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ABSTRACT
Background  COPD is characterised by progressive lung 
function decline. Leveraging prior work demonstrating 
bronchial airway COPD-associated gene expression 
alterations, we sought to determine if there are 
alterations associated with differences in the rate of FEV1 
decline.
Methods  We examined gene expression among ever 
smokers with and without COPD who at baseline had 
bronchial brushings profiled by Affymetrix microarrays 
and had longitudinal lung function measurements 
(n=134; mean follow-up=6.38±2.48 years). Gene 
expression profiles associated with the rate of FEV1 
decline were identified by linear modelling.
Results  Expression differences in 171 genes were 
associated with rate of FEV1 decline (false discovery 
rate <0.05). The FEV1 decline signature was replicated 
in an independent dataset of bronchial biopsies from 
patients with COPD (n=46; p=0.018; mean follow-
up=6.76±1.32 years). Genes elevated in individuals 
with more rapid FEV1 decline are significantly enriched 
among the genes altered by modulation of XBP1 in two 
independent datasets (Gene Set Enrichment Analysis 
(GSEA) p<0.05) and are enriched in mucin-related genes 
(GSEA p<0.05).
Conclusion  We have identified and replicated an 
airway gene expression signature associated with the 
rate of FEV1 decline. Aspects of this signature are related 
to increased expression of XBP1-regulated genes, a 
transcription factor involved in the unfolded protein 
response, and genes related to mucin production. 
Collectively, these data suggest that molecular processes 
related to the rate of FEV1 decline can be detected in 
airway epithelium, identify a possible indicator of FEV1 
decline and make it possible to detect, in an early phase, 
ever smokers with and without COPD most at risk of 
rapid FEV1 decline.

INTRODUCTION
COPD is the third leading cause of death in the 
world.1 In 2016, 3 million people died of COPD, 
which accounted for 6% of all deaths globally.1 
Accelerated lung function decline is considered a 
feature of COPD and is most commonly measured 
by change in FEV1. Lower FEV1 is associated with 
an increased risk of death,2 and even smokers who 

do not yet meet the clinical definition of COPD 
may experience more rapid FEV1 decline.3 The 
rate of FEV1 decline is highly variable between 
individuals.4 Though some risk factors for rapid 
FEV1 decline have been identified, such as cigarette 
smoking,5 higher blood neutrophil counts,6 albu-
minuria7 and alpha 1-antitrypsin deficiency,8 these 
do not fully explain the heterogeneity in COPD and 
have not yet been useful in predicting FEV1 decline 
for individual patients. The ability to predict FEV1 
decline would enable clinicians to stratify at-risk 
patients towards more aggressive management. It 
might also facilitate clinical trials of therapies to 
modify the natural history of COPD, specifically 
targeting individuals more likely to experience 
greater decline in FEV1. Finally, it could lead to 
further indications for finding therapeutic targets 
to slow disease progression.

Previous studies have demonstrated that bron-
chial epithelial gene expression is altered both by 
cigarette smoking and in diseases associated with 

Key messages

What is the key question?
►► Can gene expression profiling of the airway 
epithelium be used to identify molecular 
processes associated with the rate of FEV1 
decline?

What is the bottom line?
►► An airway gene expression signature associated 
with the rate of subsequent decline in FEV1 
is identified and replicated. This signature 
is enriched for genes that are regulated by 
XBP1, a key transcription factor involved in the 
unfolded protein response.

Why read on?
►► The present study highlights that molecular 
processes associated with the rate of FEV1 
decline can be detected by bronchial epithelial 
gene expression profiles. This work identifies 
a possible indicator of FEV1 decline and 
demonstrates the potential for bronchial gene 
expression to serve as an intermediate endpoint 
for studying the rate of FEV1 decline.
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Chronic obstructive pulmonary disease

cigarette smoking.9–11 We have previously described the Steiling 
et al10 bronchial airway gene expression signature of COPD and 
disease severity as measured by FEV1. Importantly, these gene 
expression alterations in the more proximal airway were similar 
to disease-associated changes present in more distal diseased 
lung tissue, suggesting that bronchial airway gene expression in 
COPD can be used to study factors in its pathobiology.

Based on these observations, we hypothesised that bron-
chial airway epithelial gene expression might reflect molecular 
processes associated with accelerated FEV1 decline. In this study, 
we identified and replicated a baseline gene expression signa-
ture associated with the rate of FEV1 decline observed during 
subsequent follow-up. We found this signature to be significantly 
enriched for genes with binding sites for the transcription factor 
encoded by XBP1, which is involved in the unfolded protein 
response (UPR) to endoplasmic reticulum (ER) stress.

Some of the results reported here have been previously 
published in abstract form.12–15

METHODS
Primary dataset and longitudinal FEV1
The individuals included in the primary dataset were recruited 
as part of the British Columbia Lung Health Study16 and Pan-
Canadian Lung Health Study. Additional information about the 
study population can be found in the supplement. We previously 
profiled 267 bronchial airway brushings obtained from current 
and former smokers in this cohort using Affymetrix Human 
Gene 1.0 ST Arrays.10 In the current study, we used this existing 
gene expression data together with spirometry data that were 
collected during longitudinal follow-up subsequent to bronchos-
copy. FEV1, FEV1% predicted and FVC were measured using 
a flow-sensitive spirometer. The ratio between FEV1 and FVC 
were used to determine COPD status as previously described in 
Steiling et al.10 We excluded samples from individuals who did 
not have a spirometry recording within 1 year of their bronchos-
copy (n=8), did not have at least two spirometry measurements 
at least 4 years apart (n=104) or who developed cancer (n=19). 
As previously reported, two samples were excluded due to sample 
labelling errors.10 Data from the remaining 134 current and 
former smokers were included in the analysis. Because spirom-
etry was not performed at regular intervals, the rate of FEV1 
decline (∆FEV1) for each study participant was estimated using 
linear regression with all available spirometry measurements 
from that individual subsequent bronchoscopy. The relationship 
between the rate of FEV1 decline and other clinical variables was 
evaluated by analysis of variance (ANOVA) of linear models.

Identification of a rate of FEV1 decline gene expression 
signature
Genes associated with the future rate of FEV1 decline were 
identified using the following linear models calculated using the 
lm function and the anova function using R statistical software 
V.3.4.017 and RStudio V.1.0.143.18

	﻿‍

ge ∼ β0 + β1Xage + β2XSmoke_Status +

β3Xpack_years + β4XSex + β5Xbaseline_FEV1 + ϵ‍�
(1)

	﻿‍

ge ∼ β0 + β1Xage + β2XSmoke_Status + β3Xpack_years +

β4XSex + β5Xbaseline_FEV1 + β6X△lFEV1 + ϵ ‍�
(2)

where ge is the expression level of a single gene; age is the age 
at the time of bronchoscopy, pack years is the calculated cumu-
lative cigarette smoke exposure at the time of bronchoscopy and 
smoke status is the smoking status at the time of bronchoscopy 

(participants were considered former smokers if they had quit 
for at least a year). Baseline FEV1 is the FEV1 within 1 year of 
bronchoscopy. The rate of FEV1 decline (∆FEV1) is calculated 
as described above. ε is an error term. The false discovery rate 
(FDR) was calculated from the ANOVA p values.19 Genes with 
FDR <0.05 were considered to be associated with the rate of 
FEV1 decline and included in the signature. The signature was 
divided into genes that are increased or decreased with more 
rapid FEV1 decline by hierarchical clustering which segregated 
genes according to the sign of the linear model coefficient. The 
rate of FEV1 decline signature was compared with the previously 
published Steiling et al10 airway gene expression signature of 
COPD severity by determining the number of genes overlapping 
between the signatures, and by using Gene Set Enrichment Anal-
ysis (GSEA).20

To evaluate the extent to which the FEV1 decline signature is 
a reflection of other factors that correlate with COPD, we first 
summarised the expression of the FEV1 decline signature per 
sample as the sample loading on the first principal component 
which we refer to as the FEV1 decline signature. We then tested 
the association between the signature score and the rate of FEV1 
decline in several subsets of the data. A linear model adjusting 
for age, sex, smoking status, pack years and baseline FEV1 was 
performed to test the association between the FEV1 decline 
signature score and the rate of lung function decline in current 
smokers who continued to be current smokers throughout the 
follow-up period, former smokers, individuals with COPD, 
individuals without COPD and individuals who were not using 
inhaled medications.

Replication of the gene expression signature of rate of FEV1 
decline in GLUCOLD
We investigated the association between the expression of genes 
in the rate of FEV1 decline signature and the observed rate of 
FEV1 decline in a previously published independent dataset of 
individuals with COPD who were enrolled in the GLUCOLD 
trial, a placebo controlled randomised double-blind clinical 
trial of fluticasone with or without salmeterol21 22 (GSE36221). 
Briefly, these participants underwent bronchoscopy with endo-
bronchial biopsy followed by spirometry every 3 months during 
the 2.5-year trial. After the 2.5-year drug treatment trial, partic-
ipants performed spirometry every year up to a total of 7.5 
years (mean=6.91). The rate of FEV1 decline was estimated by 
the coefficient from a linear model for each individual using 
their baseline spirometry measurement (t=year 0), excluding 
their time on treatment (t=0.25 to t=2.5 years) and including 
measurements from 3.5 years forward, to control for treatment 
effect. In the GLUCOLD participants, the gene expression signa-
ture associated with subsequent FEV1 decline was calculated 
using principal component analysis (PCA). First, the eigenvector 
for the first principal component of the signature genes in the 
z-score normalised discovery set was calculated using the prcomp 
function in R. A summarised signature score for each sample in 
the discovery set and the GLUCOLD dataset was then calcu-
lated from the eigenvector and the z-score normalised expres-
sion data using the predict method of prcomp. The relationship 
between summarised signature score at baseline and the rate of 
FEV1 decline was evaluated using the linear model and ANOVA 
strategy outlined above for the gene expression analysis.

Identification of enriched biological pathways
To identify transcription factors enriched in the FEV1 decline 
signature, we used the Molecular Signature Database (MSigDB)20 
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Chronic obstructive pulmonary disease

to search computationally derived datasets of transcription 
factor binding sites. We divided the genes into two clusters when 
searching: genes that increase with worse FEV1 decline and 
genes that decrease with worse FEV1 decline. For each cluster 
of genes, we identified transcription factor binding sites with an 
FDR <0.05. The transcription factor binding sites were based 
on Xie et al’s work23 and TRANSFAC V.7.4.24

The transcription factor XBP1, which was identified by the 
above method, was selected for in silico validation because it 
has previously been implicated in COPD25 and because it is a 
well-studied transcription factor with several publicly available 
knockout and overexpression datasets. The Gene Expression 
Omnibus (GEO) was searched using the key terms “XBP1 knock 
out” and “XBP1 overexpression” to identify potentially useful 
datasets. This identified 38 datasets.

After searching GEO to identify publicly available datasets 
investigating the gene expression effects of modulating XBP1 
activity, we identified two datasets which we explored further: a 
dataset examining the effects of XBP1 overexpression in mouse 
adipocytes (GSE46178)26 and a dataset examining the effects 
of XBP1 knockout in mouse hepatocytes (GSE64824).27 Using 
t-statistics from a linear model, we ranked genes by their change 
in expression following XBP1 overexpression in mouse adipo-
cytes (n controls=4, n overexpression=4) using data from Affy-
metrix Mouse Genome 430A 2.0 Arrays. For the XBP1 knockout 
study, we ranked genes according to their change in expression 
between wild-type (WT) and XBP1-knockout hepatocytes by 
subtracting the gene expression of the controls (n=2) from the 
knockout hepatocytes (n=2) which had been profiled by RNA-
seq using an Illumina HiSeq2000.27 Before sequencing, the repli-
cates were pooled. We explored the distribution of the two gene 
clusters from the rate of FEV1 decline signature in these ranked 
lists using GSEA.20 Importantly, neither of these in silico datasets 
were included in the TRANSFAC data.28–31

Because previous work has also identified association of a 
T helper type 2 cell (Th2) signature in a subset of individuals 
with COPD,32 we sought to evaluate the association of this Th2 
signature with the FEV1 decline signature. We used a three-gene 
Th2 signature derived in patients with asthma,33 which included 
POSTN, SERPINB2 and CLCA1. Expression levels of these 
genes were z-score normalised, and the first principal compo-
nent was computed to summarise their expression. The associa-
tion between the Th2 score and FEV1 decline was assessed using 
a linear model controlling for age, sex, smoking status, pack 
years and baseline FEV1. We also tested the association between 
the first principal component of the FEV1 decline signature and 
the Th2 score.

To determine if genes related to mucus hypersecretion were 
associated with FEV1 decline, we used GSEA to evaluate the 
enrichment of two mucin-related gene sets among a ranked list 
of all genes ranked by association with FEV1 decline. The gene 
sets used included the mucin type O-glycan biosynthesis gene set 
from KEGG 2019,34 and the mucin granule gene set from Jensen 
Compartments.35 In order to determine if there was an associa-
tion between ER stress and mucin hypersecretion, Gene Set Vari-
ation Analysis36 scores were calculated for the XPB1 target gene 
set, the mucin-related gene sets and the FEV1 signature score. 
Linear models were used to test pairwise associations between 
the three scores.

To determine if genes previously identified in genome-wide 
association studies (GWAS) of COPD were enriched in the FEV1 
decline signature, we used GSEA to evaluate the enrichment of a 
gene set comprised of COPD GWAS genes among the ranked list 
of all genes ordered by association with FEV1 decline. The gene 

set of COPD GWAS genes was derived from a review of GWAS 
in COPD.37

RESULTS
Participant demographics
A total of 134 current and former smokers with (n=49) and 
without COPD (n=85) were included in this analysis. Clin-
ical and demographic characteristics of the study cohort are 
provided in table  1. Demographic characteristics separated by 
GOLD status are available in online supplemental table 1. The 
correlations between demographic variables are listed in online 
supplemental table 2.

The average baseline FEV1 for participants with COPD was 
significantly lower than in participants without COPD. The rate 
of FEV1 decline is significantly higher in individuals with lower 
baseline FEV1 and/or COPD (p<0.05) (online supplemental 
table 1). Only 5 of the 59 current smokers quit smoking during 
follow-up. The initial spirometry measurements were performed 
within 1 year of bronchoscopy, with 85% performed within 
6 months of bronchoscopy and 70% within 90 days (online 
supplemental figure 1 and online supplemental table 3).

Bronchial airway gene expression signature of FEV1 rate of 
decline
The expression levels of 171 genes were significantly associated 
with the rate FEV1 decline (FDR <0.05) (figure 1 and online 
supplemental table 4). A total of 120 genes had higher expres-
sion in individuals with faster FEV1 decline (cluster 1), while 
51 genes had lower expression in individuals with faster FEV1 
decline (cluster 2).

We next wanted to determine the sensitivity of the results we 
obtained to using individuals with 4 or more years of longitu-
dinal spirometry. Therefore, we performed the same analysis 
using individuals with a shorter duration of follow-up spirometry 
to determine if the increase in the number of individuals in the 
analysis resulting from requiring less follow-up would outweigh 
the potentially less accurate estimates of the rate of FEV1 decline. 
No genes were significantly associated with FEV1 decline when 
we required a minimum of 2 years or 3 years of spirometry 
follow-up. We compared the t-statistics obtained with the 4-year 
estimate of FEV1 decline and the shorter estimates for the 171 

Table 1  Characteristics of the study participants

N=134

 �  Mean SD Range

Age (years) 64 ±6 49.33–77.17

Pack years (missing 8) 46 ±16 12–102

Baseline FEV1 (L) 2.48 ±0.78 0.95–4.52

Baseline FEV1 % predicted 82.16 ±20.08 31–123

 � ΔFEV1 (mL/year) −33.72 ±47.78 −170 to 170

Follow-up time (years) 6.38 ±2.48 4.08–12.64

 �  N Per cent

Sex—male 75 55.97

Inhaled medications—yes 20 14.93

COPD status—yes 49 36.57

Smoking status—current* 59 44.03

All participants were current or former smokers. All participants had at least two 
spirometry measurements at least 4 years apart. The mean, SD and range are 
reported for continuous measures.
*Five current smokers quit during the period of follow-up spirometry.

33Becker EJ, et al. Thorax 2022;77:31–39. doi:10.1136/thoraxjnl-2019-214476

B
ibl./C

1-Q
64. P

rotected by copyright.
 on M

arch 6, 2023 at Leids U
niversitair M

edisch C
entrum

 W
alaeus

http://thorax.bm
j.com

/
T

horax: first published as 10.1136/thoraxjnl-2019-214476 on 10 M
ay 2021. D

ow
nloaded from

 

https://dx.doi.org/10.1136/thoraxjnl-2019-214476
https://dx.doi.org/10.1136/thoraxjnl-2019-214476
https://dx.doi.org/10.1136/thoraxjnl-2019-214476
https://dx.doi.org/10.1136/thoraxjnl-2019-214476
https://dx.doi.org/10.1136/thoraxjnl-2019-214476
https://dx.doi.org/10.1136/thoraxjnl-2019-214476
https://dx.doi.org/10.1136/thoraxjnl-2019-214476
https://dx.doi.org/10.1136/thoraxjnl-2019-214476
https://dx.doi.org/10.1136/thoraxjnl-2019-214476
https://dx.doi.org/10.1136/thoraxjnl-2019-214476
http://thorax.bmj.com/


Chronic obstructive pulmonary disease

genes in the FEV1 decline signature. We did not detect a signif-
icant correlation of the t-statistics using the estimates of FEV1 
decline based on 4 years and 2 years of follow-up (p=0.369), 
but did identify a significant association between the t-statistics 
obtained using the 4-year and 3-year estimates of FEV1 decline 
(p=2.0×10−16; online supplemental figure 2).

We also explored the sensitivity of our results to subsetting 
the cohort based on potential confounders. Toward this end, 
we summarised the expression of the genes associated with 
FEV1 decline per sample as the first principal component from 
PCA and termed this value the FEV1 decline signature score. 
Not surprisingly, using all samples, there is a strong association 
between the FEV1 decline signature score and FEV1 decline 
across the entire cohort (p=1.73×10−9; figure  2A). We also 
observed significant associations between the FEV1 decline 
signature score and FEV1 decline in current smokers, smokers 
who remained current smokers during follow-up, former 
smokers, individuals with COPD, individuals without COPD 
and individuals not on inhaled medication (figure 2). We also 
found that the association between the FEV1 decline signa-
ture score and FEV1 decline in former smokers remained even 
after correcting for the years of smoking cessation. Similarly, 

the association of the FEV1 signature score and FEV1 decline 
remained after correcting for time interval between spirometry 
and bronchoscopy.

We next examined the overlap between the longitudinal FEV1 
decline signature and the Steiling et al bronchial airway 98-gene 
expression signature of COPD severity we had previously identi-
fied in a cross-sectional analysis.10 A total of 10 genes were shared 
by the two signatures. Nine genes that were increased in associ-
ation with worse FEV1 decline were also increased in COPD. 
One gene that was decreased with more rapid FEV1 decline was 
also decreased in COPD airway (online supplemental table 4). 
Next, GSEA was also used to evaluate for enrichment between 
these signatures. There was significant concordant enrichment 
of the 171 gene signatures associated with rate of FEV1 decline 
and COPD status ranked list (positive FDR q<0.0001, negative 
FDR q<0.0001).

Figure 1  Heatmap of 171 genes associated with change in FEV1. 
One hundred and seventy-one genes were associated with the change 
in the rate of FEV1 decline using a linear model controlling for age, 
sex, smoking status, pack years and baseline FEV1 (FDR <0.05). The 
participants (columns) are arranged from slowest FEV1 decline (white) 
to most rapid FEV1 decline (black). These genes were grouped into two 
clusters based on unsupervised hierarchical clustering. Cluster 1 consists 
entirely of genes expressed at higher levels in patients with more rapid 
FEV1 decline, and cluster 2 consists entirely of genes expressed at lower 
levels in patients with more rapid FEV1 decline. FDR, false discovery rate.

Figure 2  Sensitivity analysis of the FEV1 decline signature. The 
expression levels of the 171 genes associated with FEV1 decline 
were summarised into a single value using the eigenvector for the 
first principal component in the discovery dataset. This summarised 
expression is termed the FEV1 decline signature score. The scatter plot 
and best-fit line of each panel show the association between the FEV1 
decline signature score and the change in FEV1 in various subsets of 
the dataset. (A) All the individuals included in the training analysis, 
(B) only former smokers, (C) only current smokers, (D) only individuals 
not on inhaled medications, (E) only individuals without COPD, (F) only 
individuals with COPD.
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Replication of the airway gene expression signature of rate 
of FEV1 decline in the GLUCOLD trial
We next sought to determine whether the rate of FEV1 decline 
signature is significantly associated with rate of FEV1 change in 
an independent dataset using the signature score derived from 
PCA. Demographics of this replication cohort are listed in online 
supplemental table 5. In the discovery dataset, higher signa-
ture scores are associated with a more rapid decrease in FEV1 
(p=1.73×10−9; figure 3A). Signature scores generated in an inde-
pendent dataset of individuals with COPD who were enrolled in 
a placebo controlled study of inhaled fluticasone±salmeterol21 
showed that the scores are significantly associated with future 
FEV1 decline in the independent dataset (p=0.018; figure 3B). 
These findings suggest that the airway gene expression signature 
for the rate of decline in FEV1 is similarly associated with rate 
of FEV1 decline in an independent dataset of participants with 
COPD.

Enrichment of transcription factor binding sites in the FEV1 
rate of decline signature
To explore the potential regulators of the genes associated 
with the rate of FEV1 decline, we queried MSigDB to identify 
transcription factors whose predicted binding sites are over-
represented among the signature genes. Genes whose expres-
sion levels are increased in individuals with more rapid FEV1 
decline are enriched for genes with binding sites for XBP1 (FDR 
q=0.0302) among other transcription factors. A full list of all 
the MSigDB results can be found in online supplemental table 6.

We further investigated XBP1 due to its role in the UPR which 
has been implicated in COPD,25 and we are able to identify 
publicly available datasets profiling the gene expression effects 
of modulating XBP1 activity. Using GEO, we identified a dataset 
examining the effect of XBP1 overexpression in mouse adipo-
cytes (GSE46178)26 and a dataset examining the effect of XBP1 
knockout in mouse hepatocytes (GSE64824)27 that we used in 
further analysis.

We ranked the genes that change with XBP1 overexpression 
in mouse adipocytes (n=4 controls, n=4 XBP1 overexpression) 
and used GSEA to examine the distribution of genes in the FEV1 
decline signature in this ranked list. Genes whose expression 
is increased in individuals with more rapid decline in FEV1 are 

enriched among the genes that are induced by XBP1 overex-
pression (p<0.0001) (figure 4A). We next selected the subset of 
genes contributing the most to this significant enrichment, which 
are also known as the leading edge genes. We used these leading 
edge genes to plot a heatmap across the human bronchial airway 
gene expression data and the mouse adipocyte data. The leading 
edge genes that increased with more rapid FEV1 decline were 
also increased with XBP1 overexpression (figure 4A).

We also created a ranked list of genes based on expression 
changes in XBP1-knockout versus WT-control hepatocytes 
from 16-week-old mice (n=2 controls, n=2 XBP1 knockout).26 
Genes whose expression is increased in individuals with more 
rapid FEV1 decline are enriched among the genes that decreased 
in XBP1 knockout (p=0.025; figure 4B). There were 22 leading 
edge genes from the XBP1 overexpression analysis and 35 in the 
knockout analysis. Fifteen of these genes overlapped between 
the two sets. We also compared the leading edge genes to the 
signature genes that were in the XBP1 transcription binding site 
list (n=133). Of the four genes that overlap between the FEV1 

Figure 3  Airway gene expression signature associated with rate 
of FEV1 decline replicates in an independent dataset of patients with 
COPD. The principal component 1 eigenvector used to generate the FEV1 
decline signature score in the training data was also used to generate 
signature scores from baseline bronchial biopsies of patients with COPD 
who were followed for subsequent change in FEV1. The signature scores 
in the discovery dataset (A) and the independent dataset (B) are each 
significantly correlated with the rate of FEV1 decline (p=1.73×10−9 and 
p=0.018, respectively).

Figure 4  Genes increased in individuals with faster FEV1 decline 
are among the genes most induced by XBP1 overexpression and 
genes increased in individuals with faster FEV1 decline are among the 
genes most decreased by XBP1 knockout. (A) Genes that increase in 
individuals with more rapid FEV1 decline are significantly enriched 
among the genes that are most induced by XBP1 overexpression in 
murine adipocytes (GSEA p<0.0001). The vertical lines are the position 
of the genes with increased expression in individuals with more rapid 
FEV1 decline in a list of all genes ranked from most induced by XBP1 
overexpression to most repressed. The height of the vertical line 
represents the running enrichment score, and the lines highlighted in 
red represent the leading edge. (B) Genes that increase in individuals 
with more rapid FEV1 decline are significantly enriched among the 
genes that are most repressed in murine hepatocytes deleted for XBP1 
(GSEA p=0.025). We previously found the gene highlighted in green 
to have increased expression in bronchial epithelium from individuals 
with COPD.10 The gene highlighted in purple is involved in mucin type 
O-glycan biosynthesis. The genes in black are predicted targets of XBP1. 
GSEA, Gene Set Enrichment Analysis.
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decline signature and the XBP1 transcription factor binding 
site gene set, three of them were also in the leading edge of the 
analyses (GALE, SEC61A1 and ARMCX3). Together, these data 
suggest that XBP1-regulated genes are among the genes with 
increased expression in bronchial epithelial cells of individuals 
with more rapid FEV1 decline.

In addition to investigating the potential role of XBP1 in the 
FEV1 decline signature, we used a similar approach to evaluate 
the potential role of other significantly enriched transcription 
factors. We focused on ATF6, SP1 and FOS/JUN because they 
have been previously implicated in COPD, and we found data-
sets examining the gene expression effects of modulating these 
transcription factors (GSE124797, GSE87298, GSE37935, 
GSE31628, GSE97226, GSE7742). We examined the perturba-
tion of genes either increased or decreased with more rapid FEV1 
decline among the genes whose expression was most altered by 
transcription factor perturbation and found no significant asso-
ciation in the datasets we examined which modulated ATF6, 
SP1, c-FOS or JNK (data not shown).

Exploration of other biological pathways
Given the possibility that elevated XBP1 activity might be due 
to ER stress resulting from elevated protein secretion, we next 
sought to determine if the FEV1 decline signature might be asso-
ciated with genes involved in mucin production and secretion, 
given that airway mucus hypersecretion is a well-established 
feature of COPD.37 We evaluated two curated gene sets 
consisting of genes involved in mucin biosynthesis, including the 
KEGG 2019 mucin type O-glycan biosynthesis pathway35 and 
the Jensen Compartments mucin granule gene set.34 We iden-
tified significant enrichment of both gene sets among the genes 
expressed more highly in individuals with more rapid FEV1 
decline (KEGG 2019 FDR q<1×10−4; Jensen FDR q=0.008). 
The leading edge genes contributing most to the enrichment 
of these gene sets included several polypeptide N-acetylglucos-
aminyltransferase genes, several mucin genes and carcinoem-
bryonic antigen cell adhesion molecule 5 (online supplemental 
table 7). We also examined the potential associations between 
ER stress (using the expression of predicted targets of XBP1 as a 
surrogate of ER stress-driven XBP1 activity), mucus hypersecre-
tion and the signature of FEV1 decline. We found that the associ-
ation between the summarised expression of the mucin gene sets 
and the summarised expression of the predicted targets of XBP1 
is less pronounced (p=0.00234) than the associations between 
the summarised expression of the predicted targets of XBP1 
or the summarised expression of the mucin-related genes and 
the FEV1 decline signature (p=2.0×10−16 and p=4.82×10−12, 
respectively).

We also examined the potential association between markers 
of Th2 inflammation and FEV1 decline based on previous work 
describing an association of a Th2 signature in a subset of indi-
viduals with COPD and without a clinical history of asthma.32 
Using a three-gene Th2 score that had previously been devel-
oped in patients with asthma,33 we found a significant associ-
ation between Th2 inflammation and rate of change in FEV1 
when controlling for age, sex, smoking status, pack years and 
baseline FEV1 (p=0.045). We also found a significant correla-
tion between the FEV1 decline signature and the three-gene Th2 
score (r2=0.1187; p=2.71×10−5).

We were also interested whether the genes in the FEV1 decline 
signature included genes previously identified in GWAS of 
COPD. We found that a gene set composed of genes previously 
identified in COPD GWAS38 was significantly enriched among 

genes that are decreased in individuals with more rapid FEV1 
decline (GSEA p=0.035). Genes in the leading edge of this anal-
ysis included ARMC2, DLG2, THSD4, KLHL7, CCDC101, 
ANKH and CHRNA3.

DISCUSSION
We have identified gene expression differences at baseline in 
bronchial epithelium from current and former smokers that 
are associated with the subsequent rate of change in FEV1. We 
have replicated the airway gene expression signature of FEV1 
decline in an independent dataset of participants with COPD. 
There is significant enrichment of the FEV1 decline signature 
among genes ranked according to the presence or severity of 
COPD, suggesting that the FEV1 decline signature is related to 
the Steiling et al10 airway gene expression signature of COPD. 
Interestingly, we found that a subset of the airway gene expres-
sion changes associated with more rapid FEV1 decline may be in 
part explained by increased activity of the transcription factor 
XBP1 and mucus hypersecretion. There are also significant asso-
ciations between the FEV1 decline signature and a signature of 
Th2 inflammation.

The replication of the gene expression signature of FEV1 
decline in endobronchial biopsies from participants with COPD 
in the GLUCOLD trial is notable in two regards. First is the 
replication of the signature in a different sample type (bronchial 
biopsies vs brushes). Second, as GLUCOLD is comprised of only 
patients with COPD, replication in this cohort suggests that the 
signature can be relevant to COPD progression. Further studies 
should be conducted to determine whether the gene expression 
signature of FEV1 decline can be used to predict which individ-
uals are at risk of more rapid disease development or progression.

The transcription factor binding sites enriched in the rate of 
FEV1 decline signature support protein response39 is hypothe-
sised to play a role in the development of COPD.25 40–42 Bron-
chial airway expression of XBP1 targets is increased in advance 
of FEV1 decline in our data, even when controlled for smoking 
status.43 XBP1 has been previously shown to increase in human 
bronchial epithelial cells derived from patients with COPD 
compared with cells derived from smokers without COPD and 
non-smokers.44 Elevated XBP1 increases the expression of cyto-
kines (interleukin 8 (IL-8) and IL-1β) and Th1 chemokines.25 
These cytokines have been shown to be elevated in COPD.45

XBP1’s potential role to contribute to the gene expression 
changes associated with more rapid FEV1 decline is interesting 
given the role of XBP1 in the UPR to ER stress.25 41 42 46 The UPR 
is triggered by protein misfolding and/or ER overload, that may 
result from oxidative stress caused by cigarette smoking. The 
UPR is mediated by three families of signal transducers, including 
the IRE1/XBP1 pathway.47 XBP1 binds to ER stress elements 
and increases the transcription of chaperone proteins that assist 
in protein folding and reducing protein synthesis.39 Both ER 
stress and XBP1 expression levels are increased by cigarette 
smoking.40 41 Dysregulation of proteostasis and the UPR have 
previously been described in patients with smoking-associated 
COPD and have been implicated in COPD progression.48 While 
potential reducers of XBP1 such as IRE1α inhibitors49 and a 
synthetic analogue of TRPC150 have previously been investi-
gated in the setting of ER stress in cancer, this is the first study to 
our knowledge to identify XBP1 as a potential regulator of gene 
expression changes associated with the rate of FEV1 decline. We 
have found that gene expression consequences of XBP1 pertur-
bation in a cell line and a mouse model recapitulate components 
of the FEV1 decline signature, supporting a potential regulatory 
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role for XBP1 in the processes that contribute to the rate of 
FEV1 decline. However, further studies are needed to evaluate 
the effects of perturbing XBP1 in human airway epithelial cells, 
and the possible role of XBP1 in COPD pathogenesis and disease 
progression.

We also found the expression of several mucin-related genes 
(GALNT4, GALNT5, GALNT12, MUC2) to be increased in 
association with more rapid FEV1 decline.51 52 The observation 
of increased mucin-associated gene expression with more rapid 
FEV1 decline is further supported by the enrichment of two 
mucin-related gene sets34 35 among genes increased with more 
rapid FEV1 decline. Further studies are needed to determine 
if the apparent increase in XBP1 activity associated with more 
rapid FEV1 decline might be a consequence of increased mucin 
production. We also identified enrichment of COPD GWAS 
genes among genes whose airway expression decreases with 
more rapid FEV1 decline. These genes include CCDC101, also 
known as SGF29, which is a subunit of a histone acetyltransferase 
complex; THSD4, which has metalloendopeptidase activity; and 
CHRNA3, which is a member of the nicotinic acetylcholine 
receptor family of proteins.53–55 Together, these findings support 
the biological relevance of the FEV1 decline signature.

We have also identified a significant association between a 
Th2 score and the FEV1 decline signature in current and former 
smokers with and without COPD. Th2 cells mediate the inflam-
matory response that drives a subtype of asthma which is asso-
ciated with a more favourable response to corticosteroids.33 
While Th2 inflammation is traditionally associated with asthma, 
previous work has shown that a subset of patients with COPD 
and without a clinical history of asthma have increased expres-
sion of Th2-associated genes.32 This suggests that a similar 
process leads to airflow obstruction in asthma, and in a subgroup 
of patients with COPD without a clinical history of asthma. In 
this study, we show that expression of Th2-associated genes is 
also associated with more rapid decline in FEV1. This finding 
lends additional support to the hypothesis that a subgroup of 
patients with COPD have more ‘asthma-like’ molecular features 
which also place them at risk of faster decline in FEV1.

Though the data described here support a replicable gene 
expression signature of FEV1 decline, there are limitations to 
the cohort and samples from which it was derived. First, the 
signature was derived in an older population of individuals with 
and at risk of COPD and may not represent a wider spectrum 
of disease or normal airway biology. Furthermore, it is possible 
that FEV1 decline may be quicker in the earlier stages of COPD, 
and that our FEV1 decline signature reflects disease severity 
(despite our having controlled for FEV1 in the analysis), or 
that factors other than those represented by our gene expres-
sion signature might influence the rate of FEV1 decline at other 
points on the disease-severity spectrum. Second, the signature 
was derived from a cohort that was initially recruited as part of 
cancer-related studies. As a result, details about some COPD-
related traits are unavailable, and the frequency of spirometry 
was variable. We found that a minimum of 4 years of follow-up 
spirometry was required to detect gene expression differences 
associated with the rate of FEV1 decline, presumably because 
of variability in the measurement of FEV1, and this may have 
limited our study power, especially in subgroup analyses. For 
example, we were unable to evaluate the effect of smoking cessa-
tion on the signature due to the low number of individuals who 
quit smoking during follow-up, or gene expression differences 
associated with the rate of change of other lung function metrics. 
Similarly, we were unable to evaluate the association of bron-
chodilator responsiveness, symptoms or exacerbations as these 

data were not available for the cohort. Race is known to impact 
FEV1 decline,56 but we were unable to evaluate the effect of race 
on FEV1 decline as the majority of samples were obtained from 
individuals who were white which may limit the generalisability 
of the signature. Additionally, while bronchoscopy brushings are 
composed of predominantly epithelial cells,21 57 we do not know 
the exact cell types that lead to the observed gene expression 
patterns, and variations in the cellular composition of the bron-
chial airway epithelium might contribute to the FEV1 decline 
signature. Finally, the signature was also derived using data from 
microarrays generated as part of a previous study. Gene expres-
sion profiling by RNA-seq could potentially improve signal-to-
noise characteristics and allow for the identification of novel 
transcripts.

While we have derived a signature of FEV1 decline from 
smokers with and at risk of COPD and validated these findings 
in an independent cohort of individuals with COPD, our analysis 
indicates that there are individuals who have a pattern of gene 
expression that is not entirely consistent with their observed rate 
of FEV1 decline. Beyond the potential issues of confounders and 
other limitations of our study described above, it is also likely 
that the biological process or processes that contribute to the 
observed gene expression signature may not be perfect predic-
tors of FEV1 decline. FEV1 has been found to associate with the 
rate of FEV1 decline.58 Because we have previously described a 
significant number of genes associated with baseline FEV1,

21 our 
analysis included baseline FEV1 as a covariate. However, low 
baseline FEV1 may reflect low peak FEV1 in early adulthood, 
or accelerated FEV1 decline up to the time of baseline FEV1 
measurement and controlling for baseline FEV1 may obscure the 
impact of FEV1 on the rate of FEV1 decline. The FEV1 decline 
signature was derived using samples from smokers with and at 
risk of COPD, and was validated in a population of subjects 
with COPD. While this suggests a specific utility of the signature 
for assessing progression of COPD, we were unable to assess 
whether the signature reflects FEV1 decline in other clinical 
contexts.

In exploring the implications of the gene expression alterations 
associated with FEV1 decline, we largely focused our analysis 
on targets of known transcription factors given the potential to 
generate straightforward hypotheses about the molecular regu-
lation of the observed gene expression changes. However, there 
is the potential to gain additional insights from future studies 
focused on other molecular enrichments. The XBP1 knockout 
and overexpression datasets where we observed significant 
enrichment of the FEV1 decline signature genes are derived 
from adipose cells and hepatocytes. Transcription factors have 
been shown to have effects that are similar in non-lung cells59 
and these changes have been used to identify new targets.60 
Other studies have suggested that there are cell-specific effects.61 
The changes from knockout or overexpression in these datasets 
may not apply fully in lung cells.

Despite these limitations, we have identified and replicated 
gene expression differences associated with the rate of subse-
quently observed FEV1 decline using baseline gene expression 
profiling of bronchoscopy brushings. Further studies using 
larger sample sizes are needed to determine whether airway 
gene expression profiling can prospectively identify individuals 
who will experience more rapid FEV1 decline and whether this 
would also apply in more severe COPD, which may present 
with more parenchymal emphysema than primary airway 
disease. A previous study from Boudewijn et al identified a 
nasal gene expression signature associated with severe COPD 
versus controls that was also similar to the previously identified 
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bronchial airway gene expression signature of COPD from 
Steiling et al.10 62 It may therefore be possible to identify a nasal 
gene expression signature of FEV1 decline, which would be less 
invasive than a bronchial signature. Such markers could be used 
to stratify patients with and at risk of COPD, and to potentially 
evaluate the response to therapies aimed at diminishing the rate 
of FEV1 decline.
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