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To the cherished memory of Jacob 
Bekenstein

The non–zero value of Planck constant h underlies the emergence of several inequalities that must 
be satisfied in the quantum realm, the most prominent one being Heisenberg Uncertainty Principle. 
Among these inequalities, Bekenstein bound provides a universal limit on the entropy that can be 
contained in a localized quantum system of given size and total energy. In this Letter, we explore how 
Bekenstein bound is affected when Heisenberg uncertainty relation is deformed so as to accommodate 
gravitational effects close to Planck scale (Generalized Uncertainty Principle). By resorting to general 
thermodynamic arguments, and in regimes where the equipartition theorem still holds, we derive in 
this way a “generalized Bekenstein bound”. Physical implications of this result are discussed for both 
cases of positive and negative values of the deformation parameter.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In 1981 Jacob Bekenstein proposed a universal upper bound on 
the entropy S of a localized quantum system [1]

S ≤ 2π kB R E

h̄c
, (1)

where E is the total energy of the system and R = √
A/4π its cir-

cumferential radius, with A being the area of the enclosing surface. 
Clearly, for h̄ → 0, one obtains S ≤ ∞, which tells us that, classi-
cally speaking, the entropy of a system is unbounded from above. 
The result (1) was the last offspring of a revolutionary decade of 
investigation, which started with the puzzling proposal of Beken-
stein himself about the entropy of a black hole [2], then the for-
mulation of black hole thermodynamics [3], and culminated with 
the renowned discovery of Hawking thermal radiation [4].

A key assumption in Bekenstein’s derivation of the bound is 
that the gravitational self–interaction of the system can be ne-
glected. Indeed, Eq. (1) does not contain Newton constant G N , 
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even though it was obtained in regimes of strong gravity with 
gedanken experiments involving black holes. Remarkably, the in-
equality is exactly saturated by Schwarzschild black holes, whose 
entropy is given by S = kB AH/(2�p)2, where AH denotes the hori-

zon area and �p = √
h̄G N/c3 the Planck length. Although many ar-

guments [5] have been suggested to support the validity of Eq. (1), 
also several counterexamples have been brought forward, thereby 
enriching a lively debate which is still ongoing [6]. Further years 
of intuitions and studies have then led to the formulation of the 
well-known Holographic Principle [7–9], the Covariant [10] and 
Causal [11] Entropy Bounds, and finally to the rigorous quantum 
field theoretical proof of Bekenstein bound in flat spacetime [12]. 
For a general influence of the ideas of Bekenstein on quantum 
information theory, we remand the reader to Refs. [13–15]. Con-
nections of various entropy bounds with cosmology [11,16–19], 
perturbative unitarity [20] and the Pauli principle [21] have also 
been addressed with non-trivial results.

In the last four decades, predictions from string theory, loop 
quantum gravity, deformed special relativity, non-commutative ge-
ometry and black hole physics [22–34] have converged on a fea-
sible generalization of Heisenberg Uncertainty Principle (HUP), 
which is expected to simultaneously account for quantum and 
gravitational effects at Planck scale. In this framework, the stan-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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dard uncertainty relation for a quantum system should be modified 
as follows

�x�p ≥ h̄

2

[
1 + β

(
�p

mpc

)2
]

, (2)

where �x and �p are the position and momentum uncertain-
ties of the system, respectively, mp = h̄/�pc is the Planck mass 
and β the so called deformation parameter, which is considered 
to be of order unity in most of quantum gravity models [35]. 
The inequality (2) is commonly known as Generalized Uncertainty 
Principle (GUP). One of its most important implications is the 
significant modification of the behavior of �x as a function of 
�p in the regime �p/(mpc) � 1. This results in the prediction 
of a minimum observable length �x ∼ √

β�p occurring for β >

0 [24,25]. However, scenarios with β < 0 have been extensively 
discussed [36–38], along with various remarkable consequences. To 
further substantiate the soundness of the GUP framework not only 
at the theoretical level, we also mention that several experiments 
have been carried out or proposed to test the effects predicted by 
Eq. (2) (see e.g. Refs. [39]). Of course the GUP should not be in-
tended as a complete theory of Quantum Gravity, fully valid at the 
Planck scale, neither it claims to be so. A prudent attitude, under-
lying the most wise literature on this topic, interprets the GUP as 
an instrument able to describe physics at energies closer to Planck 
scale, better than what the standard HUP can do.

Let us remark that Bekenstein bound has been rigorously 
proved by assuming standard principles of quantum mechanics 
and quantum field theory in flat spacetime [12]. In this Letter, 
we are interested in understanding how such an entropy bound is 
affected when HUP is replaced by the GUP in Eq. (2). To this aim, 
first we show how Bekenstein inequality (1) can be directly con-
nected to HUP on the basis of general thermodynamic arguments. 
The present derivation, being elementary and based on first princi-
ples, should make it clear why Bekenstein bound has such a wide 
range of validity. The obtained result is then generalized to the 
context of GUP, leading to a generalized Bekenstein bound which by 
construction takes into account also quantum gravitational effects. 
Physical implications are finally investigated for both positive and 
negative values of the deformation parameter β , highlighting the 
different predictions of the two settings.

2. Bekenstein bound and HUP

Let us consider an isolated quantum system localized inside a 
finite region of circumferential radius R . From the basics of ther-
modynamics, it follows that if the relation between the energy E , 
the entropy S and the volume V of the system is known, then its 
temperature T can be easily calculated as follows

1

T
=

(
∂ S

∂ E

)
V

. (3)

By establishing Eq. (3), we explicitly exclude systems that may 
possess a negative temperature, otherwise it would result prob-
lematic to even introduce the elementary assumptions listed in 
what follows. Of course, Eq. (3) entails also the differentiability of 
the function S(E, V ).

Henceforth, the main working hypotheses underlying our anal-
ysis are:

1. We consider a regime where, on average, the energy μ of each 
component of the system is approximately given by

μ � kB T , (4)

according to the equipartition theorem.
2

2. The momentum p of each component of our system satisfies 
the de Broglie relation

p = h̄

λ
, (5)

where λ denotes the corresponding wavelength.

Note that the second condition only makes sense for intrin-
sically quantum particles. From Eq. (5), it is a simple text-book 
exercise to derive Heisenberg relation between the momentum and 
position uncertainties. This is a crucial point in the present analy-
sis, since Eq. (5) provides the springboard for the extension of the 
Bekenstein result to the GUP framework.

Concerning the first condition, it is well-known that the 
equipartition theorem is a classical statement. However, it also 
holds true that, for a large majority of physical systems in regimes 
close to the classical one, the energy μ of each component can 
be approximately described by μ � kB T . In other words, Maxwell-
Boltzmann statistics is a good approximation of quantum statistics 
in most of the systems in semiclassical regimes. For example, a 
gas of bosons at low frequencies or high temperatures is well de-
scribed by the standard Maxwell-Boltzmann statistics.

Now, for the above two prescriptions to be valid and from an 
inspection of the quantum statistics distribution formula, we can 
infer that the energy kB T should satisfy the condition

kB T � h̄c

λ
= pc. (6)

Given that our system is completely localized inside a volume of 
radius R , the inequality λ � 2R holds true, so that from Eqs. (3)
and (6) we obtain

∂ S

∂ E
= 1

T
� kBλ

h̄c
� 2kB R

h̄c
, (7)

where it is understood that the derivative is taken at constant vol-
ume.

In general, R and E can be regarded as independent variables, 
therefore we can easily integrate the above relation with the con-
dition1 S(E = 0) = 0, obtaining

S � 2αkB R E

h̄c
, (8)

where we have inserted a “calibration factor” α in order to ac-
count for all the approximations performed so far. Note that this 
factor cannot be exactly fixed by our thermodynamic argument. 
However, the magnitude of the calibration factor will be obtained 
in the next Section by means of consistency arguments. Indeed, in 
analogy with the derivation of the modified Hawking temperature 
in Ref. [27], α can be chosen a posteriori by requiring that the gen-
eralized entropy bound obtained in the GUP framework recovers 
Bekenstein inequality (1) for a vanishing deformation parameter β
(see below). This occurs for α = π .

Remarkably, the above considerations and the ensuing bound (8)
also encompass the case in which R and E are related via an 
equation of state. In fact, for a general and physically plausible 
radius-energy relation of the form R = R(E), with R(E) being a 
monotonically non-decreasing function of E , one can prove that 
the inequality (8) is still satisfied (see the Appendix for the proof).

Let us also mention that the Bekenstein bound can be satu-
rated for a system composed by soft quanta, i.e., of wavelength 
λ ∼ 2R . According to the corpuscular models [40–43], this can 

1 For the sake of completeness, we emphasize that the ansatz S(E = 0) = 0 natu-
rally contains the hidden assumption of a unique ground state.
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represent the case of a black hole whose constituents are soft 
gravitons of energy μ ∼ h̄c/λ ∼ h̄c/Rs , with Rs = 2G N M/c2 being 
Schwarzschild radius.

Before turning to the calculation of GUP corrections, we stress 
that our result (8) has been derived by relying on quite general 
hypotheses. Furthermore, we have made no explicit reference to 
the particular behavior of the entropy as a function of the energy 
and/or the number of the elementary constituents. Less complete 
attempts to trace the Bekenstein bound back to HUP can be found 
in Refs. [44,45].

It is worth mentioning that the inverse implication, i.e., a 
derivation of HUP from the Bekenstein bound, can also be achieved, 
as outlined in Ref. [46]. In a nutshell, let us consider a particle of 
rest mass m described by a wave-packet of spatial size R , and sup-
pose it is marginally relativistic, namely p � E/c. For that particle, 
the inequality (1) can be recast as

R p ≥ h̄

2

S

πkB
� h̄

2
, (9)

which applies to any system for which S �O(kB).2 Of course, the 
above inequality holds up to a calibration factor which again re-
sults equal to π , but that cannot be determined with this heuristic 
approach.

Now, since the direction of motion of our particle is unknown 
a priori, we can safely suppose �px � p, and of course �x � R , as 
for the uncertainty on its position. Therefore Bekenstein inequality 
(9) can be read as

�x�px �
h̄

2
, (10)

which is the standard HUP for the particle in question. Therefore, 
together with the implication previously shown, the latter argu-
ment highlights a full consistency between Bekenstein bound and 
Heisenberg Uncertainty Principle.

3. Generalized Bekenstein bound

Let us now extend the previous considerations to the case in 
which the underlying theory is built upon the GUP (2). In particu-
lar, we wonder how the inequality (8) would appear when taking 
into account gravity effects at Planck scale via the GUP. Clearly, in 
order to consistently generalize calculations, we need to revise the 
de Broglie relation in Eq. (5).

In the same fashion as HUP is in one–to–one correspondence 
with the de Broglie relation, it is reasonable to expect that the 
GUP is consistent with a gravitationally modified de Broglie equa-
tion. This issue has been considered in Ref. [23] and in particular 
in [47], where the author obtained a generalized wave-particle du-
ality relation of the form

λ � h̄

p

[
1 + β

(
p

mpc

)2
]

. (11)

Note that a similar expression is encountered when using the GUP 
in the astrophysical regime, where it gives rise to the so-called 
“GUP stars” [48].

Equation (11) provides the starting point of our next analysis. 
By solving it with respect to the momentum p, we readily obtain

p � h̄λ

2β�2
p

⎡
⎣1 ±

√
1 − 4β

(
�p

λ

)2
⎤
⎦ . (12)

2 For instance, an electron can be in two possible states (spin up and spin down) 
and therefore its entropy is given by S = kB log 2 ∼ O(kB ).
3

This reduces to the standard de Broglie relation (5) in the limit 
β�p/λ → 0 if the negative sign is chosen, whereas the positive sign 
has no evident physical meaning. Thus, in what follows we only 
work with the solution corresponding to the minus sign.

We now have all the necessary ingredients to derive a gener-
alized Bekenstein bound. Hence, by following the same reasoning 
as done above, we assume that the energy of each quantum con-
stituent is given by μ � kB T � pc and that the system is well-
localized inside a radius R , i.e., λ � 2R . A comment is here in order. 
We are still assuming the validity of the equipartition theorem, 
and considering a regime where kB T > pc. Since we are dealing 
with the GUP, we are surely closer to Planck energy than what we 
could reach by describing things just only with the simple HUP. 
However, we should not assume that pc ∼ E Planck , otherwise this 
would imply T > T Planck , a nonsense. As specified before, the GUP 
formalism can be trusted for energies enough smaller than E Planck , 
where therefore a regime with kB T > pc is still imaginable, with-
out running into the oddities of T ∼ T Planck . Thus, the analogue of 
Eq. (7) is given by

∂ S

∂ E
= 1

T
�

kB β �2
p

h̄ R c

⎡
⎣1 −

√
1 − β

�2
p

R2

⎤
⎦

−1

, (13)

where we have exploited the fact that the r.h.s. of Eq. (12) is a 
monotonically decreasing function of λ. Note that Eq. (13) consis-
tently reduces to Eq. (7) in the limit β�2

p/R2 → 0.
In what follows, we discuss separately the two cases of β > 0

and β < 0.

3.1. Case β > 0

For positive values of the deformation parameter, the momen-
tum p in Eq. (12) takes real values only when λ ≥ 2�p

√
β , the 

minimal size allowed by the GUP. We can now integrate Eq. (13)
under the general assumption that R is independent of E , and the 
usual condition S(E = 0) = 0, thus we obtain

S �
α kB β �2

p E

h̄ R c

⎡
⎣1 −

√
1 − β

�2
p

R2

⎤
⎦

−1

, (14)

that represents the generalized Bekenstein inequality in the case of 
β > 0. Once again, we see that the obtained bound is determined 
up to a factor α which can be set by requiring that Eq. (1) is re-
covered in the limit of vanishing β , and a direct comparison yields 
α = π . Furthermore, as in HUP framework, Eq. (14) still holds true 
for any monotonic non-decreasing radius-energy relation R = R(E).

If we now expand the square root to the next-to-leading order 
in β�p/R 
 1, Eq. (14) yields

S ≤ 2πkB R E

h̄c

[
1 − β

4

(
�p

R

)2
]

, (15)

where we have inserted the exact numerical factor α = π . The 
above relation provides us with the effective expression of the 
generalized Bekenstein bound in the presently accessible regime, 
which is far above the Planck scale (we are assuming β ∼O(1)).

The behavior of the generalized Bekenstein bound (14) as a 
function of the radius R is shown in Fig. 1 (orange dashed line). 
Note that the plot stops at R ∼ �p (we choose β = 1 for sim-
plicity), consistently with the emergence of a minimal length at 
this scale. We point out that the GUP correction for β > 0 lowers 
the standard Bekenstein limit, thus giving rise to a more strin-
gent condition on the entropy which can be stored in a system 
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Fig. 1. Behavior of the upper bound Smax as a function of the scaled radius R/�p

for β = 0 (blue solid line), β = 1 (orange dashed line) and β = −1 (red dot-dashed 
line). We have set h̄ c/(2π E kB �p) = 1. As expected, the discrepancy between the 
three plots narrows as R/�p increases.

of given size and total energy. Consequently, one may then sus-
pect that Schwarzschild black holes would violate the generalized 
bound. However, this is not true, due to the fact that deformations 
of HUP (2) affect not only Bekenstein bound, but also the black 
hole entropy. Indeed, if one considers the GUP-modified expres-
sion of the black hole entropy [27], it is straightforward to check 
that it is still consistent with our bound.

Therefore, from Eqs. (14)-(15), it follows that if a system sat-
isfies the generalized Bekenstein bound, it automatically complies 
with the standard Bekenstein bound too. In a broader sense, such 
a result is in line with physical intuition. Indeed, it is expected 
that the existence of a minimal length can reduce the number 
of microstates within a definite volume, thus decreasing the to-
tal amount of information associated with a system of given size. 
In other words, if there is no minimum length, then one can di-
vide the volume more finely, thus allowing for higher entropy. 
Clearly, for radii R far above the Planck scale, GUP effects become 
increasingly negligible, and in fact the generalized and standard 
Bekenstein bounds tend to coincide.

3.2. Case β < 0

Let us now consider the case of negative deformation parame-
ter, β < 0 (which means β = −|β|). In this framework there is no 
minimal size allowed by the GUP, as it can be seen from Eq. (2). 
Besides this caveat, whose implications are discussed below, cal-
culations and general concepts are the same as in the previous 
analysis.

By integrating Eq. (13) with the generic assumption of R in-
dependent from E , we obtain the following upper bound on the 
entropy

S �
α kB |β|�2

p E

h̄ R c

⎡
⎣

√
1 + |β| �

2
p

R2
− 1

⎤
⎦

−1

. (16)

As before, we set α = π by requiring consistency with Eq. (1)
for β → 0. Again, inequality (16) is still true for any relation 
R = R(E) obeying the very plausible property of being monotonic 
non-decreasing in E . The plot of the new GUP-corrected Beken-
stein bound is shown in Fig. 1 (red dot-dashed line). For radii R
such that |β|�p/R 
 1, the above expression can be expanded to 
the next-to-leading order in β , obtaining
4

S ≤ 2πkB R E

h̄c

[
1 + |β|

4

(
�p

R

)2
]

, (17)

which is consistent with Eq. (15) with the sign of β reversed. On 
the other hand, the usual Bekenstein bound is recovered for R �
�p , as it should be.

Now, from a comparison with the β > 0 model, we can draw 
very interesting considerations. Indeed, by looking at Eq. (17), we 
immediately notice a striking physical implication: because of the 
positive sign in front of the GUP correction, the generalized Beken-
stein bound with β < 0 allows the entropy S of a system to exceed 
the upper limit predicted by Bekenstein. Of course, this violation is 
suppressed as (�p/R)2, so that any experimental test appears to be 
problematic, at least at present. However, we emphasize that such 
an exotic behavior is not surprising, if we think that HUP itself can 
be violated for negative values of the deformation parameter. In-
deed, from Eq. (2), it is clear that, for �p ∼ mpc and β < 0, we can 
have �x�p ≥ 0, which is typical of a classical regime. As a mat-
ter of fact, the possibility of a quantum-to-classical throwback at 
Planck scale has been explored in literature, e.g., by considering h̄
as a dynamical field that vanishes in the Planckian limit [49,50]. 
Moreover, the scenario in which the universe at Planck energies 
appears to be deterministic rather than being dominated by quan-
tum fluctuations is the vision at the core of ’t Hooft’s “determin-
istic” quantum mechanics [51–55]. In terms of momentum and 
wavelength, this means that the quantum wave-packet of an object 
with momentum p � mpc can be maximally localized, i.e., λ � 0, 
consistently with the fact that a GUP with β < 0 does not predict 
any minimal length [36].

Finally, in connection with the possibility of accessing arbi-
trarily short distances in the case of β < 0, let us observe that 
the upper bound in Eq. (16) converges to πkB

√|β|E�p/(h̄c) for 
R → 0. This would imply that a small - but finite - amount of en-
tropy/information may be packed in a region of whatever small 
size, contrary to intuitive expectations. However, such a result is 
most likely just a signal that we are trying to extrapolate our 
considerations outside their domain of validity. It is actually evi-
dent that, for R = 0, the energy of the system cannot but be zero. 
This means that S(R = 0) = S(E = 0) = 0, according to the nor-
malization we have adopted. Moreover, as shown in Ref. [36], the 
GUP with β < 0 seems to be implied by a reticular structure of 
the spacetime, which would make in any case the limit R → 0
essentially meaningless. Surely the above aspects deserve deeper 
attention and will be better investigated elsewhere.

4. Concluding remarks

In this Letter we have presented arguments in favor of a full 
consistency between Heisenberg Uncertainty Principle and Beken-
stein bound on the entropy of a localized system with a given size 
and total energy. Such a result has paved the way for the gen-
eralization of the Bekenstein inequality close to the Planck scale, 
where both quantum and gravitational effects are expected to 
come into play. In particular, we have argued that, if the underly-
ing theory has a Generalized Uncertainty Principle built in, and in 
regimes where the equipartition theorem still holds, then Beken-
stein bound turns out to be non-trivially modified; corrections 
have been computed in both cases of positive and negative values 
of the deformation parameter, see Eqs. (15) and (17), paying great 
attention to the issue of the minimal length emerging when β > 0. 
Apart from the well-known Holographic Bound (which is meant to 
apply to the most general spacetimes of any curvature), to the best 
of our knowledge this is a first concrete attempt towards a deriva-
tion of an upper bound on the entropy that takes into account 
both quantum and gravitational effects close to the Planck scale, 
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thus going beyond the flat-space proof based on standard quan-
tum field theory with canonical commutation relations [12].

Apart from its intrinsic relevance, we point out that the ob-
tained result finds applications in several other contexts. For in-
stance, it may have significant implications on the holographic 
bound [7–10]. In fact, by assuming the absence of gravitational in-
stability, or in other words that the size of the system R is larger 
than the corresponding gravitational radius, Eq. (15) leads to a gen-
eralization of the holographic bound, with potential connections to 
the world of quantum information theory (see Refs. [14,15]). Fi-
nally, we expect that the inequality (15), once properly extended to 
black hole physics, would allow us to establish a link with the the-
ory of black hole remnants [56,57]. Remnants have been thought 
to be good candidates to model dark matter [58] and could also 
play an important rôle in the resolution of the information loss 
paradox (see, for instance, Ref. [57] and therein). This and further 
aspects are presently under active investigation and will be dis-
cussed elsewhere.
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Appendix A

In this Appendix we show that our derivation of the inequalities 
(8), (14), (16) holds for any monotonically non-decreasing func-
tion R = R(E). Let R(ε) and g(R) be two positive, monotonically 
non-decreasing functions of ε (with 0 ≤ ε ≤ E) and R , respectively. 
By introducing the partial derivative S ′(ε) := ∂ S/∂ε, the inequali-
ties (7) and (13) can be written in the following compact form

S ′(ε) � g(R(ε)) . (18)

We can now integrate the above inequality with the usual condi-
tion S(ε = 0) = 0 and obtain

S(E) =
E∫

0

dε S ′(ε) �
E∫

0

dε g(R(ε)) ≤ E g(R(E)) , (19)

where we used the fact that also g(R(ε)) is a monotonically non-
decreasing function of ε as it is a composition of two monotoni-
cally non-decreasing functions. Therefore, we proved that S(E) �
E g(R(E)), which resumes the inequalities (8), (14), (16).
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