loss after DMEK, 
with no consistent results so far.[5,7–10] 

Next to focusing on the postoperative DMEK outcomes regarding endothelial cell loss, other studies aimed at 
validating graft preparation techniques. Some studies compared different graft preparation techniques[11,12] 
in terms of efficiency and observed endothelial cell loss. It was also evaluated whether, e.g., the speed of 
stripping,[13] type of graft storage,[14,15] other eye bank[16,17] or surgeon-related graft manipulations,[18,19] 
or the use of pre-loaded systems[20–23] would be associated with a reduction in endothelial cell density. 

In a recent study,[6] we speculated that overestimation of endothelial cell viability on the DMEK graft may play 
a role and may result in an unrealistically high ECD drop in the early postoperative phase after DMEK. However, 
there is currently no possibility for eye banks to evaluate the endothelial cell viability of grafts allocated for 
transplantation. Typical graft evaluation in the eye bank is performed by trypan blue staining that fails to 
recognize apoptotic cells[24–26] and stained nuclei in a non-continuous area will not be discerned 
macroscopically.[27] Although in vitro analysis of endothelial integrity, including the analysis of sample 
subpopulations (apoptotic and necrotic), by using Calcein-AM staining was reported to be safe for pre-stained, 
pre-stripped, or pre-loaded DMEK grafts,[16,20–23] this protocol has not yet been approved for eye bank use. 

 

While in vitro studies indicated that the endothelial cell counts provided by eye banks seem to overestimate the 
actual number of viable endothelial cells on a graft,[12,28] the use of research-grade tissue, i.e., corneas not 
eligible for transplantation, may not be directly comparable to surgery-grade tissue as the endothelial quality 
may often be lower to start with. 

As a consequence of the COVID-19-related cancellation of elective surgeries in the Netherlands, we were able 
to analyze the endothelial cell density and viability of DMEK grafts on the day of the planned surgeries and 
additionally evaluated the effect of organ-culture storage on the endothelial cell density and viability of surgery-
grade DMEK grafts. 

 

MATERIALS AND METHODS 
Corneas 

Twenty-seven human corneas were obtained from 15 donors (mean age 70 (±8) years; range 59–85 years), for 
a total of 27 DMEK grafts. Prior to graft preparation, the average storage time was 21 (±6) days (range 9–29 
days) and average ECD was 2588 (±139) cells/mm2 (range 2300–2800 cells/mm2) (Table 1). All corneas would 
have been eligible for transplantation but could either not be sent out after allocation (corneas #1–5) or could 
not be allocated (corneas #6–27) due to the COVID-19 related cancellation of elective surgeries. In all cases, the 
donors had stated to have no objection against transplant-related research and the study adhered to the tenets 
of the Declaration of Helsinki and the Barcelona Principles.[29] No institutional review board approval was 
obtained as under national regulation no approval is required for this research if no extra procedure was 
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performed to obtain the samples and donors had consented to having the samples used for research purposes 
(https://www.ccmo.nl/onderzoekers/aanvullende-informatie-over-bepaalde-soorten-onderzoek/niet-
wmo-onderzoek/onderzoek-met-lichaamsmateriaal). 

 

DMEK graft preparation techniques 

All DMEK-grafts were prepared at Amnitrans EyeBank Rotterdam by means of hydrodissection[30] and/or no-
touch DMEK graft preparation.[31,32] Briefly, to prepare the DMEK grafts, corneo-scleral rims were placed 
endothelial-side-up on a custom-made holder with a suction cup. The endothelium was then stained with 0.04% 
hypotonic trypan blue solution (Hippocratech, Rotterdam, The Netherlands) for 10 seconds for visualization. A 
30-gauge needle mounted on a 2.5 mL syringe filled with 0.9% NaCl was inserted superficially through the tissue 
just peripheral to the pigmented trabecular meshwork and advanced until the entire bevel was in the cornea 
just past  Schwalbe’s  line.  NaCl  was  injected  slowly  until a peripheral separation “bubble” between the 
stroma and the Descemet membrane (DM) appeared, after which the needle was inserted in the bubble to 
enlarge the bubble until complete separation of the DM. In case of unsuccessful bubble formation, the same 
process was attempted at another site. After complete bubble formation, the peripheral DM was pierced with 
a 30-gauge needle and liquid was drawn from the bubble before an 8.5 mm trephination was performed directly 
on the cornea to complete the DMEK graft preparation. 

In cases that no bubble could be formed, the “no-touch” DMEK graft preparation method was applied.[31,32] 
First, trabecular meshwork was loosened over 360° by pushing a hockey stick blade from the trabecular 
meshwork towards the corneal center. Then, by holding the trabecular meshwork with McPherson forceps and 
making gentle centripetal movements, the DM was carefully peeled from the posterior stroma before 
trephination with an 8.5 mm trephine. 

Endothelial cell density of the corneas used for graft preparation was assessed in the eye bank with an inverted 
light microscope (Zeiss Axiovert 40C, Carl Zeiss International, Zaventem, Belgium) using the fixed frame 
method.[32] Endothelial cell density (ECD) of the DMEK rolls directly after preparation was determined on light 
microscopy (LM) images by averaging the counts performed manually on three fixed frames of 0.01 mm2 per 
graft (reported as LM ECD). Grafts were considered eligible for transplantation if outcome of visual inspection 
after graft preparation was unremarkable (i.e., absence of bare DM areas or other irregularities), an ECD ≥ 2000 
cells/mm2 and negative microbiological testing to exclude possible contamination. For further analysis, grafts 
were transferred into a glass vial for storage in dextran-free organ-culture medium (CorneaMax, Eurobio, 
Cortaboeuf, France) at 31°C until the time of evaluation. 

 

Light microscopy imaging and cell viability assay 

For further analysis, grafts were carefully unfolded endothelial-side-up on a silane-precoated glass (Sigma–
Aldrich Chemistry BV, Zwijndrecht, The Netherlands) by transferring the graft with a glass pipette from the 
storage vial to the glass support, and gently dropping organ-culture medium onto the graft until complete graft 
unfolding (Figure 1a). During the procedure, cellulose sponges were used to guide the movement of the liquid 
in such way that it would force the graft edges to flatten over the glass support. Next, DMEK grafts were stained 
with hypotonic trypan blue 0.04% solution to better visualize the tissue on the glass slide and then 
photographed with an AxioVert.A1 microscope with AxioCam 305 color camera (Zeiss, Oberkochen, Germany) 
(Figure 1b,c). 

After light microscopy imaging, grafts were subjected to cell viability analysis. Each sample was covered with 
100–150 µl of Dulbecco’s phosphate-buffered saline (PBS) (Sigma–Aldrich Chemistry BV, Zwijndrecht, The 
Netherlands) containing Calcein-AM (4 µM) (Sigma–Aldrich Chemistry BV, Zwijndrecht, The Netherlands) and 
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incubated at room temperature (RT) for 45 min. After incubation, samples were washed with PBS and then 
imaged using an inverted fluorescence microscope. Multiple image tiles taken with a 50x magnification were 
combined and stitched together to create the graft panorama using Microsoft PowerPoint program. 

 

 
Figure 1| Representative images for the graft analysis before and after Calcein-AM staining. (a) Collage of light 
microscopy images (×50) to create the graft overview before cell viability investigation. (b) and (c) represent higher 
magnification areas (×100) of the graft displayed in (a), showing the endothelium at the central (b) and peripheral (c) 
regions. (d) Graft viability analysis process includes composite photos (×50) stitched together to create an image panorama 
of the graft stained with Calcein-AM (left). The central graft area (white dashed area in graft overview image) is then 
selected for cell viability analysis and endothelial cell density counting. The central graft viability analysis panel shows 
image segmentation and thresholding, with the viable and non-viable cell areas displayed in red. The cell counting panel 
displays three different frames (200 × 200 µm), selected in the white dashed area, wherein cell counting was performed 
using the multi-point function in ImageJ. Images are from graft #1 (Table 1). Scale bars = 100 µm. 

 

Image analysis 

Composite images were imported into FIJI open software for processing and analysis 
(https://imagej.net/Welcome). For each Calcein-AM-labeled DMEK graft, the graft area was manually defined, 
the background noise was removed, and the image underwent thresholding at different levels of image intensity 
and saturation. The presence of hyperfluorescent folds on some grafts caused some areas populated by viable 
cells to appear hypofluorescent rendering a low viability signal and, thus, underestimating graft viability. For 
this reason, next to analyzing the entire graft surface, also a circular area was selected centrally on the graft and 
with a diameter equal to one third of the entire graft diameter (Figure 1d, white-dashed line area). For both the 
entire graft and the selected central graft area, we were able to estimate the percentage of the area of the graft 
covered by viable cells (=viable cell area/total graft area) and the percentage of the non-viable graft area 
(=apoptotic and/or denuded graft area/total graft area). ECD on Calcein-stained grafts, reported as Calcein-ECD, 
was determined centrally on the graft by using the fixed-frame method like for the LM images taken directly 
after graft preparation. For Calcein-ECD, counting was performed in fixed frames of 0.04 mm2 using the multi-

3 



Chapter 3 
 

48 
 

point tool to mark all cell centers and counts from three frames per graft were averaged. A half-cell was marked 
only if it could be paired with another unlabeled half- cell (Figure 1d, Cell counting panel). ECD differences were 
reported between the Calcein-AM-labeled DMEK graft (Calcein-ECD) and LM imaged DMEK rolls (LM ECD). 

 

Statistical Analysis 

Paired t-tests were performed to identify significant differences in outcomes between data (ECD and cell 
viability) collected at graft preparation time (day 0) and post-storage time (3 and 7 days). P < .05 was considered 
significant. 

 

RESULTS 
Cell density and viability analysis of DMEK grafts allocated for surgery  

Due to the Covid-19 related cancellation of elective surgeries in the Netherlands in March 2020, 5 DMEK grafts 
from 4 donors that had been allocated and prepared for transplantation became available for research (Table 1, 
corneas #1-5). Endothelial cell density and viability of these grafts were evaluated on the days of the scheduled 
surgeries. Graft preparation by hydrodissection had been uneventful, except for one graft for which bubble 
formation was not successful and the graft had to be harvested using the “no-touch” peeling technique. Directly 
after preparation, standard visual inspection of the DMEK rolls by light microscopy (LM) had shown an 
unremarkable endothelial cell monolayer with a median LM ECD of 2600 cells/mm2 and 2617 cells/mm2 before 
and after preparation, respectively (mean LM ECD 2600 (±122) cells/mm2 before and 2575 (±112) cells/mm2 
after preparation; P = .687). After 6 days of organ-culture storage, i.e., at the time of the scheduled surgery, 
median Calcein-ECD based on analysis of the Calcein-AM images had decreased to 2025 cells/mm2 (mean ECD 
1678 (±687) cells/mm2; P=.058). Analysis of Calcein-AM images revealed that the percentage of central surface 
area covered by viable cells ranged from 57% to 97% (median 85%, mean 84 (±16)%) and for the entire graft 
surface area this ranged from 59% to 92% (median 80%, mean 78 (±13)%) (Table 1 and Figure 2). 

 

 
Figure 2| Example images representing Calcein-AM-stained DMEK grafts that had been allocated for transplantation. (a) 
Graft with a well maintained endothelial cell viability after 6 days in organ culture medium; (b) graft displaying mainly 
peripheral edge damage, probably induced during the trephination step in the graft preparation procedure; Calcein-AM-
labeled cells showing a low level of fluorescence; (c) marked graft showing cell loss of about half of the surface area. Grafts 
were imaged on the planned day of the cancelled surgeries. Displayed grafts are (a) graft #2, (b) graft #4, and (c) graft #5. 
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Effect of organ-culture storage on cell density and viability analysis of paired DMEK grafts  

 

Based on the wide range of cell viability observed for the five grafts initially allocated for transplantation, 
additional tests with 14 DMEK grafts from paired donor corneas (Table 1, corneas #6–19) were performed to 
assess whether freshly prepared grafts would show less variability than grafts after organ-culture storage. 

Median ECD assessed by light microscopy directly after DMEK graft preparation was 2466 cells/mm2 (mean LM 
ECD 2492 (±219) cells/mm2) (n = 14) as compared to 2600 cells/mm2 (mean LM ECD 2608 (±178) cells/mm2; 
P  = .138) (n = 12) (Table 2) before preparation, with pre-preparation LM ECD calculated centrally on the donor 
cornea at the time of cornea preservation. 

For grafts subjected to Calcein-AM staining on the day of the graft preparation (n = 7), median Calcein-ECD was 
2417 cells/mm2 (mean Calcein-ECD 2379 (±372) cells/mm2) as compared to median LM-ECD of 2433 cells/mm2 
(mean LM ECD 2505 (±254) cells/mm2; P = .247) determined directly after preparation. This corresponds to an 
average ECD difference between LM ECD and Calcein-ECD of 5 (±11)% (median decrease of 1%). Cell viability 
analysis performed on the day of graft preparation showed that, on average, 82 (±20)% (median 88%) (n = 7) of 
the central graft surface area and 75 (±15)% (median 81%) of the entire graft surface area was covered by viable 
cells (Table 2). 

 

 
Figure 3| Representative images of paired grafts immediately after preparation and organ culture storage. Top row: 
Paired grafts #8 and 9 were imaged at d0 (day of preparation, (a) and after 3 days of organ culture storage (b). Bottom row: 
Paired grafts #18 and 19 were imaged at d0 (c) and after 7 days of organ culture storage (d). Every graft overview image is 
a collage of 50× image tiles stitched together, and two higher magnification images were included for a better visualization 
of endothelium integrity. Dark areas on the graft indicate apoptotic cells (a) or bare areas of DM (c). Scale bars = 100 µm. 

Median Calcein-ECD of DMEK grafts analyzed after 3 to 7 days of graft storage in organ-culture medium (n = 7) 
was 2367 cells/mm2 (mean Calcein-ECD 2058 (±781) cells/mm2) as compared to 2417 cells/mm2 (P = .155) 
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measured directly after preparation of grafts prepared from the contralateral corneas (n = 7) (Table 2). 
Assessment of cell viability following graft storage for 3–7 days showed that the median % central surface area 
populated by viable cells on the grafts was 92% (mean 88 (±14)%) (n = 7) compared to 88% (P = .0.089) measured 
directly after preparation of grafts prepared from the contralateral corneas and for the entire graft surface area 
the median remained at 81% (mean 75 (±23)%) (Table 2 and Figure 3). 

Noteworthy, the graft pair with the lowest area covered by viable cells (Table 1, corneas # 12 and 13), showed 
unremarkable endothelial cells upon LM inspection in the eye bank directly after preparation (Figure 4a,f) and 
both grafts were considered eligible for transplantation. However, about 3 hours later, LM inspection in the lab 
before Calcein-AM staining already showed cells with large nuclei (Figure 4b) and Calcein-AM staining revealed 
large areas of the graft devoid of viable cells (Figure 4c–e). Light microscopy and fluorescence imaging of the 
contralateral graft after 7 days of organ-culture storage showed sparsely distributed elongated endothelial cells 
(Figure 4g–i) that were not contact-inhibited. 

 

 
Figure 4| Paired donor graft analysis before and after Calcein-AM staining. (a–e): Analysis of graft #12 at day 0 after 
preparation in the eye bank; (f–j): Analysis of the contralateral graft (#13) after 7 days of organ culture storage. Displayed 
are representative brightfield images of the graft taken directly after preparation in the eye bank (a, f), taken about 3 hours 
after the preparation in the lab mounted on a glass cover slide (b, g), and fluorescence composite images after staining 
with Calcein-AM (c, h). (d) and (i) represent higher magnification images of the graft endothelium shown in (c) and (h), 
respectively. Especially in (d), the difference in fluorescence intensity between viable cells (higher fluorescence signal) and 
dying cells (low fluorescence signal) is evident. (e) and (j) represent the FIJI segmented images of the viable areas on the 
graft in (c) and (h), respectively. Scale bars = 100 µm. 

 

Intra-donor variability of endothelial cell density and viability 

Of four graft pairs (Table 1, corneas #20-27), grafts of two pairs were assessed directly after preparation and 
grafts of the other two pairs after 3 days of organ-culture storage. Overall, there was no significant difference 
between contralateral grafts in terms of average Calcein-ECD based on fluorescence images (mean Calcein-
ECD 2042 (±349) cells/mm2 vs. 2325 (±252) cells/mm2; median Calcein-ECD 2138 cells/mm2 vs. 2246 
cells/mm2) and central surface area covered by viable cells (mean 69 (±17)% vs. 88 (±5)%) (P = .396 and P = 
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.113, respectively) (Table 2). However, one pair (Table 1; corneas #26 and 27) had comparable LM ECD before 
and directly after preparation, but lower Calcein-ECD and central graft viability for one of the grafts after 3 days 
of graft storage (1558 cells/mm2 vs. 2683 cells/mm2 and 73% vs. 90%, respectively). 

 

DISCUSSION 
In this study, we have shown that vital dye staining of surgery-grade DMEK grafts revealed a high degree of 
variability in endothelial cell loss and in surface area covered by viable cells. 

Overall, LM ECD determined centrally on the donor cornea at the time of cornea preservation and directly after 
DMEK graft preparation by counting in fixed-frames of 0.01 mm2 with trypan blue staining in the eye bank, was 
almost similar in our study. All grafts were considered eligible for transplantation based on post-preparation LM 
ECD and light microscopy inspection of the endothelial cell layer. Mean Calcein-ECD determined centrally on 
the graft based on Calcein-AM analysis performed on the day of graft preparation was comparable to LM-ECD 
within the error margin of the fixed-frame method[33] for the majority of the grafts (8/11 grafts (73%)), while 
2/11 grafts (18%) showed a slightly lower Calcein-ECD and one graft (9%) had a 30% lower Calcein-ECD. Overall, 
there was no significant difference in median Calcein-ECD depending on storage time, but the highest losses in 
Calcein-ECD were observed for grafts stored for 6 or 7 days, respectively.  

Since the difference in LM-ECD and Calcein-ECD was within the error margin of the counting technique for most 
of the grafts, it is unlikely that the observed difference in eye bank determined LM ECD and Calcein-ECD based 
on Calcein-AM staining is due to cell damage induced by the graft handling for the Calcein-AM staining. Most 
likely the observed difference is due to the presence of apoptotic cells on the graft after preparation, which 
cannot be detected by trypan blue staining[34] and will be counted as viable endothelial cells in the eye bank. 
The presence of apoptotic cells on the grafts may not necessarily only be related to mechanical strain injury 
during graft preparation but also to stress-induced damage associated with donor death or even cornea 
procurement.[35] An already vulnerable endothelium before graft harvesting may not be able to maintain a 
proper cell repair mechanism after DM stripping, with some cells turning apoptotic and dropping off the DM. 
Another important parameter that could potentially affect the endothelial viability would be the ultrastructure 
of the DM. A DM may show resistance during cornea swelling in organ culture, forming folds that will deepen 
as swelling progresses, thereby compromising the surrounding cells.[36,37] Thus, after graft preparation, cells 
that had surrounded the folds could be shed off allowing the endothelium to heal but clearly resulting in a lower 
ECD compared to pre-preparation ECD. 

Our data showed a median difference of about 2% between Calcein-ECD evaluated on the day of graft 
preparation (2417 cells/mm2) and after 3–7 days of storage (2367 cells/mm2) and suggest that in general the 
apoptotic cell population observed after graft preparation may not increase during graft storage as this would 
in time translate to a loss of Calcein-ECD. This finding is in line with a recent study showing an 11% ECD loss 
caused by the preparation with no further statistically significant Calcein-ECD loss occurring during 5 days of 
culture storage.[38] A series of recent studies, focusing on the effect of short-term storage time on cell viability 
showed that organ-cultured DMEK grafts[16,39] or grafts preloaded and then stored for up to 3 days in cold-
storage[20,21,23,40] did not show a consistent or significant difference in ECD or cell viability when compared 
to uncultured grafts. However, in some cases of grafts with pronounced endothelial cell damage developed 
during the preparation, a further reduction in ECD during storage seems to occur as shown in our study, which 
can probably be caused by the redistribution of viable endothelial cells by migration to the areas where the cells 
were dead and detached. This may then result in a reported reduction of graft surface area covered by viable 
cells of on average 40%.[40] Larger studies with high-quality grafts, however, may be needed to shed more light 
on the overall effect of storage time on endothelial cells as this effect may not only be directly reflected by an 
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ECD loss but could also be more subtle and resulting in an elevated cellular stress level. The latter could lead to 
cells being more susceptible to damage caused by surgical manipulation.[41] 

The large variability in the observed loss of Calcein-ECD after graft preparation may explain the clinical 
observation of a large variability in early endothelial cell loss after DMEK with an ECD decrease of up to 50% in 
some eyes as early as 1 day postoperatively.[6] This variability in postoperative ECD has been shown to persist 
also at longer follow-up times[5,42] and DMEK grafts with a low ECD at 6-month postoperatively have a 
significantly lower graft survival probability at 5-year postoperatively.[43] 

This underlines the clinical importance of developing a better method for post-preparation graft screening in 
the eye bank to avoid transplanting grafts with a low density of viable endothelial cells. Therefore, the use of a 
florescent vital dye, such as Calcein-AM, to clearly visualize live and ideally also apoptotic cells could possibly 
assist eye bankers in the early detection of DMEK tissue of poor quality. Though Bhogal et al.[18,44] 
demonstrated the efficiency and safety of using Calcein-AM for cell evaluation across the entire surface of a 
corneal transplant in vitro, regulatory and safety concerns as well as economic considerations may prevent eye 
banks from implementing such a step in their current protocol. Another less invasive and less time-consuming 
alternative may be an additional graft evaluation by light microscopy within 1 day after graft preparation. Any 
loss in cell density and integrity of the endothelial cell layer could already be recognizable at this time and may 
allow to detect low-quality grafts before sending them out for transplantation. 

One limitation of our analysis is the small number of grafts tested in every group from graft preparation through 
storage in organ-culture, limiting the accuracy of the cell viability analysis. On the other hand, these grafts were 
prepared from surgical-grade corneas that arrived in our eye bank before the cancellation of elective surgeries 
due to the COVID-19 pandemic and would have never been made available for research outside the nationwide 
lockdown context. In addition, our single dye method cannot ascertain whether non-stained areas contain dead 
cells or no cells. However, Calcein-AM is known to recognize cells in both early and late stages of cells death[45] 
and these areas will be accurately identified by the image segmentation software and rendered “non-viable” in 
the analysis. 

 

CONCLUSION 
In conclusion, our findings show that endothelial cell damage may be observed within hours after DMEK graft 
preparation with insignificant additional changes in ECD during 3–7 days of organ-culture storage before use in 
DMEK surgery. Implementing an additional step for checking tissue quality in the eye bank after preparation 
may improve the quality of DMEK grafts released for transplantation and thereby contribute to further reducing 
post-operative DMEK complications.
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Abstract 
Currently, there are very few well-established treatments to stimulate corneal endothelial cell regeneration in 
vivo as a cure for corneal endothelial dysfunctions. The most frequently performed intervention for a damaged 
or dysfunctional corneal endothelium nowadays is corneal endothelial keratoplasty, also known as lamellar 
corneal transplantation surgery. Newer medical therapies are emerging and are targeting the regeneration of 
the corneal endothelium, helping the patients regain their vision without the need for donor tissue. Alternatives 
to donor tissues are needed as the aging population requiring transplants, has further exacerbated the pressure 
on the corneal eye banking system. Significant ongoing research efforts in the field of corneal regenerative 
medicine have been made to elucidate the underlying pathways and effector proteins involved in corneal 
endothelial regeneration. However, the literature offers little guidance and selective attention to the question 
of how to fully exploit these pathways. The purpose of this paper is to provide an overview of wound healing 
characteristics from a biochemical level in the lab to the regenerative features seen in the clinic. Studying the 
pathways involved in corneal wound healing together with their key effector proteins, can help explain the 
effect on the proliferation and migration capacity of the corneal endothelial cells. 
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Introduction 
The corneal endothelium forms the innermost layer of the cornea and fulfills a key function in maintaining a 
relative state of dehydration, making it transparent.[1,2] This monolayer regulates corneal hydration through a 
well- established “pump-and-leak” mechanism. The dynamic balance between the passive barrier and active 
fluid pump of the endothelium is essential for maintaining the relatively dehydrated state of the stroma along 
with the correct alignment of stromal collagen.[3] When the corneal endothelium (CE) is compromised the 
leak/pump rate becomes unbalanced and the cornea becomes thick and cloudy. This swelling is known as 
corneal edema. The CE forms resistance to solutes and fluid permeability through paracellular transport routes, 
but allows the pas- sage of nutrients from the aqueous humor into the avascular cornea.[4,5] The “leaky” barrier 
is formed by junction proteins such as zonula occludens (ZO-1) and connexin-43, and the adhesion junction 
complex represented by cadherin isoforms.[5–7] The osmotic drive of the corneal stroma to swell is 
counteracted by removing excess stromal fluid. This fluid is removed by the activity of sodium-potassium 
adenosine triphosphatase (Na+/K+-ATPase) pumps and bicarbonate-dependent Mg2+-ATPase ionic pumps 
located mainly at the basolateral site of the cellular membrane.[5,8–12] 

Traditionally, corneal endothelial cells (CEnCs) are not thought to have a significant capacity for in vivo 
regeneration.[13] They are highly differentiated and considered post mitotic and, in healthy individuals, show a 
gradual drop in endothelial cell density throughout life with an average cell loss of approximately 0.6% per 
year.[14] CEnCs are arrested in the G1 phase of mitosis and as a increased cell spreading with cells showing high 
polymorphism.[7,15,16] Age-related decline of the CE does not usually affect the critical barrier and pump 
function. In contrast, CEnC loss due to a pathology such as endothelial dystrophies, contact lens wear, previous 
refractive or intraocular surgeries, may lead to corneal decompensation.[17–20] When the CEnC density falls 
below a functional threshold (usually about 500 cells/mm2), the pump and leak mechanism fails and the cornea 
swells.[21,22] In such cases, the gold standard treatment is to replace the ineffective endothelium with healthy, 
functional corneal endothelium by means of a corneal transplant.[15,23,24] 

Over the past 2 decades, the procedure of choice to manage corneal disorders has shifted from penetrating 
keratoplasty (PK) to the more selective endothelial keratoplasty (EK).[25] The most selective form of EK is 
currently Descemet membrane endothelial keratoplasty (DMEK), where the endothelium is replaced with a 
single layer of donor cells.[26] Surgical outcomes are excellent, but the global donor shortage remains the major 
limitation for treatment.[27–32] This has led to the development of new therapeutic options.[33–36] New 
therapies aim to regenerate the corneal endothelium by inducing corneal endothelial wound healing which is 
known to occur through cell enlargement and migration rather than by cell proliferation.[37,38] 

The mechanisms governing corneal endothelial cell migration pertain to the cytoskeleton and, in particular, to 
actin-based motility.[39] Corneal endothelium wound repair is accompanied by the appearance of actin which 
is involved in a dynamic process during cell movement. These actin filaments are involved in the formation of 
filopodia and lamellipodia, which will affect leading edge cell dynamics.[40,41] During wound healing, CEnC 
deposit fibronectin and laminin along the basement membrane.[42] These extracellular matrix molecules will 
act as guidance cues promoting signals associated with directed cell migration, including cytoskeletal 
reorganization.[43] Healthy remaining CEnC undergo cytoskeletal changes during the wound healing process. 
These changes consist of actin reorganization and cellular enlargement to form a polygonal cell shape to cover 
the damaged zone thereby rapidly restoring the barrier function. The process of these phenotypical changes 
during wound healing is known as endothelial-to-mesenchymal transition (EnMT). This process results in a 
disruption of the cellular monolayer and loss of cell-cell contact inhibition.[44] During EnMT the remaining cells 
lose their own function and shape and are converted to a fibroblast-like phenotype. The cells will break free of 
their neighboring cells and migrate individually along the Descemet membrane (DM) into the defected area 
resulting in a fast wound closure.[45–50] A hallmark of the EnMT is downregulation of the junctional protein E-
cadherin and upregulation of cytoskeletal proteins such as fibronectin and vimentin concomitant with increased 
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expression of collagen type I genes (COL1A1 and COL1A2).[51] Also, mesenchymal transition marker genes such 
as snail family transcriptional repressor 1 (SNAI1), SNAI2, zinc finger E-box-binding homeobox 1 (ZEB1), and 
ZEB2 are known to regulate the expression of collagen type 1 and suppression of E-cadherins.47 Secretion of 
type I collagen can lead to retrocorneal membrane formation and corneal blindness.[52] 

When CEnC receive a mitogenic cue, they activate cyclin proteins and cyclin dependent kinases (CDK). Both form 
cyclin/CDK complexes, which interact with the retinoblastoma protein known for its pivotal function in cell cycle 
progression.[8] The induction of cyclin D and E in combination with an inhibition of CDK-inhibitor cyclin-
dependent kinase inhibitor 1B (p27kip1) are of particular importance in transitioning from the G1 phase to the 
S-phase of the cell cycle.[53] 

Unraveling the processes involved in wound healing could lead to better insights in restoring the corneal 
endothelium. The goal of this review therefore is to compile what is currently known about the corneal 
endothelial wound healing process with special emphasis on involved pathways, biological modulators, and 
clinical implications. 

 

Methods 
The research strategy used for the pathway selection in the result section covered all relevant English papers 
concerning the corneal endothelial wound healing process. Research articles were selected in first line by title 
and abstract of the past decade (2011–2022). A total of 125 papers were found by using the query “Corneal 
endotheli*” AND Wound healing” OR “Repair” in PubMed. This selection was further refined manually through 
means of a screening table which was made to only select the most relevant papers in this field. This table was 
based on the activated pathway during corneal endothelial wound healing, the effector protein(s) involved in 
these processes and specific “marker” proteins involved in proliferation, migration, and endothelial-to-
mesenchymal transition. We obtained 42 relevant papers concerning corneal endothelial wound healing. 
Following the literature study, the upstream and downstream proteins involved in corneal endothelial wound 
healing were connected into signaling cascades by using 2 online databases: Kyoto Encyclopedia of Genes and 
Genomes (KEGG) and Consensus Path Database (CPDB). For the clinical implication part in the result section, 
the following query in Pubmed was used: cornea and cell migration and endotheli*, endotheli* cell therapies. 
A total of 28 papers were selected between 2000 and 2021 based on their clinical relevance concerning wound 
healing aspects. 

 

RESULTS 
Main pathways involved in wound healing processes  

In this section, we will summarize the key signaling pathways reported to date that are involved in corneal 
endothelial wound healing. These pathways are organized by various connections of specific effector proteins 
that typically form multi-tiered signaling cascades.  

 

Rho/ROCK pathway  

The most widely studied pathway involved in corneal endothelial wound healing is the Rho/Rho-associated 
coiled-coil containing kinase (Rho/ROCK) pathway (Figure 1).[54,55] Rho/ROCK pathway starting points are 
difficult to define, since different hormones, cytokines and growth factors can affect this cascade by regulating 
the upstream proteins.[56] Two important upstream regulators linked to corneal endothelial wound healing are 
guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), both of which are involved 
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in the activation of small G-proteins.[15,33,57–59] GEFs act as signal activators by catalyzing the exchange of 
small G protein-bound GDP to GTP. In contrast, GAPs will act as signaling suppressors by means of GTP 
hydrolysis.[60] 

The most characterized small G protein is the Ras homolog family member A (RhoA).[61] This class of proteins 
act as molecular switches of downstream signaling pathways and hydrolyze guanosine triphosphate (GTP) to 
become active.[56,62] Phosphorylated RhoA will affect ROCK, which is a target molecule for cellular therapy 
and regenerative medicine.[63] ROCK signaling pathway is involved in many biological processes ranging from 
cell adhesion, migration and stress fiber formation to even the regulation of cell proliferation and 
apoptosis.[33,34,62,64] 

The activation of ROCK sustains the activation of myosin light chain phosphatase (MLCP) and myosin light chain 
kinase (MLCK), which in turn activate the phosphorylation of myosin light chain (MLC).[64] Active ROCK causes 
MLCP inactivation so that the MLCK activity will outweigh the physiological balance of these 2 MLC 
regulators.[57] Phosphorylated MLC will cause actin polymerization and stress fiber formation in the 
cytoskeleton of CEnCs. Alternatively, the phosphorylation of LIM kinase (LIMK) by ROCK leads to an increase in 
phosphorylated cofilin. This actin binding protein will be inhibited upon phosphorylation, which results in a 
decrease of actin-depolymerizing activity. Consequently, a higher level of actin filament stabilization results in 
a higher contractile state during the wound healing process.[54,57,65] Consequently, the latter causes a higher 
level of actin filament stabilization which results in a higher contractile state during the wound healing process. 

 

 
Figure 1| Rho/ROCK signaling pathway in a CEnC. Full lines represent either downstream stimulation (arrow) or inhibition 
(flathead). A rounded end line Indicates that it will form a complex. Dashed lines target the effector proteins without all 
the intermediate involved proteins. 

 

Furthermore, LIMK, RhoA and ROCK can also block early G1-phase induction through inhibition of Ras-related 
C3 botulinum toxin substrate 1 (Rac) and cell division control protein 42 homolog (cdc42) resulting in low cyclin 
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D levels.[63,66,67] Rac and cdc42 are small GTPases which are key regulators of the p38 mitogen-activated 
protein kinases (p38MAPK) and mitogen activated ERK kinase-extracellular signal-regulated kinase (MEK-ERK) 
signaling pathways. Both pathways are known to regulate cell cycle progression.[57,61] Okumura et al. also 
showed the involvement of the phosphoinositol-3-kinase (PI3K) and protein kinase b (Akt) pathway when ROCK 
was not activated indicating the complex signaling route of this wound healing cascade.[57,68] 

Furthermore, disheveled-associated activator of morphogenesis (Daam1) which is part of the winglessinkt (Wnt) 
pathway can form a complex with RhoA and directly stimulate its activity. Indirectly, Daam1 inhibits RhoA 
activity by cdc42 activation which creates a negative feedback loop. The cytoskeletal rearrangement together 
with decreased cyclin-cyclin kinase levels and increased cyclin kinase inhibition promote migration. Proliferation 
is therefore negatively affected upon activation of Rho/ROCK signaling thereby lowering the wound healing 
ability.[54,61,68] 

 

Phosphoinositol-3-kinase (PI3K) and protein kinase b (Akt) pathway 

The PI3K/Akt pathway is based on 2 key signaling proteins namely: phosphoinositol-3-kinase (PI3K) and protein 
kinase b (Akt) (Figure 2).[69] PI3K can be activated directly by small GTPase effector Ras-proximate-1 (Rap1), 
which acts as a cytosolic signaling transducer.[70] Rap1 can be activated by the binding of exchange protein 
directly activated by cAMP (EPAC) to the cytosolic cAMP that is released intracellularly. The release of cAMP 
occurs after the binding of pituitary adenylate cyclase activating polypeptide (PACAP) to their pituitary 
adenylate cyclase (PAC1) receptor.[15,71] Alternatively, PI3K can also be activated by focal adhesion kinase 
(Fak) that functions as an early mediator in integrin activation and the time-dependent generation of cell-ECM 
forces. During wound healing, the engagement of the integrin subunits activates protein kinase c (PKC).[33] This 
serine-threonine kinase is known to be upregulated in CEnCs at the wound edge thereby affecting the activity 
of Fak.[70–72] 

PI3K phosphorylates phosphatidylinositol bisphosphate (PIP2) to generate the second messenger, 
phosphatidylinositol trisphosphate (PIP3) which signals to downstream effector Akt, a serine/threonine kinase 
implicated in the regulation of cell cycle progression and cell death.[68,73,74] The activation of Akt signaling by 
the transcription factor sex-determining region Ybox 2 (SOX2) alters the phosphorylation level of GSK-3ß 
targeting the b-catenin for ubiquitination and proteasome mediated degradation.[45] In confluent corneal 
endothelial monolayers, ß-catenin is bound to the cell 

membrane while in a lower confluency degree more freely available cytosolic ß-catenin is present.[44,46] If 
there is no stabilization signal to suppress glycogen synthase kinase 3 beta (GSK-3ß) activity, the cytosolic ß-
catenin is targeted for degradation by GSK-3b phosphorylation.[44,75] In this case, there is no internalization of 
ß-catenin into the nucleus to activate transcription factor 4 (TCF4) which can enhance cyclin D, E, cyclin 
dependent kinase 1 (CDK1) and breakdown p27kip1 and Cyclin Dependent Kinase Inhibitor 2A 
(CDKN2A).[45,46,70] As a result, there is no net effect on the cell cycle progression. SOX2 can also affect the 
GSK-3ß/ß-catenin system by interfering with the TCF4 binding site to promote cell proliferation.[45] SOX2 has 
an inhibitory effect on GSK-3ß thereby releasing ß-catenin to the cytosol which also promotes cell proliferation. 
Remarkably, ß-catenin induces morphogenic changes by enhancing EnMT related genes such as SNAI, SLUG, 
ACTA2 and ZEB1 contributing to aberrant ECM deposition and fibrosis.[44,47] 

Akt activation also leads to forkhead box transcription factor FOXO3A (Fkhlr1) suppression which promotes cell 
survival over apoptosis (FOXO signaling pathway).[45] Additionally, activated Akt promotes the phosphorylation 
of cytosolic proline rich Akt substrate of 40 kDa (PRAS40) concomitant with unlocking the inhibition of tuberous 
sclerosis proteins 1 (TSC1) which results in the activation of mammalian target of rapamycin (mTOR) 
pathway.[76] Activated PRAS40 binds with rapamycin complex 1 (mTORC1) to stimulate ribosomal protein S6 
kinase (S6K) which stimulates protein synthesis to become more metabolically active during wound closure. At 
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the same time activated PRAS40 as well as TSC will stimulate the mothers against decapentaplegic homolog 4 
(SMAD4) transcription factor. The latter is known to activated EnMT related genes such as SNAI, SLUG, ACTA2 
and ZEB1 causing enhanced motility and aberrant ECM deposition.[47,74] 

 

 
Figure 2| PI3K/Akt signaling pathway in a CEnC. Full lines represent either downstream stimulation (arrow) or inhibition 
(flathead). A rounded end line Indicates that it will form a complex. Dashed lines target the effector proteins and pathway 
without all the intermediate involved proteins. 

Nuclear accumulation of p27kip1 is caused by the phosphatase and tensin homolog (PTEN) protein-induced 
inhibition of AKT phosphorylation.[77] Zhang et al. showed that inhibition of PTEN results in a stimulation of cell 
cycle progression as well as an increased migration behavior of CEnCs which emphasize the effect on wound 
healing.[77]  

In general, PI3K and Akt modulate cell cycle progression, enhance cell survival, but may also cause EnMT 
induction with concomitant increase in motility together with aberrant ECM secretion. These different 
processes could be seen as characteristics for corneal endothelial wound healing. 

 

Wingless-Inkt pathway 

The Wnt pathway and can be subdivided in a canonical and noncanonical signaling cascade[44] (Figure 3). The 
canonical cascade passes signals in CEnCs through the activation of an atypic cell surface G-coupled receptor 
complex called Frizzled-Low density lipoprotein receptor related protein 5-6 (FzdLRP5/6).[59] This receptor 
complex inhibits GSK-3ß and leads to cytoplasmatic stabilization and nuclear transport of ß-catenin which 
enhances cellular proliferation abilities.[45,75] 
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The noncanonical Wnt pathway consists of different frizzled family receptor members such as Fzd5 and can be 
activated by Wnt5a ligand.[47,59] This protein will stimulate the cytoplasmatic protein Daam1 which form a 
complex with RhoA (Daam1-RhoA complex) to regulate cytoskeleton organization and cell migration through 
GTPases of the Rho-family, such as RhoA and Cdc42.[44,59] Activation of Cdc42 inhibits RhoA which, in turn, 
enhances cell migration through regulation of cofilin.[57] A higher level of dephosphorylated cofilin causes a 
faster modulation in actin turnover in cytoskeleton assembly resulting in a higher migratory state.[65] 

In general, the Wnt pathway can alter cell proliferation and migration abilities by means of GSK-3ß regulation 
and Daam1 modulation respectively. Therefore, it is an important signaling cascade involved in corneal 
endothelial wound healing. 

 

Transforming growth factor beta (TGF-) pathway 

TGF-ß signaling pathway has been shown to regulate many cellular processes such as cell proliferation, 
differentiation, motility, adhesion, and programmed cell death (Figure 3). Earlier reports indicated the presence 
of 3 types of TGF-ß receptors in human corneal endothelium.[78] Moreover, Joyce et al. stated that those 
receptors were continuously exposed to latent TGF-ß2 that is found in aqueous humor, thereby preventing 
CEnCs to enter the G1-to-S transition phase of the cell cycle.[37,79] TGF-ß2 blocks the phosphorylation of 
p27kip1 which is a prerequisite for nuclear export of the inhibitor molecule for degradation.[77] Consequently, 
accumulation of p27kip1 molecules in the nucleus negatively regulate the CDK complexes that are necessary for 
cell cycle progression.[70] TGF-ß pathway activation together with contact inhibition are thought to be one of 
the main reasons which prohibit CEnC proliferation in vivo.[77] Additionally, the TGF-ß receptor can directly 
activate the downstream signaling Akt protein leading to loss of tight junctions and EnMT activation. 

Joko et al. discovered that TGF-ß signaling caused an upregulation of the TGF-b-stimulated clone 22 (TSC-22) 
gene, encoding for a transcription factor that has cell proliferation suppressor properties.[76] TSC-22 binds to 
and modulates the transcriptional activity of Smad4 causing either an upregulation of cyclin-dependent kinase 
inhibitor 2B (p15) and thus inhibiting cell proliferation or enhances the expression of specific sets of target genes 
such as SNAI, ACTA2 and SLUG which trigger EnMT.[58,78,80] 

Interestingly, TGF-β2 has been reported to induce wound healing by promoting CEnC migration through 
activation of p38MAPK rather than by stimulating cell proliferation because p38MAPK has shown to upregulate 
p27kip1 expression which promotes the G1 cell cycle arrest.[76] TGF-ß2 enhances CEnC migratory properties 
through mitogen-activated protein kinase 1 (MAPK1) activation.[37] This kinase affects the more downstream 
mitogen-activated protein kinase 3 and 6 (MAPK3/6) which modulates the phosphorylation of p38MAPK and 
promotes its translocation to the nucleus.[37,76] 

In conclusion, TGF-ß can stimulate CEnC wound healing by enhanced migratory activities regulated through 
activation of p38MAPK.[76] However, TGF-ß signaling may force the CEnCs to adopt a fibroblastic like 
morphology causing aberrant collagen 1 and fibronectin deposition.[47,78] The presence of such changes in 
ECM production hampers the success of transplantation of cultivated cells in vitro due to this highly undesirable 
phenotype.[70,78] 
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Figure 3| TGF-ß/Wnt signaling cascade in a CEnC. Full lines represent either downstream stimulation (arrow) or inhibition 
(flathead. Dashed lines target the effector proteins and pathway without all the intermediate involved proteins. 

 

Clinical implications 

Clinical scenarios that require corneal endothelial cell migration. Corneal opacification represents one of the 
prevalent causes of blindness, accounting for 4.2 million visual impaired patients of the worldwide blind 
population in 2019.[81–83] Corneal blindness may be caused by diseases such as Fuchs endothelial corneal 
dystrophy (FECD), (pseudophakic) bullous keratopathy, posterior polymorphous dystrophy, congenital 
hereditary endothelial dystrophy, or iridocorneal endothelial syndrome.[23] FECD is the most common form of 
corneal endothelial dystrophy with a regional prevalence that varies from 3.8% to 11% in individuals in the fifth 
or sixth decade of life. Moreover, it is the top indication for cornea transplantation worldwide.[30] FECD is a 
bilateral, sporadic, or autosomal dominant (inherited in some cases) dystrophy that progresses slowly and is 
characterized by deterioration of endothelial cells and development of basement membrane excrescences 
known as guttae.[84] Endothelial cell loss from FECD damages barrier function and if left untreated, central 
corneal edema will expand into the periphery leading to diffuse edema, bullous keratopathy, and eventually to 
subepithelial scarring.[85,86] However, corneal decompensation and bullous keratopathy can also result 
from corneal injury, iatrogenic damage by cataract surgery or other surgical procedures, or medication 
toxicity.[87–92] Corneal blindness from these cases is primarily treated by performing a corneal transplant. 

For about ten decades, full thickness transplantation of the cornea was the gold standard for treating corneal 
disorders, while nowadays, EK has become the technique of choice. The 2 most successful endothelial 
keratoplasty techniques are Descemet stripping (automated) endothelial keratoplasty (DS(A)EK) and DMEK 
(Descemet membrane endothelial keratoplasty). The main difference between DMEK and DS (A)EK is the 
stroma-less graft in DMEK, which results in improved postoperative best-corrected visual acuity (BCVA) 
outcomes and a faster visual recovery.[93,94] Despite technique improvements and efforts to standardize 
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DMEK, postoperative complications have been reported including significant decline in endothelial cell density 
(ECD), especially during the early postoperative period, as well as graft detachment.[95–97] 

Clinically, an important consideration is whether the host and/or recipient endothelial cells are capable of 
migrating to cover bare recipient stroma in the areas not covered by graft tissue. In vivo endothelial cell 
migration has been described in eyes with partially detached grafts resulting in corneal clearing, despite varying 
degrees of incomplete graft attachment[98,99] (Figure 4). Visual recovery was explained by endothelial cell 
migration or regeneration from either the donor or remaining recipient endothelial cells. Endothelial cell 
migration was also reported for grafts decentered in recipient eyes after DMEK or in patients who developed 
immune reaction episodes with endothelial precipitates detectable on the graft and on the bare stroma not 
covered by the DMEK graft.[100,101] 

New insights in endothelial cell migration were also obtained after Quarter-DMEK surgery, that is, a modified 
DMEK-technique in which an untrephined full-sized DMEK graft is equally divided in quarters in order to treat 4 
eyes with 1 donor cornea. In a first Quarter-DMEK cohort of 19 eyes, the central cornea underlying the graft 
cleared rapidly, while the peripheral bare stromal regions slowly improved over several months.[102–104] This 
suggested that donor endothelial cells migrated from the radial cut graft edges and induced corneal clearance 
in those areas. Cell migration from the round graft edge, on the other hand, was inhibited, possibly due to the 
arrangement of fibrillary bands of collagen in the graft periphery acting as a barrier for cell migration.[104] The 
lack of cell migration from the round graft edge resulted in localized longer standing corneal edema along the 
round graft edge.[102] Widespread cell migration from the cut graft edges may be responsible for the initially 
rapid decline in ECD observed after Quarter-DMEK surgery.[105] A follow up in vitro study carried out by the 
same group showed that alterations in the far peripheral area of Quarter-DMEK grafts were insufficient to 
trigger cell migration from the limbal graft edge.[106] This was attributed to progenitor cells located beneath 
the Schwalbe’s line and which lack cytokinetic directional cues despite their exposure to free surface.[107] 

 

 
Figure 4| Slit-lamp and specular microscopy images of a DMEK graft at 8 months of follow-up. Although centrally the 
graft appeared detached, the area was visibly clear. Specular microscopy images taken at the indicated positions in the left 
image showed an endothelial cell density of 1770 cells/mm2 in the corneal center (A), 1420 cells/mm2 paracentrally (B), 
1280 cells/mm2 in the periphery (C), and 515 cells/mm2 in the far periphery (D). Adapted from: “Descemet membrane 
endothelial transfer: "free-floating" donor Descemet implantation as a potential alternative to "keratoplasty". Dirisamer, 
M., Cornea, 2012. 

 

Recently, another study reported complete recovery of corneal clarity and visual acuity when using 
cryopreserved full-thickness endothelial-free grafts for therapeutic PK.[108] Of the 18 out of 195 grafts showed 
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recovery of the corneal graft clarity within 1 year after graft transplantation. When corneal clarity was 
recovered, average ECD was 991 cells/mm2 (range, 782-1531 cells/mm2) and remained stable up to 2 years after 
surgery. The authors suggested that the endothelium may have regenerated by cell proliferation rather than 
cell migration and that cells originated from peripheral host.[108] 

 

Experimental alternatives to transplantation techniques 

Cell regeneration 

In ophthalmology, ROCK-inhibitors play a role in the regulation of aqueous humor outflow by inducing relaxation 
of both the ciliary muscle and the actin cytoskeleton in the trabecular meshwork.109 Currently, Ripasudil (0.4% 
ROCK inhibitor) has market authorization in Japan for treating glaucoma or ocular hypertension.110 More 
recently, Netarsudil ophthalmic solution 0.02% was approved in the United States and the European Union for 
lowering elevated intraocular pressure (IOP).[34,111,112] 

The first clinical study suggesting that in vivo proliferation of corneal endothelium could be stimulated by 
pharmaceutical treatment described the possibility of using ROCK-inhibitor eye drops subsequent to 
transcorneal freezing as an alternative to graft surgery in patients with corneal endothelial dysfunction.[113] 
Specular microscopy examination 18 months after the treatment showed small CEnCs present at a high cell 
density in the central part of the cornea. Two suggestions were made regarding the mechanism of action, 
namely the spontaneous cell remodeling and presence of endothelial progenitors in the peripheral cornea. In 
that experiment, it was not possible to conclude whether the endothelium improved due to the ROCK-inhibition 
application or whether the removal of the diseased cells was sufficient to induce wound healing.[113] Other 
case reports described that ROCK-inhibitors prevent the progression of bullous keratopathy in patients whose 
corneal endothelium was severely damaged by cataract surgery or rescue PK grafts from failure after an acute 
rejection episode.[63,114] 

Surgical Techniques that require endothelial migration 

Descemet stripping only (DSO) or Descemetorhexis without endothelial keratoplasty (DWEK) and acellular DM 
transplantation are experimental surgical strategies for treating central FECD that depend on the patient’s own 
endothelial cells to grow and reform the barrier.[115–118] The surgery involves removal of the central 4-6 mm 
diseased endothelium and DM, that is, removal of central non-confluent guttae, to allow the centripetal 
migration and redistribution of the remaining healthy peripheral endothelial cells to cover either the bare 
stroma generated by DWEK/DSO or to re-populate the transplanted devitalized DM.[116,119] Transplanting a 
devitalized DM or trying to leave Descemet membrane’s anterior banded layer intact during descemetorhexis 
may be beneficial for cell migration as this extracellular matrix contains important proteins and growth factors 
that are required for cellular process such as migration or proliferation [132].   

Clinical case series evaluating DWEK/DSO for FECD have reported inconsistent results from total failure to 
complete recovery with central ECD in the range of 428-864 cells/mm2 at the last reported follow-up visit (range: 
6–24 months).[119–121] Observed corneal clearance time in successful DSO cases, which can most likely be 
linked to the speed to cell migration, varied between patients and was thought to be influenced by both surgical 
and patient factors. Overall, repopulation of the bare stroma and inducing corneal clearance can occur between 
3 and 6 months postoperatively. This gives a timeframe for in vivo CEnC wound healing to happen.[119,121] 
(Figure 5). 

When a topical ROCK-inhibitor such as Ripasudil or Netarsudil was administrated after DWEK/DSO, decreased 
clearance time together with an improved central ECD and an overall better cell architecture were found in eyes 
that received ROCK-inhibitor immediately after surgery.[66,122] Moreover, less loss of peripheral ECD was 
observed when ROCK-inhibitor was administrated immediately after surgery rather than waiting until later in 
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the healing course.[66] Hence, this may support the concept of endothelial cell proliferation in the ROCK-
inhibitor treated group, as opposed to pure endothelial cell migration in the DWEK/DSO group. However, overall 
peripheral ECD decreased after DWEK/DSO regardless of whether ROCK-inhibitor had been administered. The 
repopulation of central bare stroma therefore most likely involved a combination of proliferation and migration 
of cells from the peripheral endothelium.[122] 

 

 
Figure 5| Slit-lamp and specular microscopy images of a cornea at 6 y post DSO. Although the posterior cornea appeared 
irregular (A) following 8 mm surgical descemetorhexis, the cornea clarity was restored within 12 weeks and maintained 
thereafter (B) with a central ECD of 960 cells/mm2 (C). 

 

The inability of the corneal endothelium to regenerate in vivo has been mainly attributed to strong contact 
inhibition cell behavior that in turn upregulates the p27Kip1 and prevents transition to the S-phase. Thus, 
corneal endothelial cells are not terminally differentiated but do possess proliferative potential. In vitro studies 
on corneal endothelium wound healing with ROCK-inhibitor showed that cell cycle progression is enhanced 
closer to the wound edge and stops once the wound is healed.[63,67,94] Studies of ROCK-inhibitor in human 
patients reported “pseudoguttae” visible on specular microscopy.[123] These ‘dark bodies’ were arising in the 
population of cells migrating to cover the descemetorhexis area but disappeared later, when the endothelium 
integrity was restored.[85,118] This led to the assumption that ROCK-inhibitor might have affected the 
distribution of actin microfilaments concomitant with inhibition of focal adhesion formation. Another important 
observation was the intercellular localization of the dark bodies rather than within the cell cytoplasm.[118] 
These clinical observations corroborate well with the in vitro findings that ROCK-inhibitor reduces cell adhesion 
through a loss of focal adhesion complexes and reduced expression of intracellular adhesion 
molecules.[112,124] Although there is little information about the success of DWEKDSO procedure in relation 
to patient factors, surgical factors such as avoiding constant pressure during DM scoring or stromal contact by 
overlaying an acellular DM to facilitate central cell migration and prevent posterior stromal scarring are better 
characterized.[116,117,125] 
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Because DWEK/DSO was shown to be more successful among patients suffering from FECD due to the presence 
of a larger cell reservoir to the periphery, transplanting a denuded DM together with the use of a topical ROCK-
inhibitor might increase the success rate of DWEK/DSO.[117] 

Cell- based therapies 

Kinoshita et al. were the first to report on CEnC injection therapy in 11 patients (7 were FECD, 4 were BK) with 
a 5-year follow-up.[126] After removing the abnormal extracellular matrix and the degenerated CEnCs on the 
patient DM either by mechanical scraping or a 5 mm descemetorhexis, cultured human CEnCs were injected in 
combination with ROCK-inhibitor into the anterior chamber of the eye. ROCK-inhibitor was required as a 
supplement for the cell suspension to promote CEnC adhesion.[33,35] Since the number of injected cells was 
106 in most treated eyes, proliferation is unlikely to occur despite the presence of ROCK-inhibitor, but it can be 
speculated that cell migration might have occurred in case of an initially uneven cell adherence on the posterior 
surface. Five years after the procedure, 10 out of 11 patients showed a restoration of the corneal function with 
a central ECD of 1257 ± 467 cells/mm2 and no major adverse reactions directly related to the human CEnC 
injection therapy.[126] This promising preliminary study that merged an adjunct drug in cell-based therapies 
has offered a new perspective in the treatment of endothelial dysfunction.[126] 

 

DISCUSSION 
Currently, newly emerging alternatives to conventional EK are being investigated to compensate for the shortfall 
in global corneal graft tissue.[27–32] Within the field of regenerative medicine, new therapeutic strategies aim 
to regenerate the corneal endothelium through means of corneal endothelial wound healing and potentially 
pharmacologically stimulating this process.[61,62,77] Over the past decade, advances in our understanding of 
the biochemical and mechanical cues have help us better exploit the underlying wound healing process. 

The main signaling pathways that govern normal corneal endothelial wound healing include the RhoA/ROCK, 
PI3K/Akt, Wnt, and TGF-ß pathways. These cascades carry on information of upstream/downstream 
relationships between interacting proteins. For example, Rap1 is a molecular switch that cycles between an 
active GTP-bound and inactive GDP-bound form and regulates the RhoA/ROCK and PI3K/Akt pathway. Because 
ROCK mediates various important cellular functions, inhibition of ROCK may affect multiple signaling pathways 
and will outweigh signaling cascades which act through the same effector proteins.[34] This crosstalk hypothesis 
may explain why ROCK-inhibition can have multiple biological effects such as enhanced proliferation or anti-
apoptotic effects and why it is not only limited to cytoskeletal changes within the wound healing process.[62,66] 
The crosstalk of the Rho/ROCK pathway with other signaling cascades makes it challenging to unravel all 
involved processes in endothelial wound healing and more research is required to fully exploit the underlying 
biochemical processes for clinical applications. 

Transcription factor SMAD4, which also is an indirect target of Akt, plays an important role in inducing EnMT 
thereby creating cytoskeletal changes, an increased motility and aberrant CEnC ECM deposition. However, 
strategies to overcome EnMT must not be accompanied by the impairment of cell migration during wound 
healing.[47] Sumioka et al. investigated the role of TGF-ß related signaling during corneal endothelial wound 
healing by avoiding the disruption of migration signals while blocking an unfavorable EnMT phenotype. This 
study indicates that it is possible to increase wound healing without inducing EnMT.[80] 

Cyclins, cyclin-kinases and cyclin kinase inhibitors are the end staged effector proteins that regulate cell cycle 
progression and proliferation in CEnCs during wound healing. Enhancing these end-staged proteins can lead to 
a selective regulation of the proliferation rate instead of activating other upstream proteins that could adversely 
affect the normal CEnC phenotype.[13,38,53] 
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Endothelial wounds may trigger cells adjacent to the wound to lose their pericellular actin band pattern and 
later well-defined stress fibers fill their cytoplasm and persist until the wound is closed.[69] However, it was 
also reported that endothelial cells undergo directional migration into the wounded zone in the absence of an 
organized actin cytoskeleton and without stress fiber formation.[127,128]  

Progenitor cells that are located in specific niches in the corneal far periphery may constitute an interesting 
target for regenerative therapies as they were shown to possess enhanced regenerative capacities.[107,129] 
However, knowledge about these cells and the involved processes is still limited.  

This review provides an extensive overview over the signaling pathways involved in CEnC proliferation and 
migration. Knowledge about these pathways paves the way for pharmacological stimulation to effectively target 
these fundamental cell processes. This could lead to an effective topical treatment of corneal endothelial 
dysfunction either as a stand-alone treatment or in combination with surgical removal of diseased tissue. To 
conclude, basic research involved in corneal endothelial cell biology will act as a central anchor point for new 
therapies to treat corneal endothelial dysfunctions. 
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ABSTRACT 
Purpose: To investigate in vitro central and peripheral corneal endothelial cell (EC) migration from Quarter–
Descemet membrane endothelial keratoplasty (Quarter-DMEK) grafts. 

Methods: Quarter-DMEK grafts were obtained from 10 corneas ineligible for transplantation but with intact and 
viable ECs. Ten Quarter-DMEK grafts were ‘sandwiched’ between two glass slides and cultured over 1 week in 
a humidified atmosphere at 37°C and 5% CO2. Cell migration was evaluated by light microscopy at standardized 
time intervals. In addition, immunohistochemistry analyses were performed to assess the detailed structural 
organization of ECs in the corneal centre and far periphery. 

Results: Endothelial cell (EC) migration occurred from the radial cut graft edges, but not from the far peripheral 
area. Cell migration followed three different migration patterns: (1) individual cell migration, (2) uncoordinated 
cell migration of cell clusters and (3) collective migration in which ECs moved as a sheet. Immunostaining 
showed the presence of ECs up to the far periphery but with different expression patterns of phenotypical 
markers ZO-1, Na+/K+ –ATPase and vimentin compared to central ECs. 

Conclusion: In vitro EC migration from Quarter-DMEK grafts occurs along the radial cut edges with a decrease 
in migration activity towards the corneal far periphery. No migration occurred along the outer peripheral 
corneal edge possibly due to a different anatomical matrix in the far periphery. Hence, ECs from the far 
periphery may not contribute to corneal clearance of the adjacent bare area after Quarter-DMEK surgery, but 
these cells may constitute a valuable cellular reserve on the graft. 
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Introduction 
Recently, we have introduced several modifications of Descemet membrane endothelial keratoplasty 
(DMEK) including Quarter-DMEK, a technique that potentially allows to retrieve four quadrants from a full-
size Descemet membrane (DM) and therefore to utilize four endothelial grafts from a single donor 
cornea.[1–4] In a first series, Quarter- DMEK eyes showed visual outcomes similar to conventional 
(circular) DMEK.[4]  At  the slit lamp, however, Quarter-DMEK eyes typically showed a different corneal 
clearance pattern with clearing primarily occurring adjacent to the radial cut graft edges but not along the 
‘limbal’ round edge of the Quarter-DMEK grafts. This finding would suggest that donor endothelial cell (EC) 
migration varies over these grafts, with an almost complete absence of migration in the far peripheral 
anatomical area of DM. 

The aim of this study was to further evaluate how EC migration may vary over different anatomical 
corneal areas, by studying in vitro EC migration from organ-cultured Quarter-DMEK grafts, and to determine 
how Quarter-DMEK grafts may be positioned best onto the posterior recipient corneal surface during 
surgery in order to obtain a homogenous redistribution of donor ECs postoperatively. 

 

Materials and Methods 
Corneas 

Ten human corneas ineligible for transplantation but with an intact and viable EC layer were obtained from 
seven donors (mean age 72 (±13) years; range 51–84 years; Table 1). All donors had stated to have no objection 
against transplanted-related research.  

 

Quarter–Descemet membrane endothelial keratoplasty graft preparation  

Quarter-DMEK grafts for these experiments were prepared at Amnitrans EyeBank Rotterdam as previously 
described.[4] Briefly, after decontamination of the globes, corneo-scleral rims were excised within 36 hours 
post-mortem. After EC morphology and viability were evaluated and digital photographs were made with 
inverted light microscopy (Zeiss Axiovert 40C; Carl Zeiss International, Zaventem, Belgium), the excised corneo-
scleral rims were stored in organ culture medium (CorneaMax; Eurobio, Courtaboeuf, France) at 30°C until 
further processing. To peel the Quarter-DMEK grafts, corneo-scleral rims were placed endothelial-side-up on a 
custom made holder with a suction cup. The endothelium was then stained for visualization with 0.04% 
hypotonic trypan blue solution (Hippocratech, Rotterdam, the Netherlands) for 10 second. Next, the DM-EC 
sheet including trabecular meshwork (TM) was loosened over 360° from the scleral spur towards the corneal 
centre and the corneo-scleral button was divided into four equally sized parts with a surgical blade (no. 24 knife; 
Swann-Morton, Sheffield, UK). The DM was then centripetally stripped from the posterior stroma by grasping 
the TM with McPherson forceps (Moria, Medical Workshop, Groningen, the Netherlands), thereby obtaining 
four Quarter-DMEK grafts. After stripping, four rolls formed spontaneously with the endothelium on the outer 
side and the TM still attached to facilitate later graft handling. Endothelial cell morphology and viability were 
again assessed, and images of each Quarter-DMEK graft were evaluated using the fixed frame method. For all 
ten corneas, the endothelial cell density (ECD) determined in the eye bank after DMEK graft preparation was on 
average 2743 (±185) cells/mm2, with no significant ECD difference between the four quarters (P > .05) deriving 
from the same cornea. Each Quarter-DMEK graft was then stored separately in organ culture medium 
(CorneaMax; Eurobio) before being evaluated for chemotactic cell ability or immunohistochemistry analysis. 
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Table 1. Donor demographics.  

Donor Information Indicators 

Donor data  

Gender  

     Female 

     Male 

Mean age (±SD), yrs. (range) 

 

4 

3 

72 (±13), (51–84) 

Mean storage time (±SD), days (range) 11 (±5),   (3–16) 

Cause of death 

Cardio/Stroke 

Respiratory  

 

2 

5 

*Mean storage time = time between death and culture of first isolated DM-EC tissue; SD = 
standard deviation; yrs. = years 

 

Cell migration study 

To analyse cell migration patterns of the corneal endothelium on a Quarter-DMEK graft, 10 individual Quarter-
DMEK rolls with the TM attached, obtained from 10 different corneas, were unfolded endothelial-side-up on a 
FNC-coated (fibronectin, collagen and albumin coating mix; Athena ESTM Baltimore, MD, USA) glass coverslip 
and evaluated in vitro. Unfolding for all grafts was performed in a ‘no-touch’ manner by grabbing the graft only 
at the TM site with a McPherson forceps and dropping organ culture medium onto the graft while the glass 
coverslip was kept tilted under a small angle. Next, the TM was carefully removed from the Quarter-DMEK 
grafts, and the endothelium was submerged in serum containing culture medium to ensure cell viability during 
the experiments. Serum containing culture medium consisted of 15% fetal bovine serum in Dulbecco’s modified 
Eagle’s medium supplemented with 2 mM L-Glutamine, 2 ng/ml fibroblast growth factor (bFGF), 0.3 mM L-
ascorbic acid 2-phosphate (all from Sigma-Aldrich, Zwijndrecht, the Netherlands) and 10 000 U-ml Pen/ Strep 
(Carl Roth GmbH + Co. KG, Karlsruhe, Germany). A second FNC-coated glass coverslip that was spatially 
separated from the flattened Quarter-DMEK graft by a suture wire (Supramid TS194-0, non-absorbable, Hueber 
Medica) was then carefully placed on top. The Quarter-DMEK graft, now ‘sandwiched’ between the two glass 
slides, was then transferred to a 24-well plate, and kept over 9 days in a humidified atmosphere at 37°C and 5% 
CO2. For routine maintenance, medium was replaced with fresh culture medium every 2–3 days. To assess cell 
morphology and the degree of cell migration, the Quarter-DMEK grafts were photographed daily with an 
AxioVert.A1 microscope with AxioCam 305 color camera (Zeiss, Oberkochen, Germany). 

 

Immunohistochemistry 

To evaluate the expression of continuous zonula occludens-1 (ZO-1) at the cell–cell borders, thin cortical 
vimentin cytoskeleton and pump function through Na+/K+ –ATPase, immunohistochemistry analysis was 
performed at room temperature on Quarter-DMEK grafts obtained from the same corneas as the grafts used 
for the cell migration experiments. Quarter-DMEK grafts were unfolded and flattened on silane-precoated glass 
slides (Sigma Aldrich) before fixation in 4% paraformaldehyde (Sigma-Aldrich) for 30 min. Following fixation, the 
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grafts were first washed with phosphate buffered saline (PBS), then permeabilized using permeabilization buffer 
(0.1% Triton X-100 in PBS; Sigma Aldrich) and finally incubated with blocking buffer (5% bovine serum albumin 
in PBS; Sigma-Aldrich) for 1 hour to prevent non-specific staining. Blocking buffer was also used for primary and 
secondary antibody (Life Technology, Bleiswijk, the Netherlands) dilutions. Incubation with primary antibodies 
anti-ZO-1 tight junction protein (anti-ZO-1/TJP1; dilution 1:100), anti-vimentin filamentous protein (anti-
vimentin, dilution 1:100) and anti-sodium/potassium-ATPase (anti-Na+/K+ –ATPase, dilution 1:100) was 
performed for 1 hour and was followed by several PBS washing steps. Samples were then incubated with 
secondary antibodies (dilution 1:200) for 1 hr. As control, an antibody to smooth muscle actin (anti-α-SMA, 
dilution 1:100) was included as a marker for smooth muscle cells and myofibroblasts. After washing with PBS, 
the samples were stained with 40,6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich) to visualize the nuclear 
DNA and then imaged using an inverted fluorescence microscope connected to a camera (Axiovert; Zeiss). 

 

Results 
Structural analysis of endothelial cell distribution on Quarter-DMEK grafts  

With light microscopy, all Quarter-DMEK grafts showed an intact endothelium up to the radial cut edges (Figure 1A).  

 

 
 

Figure 1| General view of a Quarter-Descemet membrane endothelial keratoplasty (DMEK) graft flattened on a glass 
support. (A) Overview of a flattened Quarter-DMEK graft with the trabecular meshwork (TM) still attached. Corneal centre 
(B) and far periphery (C) show structural differences, which become more distinct when displayed at higher magnifications 
(x100). (B) Corneal  centre  with  closely  packed  hexagonal  endothelial  cells.  (C)  Far  peripheral  area  is dominated by a 
fibrillary area adjacent to the TM. 
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From the central to far peripheral corneal areas, the ECs showed a different morphology, with a relatively 
homogenous cell distribution in the corneal centre and less densely packed cells with a more heterogeneous 
morphology towards the periphery (Figure 1A–C). In the area directly adjacent to the TM, collagen fibres 
intermingled with the ECs in a spiral-like pattern (Figure 1C). 

 

Cell migration study 

All grafts showed substantial cell migration from day 4 up to day 6 with EC migration along the radial cut edges 
up to the central tip of the graft (Figures 2 and 3). The degree of migration decreased towards the peripheral 
graft area. Over the far periphery, that is the intermingled fibrillary area, no cell migration was observed, that 
is no cells crossed the rounded graft edge at any time-point (Figures 2B and 3A–C).  

At the radial cut edges, three types of cell migration patterns could be observed: (1) individual cell migration in 
an exploratory manner lacking a directional stimulation (i.e. random cell migration) was present in five of 10 
grafts (Figure 2C), (2) migration  of cell clusters, with cells  coexisting  at the leading migratory edge, not forming 
a continuous monolayer (i.e. uncoordinated cell migration) was observed   in four of 10 grafts (Figure 2D–G) 
and (3) migration of interconnected cells that collectively departed the DM with a leading ‘cell group’ at the 
front edge (i.e. collective cell migration) was observed in one of 10 graft (Figure 3D–I). 

 
Figure 2| Example of individual and uncoordinated in vitro endothelial cell (EC) migration. (A) Collage of light microscopy 
images (x25 magnification) to create an overview of a flattened Quarter-Descemet membrane endothelial keratoplasty 
(DMEK) graft without trabecular meshwork attached, at the start of the cell migration experiment (Day 0). (B–G) Light 
microscopy images of the round edge (B,C), the radial cut edge (D,E) and the cut edge tip (F,G) of the Quarter-DMEK graft 
taken at Day 4 (left) and Day 6 (right) with x100 magnification. (B) In the area of the round edge of the Quarter-DMEK graft, 
no apparent cell migration is observed across the round graft edge with (C) only individual cells migrating across the far 
peripheral cut edge of the graft. (D,E) Along the radial cut edge of the Quarter-DMEK graft, single bleb-like ECs migrating 
onto the glass coverslip are observed. (F,G) At the cut edge tip of the Quarter-DMEK graft, individual cells migrate onto the 
glass coverslip. 
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Figure 3| Example of collective in vitro endothelial cell (EC) migration. (A–I) Light microscopy images of the round edge 
(A–C), the radial cut edge (D–F) and the cut edge tip (G–I) of the Quarter-Descemet membrane endothelial keratoplasty 
(DMEK) graft taken at Day 1 (left), Day 4 (middle) and Day 6 (right) with x100 magnification. (A–C) In the area of the round 
edge and far periphery of the Quarter-DMEK graft, no EC migration onto the glass slide was observed up to Day 6. (D–F) 
Along the radial cut edges of the Quarter-DMEK graft, collective EC migration in a form of a monolayer was observed; 
leader cells at the front edge of the advancing cell sheet are identifiable. (G–I) Around the cut edge tip of the Quarter-
DMEK graft, the collective migration pattern was most evident at Day 6. 

 

Immunohistochemistry 

Immunohistochemistry analysis confirmed the presence of ECs up to the far peripheral area of the Quarter-
DMEK grafts, that is up to the round edge of the graft (Figure 4). However, ECs in the centre and far periphery 
revealed different expression patterns of the typical endothelial markers ZO-1, vimentin, and Na+/K+ –ATPase 
(Figure 4). While ZO-1 expression at the apical junctions in the central graft area showed the typical hexagonal 
cell borders, the distribution of ZO-1 towards the intermingled fibrillary area in the far periphery was more 
discontinuous and revealed larger cells than in the central area (Figure 4A,B). Differences in cell size and shape 
between ECs in the centre and far periphery were also shown by the expression of vimentin that showed a mat 
of filaments within the EC cytoplasm in the far periphery (Figure 4C,D). Towards the far periphery, also Na+/K+ 
–ATPase pumps were expressed more irregularly (Figure 4E,F). The absence of α-SMA-positive cells in both 
central and peripheral regions of the Quarter-DMEK graft verified the absence of any transformed ECs (Figure 
4G,H). 

5 



Chapter 5 
 

90 
 

 
Figure 4| Immunofluorescence staining of the Quarter-Descemet membrane endothelial keratoplasty (DMEK) graft in 
the centre compared to the far periphery. Expression of ZO-1 (A,B), vimentin (C,D),  Na+/K+ –ATPase (E,F) and α-smooth 
muscle actin (α-SMA;  G,H) was analysed. The central endothelium showed characteristic expressions for the tight junction 
protein ZO-1 (A, red), structural  protein  vimentin  (C, red) and functional protein Na+/K+ –ATPase (E, red) counter- stained 
with DAPI (blue). The presence of markers in the far peripheral area (B,D,F) verified the presence of endothelial cells (ECs) 
up to the round edge of the Quarter-DMEK graft. However, the cells in the far periphery showed a different expression 
pattern for these endothelial markers (B,D,F red) as compared to the central area. α-SMA, used as a negative control for 
the ECs, was absent in the centre and in the far periphery of the endothelium (G,H). x200 magnification. 
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Discussion 
In this study, we evaluated how EC migration may vary over different anatomical corneal areas, by studying in 
vitro EC migration from organ cultured Quarter-DMEK grafts. 

Our results showed that corneal ECs migrate from the radial cut edges but not from the round edge of a Quarter-
DMEK graft, that is the far, ‘limbal’ periphery of DM. The lack of EC migration from the peripheral round edge 
may be explained by the structural organization of the peripheral DM. Immunolocalization showed expression 
of the structural (ZO-1 and vimentin) and functional (Na+/K+ –ATPase) markers up to the far periphery, however, 
although ECs in the far periphery formed a cellular monolayer, these cells did not show the typical hexagonal 
cell structure. 

He et al. (2012) showed that in the corneal far periphery, ECs were organized in small radial rows induced by 
the furrow-like distribution of the underlying collagen fibres. It was suggested that this anatomical organization 
is to direct the migration of ECs from specific niches in the far periphery towards the centre of the cornea 
throughout life, limiting the migration in the other direction. Hence, if migration would not occur or is limited 
from the limbal edge of a Quarter-DMEK graft, it may be important to position the graft eccentrically, with its 
radial cut edges near the pupillary area while the peripheral round edge is positioned peripherally, to avoid 
slowly resolving corneal oedema in the visual axis.[5] Further, it may be beneficial for the smaller Quarter-DMEK 
graft – compared to a circular conventional graft – that not all cells are able to ‘leave’ the graft. This could 
possibly enable early stabilization of the EC density over time. 

Although detailed knowledge about the movement of corneal ECs is lacking, migration of other cell sheets has 
been studied more extensively, especially in vitro.[6–10] Under normal conditions, cells maintain strong 
adhesions with neighboring cells. When a wound is created, the released transient chemical signals enhance 
cellular motility near the edge of the wound and cells at the wound edge extend large polarized lamellipodia 
towards the free surface producing an overall traction force that is directed towards the wound.[8–10] Another 
important denominator of cell migration is growth factor signaling, which is necessary for directional 
migration.[6] For instance, in vitro, fibroblast growth factor 2 (FGF-2, bFGF), has been shown to induce human 
umbilical vein ECs near the boundary of a sheet to move into open space, whereas in the absence of bFGF, cells 
migrated with normal speed but failed to sense open space or to respond with directed movement.[6] 

While collective migration patterns were observed for other cell types, in our study, uncoordinated or individual 
migration patterns were more prevalent, which might be partly explained by the experimental set-up that might 
induce a limited number of viable neighboring cells, for example due to cell damage during tissue handling. 
However, differences in cell migration from the radial cut edges and from the peripheral round edge were clearly 
distinguishable. 

Recent studies on the effect of Rho associated kinase (ROCK) inhibitors showed that topical administration of 
ROCK-inhibitors after induced surgical injury of rabbit corneal endothelium triggered cell adhesive changes 
which contributed to enhanced proliferation and migration.[11] A similar observation was made after cases of 
surgical ‘Descemetorhexis only’ procedures, that is stripping of a diseased DM–endothelium layer without 
subsequent corneal graft transplantation, followed by topical administration of ROCK-inhibitors (Moloney et al. 
2017). Although, corneas after Quarter-DMEK may show sufficient clearance (Zygoura et al. 2018), ROCK-
inhibitors may potentially enhance EC migration and corneal clearance. However, as ROCK-inhibitors were not 
administered after in vivo Quarter-DMEK surgery, they were also not added as an agent to the serum-containing 
growth media in our experiments to ensure better comparability of in vitro and in vivo EC migration patterns. 

In conclusion, asymmetrical EC migration of Quarter-DMEK grafts may explain the corneal clearance pattern 
after Quarter-DMEK surgery, with cell migration predominantly from the radial cut edges, but not the rounded, 
limbal edge. While the ECs from the graft’s far periphery may not contribute to corneal clearance after Quarter-
DMEK surgery, these cells may constitute a valuable cellular reserve on the graft. 
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ABSTRACT 
Aim: Studying cell migration of corneal endothelial cells in vitro is challenging because the capacity for cell 
migration needs to be maintained while at the same time the tissue must remain fixed on a rigid substrate. In 
this study, we report a thermoresponsive culture technique designed to maintain cellular viability, and to reduce 
tissue handling in order to analyze in vitro endothelial cell migration from corneal grafts. 

Materials and Methods: As a test tissue, fifteen Quarter-Descemet membrane endothelial keratoplasty (Q-
DMEK) grafts were used that were embedded in a three-dimensional culture system using a temperature-
reversible hydrogel and cultured over 2–3 weeks in a humidified atmosphere at 37°C and 5% CO2. 

Results: All grafts could be successfully cultured inside the thermoresponsive polymer solution for periods of 
up to 21 days. Using this system, cell migration could be assessed by light microscopy at fixed time intervals. At 
the end of the culture period, the gel could be removed from all grafts and immunohistochemistry analysis 
showed that endothelial cells were able to maintain confluence, viability, and junctional integrity. Some 
problems were encountered when using the thermoresponsive cell culture system. These were mostly 
structural inconsistencies during the sol-to-gel transition phase that resulted in the formation of tiny bubbles in 
the matrix. Additionally, areas with different viscosity resulted in optical distortions showing up as folds 
throughout the matrix which can persist even after several cycles of culture medium exchange. These effects 
had impact on the imaging quality but did not affect the viability of the explant tissue. 

Conclusion: This study proves that temperature-reversible hydrogel is a very useful matrix for studying in vitro 
corneal endothelial cell migration from explant grafts and allows for subsequent biological investigation after 
gel removal. 



Improving endothelial explant tissue culture by novel thermoresponsive cell culture system 
 

97 
 

Introduction 
Human corneal endothelial cells form a post-mitotic layer that is not thought to proliferate in vivo and are known 
to be difficult to culture.[1–3] The cells do however retain the capacity to spread and migrate to restore a defect 
in the endothelium as a wound healing response. This restorative capacity is already being applied in clinical 
practice by new surgical techniques and the rate of cells migration is directly related to the speed of corneal 
clearance and postoperative recovery.[4–7] 

Study endothelial cell migration in vitro is challenging since simply placing the explants on glass, even when 
coated with extracellular matrix proteins, tends to result in poor adhesion, outgrowth, and grafts lifting off the 
slide.[5] Corneal endothelium on Descemet membrane, once peeled off the cornea, has a well-known rolling 
property in fluid rendering explant culture very difficult.[8] We therefore developed a new approach by 
embedding the explant in a thermoresponsive gel matrix for studying endothelial cell migration from shape-
adapted endothelial grafts.[9] In this paper, we describe the technical ‘ins and outs’ of the proposed culture 
system that demonstrates the ability to be remodeled by cells during migration, permeability to oxygen and 
nutrient growth factors, and maintaining the tissue fixed on a rigid surface. 

 

Materials and methods 
 

Materials 

Dulbecco’s phosphate-buffered saline (PBS), fetal bovine serum (FBS), L-Glutamine, ascorbic acid 2-phosphate 
(Asc-2P), basic fibroblast growth factor (bFGF), Dulbecco’s Modified Eagle’s medium (DMEM), and Calcein-AM 
were purchased from Sigma-Aldrich Chemistry BV (Zwijndrecht, The Netherlands). Fibronectin, collagen, and 
albumin (FNC) coating mix was purchased from Athena ESTM (Baltimore, MD, USA), Pen/Strep Pre-Mix from 
Carl Roth GmbH + Co. KG (Karlsruhe, Germany), and Mebiol® Gel (Cosmo Bio, Carlsbad, CA, USA) from Bio-
Connect B.V. (Huissen, The Netherlands). 

 

Methods 

Corneas  

Human postmortem corneas, ineligible for transplantation, but with an intact and viable endothelial cell layer 
were obtained from Amnitrans EyeBank Rotterdam. There being no objection by the donors to transplant-
related research, the study adhered to the tenets of the Declaration of Helsinki and the Barcelona Principles.[10] 

 

Tissue preparation 

Fifteen Quarter-Descemet membrane endothelial keratoplasty (Quarter-DMEK) grafts were prepared as 
described previously.[11] Quarter-DMEK-grafts was then stored separately in organ-culture medium 
(CorneaMax, Eurobio) for fewer than 24 hours before chemotactic cell ability evaluation. 

 

Preparation of Mebiol® Gel culture medium and tissue embedding process 

The lyophilized thermoresponsive hydrogel is liquid at lower temperatures (4–8°C) and becomes a firmer and 
more gel-like matrix at the culture temperature (37°C). The gel is prepared by dissolving in 50 ml DMEM 
supplemented with 15% FBS, 2 mM L-Glutamine, 2 ng/ml bFGF, 0.3 mM Asc-2P, and 10,000 U-ml Pen/Strep, 
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refrigerated at 4°C for three hours to create a viscous solution, then carefully aliquoted to avoid air bubbles, 
and stored at −20°C. 

For gel embedding, tissue was placed endothelial-side-up on FNC-coated glass coverslips and transferred to a 
24-well plate. After embedding, Quarter-DMEK grafts were photographed daily with an AxioVert.A1 microscope 
with AxioCam 305 color camera (Zeiss, Oberkochen, Germany). 

 

Immunohistochemistry 

After gel removal, different structural and functional markers such as ZO-1 (tight junction protein 1 (TJP1)/ 
zonula occludens-1) , vimentin, and sodium–potassium pump (Na+/K+ –ATPase) were used to prove the 
feasibility of immunohistochemistry characterization after gel removal and to show the structural and functional 
integrity of the cells. In addition, Calcein-AM staining was performed to verify cell viability after gel removal. 
The staining protocols have been described previously.[5,12] 

 

Results 
Tissue embedding 

For embedding the explant tissue in the gel matrix, Quarter-DMEK grafts were placed endothelial side-up on 
the FNC coated substrate and the thermoresponsive medium mix was added slowly, drop by drop over the 
center of the graft, to prevent shifting. After the graft was covered by a thin layer, it was incubated at 37°C for 
about 5 minutes to solidify the layer. Once firm, more medium mix was added up to a volume of approximately 
700 µl. Subsequent incubation at 37°C for about 10 minutes led to a solidified gel matrix uniformly distributed 
over the grafts. Growth factors and nutrients were replenished by keeping the gel surface moist with 300 µl of 
culture medium[13] every 2–3 days. 

 

Gel removal 

All Quarter-DMEK grafts could successfully be recovered from the gel matrix by cooling the gel below the sol-
gel transition temperature (<20°C). Firstly, the warm culture medium was replaced by cold fluid (PBS or DMEM) 
and gently aspirated 5 minutes later, removing the uppermost liquefied layer of the gel. This was performed 
several times until the gel was removed completely. No fixating of the graft was required before gel removal to 
keep it in place. 

 

Cell migration and comparison with previous approach 

Gel embedding was successful for all grafts and allowed for observation of cell migration for up to 21 days during 
which, cells appeared viable and continued to migrate. After 21 days, cells had not shown any change in viability 
and the rate outgrowth had not abated. Longer culture times may therefore be possible in contrast to our 
previous approach, serving as a negative control, in which the grafts were “sandwiched” between two glass 
slides separated by a suture wire to prevent direct compression.[5] 

 

Immunohistochemistry 

After successful gel removal, tissue could be evaluated further by immunohistochemistry and the migrated cell 
layer (Figure 1A) remained attached to the glass support in all cases. Cells showed expression of the structural 



Improving endothelial explant tissue culture by novel thermoresponsive cell culture system 
 

99 
 

and functional markers in the confluent layer of migrating cells and on the graft itself (Figure 1B, C, E) after gel 
removal. Calcein-AM staining confirmed cell viability after gel removal (Figure 1D). The dashed white line 
outlines in (Figure 1A) the cell migration edge and in (Figure 1B-E) the Quarter-DMEK graft edge. 

 

 
Figure 1| Example of biological research after gel removal. (A) Collage of light microscopy images (x50 magnification) to 
create an overview of a flattened Quarter-DMEK graft at the end of the cell migration experiment, after removing the 
liquefied gel at temperatures below 20°C. Expression of vimentin (B), ZO-1 (C), Calcein-AM (D), and Na⁺/K⁺ –ATPase (E) 
determined by immunohistochemistry in the confluence monolayer of cultured cells. x200 magnification. 

 

Thermoresponsive hydrogel matrix – possible complications 

Some problems were encountered when using the thermoresponsive cell culture system that can be avoided 
or managed. The most frequent was the formation of air bubbles inside the matrix that appeared to variable 
degrees for all embedded samples (Figure 2). Additionally, areas with different viscosity result in optical 
distortions showing up as folds throughout the matrix which can appear even after several cycles of culture 
medium exchange (Figure 2). These had an impact on the imaging quality but did not affect the explant tissue 
itself. In case of air bubble formation close to the graft, it was found that cooling the gel down to 15oC, gently 
aspirating the fluid and restarting the sample embedding process, could minimize the bubble. Air bubbles that 
formed more superficially in the gel matrix, were observed to decrease in size and shape during culture. In case 
of optical folds due to inhomogeneous viscosity distribution in the gel matrix, these may become more uniform 
in structure after few warm-RT cycles of culture medium exchange. 

In 2/15 grafts, we observed graft shifting during gel removal (Figure 2) which resulted in a disruption of the 
newly formed monolayer. This tissue gliding over the solid support during gel removal can be minimized by 
taking care to aspirate the liquified gel as slowly as possible. 

 

6 



Chapter 6 
 

100 
 

 
Figure 2| Complications of the thermoresponsive-hydrogel technique. The top panel displays a case of uneven gel 
formation: after placing the graft endothelial-side-up on FNC-coated glass coverslip (day 0, before culture) the addition of 
stocking gel led to small air bubble formation (day 8). In addition, minor folds throughout the matrix could be seen (day 8). 
Both the air bubble and folds had no impact on the graft viability during culture (day 15, after gel removal). The bottom 
panel shows a case of graft shifting (day 14: yellow outlined area) from its original positions (day 0) during the gel removal 
step. Throughout the culture time, the graft did not change its position and showed substantial endothelial cell migration 
(day 11) along the radial cut graft edges as outlined by the dotted white line. x50 magnification. 

 

Discussion 
With this adapted explant culture protocol based on a thermoresponsive hydrogel for in vitro studies on corneal 
grafts, we saw improved cell viability and collective cell migration which continued far longer than with the 
prior[5] culture system.  

Grafts were kept up to 3 weeks in the hydrogel matrix and when the gel reaction was reversed, 
immunohistochemistry demonstrated the presence of viable cells with tightly packed morphologies. It is 
important to mention that on the day when grafts were recovered from the gel, cells had not shown any change 
in the rate of outgrowth or cell viability, therefore longer culturing times could have also been possible. 

This culture system has been useful in several ways. Firstly, the consistent migration pattern observed in vitro 
helps explain the corneal clearance after corneal transplantation.[5,6,9,11] 

Secondly, this method may help optimizing graft preparation to try to promote cell migration,[9] but can also 
be used for other purposes. This thermoresponsive cell culture system supports morphological and physiological 
cell changes through specific scaffold geometry and composition.[14,15] Although, other cell culture matrices 
provide good cell adhesion, they could in the same time make cell retrieval more difficult.[16] The temperature-
reversible properties of the hydrogel presented here, on the other hand, permit cell retrieval without enzymatic 
treatment, which is difficult using hyaluronic acid hydrogel matrices.[17] 

The question of maintaining cell polarity during cell migration in gel culture may be an issue. However, we 
previously demonstrated the monolayer dynamics during migration, emphasizing the difference in marker 
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expression between front and rear edge of the cell monolayer,[9] inferring that after migration, normal polarity 
can return as seen in vivo. 

While the presented approach allows to keep the explant tissue flattened in a fixed position on the substrate, 
provides sufficient nutrient supply, and enables tissue retrieval at the end of the culture period, some technical 
challenges may occur during tissue embedding and retrieval. Occasionally, air bubbles get trapped in the matrix 
while adding stocking gel over the graft and inhomogeneous viscosity distribution may induce optical folds that 
should not be confused with folds of the tissue itself to avoid unnecessary tissue handling due to attempted 
repositioning. 

 

Conclusion 
In conclusion, this culturing technique based on temperature reversible hydrogel proves to be a very useful 
matrix for studying in vitro cell migration from explant tissue and allows for subsequent fundamental biological 
research after gel removal. 
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Abstract 
Endothelial cell migration plays a crucial role in achieving corneal clearance after corneal transplantation when 
using smaller-sized endothelial grafts to increase the donor pool. In this study we investigated how different 
strategies of Quarter-Descemet Membrane Endothelial Keratoplasty (Quarter-DMEK) limbal graft edge 
modification influence peripheral endothelial cell migration in an in vitro culture environment. For this study, 
15 Quarter-DMEK grafts, prepared from 7 corneas deemed ineligible for transplantation but with intact and 
viable endothelial cells, were embedded in a cooled biocompatible, thermoresponsive matrix for culture. The 
limbal edge of ten Quarter-DMEK grafts were modified, either by using a small diameter punch or by peripheral 
radial cuts. All Quarter-DMEK grafts showed substantial collective endothelial cell migration from the radial cut 
graft edges, as observed by light microscopy at standardized time intervals. Grafts were retrieved from the 
polymer matrix after the two-week culture for immunohistochemistry analyses of the newly formed cell 
monolayers; this demonstrated the presence of tightly packed and viable cells that showed higher migratory 
ability at the leading edge. Peripheral endothelial cell migration, however, was not triggered by increasing cell 
exposure to free space through surgical modifications of the far periphery. Our data suggest that alterations in 
the far peripheral area of Quarter-DMEK grafts were insufficient to triggering cell migration from the limbal 
graft edge. This may be due to transient-amplifying cells that reside in the far periphery and which lack 
cytokinetic directional cues. Understanding the migration capacity of the peripheral endothelium could unlock 
cells’ therapeutic potential which are, at present, routinely discarded from transplantation. Encouraging 
peripheral cell migration may also improve clinical outcomes from Quarter-DMEK, but a more effective solution 
is required prior to clinical implementation of modified grafts. 
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Introduction 
We have recently introduced several modifications to Descemet membrane endothelial keratoplasty (DMEK), 
including Quarter-DMEK, as a means to potentially quadruple the availability of usable grafts from a single donor 
cornea.[1–3] The clinical outcomes are encouraging, use less tissue and the first series of Quarter-DMEK eyes 
achieved visual outcomes comparable to conventional DMEK.[1,2] At the slit-lamp, however, Quarter-DMEK-
eyes typically showed a different corneal edema clearance pattern, due to the mismatch between the patient’s 
round descemetorhexis and the quadrant shape of the graft. This mismatch results in areas of bare stroma that 
must be cleared by migrating endothelial cells (EC). Clinically, clearing occurs most efficiently in the area 
adjacent to the radial cut graft edges, but tends to be slow and stagnant along the “limbal” round edge of the 
Quarter-DMEK-grafts. 

We have replicated the cell migration of the Quarter-DMEK grafts in an in vitro culture system in our previous 
experiment.[4] The results confirmed that endothelial cell migration readily occurred along the radial cut edges 
of the grafts, but that migration from the peripheral limbal edge was not observed. This finding prompted us to 
question the role played by the peripheral endothelium as a cell source in the restoration of corneal clearance. 
We hypothesized that the arrangement of fibrillary bands of collagen in the periphery could act a as a barrier or 
“fence”, thereby preventing migration. 

This study’s purpose was to evaluate whether peripheral edge modification could break down the physical 
barrier that inhibits cell migration from the limbal edge of the graft, thereby promoting cell migration in a 
manner similar to the radial edges. 

 

Materials and methods 
Corneas 

Seven human postmortem corneas, which were ineligible for transplantation but which had an intact and viable 
endothelial cell layer (from five donors (mean age 69 (±4) years; range 61–73 years)) (Table 1), were obtained 
from Amnitrans EyeBank Rotterdam. All donors stated that they had no objection to transplant-related research 
and the study adhered to the tenets of the Declaration of Helsinki. No institutional review board approval was 
obtained, given that no approval is required for this kind of research if no extra procedure was performed to 
obtain the samples and if donors had consented to having the samples used for research purposes, according 
to a national regulation (https://www.ccmo.nl/onderzoekers/aanvullende-informatie-over-bepaalde-soorten-
onderzoek/niet-wmo-onderzoek/onderzoek-met-lichaamsmateriaal). 

 

Quarter-Descemet membrane endothelial keratoplasty graft preparation 

The Quarter-DMEK grafts were prepared at Amnitrans EyeBank Rotterdam, as described previously,[3] by a 
single eye bank technician (JTL) with extensive experience in DMEK and modified DMEK techniques.[5] For every 
cornea, two of the four Quarter-DMEK grafts were modified, by either using a 1 mm diameter biopsy punch (Kai 
Europe GmbH, Solingen, Germany) to create two cuts in the periphery or by using an ophthalmic keratome 
(MANI, INC. Tochigi, Japan) to create 3 peripheral radial cuts. One Quarter-DMEK graft was used as a backup in 
case of failed preparation of modified grafts, and one unmodified Quarter-DMEK graft was used as a negative 
control. A positive control was created by cutting the peripheral edge off from a Quarter-DMEK graft, thereby 
creating a triangle-shaped endothelial graft. The endothelial cell density (ECD) determined in the eye bank after 
DMEK graft preparation was on average 2514 (±267) cells/mm2 for all seven corneas. Each Quarter-DMEK graft 
was then stored separately in organ culture medium (CorneaMax, Eurobio) for fewer than 24 hours before being 
evaluated for chemotactic cell ability. 
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Table 1. Donor demographics.  

Donor Information Indicators 

Number of corneas/donors 
Gender  
     Female 
     Male 
Mean age (±SD), yrs. (range) 

7/5 
 
2 
3 
69 (±4), (61–73) 

Mean storage time* (±SD), days (range) 6 (±3), (2–12) 
Cause of death 

Cardio/Stroke 
Respiratory  
Malignant neoplasm 

 
2 
2 
1 

*Mean storage time = time between death and culture of isolated DM-EC tissue; 
SD = standard deviation; yrs. = years 

 

Preparation of Mebiol1 Gel culture medium 

Mebiol1 Gel was obtained in a lyophilized and sterilized flask from Bio-Connect B.V. (Huissen, The Netherlands). 
The gel was reconstituted in 50 ml of culture medium, consisting of Dulbecco’s modified eagle medium (DMEM) 
supplemented with 15% fetal bovine serum (FBS), 2 mM L-Glutamine, 2 ng/ml fibroblast growth factor (bFGF), 
0.3 mM L-ascorbic acid 2-phosphate (all from Sigma-Aldrich, Zwijndrecht, The Netherlands), and 10,000U-ml 
Pen/Strep (Carl Roth GmbH + Co. KG, Karlsruhe, Germany). The culture-flask was then refrigerated at 4˚C for 
about three hours yielding a viscous transparent Mebiol1 Gel-culture medium mixture. The uniform liquid sol 
was then carefully aliquoted, to avoid air bubbles, at desired volumes (1.5–4 ml) and was stored at -20˚C for 
later use. 

 

Cell migration study 

15 individual Quarter-DMEK rolls with the trabecular membrane (TM) attached, obtained from 7 different 
corneas, were unfolded endothelial-side-up on FNC-coated (fibronectin, collagen, and albumin coating mix, 
Athena ESTM Baltimore, MD, USA) glass coverslip and evaluated in vitro in order to examine whether peripheral 
edge modifications of a Quarter-DMEK graft could trigger cell migration. Unfolding of all grafts was performed 
in a “minimal touch” manner by grabbing the graft only at the TM site with a McPherson forceps and dropping 
organ-culture medium onto the graft while the glass coverslip was kept tilted at a small angle. 

The TM was then carefully removed from the Quarter-DMEK grafts, and the endothelium was submerged in 
serum-containing culture medium in order to ensure cell viability during the experiments. Each glass coverslip, 
which supported one Quarter-DMEK graft, was transferred to a 24 well plate and a drop of liquefied gel-culture 
medium mixture (temp 4–8˚C) was placed at the center of the well. The gel became more solid when kept at 
37˚C for about 5 minutes. Once the gel became firmer, the well was then completely filled with cooler liquid 
drops of the gel-culture medium mixture (≈500 μl end volume), thereby preventing Quarter-DMEK grafts gliding 
over the solid support. Subsequent incubation at 37˚C for about 10 minutes led to a solidified gel matrix that 
was uniformly distributed over the Quarter-DMEK grafts. Growth factors and nutrients were provided by 
keeping the gel surface moist using 300 μl of culture medium. Grafts were cultured over 2 weeks in a humidified 
atmosphere at 37˚C with 5% CO2. Medium was refreshed every 2–3 days. Quarter-DMEK grafts were 
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photographed daily with an AxioVert.A1 microscope with AxioCam 305 color camera (Zeiss, Oberkochen, 
Germany) to examine cell morphology and the degree of cell migration. 

The recovery of the Quarter-DMEK grafts after cultivation was performed by cooling the gel below the sol-gel 
transition temperature (<20°C). Firstly, the warm culture medium was replaced by cold fluid (PBS or DMEM) 
and gently aspirated 5 minutes later, removing the uppermost liquefied layer of the gel in the process. This was 
performed several times until the gel was removed completely, without disturbing the graft position in the well. 

 

Immunohistochemistry 

Quarter-DMEK samples, reclaimed from gel culture for immunohistochemistry analysis, were first fixed in 4% 
paraformaldehyde (Sigma Aldrich, The Netherlands) for 15 minutes. Following fixation, the grafts were then 
washed with phosphate-buffered saline (PBS), permeabilized using permeabilization buffer (0.1% Triton X-100 
in PBS, Sigma Aldrich, The Netherlands) and finally incubated with blocking buffer (5% bovine serum albumin in 
PBS, Sigma Aldrich, The Netherlands) for 30 minutes in order to prevent non-specific staining. Blocking buffer 
was also used for both primary and secondary antibody (Life Technology, The Netherlands) dilutions. 

Samples were stained for the expression of zonula occludens-1 (ZO-1), vimentin and Na+/K+ –ATPase to 
establish the baseline endothelial morphology and CD73 for potential cell migration. Incubation with primary 
antibodies was performed at the following dilutions: anti-ZO-1 tight junction protein (anti ZO-1/TJP1, dilution 
1:100), anti-vimentin filamentous protein (anti-vimentin, dilution 1:100), anti-sodium/potassium–ATPase 
(anti-Na+/K+ –ATPase, dilution 1:100) and anti-lymphocyte differentiation antigen CD73 (anti-CD73, single 
purchase from Abcam, Cambridge, United Kingdom, dilution 1:100). Incubations were performed for 1 hour and 
were then followed by several PBS washing steps. Samples were then incubated with fluorescent secondary 
antibodies that had been conjugated to Alexa Fluor® (dilution 1:200) for 45 minutes. After washing with PBS, 
the samples were stained with 4’,6-diamidino-2-phenylindole (DAPI, Sigma-Aldrich, The Netherlands) to 
visualize the nuclear DNA, and were then imaged using an inverted fluorescence microscope connected to a 
camera (Axiovert, Zeiss). 

 

Cell viability assay 

The membrane-permeable dye Calcein-AM (Sigma-Aldrich Chemistry BV, Zwijndrecht, The Netherlands) was 
received as stock solution of 4 mM in dimethylsulfoxide at -20˚C, prepared as a working solution of 400 μM in 
PBS and added directly to grafts in order to examine the cell viability of Quarter-DMEK grafts after the culture 
period. A 45-minute incubation period at room temperature allowed for the nonfluorescent Calcein-AM to be 
hydrolysed by intercellular esterases into the highly negatively charged green fluorescent Calcein, which is 
retained in the cell cytoplasm. After one more PBS washing step, grafts were ready for imaging by microscopy. 

 

Results 
Cell migration study 

All grafts placed in culture showed cell migration along the radial cut edges up to the tip of the graft (Figure 1). 
The degree of migration decreased towards the peripheral graft area in both the limbal edge-modified and 
unmodified Quarter-DMEK grafts (negative control) in which the dense fibrillary area was exposed to the open 
space (Figure 1A–C). The peripheral edge modification of the graft in order to cut through the dense fibrillary 
area either with the biopsy punch or radial cuts, did not sufficiently stimulate cell migration to populate the 
limbal round edge of the graft (Figure 1B and C). Greater cell migration was seen when the cuts were very deep 
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and protruding into the paracentral zone of the endothelium (Figure 1C). The positive control graft, where the 
fibrillary area was completely removed, showed a uniform cell migration pattern all around the cut edges (Figure 
1D). 

All grafts showed substantial cell migration from day 4 up to day 15 (Figure 2) which was when the graft was 
retrieved for immunohistochemistry evaluation. Cells migrated in interconnected groups (i.e., collective cell 
migration) with a “leading” cell group seen at the front edge in all grafts (15/15). 

 

 
Figure 1| Representative images of each type of Quarter-DMEK graft modification and Quarter-DMEK graft controls after 
two weeks in vitro gel culture. Collage of light microscopy images (x25 magnification) to create an overview of the (A) 
Quarter-DMEK graft with intact far periphery showing lack of cell migration along the limbal round edge (negative control), 
(B) fence-broken Quarter-DMEK graft for which the periphery was punched with a 1 mm diameter biopsy punch twice, 
showing no stimulation of cell migration, (C) Quarter-DMEK graft for which the periphery was radially cut three times with 
an ophthalmic knife showing cell migration initiated only from those deep cuts (red marks) bypassing the intermingled 
fibrillary area and opening the endothelium’s periphery, (D) Quarter-DMEK graft with a cut off periphery showing uniform 
cell migration from all cut edge sites (positive control). The dashed line outlines the cell monolayer migration edge. 
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Figure 2| Example of collective in vitro endothelial cell migration from gel-cultured Quarter-DMEK grafts. Light 
microscopy images of the cut edge tip (Left) and the radial cut edge (Right) of a Quarter-DMEK graft taken at Day 4, Day 8, 
Day 11, and Day 15 (Top to Bottom view) with 100x magnification. Around the cut edge tip and along the radial cut edges 
of the Quarter-DMEK graft collective endothelial cell migration in a form of a monolayer was observed; leader cells at the 
front edge of the advancing cell sheet are identifiable; collective migration pattern was most evident at Day 8. The latter 
appear out of focus and hazy due to the difference in focal plane between the migrated cells and the cells on the graft itself 
(height difference due to Descemet membrane). In each of the photos, the dashed line outlines the edge of the Quarter-
DMEK graft. The double-lined cut edge of the graft in all images is an optical aberration caused by the gel matrix. 
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Figure 3| Immunofluorescence staining of the newly formed cell monolayer. Expression of ZO-1 (A-C), Na+/K+ –ATPase 
(D-F) vimentin (G-I), Calcein-AM (J-L) and CD73 (M-O) was analyzed around the cut edge tip (Left), along the radial cut edge 
(Middle) of the Quarter-DMEK graft, and at the monolayer’s front leading edge contour (Right) after 17(±3) days in gel 



In vitro endothelial cell migration from limbal edge-modified Quarter-DMEK grafts 

113 
 

culture and subsequent gel removal. Characteristic expressions for the tight junction protein ZO-1 (A, B red) and functional 
protein Na+/K  –ATPase (D, E red) were uniformly observed along lateral cell borders across the monolayer (A, B red); 
however, cells at the front leading edge of the monolayer showed a discontinuous distribution of ZO-1 (C, red) and 
Na+/K+ –ATPase (F, red). Strong expression of vimentin intermediate filaments was detected throughout the monolayer (G, 
H, I red) and in cells at the font leading edge more specifically, which demonstrate increased motility (I red). Cell viability 
evaluated by expression of Calcein-AM showed strong fluorescence intensity in the confluence monolayer of cultured cells 
(J, K, L green). CD73 expression marker was uniquely associated with cells near the leading edge (O red) indicating 
involvement in the process of cell migration; a lack of CD73 expression in the confluent monolayer indicates poor ability 
for cell migration and growth at the rear of the leading edge (M, N red). Due to the difference in focal plane between the 
migrated cells and the cells on the graft itself (height difference due to Descemet membrane), the latter appear out of 
focus and hazy. In each of the photos, the dashed line outlines the edge of the Quarter-DMEK graft, 200x magnification. 

 

 
Figure 4| Immunofluorescence staining of the Quarter-DMEK graft with focus on far periphery. Expressions for the tight 
junction protein ZO-1 (A: control graft, red), functional protein Na+/K+ –ATPase (B: graft with trephined periphery, red), and 
structural protein vimentin (C: control graft, red) counterstained with DAPI (blue) showed sparsely distributed cells with 
irregular morphology and altered pump function activities in the far periphery. The round limbal edge the Quarter-DMEK 
graft was populated by viable cells as indicated by Calcein-AM expressions (D: graft with radially cut through periphery, 
green). Grafts were imaged after 17(±3) days in gel culture and subsequent gel removal 200x magnification. 
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Immunohistochemistry 

Immunohistochemistry analysis confirmed the formation of a continuous functional monolayer created by 
direct cell migration into the free space available, apart from at the round edge of the graft (Figures 3 and 4). 
Typical expression profile was found for endothelial marker ZO-1 and Na+/K+ –ATPase (Figure 3A,B,D and E red) 
in EC that depart from the radial graft cut edge up to the rear of the leading edge. Resistance barrier and the 
pump function protein showed a discontinuous expression over the front leading cell edge, the (Figure 3C and 
F, red) which is concomitant with strong polymerization of vimentin intermediate filaments (Figure 3G,H and I, 
red) and the expression of regulatory molecule CD73 which is involved in cell migration (Figure 3M,N and O, 
red). Cell viability, evaluated by expression of Calcein-AM, showed strong fluorescence intensity in the 
confluence monolayer of cultured cells (Figure 3J,K and L, green). Although migration was not observed over 
the round, limbal edge of the Quarter-DMEK graft, the Calcein-AM expression (Figure 4D, green) confirmed the 
presence of viable endothelial cells. Expressions for the tight junction protein ZO-1 (Figure 4A, red), functional 
protein Na+/K+ –ATPase (Figure 4B, red), and structural protein vimentin (Figure 4C, red) showed sparsely 
distributed cells with irregular morphology and altered pump function activities. 

 

Discussion 
We know, both from clinical experience[1–3] and from our previous in vitro work,[4] that EC from the cut edges 
of a quarter DMEK graft have the capacity to migrate and spread throughout regions of bare stroma in recipient 
eyes. However, poor corneal clearance along the round graft edge[2] suggested that EC migration was almost 
absent in the far periphery, which was also confirmed in vitro.[4] Previously, He et al. suggested that the furrow-
like distribution of the underlying collagen fibers in the corneal far periphery directs the migration of EC towards 
the center of the cornea throughout a person’s life, thereby limiting migration in the other direction.[6] We 
suspected that the lack of migration from the periphery was, therefore, due to this obstructive barrier, or 
“fence” and that, by breaking through it, cells with migratory potential could be unlocked. 

Our results showed that EC migrated collectively from all Quarter-DMEK grafts’ radial cut edges. As they 
migrated through the gel matrix, the cells first displayed “mesenchymal collective migration” where individual 
satellite cells separate out from the group, elongate, and independently stretch and branch into the free 
space. After a few days, this pattern changed to one of “direct protrusion formation”, that is that an area in 
which a sheet of cells coalesces behind the leading edge, and march together.[7] The leading edge protrusions 
were dynamic vimentin-containing structures with plasma membrane blebs polarized in the direction of the 
open space and regulated by activation of CD73.[8,9] Interestingly, at the leading edge of migrating cells, 
Na+/K+ –ATPase pumps and ZO-1 expression were more irregular, suggesting that these leader ECs were 
reducing their pump function specialization in favour of migration, while the followers retain more of their EC 
properties.[10,11] Thus, the rear end of EC maintained cell-cell adhesions and displayed homogenous 
endothelial cell expression for structural (ZO-1) and functional (Na+/K+ –ATPase) markers. 

Attempts to break the barrier by trephination or radial cuts, however, did not result in cell migration from the 
limbal round edge of a Quarter-DMEK graft within the study period of 2.5 weeks regardless the peripheral edge 
modifications. This suggests that the lack of migration from the periphery is due to a process that is more 
complex than a simple collagen barrier. It was also not due to the absence of viable of cells, since 
immunolocalization showed cells with expression of the structural (ZO-1 and vimentin) and functional markers 
(Na+/K+ –ATPase). The morphology was also different in this area with fewer cells displaying the typical 
endothelial hexagonal shape. This suggests that the cell-cell and cell-extracellular matrix (ECM) interactions are 
different to the central cornea and may prohibit migration. A stimulus greater than eliminating contact 
inhibition seems to be required in order to prompt these cells to move. It is possible that either the integrin-
dependent adhesion between cells and underlining ECM is less expressed, thereby affecting cell tension and 
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morphology, or that the level of GTPases, responsible for cell contractility and protrusion mediation at the 
leading edge, is reduced.[12] 

Clinically, the failure of far peripheral EC to migrate, in spite of modification, remains a limitation of the current 
quarter DMEK approach. However, cells located beneath the Schwalbe’s line have been found to have 
progenitor cell-like properties[13] and might play a critical role in the stabilization of the endothelial cell density 
after transplantation. Thus, understanding the nature of these peripheral endothelial cells, how they differ from 
the central cells, and how to encourage them to migrate would greatly improve the pool of donor tissue 
available for patients in need. 
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Supporting information 
 

 

 
Supplementary Figure 1| Additional light microscopy and immunohistochemistry images of flattened grafts with and 
without modification of the limbal graft edge. Collage of light microscopy images (x25 magnification) to create an overview 
of (A) a Quarter-DMEK graft with intact far periphery and (D) a Quarter-DMEK graft with modification of the limbal graft 
edge; both after 2 weeks of in vitro gel culture. Both grafts show extensive cell migration along the radial cut graft edges 
as outlined by the dotted white line, but not along the limbal graft edge. (B, C) Cell viability evaluated by expression of 
Calcein-AM showed strong fluorescence intensity in the confluent monolayer of cultured cells at different positions of the 
migrated cell layer; Images shown in (B) and (C) correspond to the areas marked with one and two white asterisks in image 
(A), respectively. (E, F) Characteristic expression for the functional protein marker Na+/K+ –ATPase observed across the 
monolayer. Images shown in (E) and (F) correspond to the areas marked with one and two red asterisks in image (D), 
respectively. (F) Cells close to the modified limbal edge showed discontinuous expression of Na+/K+ –ATPase corroborating 
the finding that endothelial cells along the limbal edge differ morphologically from endothelial cells in the corneal center. 
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ABSTRACT 
Aim: To study peripheral corneal endothelial cell migration in vitro in the absence and presence of a ROCK-
inhibitor. 

Materials and Methods: Twenty-one corneal endothelial graft rims, with attached trabecular meshwork (TM), 
were prepared from Descemet membrane-endothelial cell (DM-EC) sheets by 6.5 mm trepanation. For the initial 
proof-of-concept, 7 outer graft rims were cultured in a 3D thermo-reversible hydrogel matrix for up to 45 days. 
To assess the effect of a ROCK-inhibitor, 14 paired outer rims were cultured either with or without ROCK-
inhibitor. At the end of culture, tissue was retrieved from the hydrogel matrix and examined for cell viability 
and expression markers (ZO-1, Na+/K+ –ATPase, NCAM, glypican-4, and vimentin). 

Results: All cultured rims remained viable and displayed either single regions (n=5/21) or collective areas 
(n=16/21) of cell migration, regardless of the presence or absence of ROCK-inhibition. Migration started, after 
4±2 days and continued for at least 29 days. Migrated cells showed a more regular cell morphology when 
cultured in the presence of a ROCK-inhibitor. In addition, 7 outer rims demonstrated a phenotypically distinct 
late-onset, but fast-growing cell population emerging from the area close to the limbus. These cells emerged 
after 3 weeks of culture and appeared less differentiated compared to the other areas of migration. 
Immunostaining showed that migrated EC maintained the expression patterns of endothelial cell markers. 

Conclusion: Using a 3D-culture system, we observed migration of two morphologically distinct cell populations. 
The first type was triggered by a broken physical barrier, consistent with disruption of contact inhibition. The 
second, late-onset type showed a higher proliferative capacity though appearing less differentiated. This cell 
subpopulation appeared to be mediated by stimuli other than the loss of contact inhibition and the presence of 
ROCK-inhibitor. Further exploration of the differences between these cell types may assist in optimizing 
regenerative treatment options for endothelial diseases. 
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INTRODUCTION 
The treatment of corneal endothelial failure and dysfunction is transitioning from corneal transplantation 
towards regenerative therapy.[1–3] Since central corneal endothelial cells are considered terminally 
differentiated and non-replicative in vivo,[4] new therapies that rely on the presence of healthy peripheral 
endothelial cells, such as Descemet stripping only (DSO), require endothelial migration from the periphery to 
cover the central area and endothelial cell mitosis through the administration of mitogens.[5–9] During this 
wound healing process, endothelial cells deposit fibronectin and laminin on the Descemet membrane which 
supports the required signaling for directed cell migration. Cells undergo cytoskeletal changes during the 
migration process reflected by cellular enlargement and polymorphism. Since the endothelial cells usually do 
not replicate in vivo, cellular enlargement is needed to cover the wounded areas. It has been suggested, 
however, that cells from the peripheral corneal endothelium may have proliferative capacity and act as a cell 
resource for the recovery of corneal endothelium in endothelial injury.[10] When immunostained, peripheral 
endothelial cells exhibit less differentiation markers than central endothelial cells but express stem cell markers 
and, sometimes, proliferation markers.[11] Furthermore, these cells were found between the corneal 
endothelium and the trabecular meshwork (TM) and showed a bipolar, spindle-shaped morphology similar to 
that of neural crest cells.[12] Recently, progenitor-like cells were discovered to reside within a thin strip of 
tissue, the transition zone (TZ), initially believed to be a zone depleted of cells.[13,14] These stem cells 
sequestered in specific niches inside the TZ may respond to corneal wounding to initiate endothelial repair and 
also contribute to a normal, slow replacement of corneal endothelial cells.   

Endothelial cell proliferation and endothelial cell migration can be supported by topical administration of a 
ROCK-inhibitor, which resulted in improved clinical outcomes after DSO.[15–20]  

The purpose of this study is to evaluate in vitro peripheral endothelial cell migration from outer corneal graft 
rims using a thermo-reversible temperature-responsive polymer culture technique both in the absence and 
presence of a ROCK-inhibitor to gain a better understanding of the process in vivo. 

 

MATERIALS AND METHODS  
Corneas 

Twenty-one human postmortem corneas, which were ineligible for transplantation, but had an intact and viable 
endothelial cell layer with an average endothelial cell density of 2371 (±313) cells/mm2 (from twelve donors 
(mean age 76 (±5) years; range 68–84 years)) (Table 1), were obtained from Amnitrans EyeBank Rotterdam. All 
donors had previously stated that they had no objection to transplant-related research and the study adhered 
to the tenets of the Declaration of Helsinki. No specific institutional review board approval was required as 
under national regulation no approval is required for this research if donors had consented to having the 
samples used for research purposes (https://www.ccmo.nl/onderzoekers/aanvullendeeisen-voor-bepaalde-
soorten-onderzoek/niet-wmo-onder zoek/onderzoek-met-lichaamsmateriaal).  
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Table 2. Composition of the culture media used in this study.  

Culture medium Growth factors and supplements 
Growth factor-depleted DMEM-based 
medium (M1) 

DMEM  

15% fetal bovine serum (FBS) 

2 mM L-Glutamine (L-Glu) 

DMEM based culture medium (M2): 15% fetal bovine serum (FBS) 

2 mM L-Glutamine (L-Glu) 

2 ng/ml basic fibroblast growth factor (bFGF) 

0.3 mM L-Ascorbic acid 2-phosphate (Asc-2P) 

10,000 U-ml Penicillin-Streptomycin (Pen/Strep) 

ROCK-inhibitor enriched medium (M3):  M2 + 10 µM ROCK-inhibitor 

FBS and bFGF were purchase from ThermoFisher Scientific Europe BV, The Netherlands; DMEM, ROCK-inhibitor, 
L-Glu and Asc-2P were obtained from Sigma-Aldrich Chemie NV, The Netherlands; Pen/Strep was bought from 
Carl Roth GmbH, Karlsruhe, Germany 

 

 
Figure 1| Outer rim and a central graft representation of the proof-of-concept migration study. Collage of light 
microscopy images (x50) to create an overview of the (A) outer rim cell migration after 45 days in gel culture for which the 
ring opening was performed in the well using a surgical blade (note the imprints highlighted by the white arrows); the 
squared areas marked in the overview image display the formations of a cell monolayer free from the DM substrate as a 
results of collective cellular migration (*)  and migration of individual cells (**)  (B) 4 mm control graft after 39 days in gel 
culture showing uniform cell migration from all around the round edges; two higher magnification images marked by * and 
** in the graft overview show the cell monolayer formed by the collective spreading of cell cohorts. The dotted line outlines 
the outer rim (A), control graft (B), and cell monolayer migration edge in the higher magnified images. Scale bar: 100 µm.  

8 



Chapter 8 
 

124 
 

Outer graft rim preparation 

Corneoscleral buttons were excised from whole donor globes obtained less than 24 hours postmortem and 
stored in organ culture medium at 31°C (CorneaMax, Eurobio, Courtaboeuf, France) until graft preparation. The 
Descemet membrane-endothelial cell (DM-EC) sheets were separated from the stroma by using the 
standardized “no-touch” peeling technique, as described previously.[21,22] After placing the isolated DM-EC 
sheets with the trabecular meshwork (TM) still attached on a soft contact lens, the DM-EC sheets were centrally 
trephined with a 4 mm biopsy punch followed by a second concentric 6.5 mm trepanation to obtain the outer 
rims. Attachment of the TM prevented the outer rims from scrolling and facilitated further handling. Outer graft 
rims and 4 mm circular DM-EC sheets were stored separately in growth factor-depleted DMEM-based medium 
(Table 2, M1) for 2 to 7 days before culture in the thermo-reversible hydrogel matrix (Mebiol Gel, Cosmo Bio, 
USA).  

A thermo-reversible cell culture system not only allows for studying endothelial cell migration but also facilitates 
tissue retrieval, without enzymatic treatment, by cooling the gel below the sol-gel transition temperature.[23] 
The preparation of the thermo-reversible hydrogel matrix and embedding protocol have been described in 
detail in previous publications from our group.[23,24] When embedding the tissue in the hydrogel matrix, the 
4 mm circular DM-EC sheets were placed, endothelial-side-up, on glass coverslips and transferred to a 48-well 
plate.[25] The outer graft rims were transferred to a 24-well plate containing 100 µl Dulbecco’s phosphate-
buffered saline (PBS, Sigma-Aldrich Chemie NV, The Netherlands) and positioned endothelial-side-up by 
grasping the TM with a forceps. The surface was then carefully dried out with cellulose vitreous sponges and 
the graft rim was carefully cut radially with a surgical blade (Swann-Morton, Sheffield, England) to ensure that 
the graft rims were mounted completely flat on the surface. Hypotonic trypan blue solution 0.04% 
(Hippocratech, Rotterdam, The Netherlands) was used to ensure the visibility of both the rims and circular grafts 
during preparation and unfolding on the solid support. For the initial proof-of-concept experiments, 7 outer 
graft rims and the corresponding 4 mm circular grafts were embedded separately inside the thermo-reversible 
polymer solution and evaluated for chemotactic cell ability (Figure 1). The circular grafts acted as the control 
for cell migration.[23] Following the proof-of-concept, 7 paired outer rims were cultured in the presence or 
absence of ROCK-inhibitor to assess the effect of ROCK-inhibitor (Y-27632, Sigma-Aldrich Chemie NV, The 
Netherlands) on the in vitro cell migration. The tissue was cultured up to 47 days in a humidified atmosphere at 
37°C with 5% CO2. Medium (Table 2, M2, M3) was refreshed every 2-3 days. Cell morphology and cell migration 
were examined with an AxioVert.A1 microscope AxioVert.A1 microscope with AxioCam 305 color camera (Zeiss, 
Oberkochen, Germany). The recovery of the tissue from the hydrogel matrix at the end of the culture period 
was performed by gradually cooling the gel below the sol-gel transition temperature (<20°C) using low-
temperature PBS in the manner previously described.[23] 

 

Immunohistochemistry and cell viability analysis 

After the removal of the hydrogel, routine markers such as tight junction protein zonula occludens-1 (ZO-1), 
vimentin, neural cell adhesion molecule (NCAM), glypican-4 (GPC-4), and sodium-potassium pump (Na+/K+ –ATPase) 
were examined for cell characterization. Primary antibodies against vimentin and GPC-4 were obtained from Abcam 
(Cambridge, United Kingdom) and for Na+/K+ –ATPase from Sigma-Aldrich Chemie NV (Zwijndrecht, The 
Netherlands). ZO-1 primary antibody and secondary antibodies were purchased from ThermoFisher Scientific 
Europe BV (Bleiswijk, The Netherlands). In addition, Calcein-AM (Sigma-Aldrich Chemie NV, The Netherlands) 
staining was performed to verify cell viability after hydrogel removal. Nuclear cell staining was performed with DNA-
specific blue-fluorescent dyes DAPI (Sigma-Aldrich Chemie NV, The Netherlands) and Hoechst (ThermoFisher 
Scientific Europe BV, The Netherlands). Details of the staining protocols has been described previously.[25] 
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RESULTS 
Cell migration  

Proof-of-concept extended culture study 

Hydrogel embedding was successful for all 7 outer graft rims and allowed for observation of in vitro cell 
migration from day 2 up to day 47 during which cells migrated either only individually (2/7) or collectively (5/7) 
(Figure 1). For the two graft rings that showed only migration of individual cells, the corresponding 4 mm circular 
grafts showed collective cell migration (Supplementary Figure 1A). Graft ring viability determined by Calcein-
AM staining at the end of the culture period showed an overall compromised endothelial cell monolayer 
integrity with areas almost depleted of cells (Supplementary Figure 1B). 

 

ROCK-inhibitor effect on in vitro cell migration 

Of seven outer graft rim pairs used to test the effect of the ROCK-inhibitor, 5 pairs formed a continuous 
functional monolayer, as shown by the Calcein-AM and Hoechst staining (Figure 2). Mixed cell migration 
behaviour was observed for the other two pairs. While one graft rim showed collective migration, the 
contralateral graft rim only displayed single cell migration. For one outer graft rim pair with collective migration 
initially, cells displayed a coordinated movement that turned into individual cell migration after approximately 
17 days of culture. Moreover, cell migration was initiated from edges displaying low viability, whereas it was 
absent from edges displaying well detected Calcein-AM signal (Supplement Figure 2A). A similar migration 
pattern initiated from mechanically damaged areas was also observed for one outer graft rim cultured in the 
absence of ROCK-inhibitor (Supplement Figure 2B) whereas the contralateral graft rim showed a more uniform 
distributed migration along the open edges.  

Overall, for pairs with collective migration in both graft rims, there was no remarkable difference in terms of 
the moment when the cell migration started (4±2 days), or the duration, to maintain the direction of motion 
(44±2 days). The presence of ROCK-inhibitor in the culture medium contributed to a more regular cell 
morphology of the migrating cells and a migrating cell monolayer without significant formation of any gaps 
between cells (Figure 2A, ME vs. 2B, ME).  

Another finding, however, was that seven outer graft rims displayed a phenotypically distinct late-onset (but 
fast-growing) cell population emerging from the far periphery of the endothelium (Figure 3). The late onset 
migration was seen with both graft rings of 2 pairs, as well as with 3 unpaired graft rings (2 grafts in the presence 
and 1 in the absence of ROCK-inhibitor), while 2 other pairs did not show the late-onset cells at all. These late-
onset cells started to migrate after 3–5 weeks of culture. Presence of ROCK-inhibitor in the growth medium did 
neither result in a higher percentage of graft rims displaying the late-onset cell population nor did it decrease 
the time-point when the migration capacity was unlocked (29±8 days with ROCK-inhibitor (n=4) vs. 27±3 days 
without ROCK-inhibitor (n=3)). The cells emerged from the intermingled fibrillary area and acquired a more 
endothelial-like morphology when cultured in the absence of ROCK-inhibitor (Figure 3D–F, Figure 4A). These 
cells became contact inhibited and formed a monolayer of hexagonal cells within 10±4 days (in 4 of 7 cases) and 
7±4 days (in 3 of 7 cases) of gel culture in the presence or absence of ROCK-inhibitor, respectively (Figure 3C, F 
and Figure 4B). 
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Figure 2| Calcein-AM and Hoechst staining of representative images of paired outer graft rims cultured in the (A) absence 
or (B) presence of ROCK-inhibitor. Displayed per culture condition are fluorescence overlay images of Calcein-AM and 
Hoechst channels representative of far periphery endothelium (FPE), cell monolayer migration edge (ME), cells of different 
phenotype (CDP) growing around the outer rim opening, and late-onset cell type (LCT) with high proliferative capacity. The 
dashed lines outline the cell monolayer migration edges. Scale bar: 100 µm.  
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Figure 4| Example images of an outer rim displaying the late-onset cell population without actively targeting the Rho-
kinase pathway. (A) cell outgrowth in the far periphery of the endothelium visible after 28 days of gel culture. Note, (i) the 
different gel embedding plane of the TM that was not physically connected to the endothelium and (ii) the absence of cell 
migration from the radial cut edge of the outer rim. (B) After 35 days of gel culture, a new cell monolayer of optimal 
morphology formed around the rim’s cut edge. Scale bar: 100 µm.   

 

 
Figure 5| Representative images of structural proteins detected in the cell monolayer with focus on migration edge. 
Fluorescence microscopy images showing expression of ZO-1 (A, B: red signal) and Vimentin (C, D: red signal) 
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counterstained with DAPI (blue signal) in the confluent layer of migrating cells: control tissue (4 mm circular graft) (A and C) 
vs. outer graft rim (B and D). Scale bar: 100 µm. 

Immunohistochemistry 

After gel removal, immunohistochemistry analysis showed the typical expression profiles for the endothelial 
cell markers ZO-1 (Figure 5A, B) and Vimentin (Figure 5C, D) in the migrated cell monolayer. A weak signal was 
recorded for the functional marker Na+/K+ – ATPase, adhesion marker NCAM, and cell surface marker GPC-4 in 
the cell monolayer formed from the outer graft rim’s edge and tissue itself regardless of the culture medium 
composition (Table 2, M2, M3), while the 4 mm circular grafts revealed the formation of a continuous functional 
monolayer with tightly interconnected cells (Figure 6). No visual differences in the immunofluorescent 
expression patterns were detected between cultured monolayers formed by cell outgrowth from the 4 mm 
circular grafts with or without ROCK inhibition. Interestingly, cell viability evaluation of the seven outer graft 
rims with the late-onset cell population showed a heterogenous Calcein-AM signal intensity wherein the lowest 
signal detection corresponded to the cell population emerged from the far periphery of the endothelium. 

 

 
Figure 6| Immunofluorescence staining of the migrated monolayer from unpaired control grafts. Grafts were 
cultured with (top line: A, C, E) or without (bottom line: B, D, F) ROCK-inhibitor. Considerable expression of the 
functional cell marker Na+/K+ –ATPase (A, B: green signal), neural cell adhesion molecule NCAM (C, D: green 
signal), and cell surface proteoglycan GPC-4 (E, F: green signal) was detected in all cultured monolayers 
irrespective of the culture media composition. Nuclei were stained blue by DAPI. Scale bar: 100 µm 

 

DISCUSSION 
Corneal endothelial explant culture is technically challenging due to the inherent scrolling properties of the 
tissue, however, using a thermo-reversible hydrogel it is possible to selectively study in vitro EC migration from 
the outer regions of the monolayer with a central opening. Using this approach, we showed that EC migrate 
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collectively in the majority of outer graft rims with an intact endothelial monolayer. We observed early- and 
late-onset migration of two morphologically distinct corneal endothelial cell populations. The late-onset type 
showed a higher proliferative capacity though it appeared to be less differentiated. This cell subpopulation 
appeared to be mediated by stimuli other than the loss of contact inhibition and ROCK-inhibitor. 

When both early- and late- onset migration ceased – on average, 6 weeks vs. 1 week with a lag time of 3–5 
weeks, respectively, the cell monolayer became contact inhibited and immunohistochemistry demonstrated 
the presence of viable cells with tightly packed morphologies. In some other areas, we also noted single cell 
migration with individual satellite cells branching into the free space, though these were most often seen from 
areas with mechanical damage. We suspect that the lack of collective migration from the neighboring 
undamaged endothelial areas may be partly due to inconsistency in flattening the tissue fixed on the support, 
trapping some regions in the gel during the solidified matrix formation.  

Cultures of seven outer rims showed migration of a morphologically distinct, late-onset cell type which appears 
after 3–5 weeks in culture. These cells arose from the intermingled fibrillary area between the peripheral 
endothelium and TM. The late-onset cells first adopted a quickly migrating, fibroblast-like morphology (Figure 
3B, E). Within 10 days of culture, however, the cell migration pattern became more coordinated in which cells 
acquired an endothelial cell phenotype with a regular morphology (Figure 3C, F and Figure 4B). Interestingly, 
cell viability evaluation of outer graft rims with a late-onset cell population showed a heterogenous Calcein-AM 
signal intensity (Figure 2A: ME vs. LCT, B: ME vs. LCT) where late-onset cells displayed a lower fluorescence 
signal intensity than the cells that had started earlier with the migration.   

The late-onset cells appear to originate from the far peripheral area of the endothelium, a region that has been 
referred to as a progenitor enriched region (TZ) with the potential to generate mature human corneal EC.[26,27] 
For the far peripheral endothelium a high mitogenic activity has been reported due to their propensity to sphere 
formation when cultured on low adhesion surfaces.[28] When spheres were injected into the anterior chamber 
of rabbit eyes with corneal deficiency, they formed a functional endothelium.[29,30] Zhang et al. demonstrated 
that TZ cells can proliferate and differentiate into CEC by culturing TZ cells from donor corneal rims.[31] The TZ 
cells grew from the explant after 20 days of culture, exhibiting initially a rounder polygonal morphology, that 
become gradually more elongated and fibroblastic during passaging and finally polygonal 2 to 3 passages before 
senescence. As a general observation, terminal differentiation was identified when the TZ cells spontaneously 
acquired round and polygonal morphology. While we cannot definitively state that the late onset growth 
represents TZ cell growth, the timing and end morphology of the cells is highly suggestive.  

In our study, the observation of this late-onset cell population was only possible because the outer graft rims 
had been cut in order to flatten them on the substrate, however, the question is how these cells could be 
activated in vivo. While He et al. hypothesized that cells from the far periphery may have the ability to migrate 
towards the corneal center along DM grooves,[11] it is yet still unknown whether the TZ/late-onset cells play 
an active functional role or can be stimulated to be functionally active in vivo.  

Although endothelial-to-mesenchymal transition (EMT) has been described to occur when CEC are cultured over 
multiple passages and cells adopted a more elongated morphology,[32] highly proliferative TZ cells first adopt 
a fibroblast-like morphology and later transform to a polygonal morphology.[31] Previous studies also reported 
that there is no association of the TZ dimension or proliferative characteristics with donor age, ethnicity, or cell 
density which is in agreement with our findings that the outer rims showing the late-onset cells were isolated 
from old donors (68–80 years old) with variable ECD (1800 – 2400 cells/mm2), and preservation time before 
culture (8–26 days).[26]  

Interestingly, the presence of ROCK-inhibitor in the culture medium did not alter the cell outgrowth from the 
outer graft rims. While it did appear beneficial for maintaining the cell shape and cell-cell adhesion contacts 
during collective migration, no differences in fluorescence intensity and expression patterns were observed for 
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the functional protein marker Na+/K+ –ATPase and surface glycoproteins NCAM and GPC-4. Similar observations 
have been reported in other studies where the authors concluded that ROCK-inhibitors did not induce 
proliferation or alter the apoptosis of human corneal EC in culture but modulated the cell adhesion properties, 
cell morphology, and cell junctions by regulating the dynamic rearrangements of the actin cytoskeleton.[33,34] 
It is possible that the growth factors present in the serum and routinely added to these explant cell cultures 
already promote cell growth to the point that the effect of a ROCK-inhibitor cannot be detected.   

One limitation of our analysis is the small number of outer graft rims used to test whether the ROCK-inhibitor 
influences the migratory ability of corneal endothelial cells in vitro and larger studies are needed to obtain more 
conclusive results under which conditions ROCK-inhibitor is most effective in stimulating cell migration. A 
technical limitation was the challenging observation of the late-onset cells, that were located close to the 
borders of the well-plate, due to an uneven illumination caused by liquid meniscus.  

 

CONCLUSION 
In conclusion, we present the findings of selectively studying EC migration from the peripheral cornea by using 
outer graft rims embedded into a thermo-reversible polymer matrix. In this study, we observed the migration 
of two morphologically distinct cell populations. The first type was triggered by a broken physical barrier, while 
the second, late-onset type appeared less differentiated but showed a higher proliferative capacity. It is possible 
that the activation of the later cell population that displays characteristics of the TZ cells is governed by stimuli 
other than the loss of contact inhibition and the influence of a ROCK-inhibitor. Understanding the cell migration 
mechanism from phenotypically distinct regions of the endothelium may assist in optimizing regenerative 
therapies for endothelial diseases and whether other means of pharmaceutical modulation could further 
improve the outcomes. 
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Supporting information 
 

 
Supplementary Figure 1| Control graft - outer rim pair showing different cell migration behavior. (A) Light microscopy 
overview collage (x50) of a control graft cultured for 19 days in 3D gel matrix showing the formation of a continuous 
monolayer. Higher magnification images from the areas marked by * and ** in the overview image illustrate a contact 
inhibited cell monolayer. (B) Composite photos (x50) stitched together to create an image panorama of the outer rim 
stained with Calcein-AM after 47 days of gel culture. Note the imprints (market by white arrows) left by the surgical blade 
on the well surface after cutting open the outer rim. Scale bars:100 µm.  

 

 
Supplementary Figure 2| Fluorescence imaging overviews. Overviews (collage of x50) are shown for two unpaired outer 
rims stained with Calcein-AM and cultured (A) in the presence or (B) absence of ROCK-inhibitor. Both outer rims showed 
cells migrating from areas with low viability. 
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Abstract 
In this study, we describe a process of preparing, surgically manipulating, and validating a novel “small 
diameter” 4 mm circular Descemet membrane endothelial keratoplasty (DMEK) graft in vitro. Three small 
diameter DMEK grafts can be prepared from a single donor endothelium and could, therefore, potentially 
expand the donor pool. Prior to clinical use, however, we aimed to examine each step of the process to 
determine the effect on the endothelial cell loss and whether or not cells retained their capacity to migrate 
uniformly. For this study, circular small diameter grafts, obtained from twelve corneas of ten donors deemed 
ineligible for transplantation, were included. Small diameter DMEK graft preparation was successful in all cases 
(n = 36). Endothelial cell density (ECD), determined in the eye bank on seventeen grafts, showed an average 
decrease from 2413(±189)  cells/mm2 before to 2240 (±413) cells/mm2 after preparation. Twenty-four grafts 
were used to simulate DMEK-surgery in vitro and were successfully stained with 0.06% trypan blue, loaded 
into a straight DMEK-injector, unfolded, positioned, and centered within the circular ≈ 4 mm 
descemetorhexis. The estimated % area populated by viable cells on the grafts decreased from on average 
92 (±3) % before to 78 (±10) % (n = 4) after in vitro surgery. Cells displayed a capacity for uniform cell 
migration from all edges of the graft (n = 4) when embedded in the 3D hydrogel system. Our data show, that 
by using an in vitro model of DMEK-surgery it was possible to test the 4 mm circular DMEK grafts from eye bank 
preparation to surgical implantation. The cell loss after in vitro surgery was comparable with the in vivo ECD 
decline early after DMEK and the capacity of the cells to migrate to potentially cover bare stroma indicates that 
these small diameter grafts may be a viable clinical option to treat central endothelial disease. 
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Introduction 
Descemet membrane endothelial keratoplasty (DMEK) is the current standard of care for patients with 
symptomatic corneal endothelial dysfunction, with some of the best outcomes being seen in cases of Fuchs 
endothelial corneal dystrophy (FECD).[1] While this technique represents an improvement over the classical 
penetrating keratoplasty (PK)[2] and Descemet stripping (automated) endothelial keratoplasty (DSAEK),[3] it is 
limited by the 1:1 endothelial donor to recipient ratio, though the stroma may be repurposed for anterior 
corneal use.[4,5] In an effort to address this and at the same time trying to possibly reduce the antigen load of 
the transplanted tissue, Quarter-DMEK was developed, where four patients with central FECD could be treated 
using a single donor endothelium.[6–10] Clinically, Quarter-DMEK grafts perform well, with similar best 
corrected visual acuity (BCVA) to conventional DMEK, though the endothelial cell density (ECD) is lower,[9] 
which may be due to the shape mismatch between a round descemetorhexis and a triangular graft. These bare 
stromal areas require migration of endothelial cells to clear the cornea which could be cause of the reduced 
ECD.[7] 

Donor independent strategies for central FECD have also been explored. In these approaches, known as 
‘Descemet stripping only’ (DSO) or ‘Descemetorhexis without endothelial keratoplasty’ (DWEK), a smaller 
descemetorhexis of 4–5mm is performed, removing both the endothelium and associated guttae.[10–15] In 
successful cases, the residual peripheral endothelial cells spread and migrate to close the defect and clear the 
cornea. While this does avoid the need for donor tissue, the postoperative healing time is longer, and the 
success rate is less than that of gold standard DMEK techniques.[16] 

A smaller graft that matches a smaller descemetorhexis could, in theory, be combined to marry the best aspects 
of both techniques. Miniature DMEK grafts or bare Descemet membrane transplants have been used previously 
to treat stromal hydrops[17,18] or to promote endothelial cell migration after manual removal of diseased 
central corneal endothelial cells from the recipient cornea.[19,20] While it was technically challenging, it was 
still feasible to place the patch in the correct place and resulted in clinical improvement. The technique, 
however, has not been applied to FECD and the effect of preparing and manipulating such grafts on the 
endothelium is not known. 

In this study, we describe a process of preparing and surgically testing small diameter DMEK grafts in vitro. The 
aim was to evaluate not only the feasibility of the surgery but also the effect on endothelial cell density, viability, 
and migration capacity. 

 

Materials and methods 
Corneas 

Human postmortem corneas, that were deemed ineligible for transplantation, but which had an intact and 
viable endothelial cell layer, were obtained from Amnitrans EyeBank Rotterdam. Small diameter DMEK grafts 
were prepared from twelve corneas of ten donors (mean age 69 (±9) years; range 57–85 years) for a total of 36 
grafts. The average storage time prior to graft preparation was 13 (±6) days (range 4–21 days) and average ECD 
2500 (±230) cells/mm2 (range 2100–3000 cells/mm2) (Table 1). 

All donors had stated to have no objection to transplant-related research and the study adhered to the 
tenets of the Declaration of Helsinki. No institutional review board approval was obtained as under 
national regulation no approval is required for this research if no extra procedure was performed to 
obtain the samples and donors had consented to having the samples used for research purposes 
(https://www.ccmo.nl/onderzoekers/aanvullende-informatie-over-bepaalde-soorten-onderzoek/niet-
wmo-onderzoek/onderzoek-met-lichaamsmateriaal). 
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Table 1. Basic donor demographics of corneas used for small diameter DMEK 
graft preparation. 

Donor Information  

Number of corneas (donors) 
Gender  
      Female 
      Male 
Mean age (±SD), yrs. (range) 

12 (10) 
 
5 
5 
69 (±9), (57–85) 

Mean storage time (±SD), days (range) 
Mean ECD (±SD), cells/mm2 (range) 

13 (±6), (4–21) 
2500 (±230), (2100–3000) 

Rejection reason for corneas (donors) 
Virology 
Guttae 
Poor endothelium quality  

  (e.g., IOL scars, low ECD, loose roll) 
Outdated tissue 

 
6 (5) 
1 (1) 
3 (2) 
 
2 (2) 

Cause of death for corneas (donors)  
      Respiratory 
      Circulatory 
      Unknown/Others 
      Cardiovascular  

 
4 (3) 
2 (2) 
4 (4) 
2 (1) 

*Mean storage time = time between death and evaluation of the Micro-DMEK 
at day 0; SD = standard deviation; yrs. = years; ECD = endothelial cell density 

 

Small diameter Descemet membrane endothelial keratoplasty graft preparation 

Small diameter DMEK donor tissue preparation was performed by a single experienced eye bank technician (JL). 
Corneoscleral buttons were excised and stored in organ culture medium at 31˚C (CorneaMax, Eurobio, 
Courtaboeuf, France) until graft preparation from whole donor globes obtained less than 24 hours postmortem. 
The corneoscleral buttons were mounted endothelial side up on a custom-made holder with a suction cup 
(DORC International, Zuidland, The Netherlands). The Descemet membrane (DM) was separated from the 
stroma by using a hydro-separation technique using a bent 30G needle (BD Microlance, Drogheda, Ireland) 
inserted just underneath the DM layer bevel up until the bevel was completely inserted. A small amount of 0.9% 
physiological salt solution (BSS, B. Braun, Melsungen, Germany) was injected in order to separate DM from the 
stroma (Figure 1A). 

Additional physiological salt solution was injected with increased pressure aiming to establish a bubble spanning 
the full diameter of the cornea (Figure 1B and 1C). Throughout the hydro-separation of the DM from its 
underlying stroma, the endothelium surface was kept moist by regularly applying BSS solution. After the hydro-
dissection, the peripheral DM with its adjacent trabecular meshwork (TM) was loosened over 360 degrees by 
using a hockey stick blade (Figure 1D) and the anterior remnant was replaced by a soft contact lens (Figure 
1E).[4] The soft contact lens supporting the DM still attached to the TM was placed on a punch block (Network 
medical products, Ripon North Yorkshire, UK) (Figure 1F and 1G). Attachment of the TM prevented the tissue 
from scrolling and facilitated further handling. Subsequently, the three grafts were carefully punched out by 
using a 4 mm diameter biopsy punch (Kai Europe GmbH, Solingen, Germany) (Figure 1H, 1J and 1K). Small 
diameter DMEK grafts were stored in organ-culture medium until the time came for further analysis or in vitro 
surgery (Figure 1L). Endothelial cell density was calculated centrally on the corneas before preparation and on 
the grafts after preparation using the fixed-frame method by using at least three frames per cornea and graft, 
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respectively (Figure 1M). Post-preparation ECD counts were available for 17 small diameter DMEK grafts with 
sufficient image quality. 

 
Figure 1| Image collage showing the different steps of preparing three small diameter grafts from one donor cornea. (A) 
Local DM separation from the stoma by hydro-dissection using a bent 30G needle. (B, C) Separation of the DM along with 
the corneal endothelium by a bubble spanning the full diameter of the cornea. (D) Complete detachment of the peripheral 
DM with its adjacent TM using a hockey stick blade. (E) The anterior remnant was replaced on a soft contact lens. (F, G) 
Transfer of the soft contact lens holding the DM with its TM to a punch block. (H) Preparation of three small diameter grafts 
by carefully punching out the grafts using a 4 mm diameter biopsy punch. (J) Schematic representation of the trephination 
pattern for the three grafts. (K, L) Remaining part of the DM sheet after punching out three 4 mm grafts and the three 
resulting grafts. (M) Light microscopy image of a graft showing the endothelial cells on the graft and a very thin denuded 
band along the graft edge caused by trephination. 

 

In vitro  surgery 

In vitro surgery for 24 of the 4 mm DMEK grafts was performed in a manner similar to conventional DMEK,[21] 
with some modifications. All grafts were prepared by staining them twice with 0.06% trypan blue for three 
minutes (Figure 2A). Grafts were then loaded into a straight DMEK injector (Geuder DMEK injector, Heidelberg, 
Germany) (Figure 2B). Twenty small diameter DMEK grafts were used during the optimization steps using two 
types of anterior chamber set ups. The first experiments were performed using a donor corneoscleral button 
mounted on an artificial anterior chamber. The small graft size and deep chamber, however, made modelling 
the surgery very difficult. This was made easier by using a flexible thermoplastic material (Parafilm, Bemis Co, 
USA) to simulate the function of the iris in DMEK surgery. The artificial chamber was primed with balanced salt 
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solution and the film was stretched over it, followed by locking the corneoscleral button in place. Adjusting the 
pressure in the anterior chamber allowed the surgeon to shallow or deepen the chamber as needed and it was 
possible to position the graft in the Descemetorhexis (Figure 2C). While this partitioned anterior chamber was 
very helpful for practicing the maneuvers, the endothelium can adhere to the thermoplastic film and be 
damaged. To better model the true surgical situation, the final round of experiments was therefore, performed 
on whole globes (n = 4). The allowed better control of the iris and anterior chamber dept than the model setup.  

The globes used were also obtained from Amnitrans EyeBank Rotterdam and had been deemed ineligible for 
transplantation. Globes were stabilized on a suction support device (DALK/PLK Holder, DORC International). The 
intraocular pressure could be adjusted by increasing or decreasing the aspiration, fixating the globe. A 4 mm 
circular guiding mark was colored using gentian violet and then stamped on the anterior surface of the cornea. 
A 3 mm self-sealing corneal incision and three 1mm paracentesis incisions were created at the limbus. Air was 
then injected into the anterior chamber and a Descemetorhexis, slightly larger than the 4 mm guiding ring, was 
created. The graft was then injected into the anterior chamber ensuring that it retained its orientation and that 
the pressure remained soft to prevent reflux. The anterior chamber was kept relatively shallow during the 
surgical maneuvers. 

Once the graft was centered in the Descemetorhexis, air was slowly injected under the graft until the anterior 
chamber was completely full (Figure 2D). Full air fill was maintained for 30–45 minutes and imaging was 
performed using an anterior segment optical coherence tomographer (AS-OCT) (CASIA SS-1000 OCT, Tomey 
GmbH, Erlangen, Germany) (Figure 2E). At the end of the air-fill period, the corneoscleral rims were carefully 
excised and transferred endothelial side-up in a glass jar filled with BSS. By gently moving the corneal remnant 
through the liquid, the graft came loose and, with a glass pipette, could be transferred onto any support and 
subjected to further biological analysis. 

 
Figure 2| In vitro surgery performed with the small diameter DMEK graft. (A) Graft staining with 0.06% trypan blue. (B) 
Graft loading into a straight DMEK injector. (C) Descemetorhexis performed on a cornea mounted on an artificial anterior 
chamber. (D) Graft unfolding and positioning in the descemetorhexis area performed in a whole globe. Purple dashed line 
indicates the outline of the descemetorhexis, and the blue dashed line indicates the position of the 4 mm DMEK graft. (E) 
AS-OCT graft imaging after 30–45 minutes of a fully pressurized anterior chamber 
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Graft viability 

Calcein-AM was used to examine the cell viability of the grafts both before (i.e., immediately after preparation) 
and after in vitro surgeries. 100 μl of 400 μM Calcein-AM (Sigma-Aldrich Chemistry BV, Zwijndrecht, The 
Netherlands) in phosphate-buffered saline (PBS) was added directly to grafts that were flattened on silane-
coated glass slides. After a 45-minute incubation period at room temperature and one more PBS washing step, 
fluorescence images were taken (AxioVert.A1 microscope with AxioCam 305 color camera (Zeiss, Oberkochen, 
Germany)), and the level of cellular fluorescence was determined with ImageJ using the thresholding method. 

 

Cell migration study 

Four small diameter DMEK rolls were successfully unfolded endothelial-side-up on FNC-coated (fibronectin, 
collagen, and albumin coating mix, Athena ESTM Baltimore, MD, USA) glass coverslip and evaluated in vitro in 
order to examine the cellular migration behavior. One graft was accidently unfolded endothelium-side-down 
on the FNC-coated glass and was excluded from the study. The unfolding of all the grafts was performed in a 
“no-touch” manner by dropping organ-culture medium onto the graft until complete unfolding. Each glass 
coverslip, which supported one graft, was transferred to a 24-well plate and embedded into the 
thermoresponsive gel matrix as described previously.[22] Grafts were cultured in a humidified atmosphere at 
37°C and 5% CO2 for up to 2 weeks. Medium was refreshed every 2–3 days. Grafts were photographed daily 
with an AxioVert.A1 microscope to examine cell morphology and cell migration. The recovery of the grafts after 
cultivation was performed by gradually cooling the gel below the sol-gel transition temperature (<20°C) using 
low-temperature PBS as the low transfer medium.[20] 

Cell monolayer integrity was evaluated after gel removal by immunohistochemistry. Two samples were stained 
for the expression of zonula occludens-1 (ZO-1) according to a protocol that has been described previously.[22, 
23] 

 

Results 
Graft preparation 

Preparation was successful for all 12 corneas and resulted in 36 grafts of 4 mm diameter (Figure 1). All grafts 
showed endothelial cells up to the graft edge with only a small outer band of cells becoming depleted due to 
the trephination (Figure 1M). Cells showed the typical endothelial cell morphology and no micro-fibrillar 
arrangements representative for the far corneal periphery were observed. Post- preparation ECD was 2240 
(±413) cells/mm2 (n = 17) and it was not statistically significant compared to an ECD of 2413 (±189) cells/mm2 
(P = .141) calculated centrally before preparation on the same donor corneas used for graft preparation. The 
cell viability assay performed directly after preparation showed that, on average, 92 (±3)% of the graft surface 
area was covered by viable cells (Figure 3). 

 

In vitro  surgery 

In vitro surgery was performed using 24 of the 4 mm DMEK grafts. In all cases the grafts could be successfully 
positioned centrally in a 4 mm descemetorhexis area. It should be noted that the graft was opened slightly 
differently than in conventional DMEK. It was noted that intracameral direct fluid injection and air bubble 
unfolding were not helpful surgical maneuvers, given that the grafts responded by moving too freely around 
the anterior chamber. Unfolding and centration were instead achieved by soft taps and strokes with a cannula 
on the outer corneal surface. Post-surgery OCT imaging confirmed complete adherence of the grafts in all cases. 
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For in vitro surgeries performed in globes, assessment of cell viability by Calcein-AM assay showed that the 
estimated average % area populated by viable cells on the grafts was 78 (±10)% (n = 4) after in vitro surgery. 
This would correspond to an average decline of 14% (±5) inviable cell area compared to the 92 (±3)% surface 
area covered by viable cells determined directly after graft preparation (Figure 4). 

 

 
Figure 3| Graft viability after preparation. (A) Light microscopy image of a flattened 4 mm DMEK graft. The insert in the 
right top corner represents an area on the graft (white square) that may be perceived as a bare area in the overview image 
but is populated by cells. Please note that areas on the graft that may be perceived as bare areas in are artefacts from the 
mounting the flat tissue and keeping the graft moist to avoid tissue drying during imaging, which in turn causes some areas 
to be out of focus. (B) Fluorescence microscopy image of the same graft showing Calcein-AM staining for cell viability. The 
fluorescence image in (B) shows that all those areas that appeared to be devoid of cells in (A) are indeed covered by viable 
cells. (C) Higher magnification images from the areas marked by * and ** in overview image (B) to illustrate the viable cells 
(green) and the corresponding segmentation images (red). Scale bar: 100 μm. 

 

Cell migration study 

Grafts (n = 4) placed in 3D-gel culture showed uniform cell migration around the entire circular graft edge (Figure 
5A and 5C). Endothelial cells appeared densely packed with a homogenous morphology on all grafts (Figure 5B). 
After gel removal cells showed expression of ZO-1 all across the graft (Figure 5D) and also in the newly formed 
cell monolayer (Figure 5E). 

 

Discussion 
In this study, we present a new tissue-efficient surgical strategy for the treatment of central FECD by successfully 
validating the preparation process and in vitro surgically protocol for a circular small diameter DMEK graft. With 
this new application of the small diameter DMEK technique, three circular mini-DMEK grafts with a diameter of 
4 mm can be obtained from one donor cornea. 

The circular shape allows for the graft to be well matched to a 4 mm circular descemetorhexis similar to those 
used in DSO/DWEK procedures,[12–21] thereby reducing the bare stroma area that needs to be re-populated 
postoperatively by endothelial cells. At the same time, harvesting three circular 4 mm grafts avoids the far 
periphery of the corneal endothelium from being included in the graft (Figure 1J). The far peripheral corneal 
cells of the endothelium are intermingled with collagen fibers which inhibit their capacity to migrate.[8,9] Thus, 
by avoiding the periphery in these circular trepanations, it was possible to maintain migration capability from 
the entire perimeter of the graft. 
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Figure 4| Light and fluorescence microscopy images of two 4 mm DMEK grafts before and after in vitro surgery. (A, D) 
Light microscopy images of the grafts before in vitro surgery already showing some areas denuded of cells (red asterisk 
mark) directly after preparation which is probably related to the low-quality of the corneas ineligible for transplantation 
that were used for preparation. (B, E) Light microscopy images and (C, F) fluorescence microscopy images of the grafts after 
in vitro surgery showing again the same areas devoid of cells in addition to some other small areas on the graft that do not 
show any Calcein-AM fluorescence signal (indicative for the presence of viable cells). Note that one image tile each if 
missing in (C, F). The graft surface area within these missing image tiles was calculated (0.7% and 1.9%, respectively) and 
cell viability percentages were corrected for the missing graft area to avoid a potential overestimation. 

 

While surgical handling of such small DMEK grafts could be intuited as prohibitively challenging, the previous 
work of both Bachmann et al.[17] and Tu[18] indicates that small DMEK grafts can be mobilized effectively in 
the anterior chamber, even under the visual obstruction of stromal hydrops. Postoperative endothelial cell 
density was not a main outcome parameter, however, as the primary  purpose was to patch ruptured DM so 
“no-touch” handling was not mandatory. In our surgical testing model, we demonstrated that circular 4 mm 
DMEK grafts can be handled and centered in a circular descemetorhexis in a “no-touch” fashion with minimal 
loss in cell viability and migration capacity offering the possibility of using this small patch technique for FECD. 
The model itself also provided an opportunity to practice surgical maneuvers which may help in reducing the 
learning curve when translating this technique to patients. 

9 



Chapter 9 
 

146 
 

 
Figure 5| Example of in vitro endothelial cell migration from a gel-cultured 4 mm graft. (A) Light microscopy overview 
collage (50x magnification) of a 4 mm DMEK graft after 17 days in gel culture showing uniform cell migration from all around 
the graft. (B) Light microscopy image showing central graft endothelium and (C) graft edge (bottom of the image) from 
where migration was directed as a confluent cellular monolayer. (D, E) Fluorescence microscopy images showing 
expression of ZO-1 (red signal) counterstained with DAPI (blue signal) in the graft center and in the migrated monolayer. 
The absence of ZO-1 stained cell borders in the lower part of image 5E can be attributed to the fact that cells in this area 
reside on the graft and are elevated as compared to the new cell monolayer. Therefore, the cells on the graft have an 
elevation of about 10 μm (on the Descemet membrane) when compared to the migrated cells on the glass cover slide and 
therefore appear out of focus. Scale bars: 100 μm. 

 

One limitation of our analysis is the small number of grafts tested in a globe model while the other grafts were 
used for technique optimization in a different surgical model. This limits the sample size and thus accuracy of 
the cell viability analysis. Also, for cell viability analysis grafts could not be evaluated before and after surgery, 
and in addition had to be removed from the globe for imaging which constitutes an additional handling. 
However, the latter may be expected to have rather decreased than increased the reported cell viability 
percentage after in vitro surgery. With these limitations, the viability estimates are to be considered an 
extrapolation, but they still provide some reassurance prior to applying this technique in a patient’s eye. For 
future studies, using prolonged Calcein-AM staining to monitor the decrease in cell viability during the entire 
process from graft preparation to surgery may provide more detailed information on the effect of each handling 
step.[24]  

It should also be noted that small-diameter DMEK grafts are not a replacement for full-sized DMEK, particularly 
in extensive FECD and bullous keratopathy, where peripheral corneal edema is a prominent feature. They should 
rather be considered an option for central FECD and a potential alternative, or rescue strategy, for DSO/DWEK. 
By having a matching shape to the circular  descemetorhexis, small diameter DMEK grafts may provide a faster 
corneal clearance than DSO. After successfully in vitro testing of small diameter DMEK grafts from eye bank 
preparation to surgical implantation, clinical tests will be required to evaluate if small diameter-DMEK can 
indeed become a viable clinical option to treat central endothelial disease.
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Supporting information 
 

 
Supplementary Figure 1| Light microscopy examination of the research-graded human corneas before small 
dimeter DMEK graft preparation. For cell viability assessment after preparation. For cell viability assessment after 
preparation in the eye bank, grafts of corneas A, B, C, I and K were used. Grafts used to optimize the learning curve 
and tested using artificial anterior chamber model were prepared from corneas A-I. The four grafts transferred into 
globes were prepared from L and K. Migration studies were performed with grafts of corneas B, C and J. 
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SUMMARY AND DISCUSSION 
An intact corneal endothelium is essential for corneal transparency as it regulates corneal nutrition and 
hydration by balancing a semipermeable barrier activity with active ion transport mechanisms. The human 
endothelium is thought to be an amitotic cell layer with a continuous and age-dependent loss of endothelial 
cells of about 0.5 to 0.9% annually.[1] However, the endothelial cell loss can be accelerated due to corneal 
diseases, damage by inflammatory processes or by mechanical trauma following intraocular surgery or 
penetrating injury. Although the corneal endothelial cells (CEC) in low density conditions will display increased 
cellular migration by decreasing contact inhibition, once the endothelial cell density (ECD) drops below a 
minimum required to maintain the pumping function of the endothelium (typically around 400 – 500 cells/mm2), 
it will result in corneal decompensation. In such cases, the damaged or diseased portion of the cornea is 
surgically replaced either by a full thickness corneal graft (Penetrating Keratoplasty – PK) or a lamellar 
endothelial cell layer graft (lamellar endothelial keratoplasty – EK). Descemet Membrane Endothelial 
Keratoplasty (DMEK) is the most selective EK technique and nowadays the preferred treatment option for 
endothelial diseases. 

Similar to solid organ grafting, transplanted corneal tissue possesses a limited lifespan that is often related to 
the density of cells transplanted. Grafts may display an acute (related to surgical technique or graft preparation) 
or chronic endothelial cell loss (subclinical immunological reaction) that could lead to graft failure. Moreover, 
due to the global deficit of donor corneas it is estimated that only 1 in 70 visually impaired patients that require 
a corneal graft actually receive one.[2,3] In an effort to overcome tissue shortage, Hemi-[4–6] and Quarter-
DMEK[7–10] were developed to use the available donor tissue more efficiently. These techniques, like other 
new treatment options to alleviate tissue shortage, are most appropriate for patients with still healthy 
peripheral endothelial cells. Therefore, regeneration of the corneal endothelium by tissue engineering 
techniques, administration of pharmacological modulators or synthetic alternatives is being researched to 
overcome these problems.[11]    

This thesis outlines the rapid progression of the corneal regeneration field, including an in-depth analysis of 
wound healing pathways and biological modulators. In addition, in vitro studies were conducted to evaluate the 
migration capacity of corneal endothelium before and after EK. These findings result in a better understanding 
of endothelial cell migration and provided further knowledge for the ongoing research on endothelial graft 
substitutes. 

 
Early postoperative decrease in ECD after DMEK and DMEK graft viability prior to 
transplantation 
DMEK has become the gold standard to treat endothelial dysfunction owing to the rapid visual rehabilitation, 
near-normal anatomical restoration of the cornea and a lower risk of allograft rejection.[12] Initially, the DMEK 
technique was met with some reluctance as there were concerns regarding the technical aspects of graft 
preparation and surgery.[13] Preparation of thin (10–15 µm) grafts can be challenging and, together with 
intraoperative graft handling, could potentially lead to either complete tissue loss especially during preparation 
or to high postoperative endothelial cells loss and low graft survival rate.[14] Since ECD is fundamentally tied to 
the longevity of endothelial keratoplasty, ECD decrease is considered one of the main outcome measures in the 
investigation of the efficacy and safety of DMEK, as well as for predicting long-term graft survival.[14–16] 
Postoperative ECD decrease for all endothelial keratoplasty techniques is usually reported for the six-month 
follow-up and shows a drop of about 30–40%, comparative to preoperative values, followed by an annual 
decrease of 7–9% thereafter.[17,18] However, it is unclear at what time point the decrease in ECD reported at 
six months actually occurred, and whether it reflects a gradual decrease or a sudden drop. The results of a small 
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case series at our institute showed a larger than 30% decrease in ECD within the first month after DMEK.[19] 
This finding was substantiated in a follow-up study (Chapter 1) on a series of 24 DMEK eyes operated for Fuchs 
endothelial cell dystrophy (FECD). In this study we were able to obtain specular microscopy images already 1 
day and 1 week postoperatively due to the fast corneal clearance after DMEK and we could show that the 30% 
ECD drop occurs within the first postoperative week; about 2/3 of the total decrease could already be observed 
after the first postoperative day.[20] Such a rapid decrease cannot be explained by endothelial cell migration 
and/or redistribution that usually requires more time.[21] Similarly, it is unlikely that such an early drop was 
caused by an immune response, especially because an allograft rejection is generally considered to be a delayed 
reaction.[22] Other possibilities for causing the sudden early onset drop in ECD after DMEK may be 
intraoperative handling or an overestimation of preoperative viable cells on the graft. Since for most surgeries 
in this study no intraoperative complications were reported, the larger portion of the ECD decrease within the 
early postoperative phase after DMEK may primarily be explained by the overestimation of the eye bank viable 
ECD. This led us to examine endothelial cell viability after graft preparation in more detail.   

Evaluation of the cell viability and quality of endothelial grafts prepared in the eye bank has become the subject 
of numerous studies. Endothelial cell loss was evaluated following various graft preparation methods or surgical 
manipulations.[23–29] Current eye banking practices determine ECD based on the structural integrity of the 
cells (assessed by trypan blue staining) though this does not exactly reflect the viable cell pool of corneal 
endothelium allocated for transplantation. Our follow-up study (Chapter 2) on graft viability using surgery grade 
DMEK grafts that could not be allocated (due to the Covid-19-related cancellation of elective surgeries), 
demonstrated the need to perform a more accurate post-processing corneal endothelial cell analysis.[30] 
Ideally, grafts should not only be evaluated based on live-dead analysis, but it should be differentiated between 
various forms of cell death (apoptosis, necrosis, autophagy) since otherwise e.g. apoptotic cells are considered 
as ‘live’ cells. For a better differentiation, multiple biochemical and functional assays should be applied. In this 
regard, Calcein acetoxymethyl ester (Calcein-AM) has been used for studies of enzymatic activity, cell 
membrane integrity, and long-term cell tracking due to its low cellular toxicity.[31,32] In our study, the cell 
viability of five grafts scheduled for transplantation was assessed by Calcein-AM on the originally planned 
surgery day and revealed that the percentage of central surface area covered by viable cells ranged from 57% 
to 97%. Because of this scattered viability range, we continued with the viability analysis of 11 paired donor 
corneas evaluated either directly post-preparation or after 3–7 days of storage. Our results showed that cell 
viability of most DMEK grafts seems not to be affected by preparation and storage, while for some grafts 
endothelial cell damage undetected by trypan blue could be observed within hours after graft preparation. 
Because trypan blue can only identify dead cells, it fails to detect apoptotic or necrotic cells.[33] Therefore, 
when ECD was evaluated after graft preparation by trypan blue staining (eye bank procedure), we observed an 
average ECD difference of 10 (±21)% compared to ECD determined on the same grafts by Calcein-AM. This large 
variability of endothelial cell loss observed by Calcein-AM after graft preparation supported our clinical 
observation that the high endothelial cell loss detected in the early postoperative phase after DMEK can be 
primarily explained by an overestimation of the graft’s viable endothelial cell population.  

As an alternative to Calcein-AM, an annexin V-FITC assay has also been reported to detect early apoptosis by 
targeting negatively-charged phosphatidylserine translocated from the inner membrane leaflet of viable cells 
to the outer membrane surface during apoptosis.[34] Therefore, combining assays routinely used to 
characterize cell apoptosis with membrane impermeable dyes such as trypan blue would allow for the detection 
and quantification, in the same sample, of the apoptotic/necrotic and viable cell populations. However, these 
assays are not yet approved for the use on transplantable tissue and therefore, there is a still a strong need to 
develop and validate cell viability and cytotoxicity detection methods that analyze the functional status of the 
corneal endothelial cells after graft preparation and provide an accurate cell count. Meanwhile, an additional 
DMEK quality check by light microscopy performed within hour after graft preparation or just before surgery 
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could help to detect grafts with doubtful endothelial quality and thus, reduce postoperative DMEK 
complications and low postoperative ECD outcomes. 

  

Perceiving the morphological changes and regenerative capacity of the corneal endothelium 
in vivo and in vitro 
Intracellular signaling in wound healing  

Next to improving the quality of the available corneal donor tissue, current research is also focusing on non-
surgical treatments for restoration of corneal endothelium by first understanding the concepts and limitations 
of clinical procedures. In this regard, the extensive review (Chapter 3) on signaling pathways involved in CEC 
proliferation and migration could lead to new ideas on how to treat corneal endothelial dysfunction in the 
future.[35] 

Developing novel strategies to re-activate CEC regenerative capacity is challenging as CEC are blocked in the 
G0/G1 phase of the cell cycle in vivo and this is further hindered by endothelial-to-mesenchymal transition 
(EMT). Literature and gene and genome data base analysis revealed a complex interplay of pathways regulating 
the cell cycle and migration including among others the β-catenin and transforming growth factor (TGF-β) 
pathways,  the PI3K/Akt pathway, and the Rho-ROCK pathway.[36-43] Especially the Rho/ROCK pathway 
regulates a wide spectrum of fundamental cellular events and is involved in a variety of pathological conditions; 
its inhibition may trigger various signaling cascades and produce multiple biological effects such as enhanced 
proliferation, increased motility, or cytoskeleton rearrangements.  

In the process of wound repair, corneal endothelial cells may undergo EMT and transform to fibrogenic 
myofibroblasts. Myofibroblast generation through EMT is largely modulated by the transforming growth factor 
β (TGF-β)[44,45] that activates not only Smad signals but also other cytokines/growth factors such as mitogen-
activated protein kinase (MAPK), P38MAPK.[46–48] Because migration is a major component of wound healing 
in the corneal endothelium, strategies to inhibit of the  unfavorable EMT of the corneal endothelium should not 
be accompanied with an impairment of cell migration. 

The wound healing process of corneal endothelium considers that cells close the wounded gap mainly by 
migration and increased cell spreading,[49] while cell division remains very low[34] with cells dividing mostly 
amitotic with formation of binuclear cells.[50] Successful clinical options for replacing the diseased endothelium 
include approaches that accelerate endothelial healing and suppress EMT through topical administration of 
ROCK inhibitor eye drops. There is clear evidence that topical Rock inhibitor administered after removal of non-
confluent guttae (Descemet stripping only (DSO))[51,52] or after transplanting a devitalized DM[53] for treating 
central FECD, sustained cornea clearance, improved endothelial cell density, while overall, cells displayed a 
better architecture. ROCK inhibitors played also a major role in the clinical trial for injecting cultured human CEC 
into the anterior chamber of the eye.[54,55]  

Corneal endothelial cells migrate by transiently acquiring a fibroblast morphology reorganizing the actin into 
stress fibers, events that are consistent with EMT. Furthermore, EMT may lead to fibrotic complications of 
healing such as the formation of a retrocorneal fibrous membrane.[56] Inducers of EMT and fibrotic changes in 
the endothelial layer include interleukine-1 beta (IL-1β) that may be released in response to many ‘pathogen 
associated molecular patterns’ (PAMPs) and TGF-β. Although TGF-β can stimulate healing, it also promotes 
fibrogenic changes including deposition of aberrant extracellular matrix (ECM).[57] To counteract the fibrogenic 
response, inhibition of TGF-β signaling, viral-mediated overexpression of SMAD7[58] – a natural TGF-β signaling 
inhibitor, proved to suppress the inhibitory action of TGF-β on cell proliferation, which was mediated by 
inhibition of SMAD2 phosphorylation and downregulation of p27Kip1.[59] SMAD7 therapy is being currently 
considered useful for prevention and treatment of fibrogenic disorders in the corneal endothelium.[57]   
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Clinical scenarios that require corneal endothelial cell migration 

Clinical studies on endothelial healing are usually restricted to observations of cases with ocular chemical 
burn,[60,61] or after replacement of the abnormal corneal endothelium with healthy donor tissue.[62,63] These 
cases reported corneal recovery either through proliferation of endothelial progenitors from specific regions of 
the eye (progenitor-enriched niche adjacent to the peripheral endothelium and named inner transition zone 
(TZ))[64] or combined migration of both donor and remaining recipient endothelial cells. However, the wound 
healing process of corneal endothelium gives rise to many unanswered questions. For instance, endothelial cell 
migration insights after Quarter-DMEK surgery (that is, a modified DMEK-technique in which a full-sized DMEK 
graft is divided in quarters to treat 4 eyes),[8–10] did not succeed in confirming the presence of endothelium 
progenitors residing in the area close to the limbus. All operated eyes cleared centrally, while the peripheral 
bare stroma showed persistent edema.[8] The lack of cell migration from that specific region was attributed to 
the arrangement of collagen fibrillary bands in the graft periphery acting as a barrier for cell migration[6] but 
could also be caused by the removal of (progenitor) cells during Quarter-DMEK graft preparation. Typical, a 
DMEK graft diameter of 8–8.5 mm, that is prepared using the no-touch peeling technique, has low chances to 
show endothelial damage because trephination is performed outside the touched area during 
preparation.[66,67] However, Quarter-DMEK graft preparation requires manual removal of trabecular 
meshwork[9] and this technical step may be likely to deteriorate the quality of the peripheral endothelium. 

The clinical results of Quarter-DMEK eyes showed a different corneal clearance pattern with clearing primarily 
occurring adjacent to the radial cut graft edges but not along the ‘limbal’ round edge of the Quarter-DMEK grafts 
and in the adjacent bare stromal areas.[8,10] This observation was mainly attributed to an asymmetric 
endothelial cell migration over different anatomical corneal areas. To better understand the heterogenous cell 
migration behavior, with migration almost entirely absent in the far periphery of the endothelium, we 
performed in vitro studies to determine how Quarter-DMEK grafts may be positioned best onto the posterior 
recipient stroma in order to create a more homogeneous corneal clearance pattern (Chapter 4).The main 
experimental challenge was to keep a tissue, inherently inclined to curl, to stay flat in a fixed position on a 
surface in fluid. While Quarter-DMEK grafts were sandwiched between two glass coverslips spatially separated 
by a suture wire, the assembly was transferred to a culture plate and cell migration documented over 6 days.[68] 
Although the experimental set up was rather restrictive for nutrient diffusion, endothelial cells migrated from 
the radial cut edges but failed from the limbal round edge of the Quarter-DMEK grafts. This finding was mainly 
attributed to Descemet membrane architecture that organizes the cells in small radial rows induced by the 
furrow-like distribution of the underlying collagen fibers.[65] Also, it was suggested that endothelial cells 
undergo, throughout life, a continuous slow centripetal migration from deeper niches toward the center and 
lose their progenitor phenotype in response to contact with aqueous humor, the presence of TGF-β, and by cell 
contact inhibition as soon as they form a monolayer.[65] Hence, endothelial cells in the periphery will unlikely 
migrate outside from the graft area but might still possess residual proliferative capacity.[69,70]  

 

Three-dimensional in vitro cell culture model: concept and its applications  

Concept description 

Given the success to reproduce a clinical observation using an in vitro system and research grade donor tissue, 
we decided to improve the culture technique in order to gather more insight regarding the movement of corneal 
endothelial cells. But to achieve more reproducible results and reduce the technical burden of the experiments, 
further optimization of the explant culture system was required. Therefore, we developed a 3D culture 
technique for explant tissue by using a temperature-reversible hydrogel system which was  biocompatible, non-
toxic, 100% synthetic, pathogen-free and highly transparent for cell observation (Chapter 5). Also, the 
temperature-dependent dynamic viscosity is an important characteristic that allows the gel to swell, become 
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soft and flexible upon warming and liquefy upon cooling. This property is very useful to develop methods to 
harvest cultured cells for specifically planned procedures[71,72] or develop techniques to preserve viable cells 
within the gel,[73] with no need for an enzymatic treatment.[74] In this study, we expanded the scope of the 
gel, from an effective culture matrix that provides mechanical support while directing cell adhesion to a 
structure that adds weight when placed over the top of the biological sample without deteriorating its structure 
and functionality. In our first in vitro cell migration study with Quarter-DMEK grafts sandwiched between two 
glass slides cell migration could be studied for about 7 days before cells died due to the insufficient supply of 
nutrients (Chapter 4).[68] The new adapted 3D explant culture protocol improved cell viability and collective 
cell migration continued far longer (>3 weeks).[75] Also, the gel’s thermo-reversibility allowed the removal of 
liquefied gel and enabled the detection of biomolecular markers in the tissue and migrated cell layer which was 
not possible with the previous experimental set-up.  

 

Study the capacity to induce CEC mitosis in the peripheral corneal endothelium, via the controlled disruption 
of contact inhibition 

Given the advantages of the new 3D culture method to enhance the viability and migration capacity of cells 
from explant tissue, we continued with testing the effect of different types of peripheral Quarter-DMEK graft 
modifications on endothelial cell migration (Chapter 6). The objective of the study was to further optimize the 
Quarter-DMEK preparation in order to accelerate corneal clearance in patients along the round edge of the 
graft. Quarter-DMEK grafts with intact and viable endothelial cells were embedded in a cooled biocompatible, 
temperature-reversible polymer matrix and cultured over two weeks in a humidified atmosphere.[76] The 
peripheral edge of Quarter-DMEK grafts was physically modified by either introducing radial cuts into the far 
peripheral area or by removing parts of the far periphery with a trephine. Immunohistochemistry analysis 
performed after the two-week culture on grafts retrieved from the polymer matrix, demonstrated the presence 
of tightly packed and viable cells that showed high migratory ability at the leading edge of the monolayers 
formed from the radial cut graft edges.  

Next to better understanding the molecular pathways involved in endothelial migration (Chapter 3), current 
research also focuses on understanding the structure-function relationships in the adhesive structures of an 
endothelial monolayer that enable the cell to exert traction on its environment.[77,78] Cells spreading is a 
process largely determined by two interdependent and interactive systems: the integrin-based apparatus for 
substrate adhesion and the actin cytoskeleton characterized by distinct arrangements of actin filaments.[79–81] 
Integrins and actin are coupled through a physical linkage, which provides traction for migration. In collective 
cell migration cells carry out specialized functions according to their position within the group. Front-rear 
polarization is an example in which one subset of leader cells at the front guides a larger group of follower cells 
at the rear.[82] Leader cells typically exhibit a mesenchymal migration phenotype and function by degrading 
and remodeling the ECM to create channels for the whole cell group to advance cohesively.[83,84] By contrast, 
followers retain endothelial features such as apical-basolateral polarity and tight junctions and express relatively 
low levels of guidance receptors. Importantly, cells are not dragged or pushed by neighbors, but actively sense 
and respond to stresses imposed on them.  

Endothelial cell migration from the limbal graft edge, however, was not triggered by increasing cell exposure to 
free space through surgical modifications of the far periphery. Lack of migration from this area was also not due 
to an absence of viable cells, since immunolocalization showed cells with expression of structural (zonula 
occludens-1 (ZO-1) and vimentin) and functional markers (sodium/potassium pump (Na+/K+ –ATPase)). At first 
instance, the furrowed collagen microstructure of the peripheral cornea[65] might have acted as a barrier, 
thereby preventing migration. At the same time, other stimulus-specific gene expression responses might be 
required in order to prompt these cells to move. It is possible that important factors responsible for regulating 
cell migration such as cell-matrix adhesion molecules (e.g., integrins, selectins, cadherins), the Rho family of 
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small GTPases, and proteases (matrix-metallo proteases (MMPs)), are less expressed in the peripheral cells. 
When functional integrins recognize ECM ligands (fibronectin, laminin) to form focal adhesion,[85] signaling 
proteins are recruited to focal adhesion to regulate their assembly and disassembly.[86] Rho family of small 
GTPases[87] have been reported as key regulators of focal adhesion dynamics by dictating contact association, 
maturation, and turn over. The disassembly process through which cell adhesions are resealed could be 
mediated by ECM degradation by MMPs[88,89] or cellular contractile machinery ,i.e., Rho and myosin II, that 
cause cell rear detachment.[90,91] Taken together, cell migration framework outlines a complex map of 
processes, with multiple cross-talks between members of different families that influence the cell movement 
through mutually antagonistic pathways.[92]  

 

Study the regenerative potential of the peripheral corneal endothelium 

The failure of far peripheral EC to migrate, in spite of limbal area modifications, still limits the clinical application 
of Quarter-DMEK. Understanding the nature of these peripheral endothelial cells, how they differ from the 
central cells, and how to encourage them to migrate would greatly improve the pool of donor tissue available 
for patients with an immediate need of a transplant. 

After having explored the controlled mechanical perturbation of the peripheral endothelium as a possible 
promoter of collective cell migration, we performed an in vitro study to evaluate the potential of ROCK-inhibitor 
to stimulate peripheral endothelial cell migration. We first adapted the explant tissue shape from a pizza-pie 
(Quarter-DMEK) to an open-ring (6.5 mm punched out endothelium with TM still attached) to create a better 
system model for mimicking in vitro the in vivo effect of ROCK-inhibitor on cell migration outcomes after placing 
a pie-shaped Quarter-DMEK graft in a circular descemetorhexis area or after DSO (Chapter 7). The curved outer 
graft rims were mounted flat on a substrate, a central prerequisite for observing cell motility, and were cultured 
in a 3D thermo-reversible hydrogel matrix for over a month. This enabled the assessment whether continuous 
ROCK-inhibition creates long-term alteration in the migration characteristics of corneal endothelial cells. Our 
results, described in Chapter 7, showed that all cultured rims remained viable and displayed either single regions 
or collective areas of cell migration, regardless of the presence or absence of a ROCK-inhibitor. Rock-inhibitor, 
on the other hand, seemed to enhance the morphological stability of the migrated cells. Interestingly, late-onset 
cell migration from an area close to the limbus was observed. These late-onset cells grew fast into a contact 
inhibited monolayer displaying the typical hexagonal cell morphology, first adopted a fibroblast-like morphology 
before acquiring a cell phenotype with a regular morphology and appeared less differentiated compared to 
other areas of migration. This late-onset cell population not only showed high proliferative capacity but also 
emerged from outer rim grafts cultured without dysregulating the Rho-ROCK pathway. While it did not alter the 
cell outgrowth from the outer graft rims, the presence of ROCK-inhibitor did appear beneficial for maintaining 
the cell shape and cell-cell adhesion contacts during collective migration. The ability of ROCK-inhibitor to 
promote corneal endothelial wound healing by enhancing endothelial remodeling, adhesion and cell migration 
has been reported previously.[92]  

The broad range of cell migration phenotypes, from non-invasive motility to single-cell mesenchymal style to 
collective motility, differed in this study compared to previous migration studies of Quarter-DMEK grafts 
(Chapter 6),[76]. The main distinctions in the experimental design were presence of TM that remained adhered 
to endothelium and cell motility study-period that was considerably longer than two weeks. Thus, it is possible 
that a particular cell type localized at the insert region of the TM required long-term culture before displaying 
the characteristics of undifferentiated cells. When cell viability was evaluated on outer graft rims with the late-
onset cell population, the intensity of Calcein-AM signal varied over the sample wherein the lowest signal 
intensity corresponded to the cell population that had emerged from the far periphery of the endothelium. We 
suspect that this late-onset but fast growing cell population has a low intracellular esterase activity that does 
not signal damaged membranes but rather low-level expression of esterase-specific genes that serves as a 
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reliable indicator of undifferentiated cells.[93] Similar to our explant culture, Zhang et al.[94] demonstrated that 
cells proliferated from peripheral corneal areas with similar morphological characteristics during cell growth, 
timing, and end cell morphology. Furthermore, by using quantitative polymerase chain reaction (q-PCR), the 
cultured cells in their study were initially found to express increased levels of stem cell genes and minimal levels 
of pluripotency but these gene expression levels were reversed later during culture. The conclusion was that 
cells residing in the Schwalbe's ring region, a transition area between the peripheral corneal endothelium and 
the anterior non-filtering portion of the TM (collectively called the 'transition zone' [TZ]) displayed 
characteristics of adult stem cells. 

Generally, these cells seem to form a distinct cell population in the transition area displaying distinct 
ultrastructural features and with a whorled-like pattern oriented circumferentially at the corneal periphery and 
deep to the corneal endothelium lining of the anterior chamber.[95] Although they were proposed to have 
neuroregulatory function in the anterior segment [96] they were also found responsible for the formation of an 
aberrant endothelial membrane covering the anterior uveal meshwork in some patients treated for glaucoma 
with argon laser trabeculoplasty (ALT).[97,98] In addition, increased cell density in the peripheral areas of the 
cornea compared to the central area (average range 17%–23%)[99] also suggests that stem-like cells may be 
present in the peripheral transition region to provide differentiated CEC. Also, it has been documented in the 
literature that under some circumstances mitosis occurs in the endothelium of the adult human 
cornea[100,101] and percentage of replication-competent cells is higher in the peripheral CEC than those in the 
central cornea, which was independent of donor age.[102] These findings suggest that peripheral CEC possess 
regenerative capacity and may be able to supply new cells for the corneal endothelium. Although molecular 
marker studies for the stem cell niche at the transition zone provide supportive data,[103,104] there has not 
been a stem cell signature established so far.[105] Also, attempts to isolate and propagate undifferentiated 
progenitor cells using a sphere culture protocol have proved to be more  effective in isolating young precursor 
cells[106] from the peripheral corneal endothelium than the central region.[107–110] Therefore, it still remains 
to be determined if the Schwalbe's cells, TZ cells, and precursors are the same cell type, the extent to which 
they retain regenerative potential, and how cellular proliferation could be unlocked in vivo to repopulate 
corneal endothelium in age and disease.  

 

Improving surgical technique by integrating in vitro cell culture observations   

While trying to understand and promote EC migration from the peripheral cornea, the low postoperative ECD 
after Quarter-DMEK helped us to focus on continuous technique improvement. In an effort to address the 
significant ECD decrease after Quarter-DMEK,[8,10] which was thought to be caused by the shape mismatch 
between a round descemetorhexis and a triangular graft, a new surgical option was described, where small 
diameter DMEK grafts were prepared to match a small descemetorhexis and validated through a series of in 
vitro experimental conditions (Chapter 8). The main findings of this study were: (1) three circular mini-DMEK 
grafts with a diameter of 4 mm can be successfully prepared from one donor cornea, (2) the surgical procedure 
could be validated in vitro, and (3) small-diameter grafts embedded into a thermo-responsive hydrogel matrix 
showed uniform cell migration around the entire circular graft edge with cells displaying typical hexagonal close-
packed morphology.[111] Similar to Quarter-DMEK, transplantation of a small-diameter graft offers the 
theoretical benefit of reduced donor antigen load and may allow using donor corneas with multiple incisional 
scars following cataract extraction. Initially, grafts as small as the 4 mm diameter (mini-DMEK) were reported 
to treat acute corneal hydrops in keratoconus (i.e., rupture and detachment of the stiff DM due to progressing 
ectasia of the corneal stroma).[112,113] Not only the shape and size of the DMEK grafts used to close the tear 
in the DM were not standardized (5 mm round DMEK graft or razor blade cut graft with a width of 3 mm and a 
length adjusted to the length of the tear in the recipients’ DM) but also the orientation of the graft was not 
important for the surgery, presumably because the healthy host endothelium would easily repopulate the DM 
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even if the graft was accidentally inverted.[113] In a more recent study, Handel et al.[114] utilized mini-DMEK 
grafts to treat chronic focal corneal endothelial decompensation caused by tears in Descemet membrane after 
intraocular surgeries or corneal edema in the area of Haab striae in buphthalmus. Therefore, corneas were 
healthy and no disease except for the focal DM defect was present. The mini-DMEK grafts were trimmed from 
remaining DM to a width and a length equal to the length of the tear in the recipient’s DM, while the central 
DM was used for patients with FECD. Although cornea deswelling was observed in all cases, the role of 
endothelial cells in small DM defects remained unclear.  

It should also be noted that the small-diameter DMEK grafts have the potential to increase the use of one donor 
cornea to benefit three recipients only for treating mild FECD with guttae confined to the 4 mm central area. To 
avoid the ‘no-touch’ handling-related challenges of such small DMEK grafts, two alternative methods have been 
clinically tested so far, namely DSO and transplantation of acellular DM (i.e., Descemet membrane 
transplantation, DMT).[115–120] DSO represents a donor-independent strategy for central FECD, an approach 
that has already extensively been discussed in Chapter 4, while DMT represents a strategy for using non-clinical 
grade DMEK tissue. Although both techniques have the potential to treat FECD without the need for allogenic 
cell transplantation and fear of graft rejection, DMT provides an appropriate substrate that supports host 
endothelial cell migration with reduced risk for cells to enter endothelial-to-mesenchymal transition.[53] In 
addition, it seals the stroma to avoid keratocyte activation close to the wound space by the aqueous TGF-β,[121] 
that may lead to fibrosis and increased risk for retrocorneal membrane formation.[122,123] However, both DSO 
and DMT report a long recovery time with complete anatomical cornea restoration and visual rehabilitation not 
earlier than 3 months postoperatively.  

Small diameter DMEK grafts showed great surgical feasibility with improved graft characteristics (i.e., ECD, graft 
viability, uniform cell migration capacity) and by having a matching shape to the circular descemetorhexis, 
clinical recovery could be similar to conventional DMEK. However, results of clinical tests would provide greater 
clarity about the efficiency of small diameter-DMEK grafts for treatment of mild FECD. 

 

FUTURE PERSPECTIVES 
DMEK is nowadays the gold standard for the treatment of corneal endothelial dysfunction. Since its 
introduction, DMEK has proved superior to PK and other keratoplasty techniques in terms of faster visual 
recovery, lower rejection rates, better refractive outcomes, and increased structural integrity.[124–128] 
Therefore, the number of DMEK procedures performed worldwide has increased, particularly, in patients with 
Fuchs endothelial corneal dystrophy (FECD).[129,130] 

By only replacing the diseased tissue, DMEK embodies conceptual simplicity and surgical sophistication. 
Nonetheless, the main problem with endothelial keratoplasty is the chronic loss of endothelial cell density (ECD) 
over time which is similar to PK.[124,131,132] The effect of several donor- and patient-related parameters on 
endothelial cell loss has been evaluated in several studies in the literature, but with no consistent 
outcome.[15,133–140] However, the intraocular handling of the 15–20 µm thick membrane and the 
preoperative manual graft preparation represent technical challenges that may affect the final outcome.  

We performed studies to better understand the postoperative ECD decline, as described in this thesis. One 
aspect regards the overestimation of graft viability in the eye bank,[30] which in turn results in an unrealistic 
high drop in ECD in the early postoperative phase after DMEK.[20] Grafts seem to develop pronounced 
endothelial cell damage even after an unremarkable preparation process, However,  performing DMEK surgery 
using tissue with suboptimal endothelium quality could increase the risk of graft detachment and early graft 
failure.[14] While candidate fluorescent vital dyes can visualize life and apoptotic cells, regulatory and safety 
concerns as well as economic considerations may prevent eye banks from implementing such a step in their 
current protocol. One short-term solution could be to check the tissue quality just before releasing the graft for 
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transplantation. Although implementing this step might lead to an increase in the discard rate of already scarce 
tissue, it may result in a lower re-transplantation rate. An alternative strategy could be to improve the quality 
of donated corneas, by boosting the storage media with pharmacological modulators able to promote corneal 
endothelial regeneration and by maintaining a low level of oxidative stress. Furthermore, storing the cornea in 
a bioreactor, and not just free floating in a sealed bottle, could recreate the pressure gradient equivalent to 
intraocular pressure associated with a continuous renewal of storage medium, reduce stromal swelling, and 
therefore improve EC viability.[141,142] However, further research is needed to evaluate the safety of such 
storage methods and the therapeutical relevance of pharmaceutical agents.  

In an effort to overcome tissue shortage, the use of Quarter-DMEK could potentially quadruple the pool of 
donor tissue. However, the technique may benefit from some further modification to improve ECD outcomes. 
In vitro studies on the endothelial cell migration included in this thesis showed that the round peripheral edge 
of the Quarte-DMEK graft will constitute a physical barrier for cell migration[68,76] unless progenitor-like cells, 
recently discovered in an area close to the limbus,[64] could be unlocked to induce sufficient corneal 
deturgescence. Also, by adapting the graft preparation protocol to eliminate the round peripheral edge of the 
Quarter-DMEK, small diameter-DMEK may provide a fast and uniform corneal clearance and become a viable 
clinical option to treat central endothelial disease.[111]  

The limited numbers of high-quality corneal donors, and the surgical complexity of DMEK has promoted 
significant research interest in developing alternative techniques that either encourage a more efficient use of 
donor tissue or completely eliminate the need for implanting donor tissue.  

To date, no better therapeutic alternatives are available for the treatment of diseased endothelium than corneal 
transplantation. However, current tissue engineering approaches for corneal replacement represent a 
promising avenue for clinical applications. To overcome cornea donor shortage, researchers have adopted two 
basic tissue-engineering approaches: a “cell-based” strategy to allow the cells to create their own extracellular 
matrix, and “scaffold-based” strategies to provide strong and biocompatible matrices upon which to grow 
cells.[143–146] Regardless of strategy, in vitro expansion or the de novo generation of corneal endothelial cells 
(CEC) from pluripotent stem cells or other cell sources is required.[147,148] The main challenge for the in vitro 
proliferation of terminally differentiated cells is to preserve their phenotype by avoiding endothelial-to-
mesenchymal transition (EMT), which can cause CEC to lose their normal cell morphology and induce cell 
fibrosis. The alternative of differentiating CEC from pluripotent stem cells or other cell sources such as bone 
marrow-derived endothelial precursors, neural crest cells, corneal stromal stem cells, skin-derived precursors, 
or mesenchymal stem cells requires suitable culture protocols which have to comply with regulatory directives 
to guarantee that the final cell source resembles CEC.[148–154] While good manufacturing practice directives 
may differ depending on the country or region in which they are defined, there is an urgent need for 
standardization of endpoint parameters that generated CEC should fulfil. Therefore, the list of quality criteria 
should be reviewed for: (i) morphology assessment by checking cellular hexagonality upon reaching confluence 
in culture, (ii) genotype and phenotype by examining structural and functional markers, (iii) karyotype 
conservation by checking the integrity of the DNA to demonstrate the lack of gross chromosomal aberration, 
and (iv) functionality checked in vitro by tools that measure ion permeability across a monolayer of cells, ex vivo 
using corneas in a setting that mimics physiological conditions and allows the measurement of corneal thickness 
and further correlate to cell functionality, or in vivo using animal models of corneal edema.[155]  

After facing all challenges with CEC culture in terms of cellular profile, proliferative capacity, and downstream 
analysis, cells must be delivered alive and with sufficient potential to adhere to the posterior part of the cornea. 
The “cell-based” strategy proposes the delivery of CEC in a simple and minimal invasive manner via injection 
into the anterior chamber of the eye.[155] After the procedure, placing the subject in a prone position for 3 
hours allows gravity to increase the attachment of CEC to the posterior part of the cornea. The proof-of-concept 
clinical study by Kinoshita and associates demonstrated that corneal edema could be reversed by injecting about 
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1x106 cultured human CEC supplemented with ROCK inhibitor Y-27632 into the anterior chamber after 
mechanical scrapping of the diseased endothelium; corneal clarity was maintained at least 5 years 
postoperatively.[54,55] Additionally, the latest technique refinement suggests that injection therapy using 
highly purified mature cultured human CEC for corneal endothelial failure is safer, provides rapid recovery of 
corneal thickness, better ECD, and a low cell attrition rate over 3 years postsurgery.[156] However, larger, 
prospective, randomised controlled trials are required to ensure the long term efficacy and safety.  

The main challenge for the “scaffold-based” strategy is to obtain a monolayer of CEC on a biocompatible carrier 
to produce bioengineered corneal endothelial grafts.[145] The use of a carrier that supports cell replication is 
an attractive approach because it has the added advantage of delivering a contact-inhibited and functional cell 
monolayer to the correct place and in a controlled manner. In addition, fewer cells are needed to populate the 
carrier compared to cell injection, thereby increasing the number of patients that could benefit. Assuming a 
surface area of 57 mm2 (8.5 mm circular carrier) and a final ECD of 2300 cells/mm2 (usual threshold value set up 
by eye banks), an endothelial graft should contain about 1.3 x 105 CEC. Based on a simple calculation, the 
expanded CECs used to treat 11 patients by cell injection could hypothetically populate 84 carriers and treat 
patients by a delivery strategy similar to DMEK or DSEK. However, an ideal cell carrier should mimic key 
architectural and functional features of the DM and therefore be dense, thick enough to provide sufficient 
mechanical strength, relatively transparent, semi-permeable to aqueous humour, flexible enough to mould to 
the curvature of the cornea, biocompatible, promote cell adhesion and phenotype, and maybe biodegradable 
to enables cells to produce their own DM while simultaneously degrading the surrounding scaffold. Many in 
vitro studies have reported promising research results when using either natural tissues such as decellulared 
biological membranes (e.g., amniotic membrane, denuded DM or stroma of both human and animal origin, 
human anterior lens capsule)[157–167] or polymeric materials (natural and synthetic).[161,168–192] 
Subsequent in vivo testing of tissue-engineered corneal endothelial cell-carrier sheets in animal models has, 
however, not proven any of the constructs suitable to progress into clinical practise.[160,193–195]  

The option to eliminate the transplant altogether and allow a person’s own endothelial cells to redistribute was 
introduced by Descemet stripping only (DSO) for the treatment of early FECD. In a primary analysis of DSO, the 
removal of a 6mm diameter area of the diseased DM led to an incomplete recovery.[116,196] Better clearance 
rates were reported where a smaller 4-5mm descemetorhexis was employed in selected cases of relatively 
young patients with central guttae and an adequate peripheral endothelial reserve.[116,197] Despite these 
limitations, DSO benefits from 0% rejection rate (no risk of immunologic graft rejection) and no need to use long 
term topical corticosteroids to prevent graft rejection thereby reducing the side effect of intraocular pressure 
elevation. However, DSO is not yet a replacement for DMEK for two primary reasons: clearing a smaller area 
may still lead to suboptimal vision, and corneal edema may persist for months hindering visual recovery, 
rendering its outcome unpredictable.[119] To improve its success, this technique may require the use of 
pharmacological modulators such as Rho-associated protein kinase (ROCK) inhibitors.[118] Although the 
biological action of ROCK-inhibitors is completely understood, they have been described to significantly speed 
up the visual recovery and induce higher central endothelial cell counts in a restored endothelium and with an 
improved cell architecture.[52] Therefore, DSO may be a suitable first-line surgical treatment option prior to 
DMEK or small diameter-DMEK, for those willing to try if stripping alone will resolve their vision problems. 
However, larger trials are still required to assess the effect of DSO in conjunction with pharmacological drugs 
on longer-term clinical efficacy and drug safety.  

A potential hybrid technique between DSO and conventional, circular DMEK employs the use of endothelial 
graft substitutes comprising of tissue-derived or synthetic matrices.[120,198,199] Transplantation of an 
acellular DM into a patient has recently been reported as part of a larger clinical trial in Singapore [identification 
number NCT03275896]. The patient was transplanted with a 4 mm decellularized membrane and showed a 
four-line improvement in acuity 6 month after transplant, with near to normal restauration of central corneal 
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thickness and ECD values comparable to DSO.[120] Alternatively, a synthetic graft substitute (EndoArt) has been 
implanted to reverse corneal enema and promote sight recovery.[198] Attached to the back of the cornea, 
EndoArt should prevent the transfer of fluids into the cornea and inhibit the fluid accumulation leading to 
edema. A summary of the first results for two patients as part of a multi-center, prospective feasibility clinical 
study [identification number NCT03069521] showed that patients had a reduction of corneal edema with 
transparency recovery after EndoArt implantation. Limitations of implanting this synthetic construct include: (i) 
regular repositioning by rebubbling until complete adherence to the stromal bed, (ii) unclear timespan over 
which the cornea will remain transparent and properly hydrated, (iii) long-term effect of restricting diffusion of 
vitamin and essential nutrients from the aqueous humour to the cornea and (iv) inability of corneal endothelial 
cells to migrate and populate the artificial layer. Overall, natural-derived or engineered graft substitutes will still 
have to be evaluated in large clinical trials with long-term follow-up results to further determine their 
implementation success and also identify the right target populations.  

Another strategy to increase corneal endothelial graft availability is to treat the genetic disorder by replacing 
the need for a corneal transplant. The current strategies able to correct the genetic alteration or avoid their 
associated effects are gene augmentation therapy (GAT), antisense oligonucleotide-based modulation (AON), 
and clustered regularly interspaced short palindromic repeats (CRISPR/Cas9)-based modulation.[200–205] It 
has also been reported that FED pathophysiology manifests through a combination of various genetic and non-
heritable factors, such as channel dysfunction (e.g., solute carrier family 4 member 11 – SLC4A11), abnormal 
extracellular matrix deposition (e.g., collagen type VIII alpha 2 chain – COL8A2), RNA toxicity, oxidative stress 
(e.g., nuclear factor, erythroid 2 like 2 transcription factor – NRF2), and apoptosis (e.g., zinc finger e-box binding 
homeobox 1 – ZEB1).[206,207] The most common genetic alteration in FECD is a microsatellite region 
comprising CTG trinucleotide repeats (TNRs) in the fourth intron of the TCF4 gene to be abnormally expanded 
and segregated. While the genetic mechanism responsible for the effect of this trinucleotide expansion on the 
TCF4 gene is unclear, it will contribute to cellular dysfunction by triggering RNA mis-splicing. The genetic 
modulation of TCF4 expression is done either by transferring a functioning copy of this defective gene aimed to 
correct the disease, by introducing antisense oligonucleotides such as small interference RNA (siRNA) or micro-
RNA (miRNA) that could diminish the toxic effects associated with the defective gene, or by eliminating the CTG 
expansion in order to revert the mutation causing FECD.[208–214] Further research is also needed to explore 
the immune tolerance towards the transgene products following repeated administration in the anterior eye 
chamber, find the most efficient and cost-effective delivery methods, and identity the off-target effects.   

Over the past several years, the use of pharmaceutical agents for the treatment of corneal endothelial diseases 
has been explored.[35] The working principle relies on promoting cell survival, proliferation, and migration with 
a minimally invasive approach of intracameral or topical drug delivery. ROCK-inhibitors have been the most 
studied drugs with great potential to trigger CEC repair in vivo in humans when administrated topically as an 
adjuvant to DSO.[51,52] Worldwide clinical series report on ROCK-inhibitors success to reverse corneal edema 
after surgical removal of diseased CEC, restore corneal anatomy after partially detached DM in BK eyes after 
cataract surgery, and regenerate the corneal endothelium through a presumed increase in cell 
proliferation.[118,215–217] Also, promising research has been reported for other pharmaceutical drugs such as 
epidermal growth factor, platelet-derived growth factor, or fibroblast growth factors.[218–220] However, they 
should be administered with caution as they show a dual mechanism of action, i.e., regeneration potential with 
the risk of causing an undesired EMT. Attention has also been directed to reduce oxidative stress by upregulating 
transcription factors to promote the expression of antioxidative stress proteins thereby decreasing CEC 
apoptosis.[221–226] Also, profiling new drug candidates require a systematic examination of the functional 
effect in a variety of in vitro and in vivo assays. Furthermore, patient assignment in a clinical trial requires 
extensive knowledge on the diseases to be treated. In order to conclude any beneficial effects of the drug 
candidates mentioned above, it is mandatory to perform large, randomized control trials to generate higher 
level evidence. 
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Conclusive remarks 
Despite significant progress towards therapies to promote corneal endothelial regeneration, there is still a long 
way before such therapies are approved by regulatory bodies and become routine clinical practice. To date, 
replacing the diseased endothelium by DMEK is still the most efficient treatment option for endothelial 
dysfunction, but the number of procedures is still restricted by a worldwide shortage of suitable and available 
human donors, especially in resource-poor parts of the world. Moreover, considering the COVID-19 pandemic, 
tissue exclusion criteria have become even more stringent, limiting considerably the pool of available 
donors.[227] It is essential to make the added value of the donation process clear to people, to have an incentive 
to register for donation because they are more likely to gain from the system than to contribute to it,[228–230] 
while in the meantime new treatment options are being developed and translated into clinical practice.
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SAMENVATTING EN DISCUSSIE 
Een intact corneaendotheel is essentieel voor de helderheid van de cornea, aangezien het de voeding en 
hydratatie van de cornea reguleert. Het endotheel vormt een semipermeabele barrière met actieve ion-
transportmechanismen. Het menselijk endotheel wordt gezien als een niet-delende cellaag waarin een continu 
leeftijdsafhankelijk verlies van endotheelcellen plaatsvindt van 0,5-0,9% per jaar.[1] Dit verlies van cellen kan 
versneld worden door ziekte van de cornea, schade door ontstekingsprocessen of door trauma ten gevolge van 
operaties in het oog, of penetrerend letsel. De endotheelcellen van de cornea (corneal endothelial cells, CEC) 
zullen bij een lage celdichtheidmeer migratie vertonen. Dit komt door een verminderde contacinhibitie. 
Wanneer de endotheelceldichtheid (endothelial cell density, ECD) daalt tot 400 – 500 cellen/mm2, is dit lager 
dan de minimaal benodigde dichtheid om de pompfunctie van het endotheel te behouden, hetgeen resulteert 
in corneadecompensatie. Dit houdt in dat de corneadikte toeneemt, wat slecht zicht geeft, en tenslotte een 
pijnlijk oog. In dit soort gevallen wordt het aangedane deel van de cornea middels een operatie vervangen door 
een volledige cornea (Perforerende Keratoplastiek – PK) of een lamellair transplantaat van de achterkant van 
de cornea (Endotheliale Keratoplastiek – EK). Descemet Membraan Endotheliale Keratoplastiek (DMEK) is de 
meest selectieve EK techniek en tegenwoordig de voorkeursbehandeling voor endotheel afwijkingen. Hierbij 
wordt het endotheel samen met de Membraan van Descemet vervangen. 

Vergelijkbaar met orgaantransplantaties heeft een getransplanteerd hoornvlies een beperkte levensduur die 
vaak gerelateerd is aan de celdichtheid. Transplantaten kunnen een acuut (gerelateerd aan chirurgische 
techniek of transplantaat preparatie) of chronisch (subklinische immunologische reactie) verlies aan 
celdichtheid ondergaan wat kan leiden tot “graft failure” (transplantaatfalen). Daarnaast wordt geschat dat, 
door het wereldwijde tekort aan donorcornea’s, maar één op de zeventig slechtziende patiënten die een 
transplantaat nodig hebben, er daadwerkelijk één krijgen.[2,3] Als poging om het weefseltekort te verminderen 
zijn de Hemi- [4–6] en Quarter-DMEK [7–10] ontwikkeld om het beschikbare weefsel efficiënter te kunnen 
gebruiken. Deze technieken, evenals andere nieuwe behandelingsmethoden om het weefseltekort te 
verlichten, zijn het meest geschikt voor patiënten die in de periferie van de cornea nog gezonde endotheelcellen 
hebben. Om meer patiënten te kunnen helpen wordt onderzoek gedaan naar de regeneratie van het cornea-
endotheel door verandering van transplantaatpreparatietechnieken, toediening van farmacologische 
modulatoren en synthetische alternatieven.[11] 

Dit proefschrift beschrijft de snelle progressie in het onderzoek naar cornearegeneratie en bevat tevens een 
een diepgaande analyse van wondgenezing en biologische modulatoren. Ook zijn in vitro experimenten 
uitgevoerd om de migratiecapaciteit van het endotheel vóór en na EK te evalueren. De verkregen uitkomsten 
resulteren in meer inzicht betreffende endotheelcelmigratie en in meer kennis betreffende het voortdurende 
onderzoek naar mogelijke vervangers van endotheel transplantaten. 

 

Vroege postoperatieve afname van ECD na DMEK en levensvatbaarheid van de DMEK- 
transplantaat vóór transplantatie 
DMEK is de gouden standaard geworden om endotheeldysfunctie te behandelen vanwege het snelle visuele 
herstel, het anatomisch vrijwel normale herstel van de cornea en een laag afstotingsrisico .[12] Aanvankelijk 
was er enige terughoudendheid voor gebruik van de DMEK-techniek in verband met zorgen over de technische 
aspecten van zowel transplantaatpreparatie als operatie.[13] Preparatie van deze dunne (10–15 µm) grafts kan 
uitdagend zijn en zou daarnaast kunnen leiden tot volledig verlies van weefsel of een hoge postoperatieve 
afname van de ECD en een korte transplantaat levensduur, wat mede veroorzaakt kan worden door de intra-
operatieve transplantaathantering.[14] Aangezien de ECD samenhangt met de levensduur van de EK, wordt de 
afname van de ECD beschouwd als een van de belangrijkste maten van uitkomst in het onderzoek naar de 
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doeltreffendheid en veiligheid van de DMEK, evenals voor het voorspellen van de levensvatbaarheid van het 
transplantaat op lange termijn.[14–16] Voor alle EK’s wordt de postoperatieve afname van de ECD gewoonlijk 
gerapporteerd bij een 6-maandse follow-up, waarbij een gemiddelde daling beschreven wordt van ongeveer 30 
tot 40% ten opzichte van de preoperatieve waarden. Deze daling wordt gevolgd door een jaarlijkse daling van 7 
tot 9%.[17,18] Het is echter onduidelijk wannéér de afname van de ECD, die bij de 6-maanden follow-up wordt 
gemeten, daadwerkelijk heeft plaatsgevonden en of dit een geleidelijke afname of plotselinge daling 
weerspiegelt. De resultaten van een kleiner onderzoek in ons instituut tonen een afname van meer dan 30% 
van de ECD binnen de eerste maand na DMEK.[19] Deze bevinding werd eerder bevestigd in de vervolgstudie 
(Hoofdstuk 1) met een serie van 24 DMEK-ogen die werden behandeld voor Fuch’s endotheelceldystrofie 
(FECD). In deze studie konden we al op 1 dag en 1 week na de operatie speculaire (spiegelende) microscopische 
beelden verkrijgen door de snelle helderheid van de cornea na een DMEK-ingreep, waardoor we konden 
aantonen dat de ECD-daling van 30% al binnen de eerste postoperatieve week plaatsvindt. Ongeveer 2/3 van 
de totale daling kon al na de eerste postoperatieve dag worden waargenomen.[20] Een dermate snelle daling 
kan niet worden verklaard door migratie en/of herverdeling van het endotheel, waarvoor meer tijd nodig is.[21] 
Het is daarnaast ook onwaarschijnlijk dat een daling in zo’n korte periode werd veroorzaakt door een 
immuunrespons, zeker omdat transplantaatafstoting over het algemeen wordt beschouwd als een vertraagde 
reactie.[22] Andere mogelijke oorzaken voor vroegtijdige postoperatieve ECD-afname na DMEK kunnen intra-
operatieve handelingen zijn of een preoperatieve overschatting van het aantal levensvatbare cellen op de 
transplantaat. Aangezien voor de meeste operaties in dit onderzoek geen intra-operatieve complicaties werden 
gerapporteerd kan het grotere deel van de ECD-afname voornamelijk worden verklaard door overschatting van 
de levensvatbare ECD in de hoornvliesbank. Dit leidde ons ertoe om de levensvatbaarheid na 
transplantaatpreparatie nader te onderzoeken.  

Het onderzoek naar de levensvatbaarheid en kwaliteit van de door de hoornvliesbank geprepareerde grafts is 
het onderwerp geworden van talrijke studies. Afname van de ECD werd gerapporteerd na verschillende 
preparatiemethoden of chirurgische manipulaties.[23–29] De huidige manier van werken in de hoornvliesbank 
is om de ECD te bepalen op basis van structurele integriteit van de cellen (beoordeeld door 
trypaanblauwkleuring), hoewel dit niet precies de levensvatbare endotheelcelpool weergeeft die wordt 
getransplanteerd. Onze vervolgstudie (Hoofdstuk 2) over de levensvatbaarheid van het DMEK-transplantaat, 
waarin gebruik is gemaakt van DMEK-transplantaten met chirurgisch goede kwaliteit die niet voor een patiënt 
gebruikt konden worden (als gevolg van  de coronapandemie), heeft de noodzaak aangetoond om een meer 
nauwkeurige analyse uit voeren na weefselpreparatie.[30] Idealiter worden transplantaten niet enkel 
geëvalueerd op basis van levend en dood, maar wordt er onderscheid gemaakt tussen de verschillende vormen 
van celdood (apoptose, necrose, autofagie), aangezien anders bijvoorbeeld apoptotische cellen nog als “levend” 
kunnen worden beschouwd. Om beter onderscheid te kunnen maken moeten meerdere biochemische en 
functionele tests worden uitgevoerd. Dit is eerder gedaan met Calceïne-acetoxymethylester (Calceïne-AM) voor 
onderzoek naar enzymatische activiteit, integriteit van het celmembraan en het tracken van cellen op lange 
termijn, vanwege de lage cellulaire toxiciteit.[31,32] In onze studie werd de levensvatbaarheid van vijf 
transplantaten die gepland stonden voor transplantatie beoordeeld door middel van de Calceïne-AM kleuring 
op de oorspronkelijk geplande operatiedag. Hieruit bleek dat het percentage van het centrale oppervlak dat 
door levensvatbare cellen werd bedekt varieerde van 57 tot 97%. Vanwege deze grote spreiding zijn we 
doorgegaan met de analyse van elf gepaarde donorcornea’s, welke direct na preparatie of na 3 tot 7 dagen 
opslag in kweekmedium werden geëvalueerd. De resultaten toonden aan dat de levensvatbaarheid van de 
meeste DMEK-transplantaten niet beïnvloed leek te zijn door preparatie en opslag, terwijl bij sommige 
transplantaten enkele uren na preparatie endotheelschade kon worden waargenomen welke niet door 
trypaanblauw werd gedetecteerd. Deze kleurstof kan namelijk geen apoptotische of necrotische cellen 
detecteren en enkel dode cellen.[33] Toen de ECD na preparatie werd geëvalueerd door middel van 
trypaanblauw (oogbankprocedure), werd een gemiddeld verschil in ECD geobserveerd van 10 (±21)% 
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vergeleken met evaluatie van de ECD van dezelfde transplantaten door middel van Calceïne-AM. Deze grote 
variabiliteit in de afname van de ECD, geobserveerd door Calceïne-AM na transplantaat preparatie, ondersteunt 
onze klinische waarneming dat deze afname in de vroege postoperatieve fase na DMEK voornamelijk kan 
worden verklaard door een overschatting van de levensvatbare endotheelcelpopulatie van de transplantaat. 

Als alternatief voor Calceïne-AM kan ook een annexine V-FITC assay worden uitgevoerd, waarmee vroege 
apoptose kan worden gedetecteerd door te kijken naar negatief geladen fosfatidylserine dat tijdens apoptose 
van het binnenste membraanblad van levensvatbare cellen naar het buitenste membraanoppervlak wordt 
gebracht.[34] Door assays die routinematig worden gebruikt om apoptose te karakteriseren te combineren met 
membraan-permeabele kleurstoffen zoals trypaanblauw, zouden in hetzelfde monster zowel de 
apoptotische/necrotische als de levensvatbare cellen kunnen worden gedetecteerd en gekwantificeerd. Deze 
tests zijn echter nog niet goedgekeurd voor gebruik op transplanteerbaar weefsel. Hierdoor is er nog steeds een 
grote behoefte aan de ontwikkeling en validatie van detectiemethoden voor levensvatbaarheid van cellen en 
cytotoxiteit, die de functionele status van het endotheel na preparatie van het transplataat analyseren en een 
nauwkeurige levensvatbare celtelling opleveren. Ondertussen zou een aanvullende DMEK-kwaliteitscheck door 
middel van lichtmicroscopie binnen drie uren na preparatie of vlak voor de operatie kunnen helpen om 
transplantaten met matige endotheelkwaliteit te kunnen opsporen en zo postoperatieve DMEK-complicaties en 
de kans op een lage postoperatieve ECD te verminderen. 

  

Het in vivo en in vitro waarnemen van de morfologische veranderingen en regeneratieve 
capaciteit van het endotheel  
Intracellulaire signaalroutes in wondgenezing 

Naast het verbeteren van de kwaliteit van het beschikbare corneadonorweefsel richt het huidige onderzoek zich 
ook op niet-chirurgische behandelingen voor het herstel van het endotheel door eerst de concepten en 
beperkingen van klinische procedures te begrijpen. In dit verband zou het uitgebreide overzicht (Hoofdstuk 3) 
over signaalroutes die betrokken zijn bij zowel proliferatie als migratie van de CEC kunnen leiden tot nieuwe 
ideeën over de behandeling van corneale endotheeldysfunctie.[35] 

Het ontwikkelen van nieuwe strategieën om de regeneratieve capaciteit van de CEC te herstellen is uitdagend, 
aangezien de CEC in vivo zijn blijven steken in de G0/G1-fase van de celcyclus. Het wordt daarnaast verder 
belemmerd door de endotheel-naar-mesenchymale celtransitie (endothelial-to-mesenchymal transition, EMT). 
Uit literatuur en gen- en genoomanalyse blijkt dat een complex samenspel van signaalroutes de celcyclus en 
migratie regelt, waaronder de β-catenine en transforming growth factor β (TGF-β) route, de PI3K/Akt routeen 
de Rho-ROCK route.[36–43] Vooral de Rho-ROCK route reguleert een breed spectrum aan fundamentele 
cellulaire gebeurtenissen en is betrokken bij diverse pathologische aandoeningen. De remming ervan kan 
diverse signaalcascades op gang brengen en meerdere biologische effecten veroorzaken, zoals verhoogde 
proliferatie, verhoogde motiliteit of herschikking van het cytoskelet.  

In het wondgenezingsproces kunnen endotheelcellen een EMT ondergaan en transformeren tot fibrogene 
myofibroblasten. Dit wordt grotendeels gemoduleerd door TGF-β [44,45] wat niet enkel Smad-signalen 
maar ook andere cytokines en groeifactoren activeert, zoals mitogen-activated protein kinase (MAPK) 
P38MAPK.[46–48] Omdat migratie een belangrijke component is van wondgenezing in het endotheel, mogen 
strategieën om het optreden van EMT van het endotheel te remmen niet gepaard gaan met aantasting van 
celmigratie.  

Tijdens het wondgenezingsproces van het endotheel vullen de cellen een gat vooral op door middel van migratie 
en verhoogde celverspreiding[49], terwijl de celdeling erg laag blijft [34] en de cellen zich met name a-mitotisch 
delen waarbij tijdelijke binucleaire cellen ontstaan.[50] Succesvolle klinische opties voor het vervangen van ziek 
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endotheel zijn oa. het versnellen van de genezing van het endotheel en het onderdrukken van de EMT door 
lokale toediening van ROCK-inhibitor oogdruppels. Er zijn duidelijke aanwijzingen dat lokale ROCK-inhibitoren, 
toegediend na verwijdering van niet-confluente guttae (Descemet Stripping Only, DSO)[51,52] of na 
transplantatie van een gedevitaliseerd DM [53] voor de behandeling van FECD, de helderheid van de cornea 
bevorderen en de ECD verbeterden, terwijl de cellen over het geheel genomen ook een betere architectuur 
vertoonden. ROCK-inhibitoren speelden ook een belangrijke rol in de klinische trial voor het injecteren van 
gekweekte humane CEC in de voorste oogkamer.[54,55] 

CEC migreren door tijdelijk een fibroblastmorfologie aan te nemen, waarbij actine wordt gereorganiseerd tot 
“stressvezels”, hetgeen consistent is met EMT. EMT kan leiden tot fibrotische complicaties, zoals de vorming 
van een retro-corneaal fibreus membraan.[56] EMT en fibrotische veranderingen in het endotheel worden 
geïnduceerd door onder andere interleukine-1 beta (IL-1β), dat kan vrijkomen als reactie op veel “pathogen 
associated molecular patterns” (PAMPs) en TGF-β. Hoewel TGF-β genezing kan stimuleren, bevordert het ook 
fibrogene veranderingen waaronder afzetting van een afwijkende extracellulaire matrix (ECM).[57] Om deze 
respons tegen te gaan, bleek remming van TGF-β signalering door virale overexpressie van SMAD7[58] (een 
natuurlijke TGF-β signaleringsremmer) de remmende werking van TGF-β op celproliferatie te onderdrukken.[59] 
SMAD7-therapie wordt momenteel nuttig geacht voor preventie en behandeling van fibrogene aandoeningen 
in het endotheel. 

 

Klinische scenario’s waarbij corneale endotheelcelmigratie vereist is 

Klinische studies naar wondgenezing zijn vaak beperkt tot observaties in gevallen van chemische verbranding 
van het oog,[60,61] of na vervanging van het abnormale cornea-endotheel door gezond donorweefsel.[62,63] 
In deze gevallen is herstel beschreven door enerzijds proliferatie van endotheelstamcellen uit specifieke 
gebieden van het oog (de met stamcellen verrijkte niche naast het perifere endotheel, de zogenaamde “inner 
transition zone”)[64] en anderzijds gecombineerde migratie van zowel donor- als overblijvende ontvanger-
endotheelcellen. Het wondgenezingsproces van het endotheel geeft echter aanleiding tot veel onbeantwoorde 
vragen. Onderzoek naar de migratie van endotheelcellen na Quarter-DMEK operatie (een aangepaste DMEK-
techniek waarbij een volwaardig DMEK-transplantaat in vieren wordt verdeeld om vier ogen te 
behandelen),[8–10] kon de aanwezigheid van endotheelstamcellen in het gebied nabij de limbus niet 
bevestigen. Alle geopereerde ogen werden centraal helder, terwijl het perifere kale stroma aanhoudend 
oedeem vertoonde.[8] Het gebrek aan celmigratie vanuit dat specifieke gebied werd toegeschreven aan de 
rangschikking van collagene fibrillaire banden in de periferie van het transplantaat die als een barrière voor 
celmigratie werken[6], maar kan ook worden veroorzaakt door de verwijdering van (stam)cellen tijdens het 
prepareren van het Quarter-DMEK-transplantaat. Bij een DMEK-transplantaat met een diameter van 8–8.5 mm 
dat is geprepareerd met de no-touch peeling techniek, is de kans klein dat er endotheelschade optreedt, omdat 
er tijdens de preparatie buiten het aangeraakte gebied wordt getrepaneerd.[66,67] Bij de preparatie van 
Quarter-DMEK transplantaten moet het trabeculaire meshwork echter handmatig worden verwijderd[9] en 
deze technische stap kan de kwaliteit van het endotheel in de periferie aantasten. 

De klinische resultaten van de Quarter-DMEK ogen lieten een ander ophelderingspatroon van de cornea zien, 
waarbij opheldering vooral optrad naast de gesneden randen, maar niet langs de “limbale” ronde rand van de 
Quarter-DMEK transplantaten en in de aangrenzende, kale stromale gebieden.[8,10] Deze observatie werd 
voornamelijk toegeschreven aan asymmetrische endotheelcelmigratie in verschillende anatomische gebieden 
van de cornea. Om heterogeen celmigratiegedrag, waarbij migratie vrijwel volledig afwezig is in de verre 
periferie van het endotheel, beter te kunnen begrijpen, zijn in vitro experimenten uitgevoerd om te bepalen 
hoe een Quarter-DMEK transplantaat het beste op het posterieure stroma van de ontvanger kan worden 
geplaatst om een homogener ophelderingspatroon te creëren in de cornea (Hoofdstuk 4). De belangrijkste 
experimentele uitdaging was om het weefsel, inherent geneigd om op te krullen, plat te houden in een vaste 
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positie op een oppervlak in vloeistof. Terwijl de Quarter-DMEK transplantaten ingeklemd werden tussen twee 
glazen dekglaasjes die ruimtelijk werden gescheiden door hechtdraad, werd deze constructie overgebracht naar 
een kweekplaat en werd de celmigratie gedurende zes dagen vastgelegd.[68] Hoewel de experimentele opzet 
nogal beperkend was voor de verspreiding van voedingsstoffen, was duidelijk dat endotheelcellen wel vanaf de 
radiale snijranden migreerden, maar niet vanaf de limbale ronde rand van de Quarter-DMEK transplantaten. 
Deze bevinding werd voornamelijk toegeschreven aan de Descemet membraan structuur, die de cellen 
organiseert in kleine radiale rijen, geïnduceerd door de groefachtige verdeling van de onderliggende 
collageenvezels.[65] Ook werd gesuggereerd dat endotheelcellen gedurende hun hele leven een continue, 
langzame, middelpuntzoekende migratie ondergaan vanuit diepere niches naar het centrum en hun 
stamcelfenotype verliezen in reactie op contact met het voorste oogkamervocht, met daarin de aanwezigheid 
van TGF-β, en door contactinhibitie zodra zij een monolaag vormen.[65] Om deze reden migreren perifere 
endotheelcellen waarschijnlijk niet naar buiten vanuit het transplantaat, maar kunnen ze nog wel een 
restproliferatievermogen bezitten.[69,70] 

 

Driedimensionaal in vitro celkweek model: het concept en haar toepassingen 

Concept omschrijving 

Na de succesvolle poging om een klinische observatie te reproduceren met een in vitro systeem en met 
donorweefsel dat niet geschikt was voor transplantatie, werd besloten de kweektechniek te verbeteren om zo 
meer inzicht te verkrijgen in het beweeggedrag van het endotheel. Om reproduceerbare resultaten te verkrijgen 
en de technische belasting van de experimenten te verminderen, was echter verdere optimalisatie van het 
explantatiekweeksysteem nodig. Om deze reden werd een 3D kweektechniek ontwikkeld voor uitgenomen 
weefsel door gebruik te maken van een temperatuur-omkeerbaar hydrogelsysteem dat biocompatibel, niet 
toxisch, 100% synthetisch, pathogeenvrij en zeer transparant was zodat celobservatie mogelijk werd (Hoofdstuk 
5). De temperatuur-afhankelijke viscositeit is een belangrijke eigenschap waardoor de gel kan opzwellen, zacht 
en flexibel wordt bij verwarming en vloeibaar wordt bij afkoeling. Deze eigenschap is erg nuttig om methoden 
te ontwikkelen om gekweekte cellen te oogsten voor specifiek geplande procedures[71,72] of om technieken 
te ontwikkelen om zonder enzymatische behandeling levensvatbare cellen te bewaren in de gel.[73]  In deze 
studie hebben we het toepassingsgebied van de gel uitgebreid. Behalve dat de gel een effectieve kweekmatrix 
is die mechanische steun biedt en tegelijkertijd celadhesie stuurt, gaf hij massa aan de gekweekte cellen zonder 
de structuur en functionaliteit hiervan te verslechteren. In onze eerste in vitro cel migratiestudie met Quarter-
DMEK transplantaten die werden ingeklemd tussen twee glasplaatjes, kon migratie ongeveer 7 dagen worden 
bestudeerd voordat de cellen stierven door onvoldoende toevoer van voedingsstoffen (Hoofdstuk 4).[75] Ook 
maakte de temperatuuromkeerbaarheid van de gel het mogelijk om vloeibaar gemaakte gel te verwijderen en 
biomoleculaire markers in het weefsel en de gemigreerde cellaag te detecteren, wat niet mogelijk was met de 
eerdere experimentele opzet. 

Inductie van CEC mitosen in het perifere cornea-endotheel via gecontroleerde verstoring van contactinhibitie 

Aangezien de nieuwe 3D kweekmethode de levensvatbaarheid en migratiecapaciteit van cellen uit 
donorweefsel verbeterde, zijn we verdergegaan met het testen van het effect van verschillende soorten perifere 
Quarter-DMEK transplantaten op endotheelcelmigratie (Hoofdstuk 6). Het doel van dit onderzoek was om de 
Quarter-DMEK graftpreparatietechniek verder te optimaliseren om op deze wijze bij patiënten de opheldering 
van de cornea aan de ronde zijde van de transplantaat te versnellen. Quarter-DMEK transplantaten met een 
intact en levensvatbaar endotheel werden ingebed in een gekoelde biocompatibele, temperatuur-omkeerbare 
polymeermatrix en vervolgens twee weken gekweekt in een bevochtigde atmosfeer.[76] De perifere rand van 
de Quarter-DMEK transplantaten werden ofwel radiaal ingesneden in de uiterste periferie, of delen ervan 
werden verwijderd met een trepaan. Na twee weken op kweek werd een immunohistochemische analyse 
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uitgevoerd op het weefsel uit de matrix. Deze toonde de aanwezigheid van dicht opeengepakte en 
levensvatbare cellen met een hoog migratievermogen aan de vookant van de monolayers die werden gevormd 
uit de radiaal ingesneden randen van de transplantaat. 

Naast het krijgen van meer inzicht in de moleculaire signaalroutes die betrokken zijn bij endotheelcelmigratie 
(Hoofdstuk 3), richt het huidige onderzoek zich ook op de structuur-functierelatie  van de adhesiestructuur van 
de endothele monolaag, die de cel in staat stelt om grip te hebben op zijn omgeving.[77,78] Verspreiding van 
cellen is een proces dat grotendeels bepaald wordt door twee onderling afhankelijke en interactieve systemen: 
het op integrine-gebaseerde systeem voor substraatadhesie en het actine cytoskelet, gekarakteriseerd door 
verschillende rangschikkingen van actinefilamenten.[79–81] Integrines en actine zijn gekoppeld door een 
fysieke koppeling die voorziet in grip om migratie mogelijk te maken. In collectieve celmigratie voeren cellen 
gespecialiseerde functies uit, afhankelijk van hun positie binnen de groep. ‘Front-rear’ polarisatie is een 
voorbeeld waarbij een subgroep van leidende cellen aan de voorkant een grotere groep volgcellen gidst.[82] 
Specifiek deze leidende cellen vertonen een mesenchymaal migratie-fenotype en functioneren door het 
afbreken en remodelleren van de ECM om zo kanalen te creëren voor de gehele celgroep om samen vooruit te 
gaan.[83,84] Volgcellen daarentegen behouden endotheeleigenschappen zoals apicale-basolaterale polariteit 
en tight junctions en ze brengen relatief weinig gidsreceptoren tot expressie. Deze cellen worden niet 
meegesleurd of geduwd door hun buurcellen, maar zij reageren actief op signalen van de leidende cellen. 

Endotheelcelmigratie vanuit de limbale rand van de transplantaat werd echter niet uitgelokt door een grotere 
blootstelling van de cellen aan vrije ruimte door chirurgische aanpassingen in de periferie. Het gebrek aan 
migratie vanuit dit gebied was ook niet te wijten aan de afwezigheid van levensvatbare cellen, aangezien 
immunolokalisatie cellen liet zien die structurele (zonula occludens-1 eiwit ZO-1 en vimentine) en functionele 
markers (natrium/kalium ATPase (Na+/K+ –ATPase)) tot expressie brachten. In eerste instantie zou de gegroefde 
collageen microstructuur in het perifere gebied van de cornea gediend kunnen hebben als barrière, waardoor 
migratie werd tegengehouden. Tegelijkertijd zouden andere stimulus-specifieke genexpressiereacties nodig 
kunnen zijn om deze cellen aan te zetten tot migratie. Het is mogelijk dat belangrijke factoren die 
verantwoordelijk zijn voor de regulatie van celmigratie zoals cel-matrix adhesiemoleculen (zoals integrines, 
selectines en cadherines), de Rho-familie van kleine GTPase’s en proteases (matrix-metallo proteases, MMPs), 
minder tot expressie komen in de perifere cellen. Wanneer functionele integrines ECM-liganden (fibronectine, 
laminine) herkennen om focale adhesie te vormen,[85] worden signaaleiwitten gerekruteerd naar die focale 
adhesie om hun opbouw en afbraak te regelen.[86] De Rho-familie van kleine GTPase’s[87] is beschreven als 
belangrijke regulator van de dynamiek van focale adhesie, door het dicteren van contactassociatie, cel 
maturatie en omslag. Het loslatingsproces kan plaatsvinden door ECM-degradatie door MMP’s[88,89] of door 
cellulaire contractiele machines (Rho en myosine II), die ervoor zorgen dat de cellen van onderen 
loslaten.[90,91] Alles bij elkaar genomen zijn bij  celmigratie vele processen betrokken met meerdere 
kruisverbanden tussen leden van verschillende families, die de celbeweging beïnvloeden via wederzijds 
antagonistische pathways.[92] 

 

Het bestuderen van het herstelvermogen van het perifere endotheel 

Het feit dat endotheelcellen vanuit de verre periferie niet kunnen migreren, ondanks wijzigingen in het limbale 
gebied, beperkt nog steeds de klinische applicatie van de Quarter-DMEK. Inzicht in de aard van deze perifere 
endotheelcellen, hoe zij verschillen van centrale endotheelcellen en hoe zij soms wel tot migratie kunnen 
worden aangezet, zou de pool van donorweefsel die beschikbaar is voor patiënten die onmiddellijk een 
transplantaat nodig hebben sterk vergroten. 

Na het onderzoeken van de gecontroleerde, mechanische verstoring van het perifere endotheel als mogelijke 
stimulans voor collectieve celmigratie, hebben we een in vitro onderzoek uitgevoerd om het potentieel van een 
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ROCK-inhibitor te evalueren en om perifere endotheelcelmigratie te stimuleren. Eerst is de vorm van het 
donorweefsel aangepast van een pizzapunt, zoals de Quarter-DMEK, naar een open ring (6.5 mm uitgeponst 
endotheel met het TM er nog aan vast), om een beter model te creëren voor het in vitro nabootsen van het in 
vivo effect van ROCK-inhibitor op de migratie. De pizzapunt Quarter-DMEK transplantaat werd geplaatst in een 
cirkelvormig descemetorhexis gebied of na DSO behandeling (Hoofdstuk 7). De gebogen buitenste randen van 
de transplantaat werden plat op een substraat geplaatst, een centrale voorwaarde voor het observeren van cel 
motiliteit, en werden langer dan een maand gekweekt in een 3D temperatuur-omkeerbare hydrogelmatrix. Dit 
maakte het mogelijk om te beoordelen of continue ROCK-inhibitie op lange termijn veranderingen oplevert in 
de migratiekenmerken van de endotheelcellen van de cornea. De resultaten, beschreven in Hoofdstuk 7, laten 
zien dat alle gekweekte randen levensvatbaar bleven en ofwel afzonderlijke regio’s, ofwel collectieve gebieden 
van celmigratie vertoonden, onafhankelijk van de aan- of afwezigheid van de ROCK-inhibitor. De ROCK-inhibitor 
bleek daarentegen wel de morfologische stabiliteit van de gemigreerde cellen te verbeteren. Interessant genoeg 
werd ook op een later moment celmigratie vanuit een gebied dicht bij de limbus geobserveerd. Deze “late” 
cellen groeiden snel uit tot een contact- geïnhibeerde monolaag met de typische hexagonale celmorfologie 
(nadat ze eerst een fibroblastachtige morfologie aangenomen hadden) en leken minder gedifferentieerd in 
vergelijking met andere migratiegebieden. Deze laat-ontstane populatie van cellen vertoonde niet alleen een 
hoge proliferatiecapaciteit, maar kwam ook voort uit rim-transplantaten die waren gekweekt zonder 
ontregeling van de Rho-ROCK signaalroute. Hoewel het de celgroei vanuit de buitenrand van de transplantaat 
niet veranderde, bleek de aanwezigheid van ROCK-inhibitor gunstig voor het behoud van de celvorm en de cel-
cel adhesiecontacten tijdens de collectieve migratie. Het vermogen van de ROCK-inhibitor om endotheliale 
wondgenezing van de cornea te bevorderen door het verbeteren van de endotheliale remodelering, adhesie en 
celmigratie was al eerder beschreven.[92] 

Het brede scala aan celmigratiefenotypes in dit onderzoek verschilde van eerdere migratieonderzoeken met 
Quarter-DMEK transplantaten (Hoofdstuk 6).[76] De belangrijkste verschillen in experimentele aanpak waren 
de aanwezigheid van het TM dat aan het endotheel bleef kleven en de celmotiliteitonderzoeksperiode die 
aanzienlijk langer was dan twee weken. Het is dus mogelijk dat een bepaald celtype dat gelokaliseerd is in de 
insertiezone van het TM, langdurig gekweekt moest worden voordat het de kenmerken van niet-
gedifferentieerde cellen vertoonde. Bij het evalueren van de levensvatbaarheid van de cellen viel het op dat de 
intensiteit van het Caleïne-AM varieerde over het gehele monster, waarbij de laagste signaalintensiteit 
overeenkwam met de celpopulatie afkomstig uit de verre periferie van het endotheel. We vermoeden dat deze 
laat ontstane, doch snel groeiende celpopulatie een lage intracellulaire esterase-activiteit heeft, die geen 
beschadigde membranen signaleert maar eerder een lage expressie van esterase-specifieke genen, die dient als 
een betrouwbare indicator van niet-gedifferentieerde cellen.[93] Vergelijkbaar met onze gekweekte 
uitgenomen donorweefsels, toonde ook Zhang et al.[94]  cellen aan die prolifereerden uit perifere gebieden van 
het hoornvlies met vergelijkbare morfologische kenmerken tijdens celgroei, timing en uiteindelijke 
celmorfologie. Bovendien werd met behulp van kwantitatieve polymerase chain reaction (qPCR) vastgesteld dat 
de gekweekte cellen in hun onderzoek aanvankelijk verhoogde niveaus van stamcelgenen en minimale niveaus 
van pluripotentie tot expressie brachten, en dat deze genexpressieniveaus in kweek omkeerden. De conclusie 
was dat cellen in het gebied van Schwalbe’s ring, een overgangsgebied tussen het perifere endotheel van het 
hoornvlies en het voorste niet-gefilterde deel van het TM (gezamenlijk de “transitiezone”, TZ, genoemd), 
kernmerken vertoonden van volwassen stamcellen. 

Over het algemeen lijken deze cellen een aparte celpopulatie te vormen met duidelijke ultrastructurele 
kenmerken en met een welvelvormig patroon in de periferie van het achterste hoornvlies.[95] Hoewel werd 
voorgesteld dat de cellen een neuroregulerende functie hebben in het anterieure segment[96] bleken ze ook 
verantwoordelijk te zijn voor de vorming van een afwijkend endotheelmembraan dat het anterieure uveale 
netwerk bedekt bij sommige patiënten die voor glaucoom werden behandeld met argonlaser trabeculoplastiek 
(ALT).[97,98] Bovendien suggereert de hogere ECD in de perifere gebieden van de cornea, vergeleken met die 
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van de centrale gebieden (gemiddeld 17–23%), ook dat stamcelachtige cellen aanwezig kunnen zijn in het 
perifere overgangsgebied om gedifferentieerde CEC te leveren. Daarnaast is eerder beschreven dat onder 
bepaalde omstandigheden mitose optreedt in het endotheel van de volwassen cornea van de mens[100,101] 
en dat het percentage cellen dat kan delen, perifeer hoger is dan centraal, onafhankelijk van donorleeftijd.[102] 
Deze bevindingen suggereren dat de perifere CEC regeneratieve capaciteit bezitten en mogelijk nieuwe cellen 
voor het endotheel kunnen leveren. Alhoewel moleculaire merkerstudies voor de stamcelniche in de 
overgangszone hiervoor ondersteunende gegevens opleveren[103,104], is tot nu toe nog niet definitief 
vastgesteld dat de TZ endotheliale stamcellen herbergt.[105] Pogingen om ongedifferentieerde stamcellen te 
isoleren en te vermeerderen met behulp van een bol kweekoppervlak bleken efficiënter wanneer perifeer 
endotheel gebruikt werd vergeleken met centraal endotheel.[107–110] Er moet nog worden vastgesteld of de 
cellen van Schwalbe, TZ-cellen en stamcellen/voorlopers hetzelfde celtype zijn, in hoeverre zij hun 
regeneratieve potentieel behouden en hoe de celproliferatie in vivo zou kunnen worden ontsloten om het 
endotheel opnieuw te bevolken bij ouderdom en bij ziekte. 

 

Het verbeteren van de chirurgische techniek door integratie van in vitro celkweek observaties 

Terwijl wij probeerden EC-migratie vanuit het perifere hoornvlies te begrijpen en tegelijkertijd bevorderen, 
zette de lage postoperatieve ECD na Quarter-DMEK ons aan om ons te richten op verdere verbetering van de 
techniek. We vermoedden dat de aanzienlijke ECD-afname na Quarter-DMEK[8,10] werd veroorzaakt door de 
vorm-mismatch tussen de ronde descemetorhexis en het driehoekige transplantaat. In een poging de ECD-
afname te verminderen werd een nieuwe chirurgische optie getest waarbij DMEK-transplantaten met een kleine 
diameter werden geprepareerd, om te passen bij een kleine descemetorhexis. Deze werd in vitro gevalideerd 
onder meerdere experimentele omstandigheden (Hoofdstuk 8). De voornaamste bevindingen van dit 
onderzoek waren: (1) drie cirkelvormige mini-DMEK’s met een diameter van 4 mm kunnen succesvol worden 
geprepareerd uit één donorcornea, (2) de chirurgische procedure kon in vitro worden gevalideerd en (3) 
transplantaten met een kleine diameter, ingebed in temperatuur-omkeerbare hydrogelmatrix, vertoonden 
uniforme celmigratie rond de volledige, cirkelvormige transplantaat rand met cellen die een typische 
hexagonale, dichtopeengepakte morfologie vormden.[111] Vergelijkbaar met de Quarter-DMEK biedt de 
transplantatie van een klein transplantaat het theoretische voordeel van verminderde donor-antigeenbelasting 
en kan gebruik gemaakt worden van donorcornea’s met meerdere littekens na een staaroperatie. Aanvankelijk 
werden transplantaten met een diameter van 4 mm (mini-DMEK) beschreven als behandeling van acute 
corneahydrops bij keratoconus (dat wil zeggen, breuk en loslating van een stijf DM als gevolg van toenemende 
dikte van het corneale stroma).[112,113] Niet alleen waren de vorm en grootte van de DMEK-transplantaten 
die werden gebruikt om de scheur in het DM te sluiten niet gestandaardiseerd (een 5 mm, ronde DMEK-
transplantaat of een met een mes gesneden transplantaat van 3 mm breed en met een lengte die was aangepast 
aan de lengte van de scheur in het DM van de patiënt), ook de oriëntatie van het transplantaat was niet 
belangrijk voor de operatie, vermoedelijk omdat het gezonde endotheel van de patiënt het DM makkelijk zou 
herbevolken, zelfs als de transplantaat per ongeluk was omgekeerd.[113]   

In een meer recente studie gebruikten Handel et al.[114] mini-DMEK transplantaten om chronische focale 
corneale endotheeldecompensatie te behandelen, die veroorzaakt was door scheuren in het DM na 
intraoculaire operaties of cornea-oedeem in het gebied van Haab-striae bij buphthalmos. Het hoornvlies was 
gezond en er was geen ziekte aanwezig, behalve het DM-defect. De mini-DMEK transplantaten werden van het 
resterende DM getrimd tot een lengte en breedte gelijk aan de scheur in het DM van de patiënt, terwijl het 
centrale DM werd gebruikt voor patiënten met FECD. Hoewel de cornea’s in alle gevallen dun werden, bleef de 
rol van endotheelcellen in kleine DM-defecten onduidelijk. 

DMEK transplantaten met een kleine diameter hebben hiernaast het voordeel dat met één donorcornea drie 
patiënten voorzien kunnen worden van weefsel en men zo een milde FECD met guttae kan behandelen, indien 

11 



Chapter 11 
 

186 
 

deze zich beperken tot het centrale gebied van 4 mm. Om de “no-touch” behandeling in stand te houden bij 
transplantaten van klein formaat zijn tot dusver twee alternatieve methoden klinisch getest, namelijk DSO en 
transplantatie van het acellulaire DM (in andere woorden, DM transplantatie, DMT).[115–120] DSO 
vertegenwoordigt een donor-onafhankelijke werkwijze bij centrale FECD, een aanpak die uitgebreid is 
beschreven in Hoofdstuk 4, terwijl DMT een strategie vertegenwoordigt voor het gebruik van niet-klinisch DMEK 
weefsel. Beide technieken kunnen mogelijk FECD te behandelen, zonder de noodzaak van allogene 
transplantatie en angst voor afstoting, maar DMT biedt toch een geschikter substraat dat de migratie van het 
endotheel van de patiënt ondersteunt met verminderd risico op EMT.[53] Bovendien wordt het stroma 
afgesloten met behulp van TGF-β, om keratocietactivatie in de buurt van de wond tegen te gaan, wat anders 
kan leiden tot fibrose en verhoogd risico op retrocorneale membraanvorming.[122,123] Zowel DSO als DMT 
gaan echter gepaard met een langere hersteltijd, waarbij  volledige anatomisch en visueel herstel niet binnen 3 
maanden postoperatief bereikt worden. 

DMEK-transplantaten met een kleine diameter toonden vooruitstrevende chirurgische mogelijkheden met 
verbeterde graftkenmerken (ECD, levensvatbaarheid van het transplantaat, uniforme celmigratiecapaciteit). 
Doordat de vorm overeenkomt met de cirkelvormige descemetorhexis zou het klinisch herstel vergelijkbaar 
kunnen zijn met de conventionele DMEK. Resultaten van klinische tests zullen meer duidelijkheid geven over de 
doeltreffendheid van DMEK-transplantaten met kleine diameter voor behandeling van milde FECD. 

 

Toekomstperspectieven 
De DMEK is tegenwoordig de gouden standaard voor het behandelen van corneale endotheel disfunctie. Sinds 
de introductie ervan is DMEK superieur ten opzichte van de PK en andere keratoplastiek technieken wanneer 
men spreekt over sneller visueel herstel, lagere afstotingspercentages, betere refractieve resultaten en een 
grotere structurele integriteit.[124–128] Het aantal DMEK-procedures is hierdoor wereldwijd toegenomen, met 
name in patiënten met Fuchs endothelial corneal dystrophy (FECD). 

Door enkel het zieke weefsel te vervangen belichaamt een DMEK conceptuele eenvoud en chirurgische 
verfijning. Het voornaamste probleem van endotheliale keratoplastiek is dan ook het chronische verlies van 
endotheelceldichtheid (ECD) over de tijd, wat vergelijkbaar is met een PK.[124,131,132] Het effect van 
verschillende donor- en patiënt-gerelateerde parameters op het verlies van het endotheel is onderzocht in 
verschillende studies, echter zonder consistent resultaat.[15,133–140] De intraoculaire behandeling van het 15-
20 µm dunne membraan en de preoperatieve, handmatige preparatie van de graft vormen echter wel 
technische uitdagingen die het uiteindelijke resultaat kunnen beïnvloeden. 

We hebben verschillende onderzoeken gedaan om de postoperatieve ECD-daling beter te begrijpen, zoals 
beschreven in dit proefschrift. Eén aspect hiervan betreft de overschatting van de levensvatbaarheid van de 
graft in de oogbank,[30] wat op zijn beurt resulteert in een onrealistisch hoge daling van het ECD in de vroege 
postoperatieve fase na DMEK.[20] Grafts lijken uitgesproken endotheelschade te ontwikkelen, zelfs na een 
normaal verlopende preparatie. Echter kan het uitvoeren van een DMEK-operatie met suboptimale endotheel 
kwaliteit het risico van loslating of vroegtijdig falen van het transplantaat vergroten.[14] Hoewel er 
fluorescerende kleurstoffen kandidaat staan om de levensvatbaarheid (levende en apoptotische cellen) te 
visualiseren, kunnen regelgevingen, veiligheids- en economische overwegingen banken ervan weerhouden om 
een dergelijke stap aan hun protocol toe te voegen. Een oplossing op korte termijn zou kunnen zijn om de 
weefselkwaliteit nog te controleren vlak voor de operatie. Hoewel een stap als deze kan leiden tot toename van 
het afkeuringspercentage, terwijl het weefsel al schaars is, kan het wél resulteren in een lager percentage her-
transplantaties. Een andere strategie kan het verbeteren van de donorcornea kwaliteit zijn door het 
opslagmedium de boosten met farmacologische modulatoren die de regeneratie van het endotheel kunnen 
bevorderen en door een laag niveau van oxidatieve stress te handhaven. Bovendien zou het opslaan van de 
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cornea in een bioreactor, in plaats van zwevend in een afgesloten fles, de drukgradiënt kunnen creëren die 
equivalent is aan de intraoculaire druk. Dit zal gepaard gaan met een voortdurende vernieuwing van het 
opslagmedium, het verminderen van de corneale zwelling en verhogen van de levensvatbaarheid van de 
EC.[141,142] Er is echter wel verder onderzoek nodig om de veiligheid en therapeutische relevantie van deze 
opties te evalueren. 

Als poging om het weefseltekort te verhelpen, zou het gebruik van de Quarter-DMEK de pool van donorweefsel 
kunnen verviervoudigen. De techniek kan echter baat hebben bij enkele verdere aanpassingen om de ECD-
uitkomsten te verbeteren. In vitro onderzoek naar de migratie van het endotheel, wat is opgenomen in dit 
proefschrift, toonde aan dat de ronde perifere rand van een Quarter-DMEK graft een fysieke barrière vormt 
voor cel migratie [68,76] tenzij stamcel-achtige cellen, onlangs ontdekt in gebieden dichtbij de limbus [64], 
kunnen worden “ontwaakt” om voldoende dehydratatie van de cornea te induceren. Door het 
preparatieprotocol aan te passen om de ronde, perifere rand van de Quarter-DMEK te verwijderen, kan een 
kleine diameter DMEK een snelle en uniforme verheldering van de cornea bieden en een levensvatbare klinische 
optie worden voor de behandeling van centrale endotheel ziekten.[111] 

Het beperkte aantal donorcornea’s van hoge kwaliteit en de operatieve complexiteit van de DMEK, hebben 
geleid tot aanzienlijke onderzoeksinteresse in de ontwikkeling van alternatieve technieken die efficiënter 
gebruik van donorweefsel bevorderen of de noodzaak van het implanteren van donorweefsel volledig 
wegnemen.  

Tot op de dag van vandaag zijn er echter geen therapeutische alternatieven beschikbaar voor de behandeling 
van ziek endotheel, naast hoornvliestransplantaties. De huidige weefsel preparatie benaderingen voor 
hoornvlies vervanging zijn echter veelbelovend voor klinische toepassingen. Om het tekort aan donorcornea’s 
te verhelpen, hebben onderzoekers twee basisbenaderingen voor weefsel preparatie toegepast: op cellen 
gebaseerde strategieën, om de cellen in staat te stellen hun eigen extracellulaire matrix (ECM) te creëren, en 
“scaffold” gebaseerde strategieën, om sterke en biocompatibele matrixen t leveren waarop cellen kunnen 
groeien.[143–146] Onafhankelijk van de strategiekeuze is in vitro expansie of de novo generatie van corneale 
endotheelcellen (CEC) vanuit pluripotente stamcellen of andere cel-bronnen vereist.[147,148] De belangrijkste 
uitdaging voor de in vitro proliferatie van volledig gedifferentieerde cellen is om het fenotype te behouden, om 
zo de endotheliale tot mesenchymale transitie (EMT) tegen te gaan, wat anders resulteert in CEC die hun 
normale morfologie verliezen en fibrose kunnen induceren. Het alternatief van CEC differentiatie vanuit 
pluripotente stamcellen of andere cel-bronnen zoals van beenmerg afgeleide endotheel-precursoren, neurale 
kribcellen, stromale stamcellen, huid-afgeleide precursoren of mesenchymale stamcellen, vereist geschikte 
kweekprotocollen die moeten voldoen aan wettelijke richtlijnen om te garanderen dat de uiteindelijke cel-bron 
op CEC lijkt.[148–154] Hoewel de richtlijnen wat betreft goede fabricage praktijken kunnen verschillen aan de 
hand van het land/de regio waarin deze zijn vastgesteld, is er dringend behoefte aan standaardisering van de 
parameters waaraan gegenereerde CEC moeten voldoen wanneer deze in hun “eindstadium” zitten. Daarom 
moet de lijst van kwaliteitscriteria worden herzien voor: (i) beoordeling van de morfologie door controle van de 
hexagonaliteit van de cellen bij het bereiken van confluentie in kweek, ii) genotype en fenotype door onderzoek 
van structurele en functionele markers, iii) behoud van het karyotype door controle van de integriteit van het 
DNA, om aan te tonen dat er geen grove chromosoomafwijkingen zijn, en (iv) functionaliteit gecontroleerd in 
vitro met instrumenten die de ionendoorlaatbaarheid over een monolaag van cellen meten, ex vivo met hoornvliezen 
in een omgeving die fysiologische omstandigheden nabootst en de meting van hoornvliesdikte mogelijk maakt en 
verder correleert met cel functionaliteit, of in vivo met diermodellen van hoornvliesoedeem. [155]  

Na alle uitdagingen met CEC-kweek wat betreft cellulair profiel, proliferatieve capaciteit en downstream 
analyse, moeten de cellen levend worden afgeleverd en met voldoende potentieel om zich te hechten aan het 
achterste deel van het hoornvlies. De "cel gebaseerde" strategie stelt de levering van CEC voor op een 
eenvoudige en minimaal invasieve manier via injectie in de voorste oogkamer.[155] Na de procedure, door de 
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patiënt gedurende 3 uur in buikligging te plaatsen, kan de zwaartekracht de hechting van CEC aan het 
posterieure deel van het hoornvlies vergroten. De proof-of-concept klinische studie van Kinoshita en 
medewerkers toonde aan dat cornea-oedeem kon worden omgekeerd door ongeveer 1x106 gekweekte 
menselijke CEC, aangevuld met ROCK-inhibitor Y-27632, in de voorste kamer te injecteren na het mechanisch 
schrapen van het zieke endotheel; de helderheid van het hoornvlies bleef ten minste 5 jaar postoperatief 
behouden.[54,55] Bovendien suggereert de meest recente verfijning van de techniek dat injectietherapie met 
behulp van sterk gezuiverde, volgroeide, gekweekte menselijke CEC voor endotheel-falen veiliger is, zorgt voor 
een snel herstel van de dikte van het hoornvlies, een betere ECD en een laag uitvalpercentage van de cellen 
gedurende 3 jaar na de operatie.[156] Er zijn echter grotere, toekomstige, willekeurig gekozen gecontroleerde 
onderzoeken nodig om de doeltreffendheid en veiligheid op lange termijn te garanderen.  

De belangrijkste uitdaging voor de "scaffold-gebaseerde" strategie is het verkrijgen van een monolayer van CEC 
op een biocompatibele drager, om zo bio-engineered grafts te produceren.[145] Het gebruik van een drager die 
cel replicatie ondersteunt is een aantrekkelijke benadering, omdat het het bijkomende voordeel heeft dat een 
functionele monolayer met contactinhibitie op de juiste plaats en op een gecontroleerde manier wordt 
afgeleverd. Bovendien zijn er minder cellen nodig om de drager te bevolken dan bij cel injectie, waardoor het 
aantal patiënten dat er baat bij kan hebben, toeneemt. Uitgaande van een oppervlakte van 57 mm2 (8,5 mm 
diameter graft) en een uiteindelijke ECD van 2300 cellen/mm2 (gebruikelijke drempelwaarde die door 
oogbanken is vastgesteld), zou een graft ongeveer 1,3 x 105 CEC moeten bevatten. Op basis van een eenvoudige 
berekening zouden deze CEC's die zijn gebruikt voor de behandeling van 11 patiënten door middel van cel 
injectie, hypothetisch 84 dragers kunnen bevolken en patiënten kunnen behandelen met een 
toedieningsstrategie die vergelijkbaar is met DMEK of DSEK. Een ideale biocompatibele drager moet wel de 
belangrijkste architecturale en functionele kenmerken van het DM nabootsen en daarom dicht, relatief 
transparant, semi-permeabel, flexibel (in verband met de vorm van het hoornvlies), biocompatibel, dik genoeg 
om voldoende mechanische sterkte te bieden, bevorderlijk voor celadhesie en fenotype, en misschien 
biologisch afbreekbaar zijn, om cellen in staat te stellen hun eigen DM te produceren en tegelijkertijd de 
omringende scaffold af te breken. Veel in vitro studies hebben veelbelovende onderzoeksresultaten 
gerapporteerd bij het gebruik van natuurlijke weefsels zoals acellulaire biologische membranen (bijv. 
amniotisch membraan, ontleed DM of stroma van zowel menselijke als dierlijke oorsprong, menselijk voorste 
lenskapsel)[157–167] of (natuurlijke en synthetische) polymere materialen.[161,168–192] Latere in vivo tests 
van endotheelceldragervellen (geprepareerd vanuit donorweefsel) in diermodellen hebben echter geen van de 
constructen geschikt bevonden voor klinische toepassing.[160,193–195]  

De optie om het transplantaat helemaal te verwijderen en iemands eigen endotheelcellen te laten herverdelen 
werd geïntroduceerd door Descemet stripping only (DSO), voor de behandeling van vroege FECD. In een 
primaire analyse van DSO leidde de verwijdering van een gebied met een diameter van 6 mm van het zieke DM 
tot een onvolledig herstel.[116,196] Er werden betere verhelderingspercentages gemeld wanneer een kleinere 
(4–5 mm) descemetorhexis werd toegepast, bij een select aantal relatief jonge patiënten met centrale guttae 
en een adequate perifere endotheelreserve.[116,197] Ondanks deze beperkingen heeft DSO het voordeel dat 
het afstotingspercentage 0% is (er is namelijk geen risico op immunologische afstoting van het transplantaat) 
en dat het niet nodig is om langdurig topische corticosteroïden te gebruiken om afstoting van het transplantaat 
te voorkomen, waardoor het neveneffect van verhoging van de intraoculaire druk wordt verminderd. DSO is 
echter nog geen vervanging voor DMEK om twee belangrijke redenen: (1) het vrijmaken van een kleiner gebied 
kan nog steeds leiden tot suboptimaal zicht, en (2) het cornea oedeem kan maandenlang aanhouden, waardoor 
het visueel herstel wordt belemmerd en het resultaat onvoorspelbaar is.[119] Het succes kan worden verbeterd 
door bij deze techniek farmacologische modulatoren te gebruiken, zoals Rho-geassocieerde proteïne kinase 
(ROCK) inhibitors.[118] Hoewel de biologische werking van ROCK-inhibitors niet volledig wordt begrepen, is 
beschreven dat zij het visueel herstel aanzienlijk versnellen, hogere aantallen centraal endotheel induceren 
wanneer hersteld én met een verbeterde cel architectuur.[52] DSO kan om deze reden een geschikte 
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chirurgische behandelingsoptie zijn, voorafgaand aan DMEK of kleine diameter-DMEK voor degenen die willen 
proberen of enkel strippen hun visusproblemen zal oplossen. Er zijn echter meer studies nodig om het effect 
van DSO in combinatie met farmacologische geneesmiddelen op de klinische werkzaamheid en de veiligheid 
van de geneesmiddelen op langere termijn te beoordelen. 

Een mogelijke combinatie-techniek tussen DSO en conventionele, circulaire DMEK maakt gebruik van 
endotheel-graft vervangers, bestaande uit weefselafgeleide of synthetische matrixen.[120,198,199] 
Transplantatie van een acellulaire DM bij een patiënt is onlangs gemeld als onderdeel van een groter klinisch 
onderzoek in Singapore [identificatienummer NCT03275896]. De patiënt werd getransplanteerd met een 
acellulair membraan van 4 mm en vertoonde een verbetering van gezichtsvermogen met vier regels, al zes 
maanden na de transplantatie, met een bijna normale restauratie van de centrale dikte van het hoornvlies en 
ECD-waarden vergelijkbaar met DSO.[120] Als alternatief is een synthetisch graft substituut (EndoArt) 
geïmplanteerd om het hoornvliesoedeem om te keren en het herstel van het gezichtsvermogen te 
bevorderen.[198] Bevestigd aan de achterkant van het hoornvlies, zou EndoArt de overdracht van vloeistoffen 
naar het hoornvlies moeten voorkomen en de vochtophoping die leidt tot oedeem moeten remmen. Een 
samenvatting van de eerste resultaten voor twee patiënten als onderdeel van een multicenter, prospectief 
haalbaarheidsonderzoek [identificatienummer NCT03069521] toonde aan dat de patiënten een vermindering 
van het hoornvliesoedeem hadden met herstel van de transparantie na implantatie van EndoArt. Beperkingen 
van de implantatie van dit synthetische construct omvatten: (i) regelmatige herpositionering door rebubbling 
tot volledige hechting aan het stromale bed, (ii) onduidelijke tijdspanne gedurende welke de cornea transparant 
en goed gehydrateerd blijft, (iii) langetermijneffect van beperking van de diffusie van vitamine en essentiële 
voedingsstoffen uit het kamervocht naar de cornea en (iv) onvermogen van endotheelcellen om te migreren en 
de kunstmatige laag te bevolken. Over het geheel genomen zullen substituten voor transplantaten van 
natuurlijke of kunstmatige oorsprong nog moeten worden geëvalueerd in grote klinische proeven met follow-
up-resultaten op lange termijn om het succes van hun toepassing verder te bepalen en ook de juiste 
doelgroepen te identificeren. 

Een andere manier om de beschikbaarheid van hoornvlies donorweefsel te vergroten, is de behandeling van de 
genetische aandoening om zo de noodzaak van een hoornvliestransplantatie te “vervangen”. De huidige 
strategieën die de genetische verandering kunnen corrigeren of de bijbehorende effecten kunnen voorkomen, 
zijn gen vergrotingstherapie (Gene Augmentation Therapy, GAT), op antisense oligonucleotide gebaseerde 
modulatie (AON), en op CRISPR/Cas9 gebaseerde modulatie.[200–205] Er is ook gemeld dat de pathofysiologie 
van FECD zich manifesteert door een combinatie van verschillende genetische en niet-erfelijke factoren, zoals 
kanaaldisfunctie (bijv. Solute Carrier family 4 member 11 - SLC4A11), abnormale extracellulaire matrix depositie 
(bijv. collageen type VIII alpha 2 keten - COL8A2), RNA toxiciteit, oxidatieve stress (bijv. Nuclear factor, erythroid 
2 like 2 Transcription factor - NRF2), en apoptose (bijv, Zinc finger E-box Binding homeobox 1 - ZEB1).[206,207] 
De meest voorkomende genetische verandering bij FECD is een microsatellietregio bestaande uit CTG 
trinucleotide herhalingen (TNR's) in het vierde intron van het TCF4-gen, wat abnormaal wordt verlengd. Hoewel 
het mechanisme dat verantwoordelijk is voor het effect van deze trinucleotide-expansie op het TCF4-gen 
onduidelijk is, zal het bijdragen aan cellulaire disfunctie door het triggeren van RNA splicing fouten. De 
genetische modulatie van TCF4-expressie gebeurt ofwel door het overbrengen van een functionerende kopie 
van dit defecte gen, met als doel de ziekte te corrigeren door het introduceren van antisense oligonucleotiden 
zoals small interference RNA (siRNA) of micro-RNA (miRNA) die de toxische effecten van het defecte gen kunnen 
verminderen, of door het elimineren van de CTG-uitbreiding om de mutatie die FECD veroorzaakt terug te 
draaien.[208–214] Verder onderzoek is ook nodig om de immuun-tolerantie ten opzichte van de 
transgenproducten na herhaalde toediening in de voorste oogkamer te onderzoeken, de meest efficiënte en 
kosteneffectieve toedieningsmethoden te vinden en de off-target effecten te identificeren.   
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In de afgelopen jaren is het gebruik van farmaceutische middelen voor de behandeling van corneale 
endotheelziekten onderzocht.[35] Het principe berust op het bevorderen van cel overleving, proliferatie en 
migratie met een minimaal invasieve benadering van intra-camerale of topische toediening van 
geneesmiddelen. ROCK-inhibitors zijn de meest bestudeerde geneesmiddelen met groot potentieel om het 
herstel van CEC in vivo bij de mens op gang te brengen, wanneer ze plaatselijk worden toegediend als adjuvans 
voor DSO.[51,52] Wereldwijde wordt gemeld dat ROCK-inhibitors succesvol zijn in het omkeren van cornea-
oedeem na het operatief verwijderen van zieke CEC, het herstellen van de anatomie van het hoornvlies na 
gedeeltelijk losgemaakte DM in BK-ogen na cataractchirurgie, en het regenereren van het endotheel door een 
vermoedelijke toename van de cel proliferatie.[118,215–217] Ook is veelbelovend onderzoek gemeld voor 
andere farmaceutische geneesmiddelen, zoals epidermale groeifactor, uit bloedplaatjes afgeleide groeifactor 
en fibroblast-groeifactoren.[218–220] Deze moeten echter voorzichtig worden toegediend aangezien er sprake 
is van een tweeledig werkingsmechanisme, dat wil zeggen, regeneratiepotentieel met het risico van het 
veroorzaken van een ongewenste ongewenste verandering van endotheliale naar mesenchymale fenotype. Er 
is ook aandacht besteed aan het verminderen van oxidatieve stress door de up-regulatie van 
transcriptiefactoren om de expressie van anti-oxidatieve stresseiwitten te bevorderen, waardoor de CEC-
apoptose afneemt.[221–226] Ook is voor het profileren van nieuwe kandidaat-geneesmiddelen een 
systematisch onderzoek nodig van het functionele effect in een verscheidenheid van in vitro en in vivo assays. 
Bovendien vereist de toewijzing van patiënten in een klinische studie uitgebreide kennis over de te behandelen 
ziekten. Om eventuele gunstige effecten van de bovengenoemde kandidaat-geneesmiddelen te concluderen, 
moeten grote, gerandomiseerde controleproeven worden uitgevoerd om bewijsmateriaal van een hoger niveau 
te genereren. 

 

Conclusies 
Ondanks aanzienlijke vooruitgang op het gebied van therapieën om de regeneratie van het endotheel te 
bevorderen, is er nog een lange weg te gaan voordat dergelijke therapieën zijn goedgekeurd door de 
regelgevende instanties en routine worden in de klinische praktijk. Tot op heden is vervanging van het zieke 
endotheel door DMEK nog steeds de meest efficiënte behandelingsoptie voor endotheel disfuncties, maar het 
aantal procedures wordt nog steeds beperkt door een wereldwijd tekort aan geschikte en beschikbare donoren, 
vooral in delen van de wereld waar weinig middelen beschikbaar zijn. Door de corona pandemie zijn de 
uitsluitingscriteria voor weefsels bovendien nog strenger geworden, waardoor de pool van beschikbare donoren 
aanzienlijk wordt beperkt.[227] Het is van essentieel belang dat de toegevoegde waarde van het donatieproces 
aan de mensen duidelijk wordt gemaakt, zodat zij worden gestimuleerd om zich voor donatie te laten 
registreren omdat zij waarschijnlijk meer baat hebben bij het systeem dan dat zij eraan bijdragen,[228–230] 
terwijl ondertussen nieuwe behandelingsmogelijkheden worden ontwikkeld en in de klinische praktijk worden 
omgezet. 
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