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Chapter 13

Abstract

Background and purpose: Endovascular treatment (EVT) is effective for stroke
patients with a large vessel occlusion (LVO) of the anterior circulation. To further
improve personalized stroke care, it is essential to accurately predict outcome after
EVT. Machine learning might outperform classical prediction methods as it is
capable of addressing complex interactions and non-linear relations between
variables.

Methods: We included patients from the Multicenter Randomized Clinical Trial of
Endovascular Treatment for Acute Ischemic Stroke in the Netherlands (MR
CLEAN) Registry, an observational cohort of LVO patients treated with EVT. We
applied the following machine learning algorithms: Random Forests, Support
Vector Machine, Neural Network, and Super Learner and compared their predictive
value with classic logistic regression models using various variable selection
methodologies. Outcome variables were good reperfusion (post-mTICI >2b) and
functional independence (modified Rankin Scale <2) at 3 months using 1) only
baseline variables and 2) baseline and treatment variables. Area under the ROC-
curves (AUC) and difference of mean AUC between the models were assessed.

Results: We included 1383 EVT patients, with good reperfusion in 531 (38%) and
functional independence in 525 (38%) patients. Machine learning and logistic
regression models all performed poorly in predicting good reperfusion (range mean
AUC:0.53-0.57), and moderately in predicting 3-month functional independence
(range mean AUC:0.77—0.79) using only baseline variables. All models performed
well in predicting 3-month functional independence using both baseline and
treatment variables (range mean AUC:0.88—0.91) with a negligible difference of
mean AUC (0.01;95%CI:0.00—0.01) between best performing machine learning
algorithm (Random Forests) and best performing logistic regression model (based
on prior knowledge).

Conclusion: In patients with LVO machine learning algorithms did not outperform
logistic regression models in predicting reperfusion and 3-month functional
independence after endovascular treatment. For all models at time of admission
radiological outcome was more difficult to predict than clinical outcome.
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Predicting outcome of stroke using complex data-driven models

Introduction

Endovascular treatment (EVT) is effective for ischemic stroke patients with a large
vessel occlusion (LVO) of the anterior circulation. EVT results in a number needed
to treat of 2.6 to reduce disability by at least one level on the modified Rankin Scale
(mRS).! A recent meta-analysis showed a positive treatment effect of EVT across
patient subgroups including different age groups, varying stroke severity, sex, and
stroke localization.! However, many clinical and imaging predictors or their
combinations were not considered in the subgroup analysis. Moreover, the RCT's
that provided the data differed in their patient selection criteria. To further improve
personalized stroke care, it is essential to accurately predict outcome and eventually
differentiate between patients who will and will not benefit from EVT. Machine
learning belongs to the domain of artificial intelligence and provides a promising
tool in pursuing personalized outcome prediction, which is increasingly used in
medicine.>” The machine learning methodology allows discovering empirical
patterns in data through automated algorithms. In some clinical settings machine
learning algorithms outperform classical regression models such as logistic
regression, possibly through more efficient processing of non-linear relationships
and complex interactions between variables,* ® although poorer performance has
also been observed.’

In this study, we used multiple machine learning algorithms and logistic regression
with multiple variable selection methods to predict radiological and clinical outcome
after EVT in a cohort of well-characterized stroke patients. We hypothesized that
machine learning algorithms outperform classic multivariable logistic regression
models in terms of discrimination between good and poor radiological and clinical
outcome.

Methods

Patients

We included patients registered between March 2014 and June 2016 in the
Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute
Ischemic Stroke in the Netherlands (MR CLEAN) Registry. The MR CLEAN
Registry is an ongoing, national, prospective, open, multicenter, observational
monitoring study covering all 18 stroke intervention centers that perform EVT in
the Netherlands, of which 16 participated in the MR CLEAN trial.!” The registry is
a continuation of the MR CLEAN trial collaboration and includes all patients
undergoing EVT (defined as entry into the angiography suite and receiving arterial
puncture) for acute ischemic stroke in the anterior and posterior circulation. In the
current analysis we included those patients who adhered to the following criteria:
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age 18 years and older, treatment in a center that participated in the MR CLEAN
trial, and LVO in the anterior circulation (internal carotid artery (ICA), internal
carotid artery terminus (ICA-T), middle (M1/M2) cerebral artery, or anterior
(A1/A2) cerebral artery), shown by CT angiography (CTA) or digital subtraction
angiography (DSA).!!

Clinical baseline characteristics

We assessed the following clinical characteristics at admission: National Institutes
of Health Stroke Scale (NIHSS), Glasgow Coma Scale, medical history (TIA,
ischemic stroke, intracranial hemorrhage, subarachnoid hemorrhage, myocardial
infarction, peripheral artery disease, diabetes mellitus, hypertension,
hypercholesterolemia), smoking, laboratory tests (blood glucose, INR, creatinine,
thrombocyte count, CRP), blood pressure, medication (thrombocyte aggregation
inhibitors, oral anticoagulant drugs, anti-hypertensive drugs, statins), modified
Rankin Score (mRS) before stroke onset, administration of intravenous tPA (yes/no),
stroke onset to groin time, transfer from another hospital, and whether the patient
was admitted during weekend or off hours.

Radiological baseline parameters

All imaging in the MR CLEAN Registry was assessed by an imaging core
laboratory.!! On non-contrast CT, the size of initial lesion in the anterior circulation
was assessed by the Alberta Stroke Program Early CT Score (ASPECTS). ASPECTS
is a 10 point quantitative topographic score representing early ischemic change in
the middle cerebral artery territory, with a scan without ischemic changes receiving
an ASPECTS of 10 points.!? In addition, presence of leukoaraiosis and old
infarctions, hyperdense vessel sign, and hemorrhagic transformation of the ischemic
lesion were assessed on non-contrast CT.

On CTA, the core lab determined clot burden score, clot location, collaterals, and
presence of intracranial atherosclerosis. The clot burden score evaluates the extent
of thrombus in the anterior circulation by location scored on a 0-10 scale. A score
of 10 is normal, implying clot absence; a score of 0 implies complete multi-segment
vessel occlusion.!? Presence of intracranial carotid artery stenosis, atherosclerotic
occlusion, floating thrombus, pseudo-occlusion, and carotid dissection were scored
on CTA of the carotid arteries. Collaterals were assessed using a 4 point scale, with
0 for absent collaterals (0% filling of the vascular territory downstream of the
occlusion), 1 for poor collaterals (>0% and <50% filling of the vascular territory
downstream of the occlusion), 2 for moderate collaterals (>50% and <100% filling
of the vascular territory downstream of the occlusion), and 3 for excellent collaterals

(100% filling of the vascular territory downstream of the occlusion).!
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Treatment specific variables

Variables collected during EVT were type of sedation during the procedure (general
or conscious), use of a balloon guiding catheter, carotid stent placement, performed
procedure (DSA only or thrombectomy), and type of EVT-device (stent retriever,
aspiration device, or a combination of both). In addition, data were collected on
adverse events during the procedure (perforation, dissection, distal thrombosis on
DSA). Interventional DSA parameters in our dataset were occluded vessel segment
(ICA: origin, cervical, petrous, cavernous, supraclinoid, M1-M4, A1, A2), arterial
occlusive lesion (AOL) recanalization score before and after EVT,'* evidence of
vascular injury (i.e. perforation, or dissection, vasospasm, new clot in different
vascular territory or distal thrombus confirmed with imaging), and modified
Thrombolysis in Cerebral Infarction (mTICI)-score before and after EVT. The
mTICI-score grades the following categories of cerebral reperfusion: no reperfusion
of the distal vascular territory (0), minimal flow past the occlusion but no
reperfusion (1), minor partial reperfusion (2a), major partial reperfusion (2b), and
complete reperfusion (3).!* Further variables analyzed were time from stroke onset
to recanalization, post-EVT stay on intensive care, high care or stroke care, NIHSS
after EVT (<48h), delta NIHSS (pre-treatment NIHSS subtracted from NIHSS <48h
after EVT) and hemicraniectomy or symptomatic intracranial hemorrhage <48h

after EVT.

Outcome

The primary radiological outcome was good reperfusion defined as modified TICI-
score directly post-procedure (post-mTICI) > 2b.!"" The primary clinical outcome
was functional independence at 3 months after stroke (mRS < 2). We excluded
patients in whom any of the main outcomes (3-month mRS and post-mTICI) were
missing. To investigate the full potential of Machine learning compared with
conventional methods in different settings after stroke we defined two prediction
settings:

First, we assessed the probability of good reperfusion and good 3-month functional
independence in our cohort of patients that underwent EVT based only on variables
that were available on admission before entry into the angiography suite. With this
baseline prediction setting we are able to investigate the added value of machine
learning for models that could potentially support future clinical decision making
regarding the performance of EVT yes or no.

Second, we tested the models for predicting 3-month functional independence in
patients after EVT was performed. For this analysis we used all variables collected
up to 48 hours after the end of the endovascular procedure (baseline and treatment
variables).
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Machine learning algorithms

The machine learning algorithms used in our study were Random Forests, Artificial
Neural Network and Support Vector Machine, because they are among the
algorithms that are currently most widely and successfully used for clinical data.?”
Each one of them represents a different algorithm ‘family’, each with radically
different internal algorithm structures.!® Since it was not known beforehand which
kind of algorithm would perform best, we chose algorithms with different internal
structures to increase the probability of good discriminative performance. We also
used Super Learner, which is an ensemble method that finds the optimal weighted
combination of predictions of the Random Forests, Artificial Neural Network and
Support Vector Machine algorithms used in this study. Ensemble methods such as
Super Learner have been shown to increase predictive performance by increasing
model flexibility.!” For the implementation of all machine learning algorithms we
used off-the-shelf methods in the Python module Scikit-Learn.!®

Super Learner

Super Learner is a stacking algorithm using cross-validated predictions of other
models (i.e. a machine learning algorithm and logistic regression) and assigning
weights to these predictions to optimize the final prediction. Super Learner’s
predictive performance has been found to surpass individual machine learning

models in various clinical studies.!”> 1% 20

Random Forests

Random Forests consists of a collection of decision tree classifiers that are fit on
random subsamples of patients and variables in the dataset. The variation of the
subsampled variables creates a robust classifier. In the decision trees, each node
represents a variable and splits the input data into branches based on an objective
function that determines the optimal threshold for separating the outcome classes.
The predictions from each tree are used as ‘votes’, and the outcome with the most
votes is considered the predicted outcome for that specific patient.® 2! From the
Random Forests algorithm variable importances can be derived, which are the sum
of weights of nodes of the trees containing a certain variable, averaged over all trees
in the forest.??

Support Vector Machine

Support Vector Machine (SVM) is a kernel-based supervised machine learning
classifier which can also be used to output probabilities. The SVM works by first
mapping the input data into a high dimensional variable space. For binary
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classification, a hyperplane is subsequently determined to separate two classes such
that the distance between the hyperplane and the closest data points is maximized.??

Artificial Neural Network

In this study we use the multilayer perceptron, a popular class of artificial neural
network architecture composed of one or more interconnected layers of neurons
that process data from the input layer into predictions for the output layer. The
algorithm computes a weight for each neuron based on input activation. These
weights are updated by backpropagation and stochastic gradient descent.>*

Logistic regression

For logistic regression, generally a set of variables has to be selected to be included
in the model. Since model performance can rely heavily on selecting the right
variables, we tested five different variable selection methods prior to logistic
regression. We first selected variables based on prior knowledge, a still widely used
method that could be considered ‘classical’.?® We selected 13 variables available at
baseline that were included in a previous study for a similar purpose.”’
(Supplementary Table Ia) In addition, from baseline and treatment variables we
selected 15 variables based on expert opinions of vascular neurologists and
radiologists. (Supplementary Table Ib).

We further considered four automated variable selection methods: i) backward
elimination, which is also considered to be a more classical approach,?® and three
state-of-the-art variable selection methods: ii) least absolute shrinkage and selection
operator (LASSO)?, iii) Elastic Net, which is a modification of the LASSO found to
outperform the former while still having the advantage of a similar sparsity of
representation®, and iv) selection based on Random Forests variable importance.

Analysis pipeline

We imputed missing values using multiple imputations by chained equations
(MICE).*® Variables with 25% missing values or more were discarded from further
analysis. All remaining variables used in this study are listed in Supplementary Table
II and III. In total, 53 baseline variables and 30 treatment variables were used as
input for machine learning algorithms and automated variable selection methods
for logistic regression. The ordinal clinical (NIHSS) and radiological (clot burden
and ASPECTS) scores were presented as continuous scores in all models to increase
model efficiency, and we assumed linear trends underlying the ordinal scores. We
used nested cross-validation (CV), consisting of an outer and an inner CV loop. In
the outer CV loop we used stratified CV with 100 repeated random splits resulting
in a training set including 80% and a test set including 20% of all patients. Each
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training set was used as input for the inner CV loop, consisting of ten-fold CV.3132
In the inner CV loop we selected variables for the logistic regression models using
the different variable selection methods, and optimized hyperparameters of all
machine learning models. Hyperparameters are tuning parameters specific to each
machine learning algorithm whose values have to be preset and cannot be directly
learned from the data. We optimized hyperparameters with the random grid search
module from Scikit-Learn.!® We selected those with highest area under the receiver
operating characteristic (AUC) across all internal CV folds to find the best set of
selected variables and hyperparameters. Figure 1 shows a schematic representation
of our nested CV methodology. For all Random Forests models of both prediction
settings we ranked variables by decreasing variable importance. For each variable
we assessed the frequency of being among the 15 most important variables in a
Random Forests model for each of the 100 external CV folds.

Figure 1. Schematic representation of nested cross-validation methodology

Imputed dataset
i e el ateteteteletelelele ittt

:External loop:
IStratified cross-
jvalidaton with 100
\repeated random splits

Training (80% of patients) Test (20% of patients)

LTI

i i
iInternal loop: 10-fold | - Hyperparameter tuning forall |3
icross—validation with | machine learning algorithms E
1repeated random - Variable selection for logistic :
isplits regression models :
' .,*..-..--.--..--.'
Compute AUC per external cross-validation fold
Y

Compute mean AUC including 95% CI across all
external cross-validation folds

Model performance

We assessed model discrimination (the ability to differentiate between patients with
good and poor outcome) with receiver operating characteristic (ROC) analyses.
Because of our outer CV loop with 100 repeated random splits, we obtained 100
different AUCs from every model. We computed the average ROC-curve and mean
AUC with 95% confidence intervals (CI) for all models. We evaluated differences
between mean AUCs of the best performing machine learning model and best
performing logistic regression model by computing the difference of means including
the associated 95% CI.
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Results

Of the 1627 patients registered between March 2014 and June 2016, we excluded
244 patients for this analysis because of age < 18 (n = 2), posterior circulation stroke
(n =79), missing MR CLEAN trial center (n = 20), and missing mRS or post-mTICI
(n=143). Mean age was 69.8 years (SD = 14.4) and 738 (54 %) of the 1383 included
patients were men. In total, 531 (38 %) patients had good reperfusion after EVT and
525 (38%) were functionally independent (mRS < 2) three months after stroke.
Baseline characteristics are shown in Table 1.

Prediction of good reperfusion after EVT in patients at time of admission

Discrimination between good and poor reperfusion of the best machine learning
algorithm (Support Vector Machine, mean AUC: 0.55) and the best logistic
regression model (using backward elimination, mean AUC: 0.57) was similar
(difference of mean AUCs: 0.02; 95% CI: 0.01-0.03). Discrimination was poor for
all models, with a mean AUCs ranging from 0.53 to 0.57 (Table 2). Variable
selection using LASSO or Elastic Net was not possible likely because the signal-to-
noise ratio was insufficient.!®

Prediction of 3-month functional independence in patients at time of admission

Discrimination of good functional outcome of the best machine learning algorithm
(Super Learner, mean AUC: 0.79) and the best logistic regression model (using
LASSO, mean AUC: 0.78) was similar (difference of mean AUCs: 0.01; 95% CI:
0.01 - 0.01). Discrimination was moderate for all models, with a mean AUCs
ranging from 0.77 to 0.79.

Prediction of 3-month functional independence in patients after EVT

Discrimination of good functional outcome of the best machine learning algorithm
(Random Forests, mean AUC: 0.91) and the best logistic regression model (using
prior knowledge, mean AUC: 0.90) was similar (difference of mean AUCs: 0.01;
95% CI: 0.00 = 0.01). Discrimination was good for all models, with mean AUCs
ranging from 0.88 to 0.91. We performed a post hoc analysis in patients with good
reperfusion as defined by post-mTICI > 2b, predicting 3-month functional outcome
both at time of admission and after performance of EVT. We did not find significant
differences in performance between machine learning algorithms and logistic
regression models in this patient subset (data not shown).

In Table 3 we show the top 15 variables based on the frequency of being among the
15 most important variables in a Random Forests model for each of the 100 external

CV folds.
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Table 1. Baseline characteristics of participants

Characteristics

All patients (n = 1383)

Mean age = SD (years)
Men, n (%)
NIHSS score, median (IQR)
Mean systolic blood pressure = SD (mm Hg)
Medical history, n (%)
Atrial fibrillation
Hypertension
Diabetes mellitus
Myocardial infarction
Peripheral artery disease
Ischaemic stroke
Hypercholesterolemia
Pre-stroke mRS > 2, n (%)
Smoking, n (%)
Medication use, n (%)
DOAC**
Coumarine
Antiplatelet
Heparin
Blood pressure medication
Statin
Intravenous alteplase treatment, 1 (%)
ASPECTS, median (IQR)
Time from stroke onset to groin in minutes,
median (IQR)

Collateral score > 2

69.8 =+ 14.4
738 (53.5)

16 (11 - 20)
150 = 25

411 (30.7
697 (51.1
235 (17.1
216 (15.9
127 (9.4)
227 (16.5)
411 (29.7)
158 (11.6)
314 (22.9)

)
)
)
)

35 (2.6)
179 (13.0)
461 (33.7)

52 (3.8)
707 (52.1)
490 (36.2)
1054 (76.2)

9 (7-10)

210 (160-270)

764 (55)

*National Institutes of Health Stroke Scale score
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Table 2. Discrimination of machine learning algorithms and logistic regression
models across the various prediction settings

Prediction setting (used variables: predicted outcome)

Models, AUC (95% CI)* . . .
Baseline: post-mTICI  Baseline: mRS All variables: mRS

Super Learner 0.55(0.54-0.56) 0.79 (0.79-0.80)  0.90 (0.90-0.91)
Random Forests 0.55 (0.55-0.56) 0.79 (0.79-0.79)  0.91 (0.90-0.91)
Support Vector Machine  0.53 (0.53-0.54) 0.78 (0.77-0.78) 0.88 (0.88-0.89)
Neural Network 0.53 (0.53-0.54) 0.77 (0.76-0.77)  0.88 (0.88-0.89)
LR: automated selection**
Random Forests 0.55 (0.55-0.56) 0.78 (0.78-0.78)  0.90 (0.90-0.90)
LASSO NAY 0.78 (0.78-0.79)  0.90 (0.89-0.90)
Elastic Net NAY 0.77 (0.77-0.78)  0.89 (0.88-0.89)
Backward elimination 0.57 (0.57-0.58) 0.78 (0.77-0.78)  0.90 (0.89-0.90)
LR: Prior knowledge! 0.55 (0.55-0.58) 0.78 (0.78-0.79)  0.90 (0.90-0.90)

*Model discrimination is assessed by calculating mean Area Under the Curve (AUC) of the receiver operating
characteristic across all outer cross-validation folds.

**[ogistic regression using automated variable selection methods

¥Variable selection not possible, likely due to insufficient signal-to-noise ratio

tLogistic regression using variables based on prior knowledge
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Table 3. Variable importance of Random Forests for various prediction settings (used variables: predicted outcome)

Baseline: post-mTICI Freq* Baseline: mRS Freq All variables: mRS Freq

RR systolic at admission 100 Age 100  NIHSS after 24-48 hours 100
Duration stroke onset to groin 100  NIHSS at baseline 100  Delta NIHSS: follow-up minus baseline 100
RR diastolic at admission 100 Duration stroke onset to groin 100 Age 100
Thrombocyte count 100  Glasgow Coma Scale 100  NIHSS at baseline 100
Age 100  RR systolic at admission 100 Duration from onset to recanalization 100
Creatinine 100 CRP 100  Duration of procedure 100
CRP 100  Creatinine 100  Delta NIHSS > 4 points higher after EVT 100
NIHSS at baseline 100  Thrombocyte count 100  Duration stroke onset to groin 100
Clot burden score 100 RR diastolic at admission 100  Glasgow Coma Scale 100
Glasgow ComaScale 100  mRS prior to stroke 100  Creatinine 100
ASPECTS score at baseline 100  ASPECTS score at baseline 100 CRP 100
Glucose 100  Glucose 100 Thrombocyte count 100
Location: proximal M1** 74  Clot burden score 99  RR systolic at admission 100
Hyperdense artery sign NCCT 50  Presence of leukoaraiosis 96  mRS prior to stroke 91

History of atrial fibrillation 32 Collateral score 77  RR diastolic at admission 93

NCCT = non-contrast CT; CRP = C-Reactive Protein; RR = blood pressure; NIHSS = National Institutes of Health Stroke Scale score

*Frequency of being among the 15 most important variables in a Random Forests model for each of the 100 external CV folds

**[ ocation of intracranial occlusion on CTA
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Discussion

We found no difference in performance between best performing machine learning
algorithms and best performing logistic regression models in predicting radiological
or clinical outcome in stroke patients treated with EVT. For prediction of good
reperfusion using variables available at baseline, all models showed a poor
discriminative performance. This could indicate that reperfusion after EVT depends
on characteristics not present in our variables available at time of admission, such
as vascular anatomy or interventionalist related factors. Prediction of 3-month
functional independence using variables known at baseline was moderate,
predicting 3-month functional independence using baseline and treatment variables
resulted in good performance.

We hypothesized that machine learning would outperform logistic regression
models due to simultaneous assessment of a large number of variables, and more
efficient processing of non-linear relations and interactions between them. Although
a large number of variables (83 in total, see Supplementary Table II and III) were
available for analysis in the MR CLEAN Registry database, performance of best
machine learning algorithms and best logistic regression models were similar. This
could indicate that interactions and non-linear relationships in our dataset were of
limited importance.

To interpret our results, several methodological limitations have to be considered.
First, due to their great flexibility machine learning algorithms are prone to
overfitting, which results in optimistic prediction performance. To account for
overfitting we used nested CV, which is considered to be an effective method for
this aim.?* Second, our outer CV loop resulted in 100 AUCs per model leading to
relatively small confidence intervals of mean AUCs. Although this increases the
probability of statistically significant differences between mean AUCs of various
models, the clinical relevance of these mean AUC differences is difficult to interpret.
Because in our study mean AUC differences between models are minimal, clinical
relevance of these differences is also negligible. Third, we used data from a registry.
Registries might be prone to selection bias. However, we expect that selection bias
in our study was minimal because the MRCLEAN Registry in principle covers all
patients treated with EVT in the Netherlands. In addition, in all centers patients
were treated according to national guidelines, and registration of treatment was a
prerequisite for reimbursement.!!

Strong points of this study include the large sample size and standardized collection
of patient data. Moreover, because of extensive hyperparameter tuning and state-
of-the art variable selection methods, machine learning and logistic regression
models were compared at their best performance. In several other studies that
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compared machine learning algorithms with only logistic regression methods using
variables based on prior knowledge, machine learning outperformed logistic
regression.® 7 3 Variable selection based on prior knowledge has the major
drawback that predictive patterns in the data may be missed, as variable selection is
strictly based on the literature and expert opinion.*® In our study however, logistic
regression using variables based on prior knowledge performed similarly to logistic
regression using automated variable selection methods.

The distinction between machine learning and ‘classical’ regression methods is
largely artificial. However, a clear distinction between various machine learning
algorithms and logistic regression exists in terms of model transparency, which
could be seen as the understanding of the mechanism by which the model works.?*
Logistic regression has the advantage of transparency at the level of individual
variable coefficients, since from these coefficients odds ratios can be derived.
However, variable importances derived from the Random Forests algorithm also
offer insight in the importance of individual variables for prediction performance.??
These variable importances take interaction between variables into account and
have a similar interpretation for continuous and discrete variables, unlike odds
ratios which constitute an effect per unit change of a predictor. Hence, Random
Forests could be used as an efficient screening tool to pick up predictive patterns in
the data that could potentially lead to further hypothesis-driven research. In Table
3 we show the top 15 variables from either the baseline or baseline and treatment
variable set, based on Random Forests variable importance. The majority of
variables in Table 3 do not overlap with the selection of variables based on prior
knowledge, potentially providing researcher with additional information.

In this dataset we found no clinically relevant differences in prediction of reperfusion
and 3-month functional independence across all models. However, since it is
generally not known on beforehand which type of model will result in the best
predictive performance in a new dataset, our methodology could be of importance
in future studies. We present an analysis pipeline with both machine learning
algorithms and logistic regression models including state-of-the-art variable
selection methods. Assessing predictive performance of all models simultaneously
enables the researcher to make the proper trade-off between predictive performance
and model transparency. As our analysis pipeline is fully automated and input
variables and outcome label can be altered at will, it is relatively easy to reuse in
future studies. The Python code of our pipeline has been made publicly available in
an online repository (https://github.com/L-Ramos/MrClean_Machine_Learning).
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