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Background
Genetic testing for cancer susceptibility is now part of 
mainstream clinical practice. For breast cancer suscep-
tibility, genetic testing generally focuses on high-risk 
genes, notably BRCA1, BRCA2, PALB2, and TP53, but 
testing of larger panels that include so-called “moderate-
risk” genes is being increasingly offered [1]. While the 
evidence that many of these genes are risk associated is 
clear, for most this evidence is based on carrying a pro-
tein truncating variant (PTV). Besides PTVs, genetic 
testing also identifies missense variants for which the 
impact on protein function and associated cancer risk is 
generally unknown (“variants of uncertain significance” 
(VUS)), resulting in a major problem for genetic counsel-
ling. Some missense variants have been shown to confer 
risk [2, 3] with risk estimates comparable to PTVs, and it 
is possible that missense variants contribute substantially 
to risk [4, 5], at least in some genes. However, defining 
the set of missense variants in each gene that may con-
fer risk, and their associated risk estimates, presents an 
ongoing problem.

Resolving this problem is complex as most variants are 
individually very rare, so the evidence must be based on 
combining data across multiple variants in a statistical 
model. To this end, efforts have been made to develop 
statistical algorithms that score missense variants accord-
ing to in silico features that may predict pathogenicity. 

Here, we have compared the usefulness of five in silico 
algorithms in predicting breast cancer risk associated 
with missense variants using sequenced germline DNA 
from more than 59,000 cases and 53,000 controls from 
studies in the Breast Cancer Association Consortium 
(BCAC) [6] participating in the BRIDGES project [7]. We 
used the most predictive in silico algorithm to estimate 
the risks of breast cancer associated with subsets of rare 
missense variants, defined by categories of the in silico 
score, in ATM, BRCA1, BRCA2, CHEK2, and PALB2. 
These predictions were then validated using an inde-
pendent dataset.

Methods
Subjects
We included data from female breast cancer patients 
(cases) and unaffected controls from 44 studies par-
ticipating in the BRIDGES project, as previously 
documented [7]. These studies are a subset of studies par-
ticipating in the Breast Cancer Association Consortium 
(BCAC) for which targeted sequencing was performed 
using the BRIDGES panel (see below). Details of the par-
ticipating studies, including the enrollment of cases and 
controls and sample sizes, are given in Additional File 
1: Tables S1 and S2. Of these, 30 were population-based 
or hospital-based studies (hereafter: population studies) 
including cases and controls sampled independently of 
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family history. A further 14 studies oversampled cases 
with a family history of breast cancer (hereafter: familial 
studies). All studies were approved by the relevant ethical 
review boards and used appropriate consent procedures. 
Five duplicated samples were identified and removed. 
After quality control procedures (see below), 53,165 con-
trols and 59,639 cases with an invasive (53,838; 90.3%) or 
in  situ (4,153; 7.0%) tumor, or tumor of unknown inva-
siveness (1648; 2.7%), were included in the analyses. Of 
these, 50,414 controls and 48,230 cases were from popu-
lation studies.

Laboratory methods, variant calling, and classification
The BRIDGES project performed targeted sequencing 
on a panel of 34 genes [7]. Of these five (ATM, BRCA1, 
BRCA2, CHEK2, PALB2) were chosen for further analy-
sis and presented here. These five genes, where the evi-
dence for association with breast cancer risk is strongest, 
are most relevant to risk prediction and included in the 
current version of the BOADICEA/CanRisk risk pre-
diction tool [8]. Details of library preparation, sequenc-
ing, variant calling, quality control procedures, and 
variant classification has been documented previously 
[7]. Missense variants in the entire gene were identified 
using the Ensembl Variant Effect Predictor (VEP; ver-
sion 101.0) [9]. Rare variants for in silico analysis were 
defined as those with allele frequency < 0.1% (calculated 
as previously described [7]); in addition, variants with 
frequency < 5% were retained for a frequency-based 
analysis. Carriers of missense variants predicted to affect 
RNA splicing, according to the MaxEntScan tool [10] 
and SpliceAI scores [11], were removed (see Additional 
File 2: Table S3). Variants were annotated for functional 
protein domain location, defined according to pub-
lished literature, the UniProt Knowledgebase [12], and 
for BRCA1 and BRCA2, the ENIGMA BRCA1/2 expert 
panel guidelines [13] (see Additional File 1: Table  S4). 
Variants were also classified for disease pathogenicity 
assertion in ClinVar [14] with a filter for no conflicting 
interpretations; for BRCA1 and BRCA2, variants were 
also reviewed against the ENIGMA BRCA1/2 expert 
panel guidelines. The ENIGMA terminology report [15] 
reserves use of the word “pathogenic” to describe vari-
ants associated with at least a twofold cancer risk; how-
ever, for the purpose of this article, we describe any 
variant associated with risk as pathogenic.

Variants were scored using five in silico prediction 
algorithms: Align-GVGD [16], Combined Annota-
tion Dependent Depletion (CADD; version 1.4) [17], 
Rare Exome Variant Ensemble Learner (REVEL) [18], 
BayesDel (without allele frequency; version 1) [19], and 
Helix (version 4.2.0) [20]. The first four are widely used 
for variant classification in cancer susceptibility genes. 

Align-GVGD classifies variants according to the level of 
cross-species conservation observed for a single missense 
substitution while considering the biophysical character-
istics of the amino acids. CADD, BayesDel, and REVEL 
are ensemble methods that integrate several different 
annotations, including conservation metrics, regulatory 
information, transcript information, and protein-level 
scores, into a single score of deleteriousness. Helix com-
bines structural, alignment, and gene data with a strict 
training regime where circularity is actively avoided to 
produce a variant score and certainty estimate. All vari-
ants were scored using default software settings. For 
Align-GVGD, the sequence alignment with the deepest 
phylogeny level was used. Variants in BRCA1 and BRCA2 
were also annotated with the predictions of Hart et  al. 
[21], who developed two BRCA-specific in silico algo-
rithms (Random Forest (RF) and Naïve Voting Method 
(NVM)) to classify missense variants as functionally 
damaging or neutral. In addition, BRCA1 variants were 
annotated using the prediction of loss-of-function made 
by the Saturation Genome Editing (SGE) experiments 
of Findlay et  al. [22], which involved a comprehensive 
functional assessment of missense variants lying within 
the functional domain coding regions of BRCA1. BRCA2 
variants were annotated using homology-directed DNA 
repair (HDR) assay scores and predictions of pathogenic-
ity from Richardson et al. [23]. For PALB2, variants were 
annotated with five different assay scores measuring 
HDR activity, PARPi sensitivity, and homologous recom-
bination (HR) efficiency from the functional screening 
studies of Boonen et  al. [24], Rodrigue et  al. [25] and 
Wiltshire et al. [26].

Statistical analysis
The dataset was split into a training (80% of individuals) 
and a validation (20%) set. Samples for the validation set 
were selected randomly from population studies of cases 
unselected for family history of breast cancer and con-
trols, in countries contributing a total of > 5000 samples 
(Denmark, Germany, Singapore (Chinese), Sweden, UK, 
USA). All remaining samples were included in the train-
ing set. The training set included 37,211 cases from pop-
ulation studies, 11,409 cases from familial studies, and 
42,334 controls. Of these, 3818 individuals were carriers 
of PTVs in one or more of the five genes under consid-
eration and were excluded from all analyses except the 
mixture models (see below). The validation set included 
11,019 cases and 10,831 controls from population stud-
ies and did not include any carriers of PTVs. Oversam-
pling of cases with a family history increases power but 
leads to biased effect sizes, so we chose this approach 
to maximize the power to discriminate between models 
in the training set, which could then be refit and tested 
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on a dataset unselected for family history. All analyses 
were adjusted for country as a covariate; in addition, for 
Malaysia and Singapore, the three distinct ethnic groups 
(Chinese, Indian, Malay) were treated as different strata, 
and the UK was treated as three strata (SEARCH from 
East Anglia, GENSCOT from Scotland, and PROCAS 
and FHRISK from north-west England).

Training dataset analysis
An analysis flow diagram is presented in Fig. S1 (see 
Additional File 1). Analyses were performed in R ver-
sion 4.0.3 (R: A Language and Environment for Statis-
tical Computing; http:// www.r- proje ct. org). We first 
used logistic regression (LR) to explore which of the five 
in silico scores (Align-GVGD, BayesDel, CADD, Helix, 
and REVEL—all analyzed as continuous variables) were 
most strongly associated with risk of breast cancer. In 
addition, to assess the utility of gene-specific in silico 
tools, we analyzed the Hart et  al. RF and NVM in sil-
ico predictions for BRCA1 and BRCA2. To evaluate the 
usefulness of functional predictions, we also analyzed 
the BRCA1 SGE score; the Richardson et  al. BRCA2 
HDR score; and, for PALB2, five functional assay 
scores. These analyses were restricted to carriers of a 
rare (frequency < 0.1%) missense variant in the train-
ing set, with an endpoint of breast cancer occurrence 
(yes/no). The strongest predictors were used to test the 
association of different categories of the score(s) com-
pared to a baseline category, in conjunction with func-
tional protein domains, and hence create a set of risk 
categories. LR was then used in the training set (carri-
ers and non-carriers) to estimate the odds ratios (OR) 
associated with different risk categories. As an alter-
native approach, we fitted mixture models in which 
only a proportion of variants (α) was assumed to be 
risk associated in the given gene; the OR was assumed 
to be the same for all risk associated variants, but the 
proportion of risk associated variants varied by risk 
category (as defined in the LR models). This model is 
motivated by the binary variant classification approach 
used in clinical genetics, where all variants are assumed 
to be either associated with moderate-high risk (likely 
pathogenic) or not (likely benign) [27]. We consid-
ered two types of mixture model: a constrained model 
in which the missense OR was equal to that of PTVs, 
and an unconstrained model in which the missense OR 
could differ from the PTV OR. Carriers of PTVs in the 
gene under consideration were re-included in the mix-
ture models (to allow the risk associated missense OR 
to be constrained to the PTV OR). The mixture models 
were fitted using an expectation–maximization (EM) 
algorithm [28]. In the expectation step, the (posterior) 

probability that each variant was risk associated, given 
the case control data on that variant in the training 
set and the current parameter values was calculated. 
These probabilities were then used as weights in a logis-
tic regression analysis in the maximization step. In a 
case–control dataset, the naïve proportions, α, will be 
biased because risk associated variants are more likely 
to be found in cases. For the final models, therefore, we 
also computed the proportions based only on variants 
reported in controls. To evaluate the overall fit of the 
models, we compared log-likelihoods.

The initial model selection was based on all samples, 
but final parameter estimates were obtained from popu-
lation studies only. In the results, the ORs, P-values, and 
α presented are from population studies, unless indicated 
by the suffix “ALL”.

Case-only analyses of age at diagnosis, with risk cat-
egory as the outcome variable, were performed to evalu-
ate trends in the ORs for variant risk category by age. We 
evaluated individual risk variants previously reported 
in literature and, in aggregate, those classified as “patho-
genic” or “likely pathogenic” (hereafter, all termed: (likely) 
pathogenic) according to clinical guidelines. To examine 
whether rare variant frequency is associated with risk, we 
used a carrier-only LR analysis to test frequency up to 0.5% 
on a continuous scale and a log scale, and to compare rare 
variants in two groups: frequency < 0.1% versus frequency 
0.1–0.5%. We also performed burden analyses within each 
gene comparing the risk for non-carriers to the risk for 
carriers of variants in one of four frequency groups: < 0.1%; 
0.1–0.5%; 0.5–1%; and 1–5%. Variants with frequency 
between 0.1 and 5% were also evaluated individually.

Validation dataset analysis
To evaluate the calibration of the in silico training 
models, we performed case–control analyses using 
the validation dataset. In these analyses, OR estimates 
were fixed according to the population estimates from 
the training models (Table  1), but the other param-
eters (intercept and country covariates) were re-
estimated, since the case–control proportions might 
differ between the training and validation datasets. 
From the validation model, we extracted the predicted 
probability that each individual was a case and hence 
derived expected numbers of cases and controls in each 
risk group. These were used to plot observed versus 
expected OR estimates and perform a goodness of fit 
chi-squared test.

The mixture models were assessed similarly, with the 
exception that both the OR parameter and the propor-
tion of risk associated variants, α, were fixed. However, 
an adjustment to α was incorporated to allow for the 
different distribution of cases and controls within the 

http://www.r-project.org
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Table 1 Breast cancer risk association results from logistic regression and mixture models of population training samples

a  Number of unique missense substitutions in population dataset
b  Logistic regression odds ratio estimate for missense variant carriers
c  95% confidence interval for logistic regression OR estimate for missense variant carriers
d  Mixture model odds ratio and 95% confidence interval for missense variant carriers
e  Alpha: estimated proportion of risk associated missense variants
f  95% confidence interval for alpha
g  CADD quintiles 1–4 includes all CADD score values ≤ 3.736542; CADD quintile 5 includes all CADD score values > 3.736542
h  Missense variant odds ratio constrained to equal odds ratio for protein truncating variants
i  Missense variant odds ratio unconstrained

N Logistic regression model Mixture model

Risk group Variantsa Cases Controls ORb 95%  CIc P-value Missense OR (95% 
CI)d

αe 95%  CIf

ATM Log‑likelihood =  − 48,624.97 Log‑likelihood =  − 48,624.64

Non‑carriers – 33,351 37,001 1 – – 0 –

Carriers 2.16 (1.78–2.63)h

Variant outside FAT 
and PIK domains

714 1259 1443 0.98 (0.91–1.06) 0.67 0.0041 (0.001–0.02)

Variant inside FAT 
or PIK domain and 
CADD score quin‑
tiles 1–4 g

171 317 333 1.10 (0.94–1.29) 0.24 0.055 (0.03–0.12)

Variant inside FAT 
or PIK domain and 
CADD score quintile 
 5 g

103 239 162 1.64 (1.33–2.02) 3.1 ×  10−6 0.54 (0.41–0.68)

BRCA1 Log‑likelihood =  − 48,652.14 Log‑likelihood =  − 48,652.29

Non‑carriers – 34,191 37,996 1 – – 0 –

Carriers 10.61 (7.92–14.21)h

Variant outside RING 
and BRCT domains

479 811 856 1.01 (0.92–1.12) 0.79 0.0015 (9.4 ×  10−5–0.025)

Variant inside RING 
or BRCT domain and 
low Helix score

79 120 103 1.18 (0.90–1.55) 0.23 1.0 ×  10−11 NA

Variant inside RING 
or BRCT domain and 
high Helix score

23 63 16 4.94 (2.83–8.61) 1.9 ×  10−8 0.48 (0.19–0.78)

BRCA2 Log‑likelihood =  − 48,641.97 Log‑likelihood =  − 48,638.78

Non‑carriers – 33,006 36,517 1 – – 0 –

Carriers 5.87 (4.75–7.24)h

Variant with low 
Helix score

1160 2062 2323 0.98 (0.92–1.04) 0.47 5.1 ×  10−5 (2.4 ×  10−9–0.52)

Variant with high 
Helix score

62 114 94 1.28 (0.96–1.70) 0.087 0.11 (0.04–0.25)

CHEK2 Log‑likelihood =  − 48,728.96 Log‑likelihood =  − 48,728.70

Non‑carriers – 34,582 38,480 1 – – 0 –

Carriers 1.75 (1.47–2.08)i

Variant with low 
Helix score

157 403 363 1.26 (1.08–1.46) 0.0025 0.33 (0.25–0.43)

Variant with high 
Helix score

121 265 177 1.73 (1.42–2.11) 4.7 ×  10−8 0.95 (0.86–0.98)

PALB2 Log‑likelihood =  − 48,728.67 Log‑likelihood =  − 48,729.17

Non‑carriers – 34,622 38,291 1 – – 0 –

Carriers 424 618 713 0.95 (0.85–1.06) 0.34 4.87 (3.50–6.77)h 1.1 ×  10−4 (1.6 ×  10−9–0.88)
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validation set compared to the training set. To do this, 
the proportions of cases and controls that were car-
rying a risk associated variant in the training set were 
estimated separately and α in the validation set was 
then computed as a weighted average of these two esti-
mates. As an alternative approach, the predicted ORs 
in the validation set were computed using the posterior 
probabilities (PP) of each variant being risk associated 
(from the training set) as weights. This analysis was 
restricted to the subset of individuals carrying variants 
found in the training set or carrying no variant.

As a final analysis, a single unconstrained logistic 
regression model comprising all the defined risk groups 
across the five genes, with non-carriers of any missense 
variant as the baseline group, was fitted, and the risks 
in the validation set were evaluated.

The estimated familial relative risk �j due to deleteri-
ous missenses in each gene j was estimated using the 
formula �j =

(pjr
2
j +qj(pjrj+qj)

2

(2pjrj+1−2pj)
2  , where pj is the estimated 

total frequency of deleterious missense variants, 
qj = 1 = pj and rj is the estimated relative risk con-
ferred by deleterious variants. The total contribution of 
deleterious missense variants was estimated by assum-
ing that the contribution of variants in the different 
genes is additive, i.e., �mis = 1+

∑
(�j − 1) . The pro-

portion of the overall familial relative risk due to mis-
sense variants was then calculated as log(�mis)/log(2) , 
that is assuming an overall familial relative risk of 2 and 
that variant combine multiplicatively with other 
genetic/familial factors, consistent with previous 
observations.

Results
ATM
The analysis of ATM missense variants included 
4522 carriers of 1146 unique variants. In the car-
rier only analysis, BayesDel (pALL = 0.024), CADD 
(pALL = 0.0022), Helix (pALL = 0.0045), and REVEL 

(pALL = 0.024) scores were all predictive of risk (see 
Additional File 2: Table  S5). For the most strongly 
associated score, CADD, the risk appeared to be 
restricted to the fifth quintile (Q5; CADD > 3.736542; 
p = 0.033 compared with third quintile). Functional 
protein domain was also predictive, with increased 
risks associated with the FRAP-ATM-TRRAP (FAT; 
pALL = 9.5 ×  10−4) and phosphatidylinositol 3-kinase 
and 4-kinase (PIK; pALL = 0.0016) domains compared 
with variants outside a known domain. Including 
CADD and protein domain, only variants in the cat-
egory that included CADD Q5 variants in the FAT or 
PIK domains (FAT/PIK + CADD5) were associated 
with risk relative to non-carriers (OR 1.64 (1.33–2.02), 
p = 3.1 ×  10−6; Table 1, Figs. 1a and 2a). In the most par-
simonious mixture model, risk associated variants con-
ferred an equivalent risk to PTVs (OR 2.16 (1.78–2.63)); 
an estimated 54% (95% CI (41–68%)) of variants in the 
FAT/PIK + CADD5 risk group were risk associated, 
compared to less than 6% of variants in other risk cat-
egories (Table 1, Figs. 1a and 2a). There was no evidence 
that missense variants were associated with a different 
risk compared with PTVs (p = 0.48). The mixture model 
was a slightly better fit to the data than the LR model 
(2 × log-likelihood difference = 0.67). There was no 
association between age-at-diagnosis and risk category 
(see Additional File 1: Table S6).

Thirteen ATM missense variants were classified as 
(likely) pathogenic on the ClinVar database (see Addi-
tional File 1: Table S7). These variants, in aggregate, were 
associated with an increased risk (OR 1.85 (0.98–3.50, 
p = 0.060; pALL = 0.00053)). However, the association 
of (likely) pathogenic variants was not present when 
the analysis was restricted to the five variants not in the 
FAT or PIK domains (OR = 0.97 (0.19–5.08)), though the 
carrier numbers were small and the confidence interval 
wide. Conversely, variants in the FAT/PIK + CADD5 risk 
group, in aggregate, remained risk associated, even when 

Fig. 1 Odds ratios and alpha estimates for each of five genes in population training samples. A ATM. Odds ratios for breast cancer risk from logistic 
regression models. Alpha is the estimated proportion of risk associated variants from mixture models, based on variants in control samples. ATM 
risk categories: variants lying within the FAT or PI3K/PI4K protein domains with CADD score in the fifth quintile (FAT/PIK + CADD5); variants lying 
within the FAT or PI3K/PI4K protein domains with CADD score in any of the first four quintiles (FAT/PIK + CADD1‑4); variants lying outside the FAT 
and PI3K/PI4K protein domains (Outside FAT/PIK). B BRCA1. Odds ratios for breast cancer risk from logistic regression models. Alpha is the estimated 
proportion of risk associated variants from mixture models, based on variants in control samples. BRCA1 risk categories: variants lying within the 
RING or BRCT domains with a high Helix score (RING/BRCT + Helix‑high); variants lying with the RING or BRCT domains with a low Helix score (RING/
BRCT + Helix‑low); variants lying outside the RING and BRCT domains (Outside RING/BRCT). C BRCA2. Odds ratios for breast cancer risk from logistic 
regression models. Alpha is the estimated proportion of risk associated variants from mixture models, based on variants in control samples. BRCA2 
risk categories: variants with a high Helix score (Helix‑high); variants with a low Helix score (Helix‑low). D CHEK2. Odds ratios for breast cancer risk 
from logistic regression models. Alpha is the estimated proportion of risk associated variants from mixture models, based on variants in control 
samples. CHEK2 risk categories: variants with a high Helix score (Helix‑high); variants with a low Helix score (Helix‑low). E PALB2. Odds ratios for breast 
cancer risk from logistic regression models. Alpha is the estimated proportion of risk associated variants from mixture models, based on variants in 
control samples. PALB2 risk categories: carriers of any missense variant (Carriers)

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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Fig. 2 Case and control carriers across all samples for each observed missense variant by gene. A ATM. ATM risk categories: variants lying within the 
FAT or PI3K/PI4K protein domains with CADD score in fifth quintile (FAT/PIK + CADD5); variants lying within the FAT or PI3K/PI4K protein domains 
with CADD score in any of first four quintiles (FAT/PIK + CADD1‑4); variants lying outside the FAT and PI3K/PI4K protein domains (Outside FAT/PIK). 
B BRCA1. BRCA1 risk categories: variants lying within the RING or BRCT domains with a high Helix score (RING/BRCT + Helix‑high); variants lying 
with the RING or BRCT domains with a low Helix score (RING/BRCT + Helix‑low); variants lying outside the RING and BRCT domains (Outside RING/
BRCT). C BRCA2. BRCA2 risk categories: variants with a high Helix score (Helix‑high); variants with a low Helix score (Helix‑low). D CHEK2. CHEK2 risk 
categories: variants with a high Helix score (Helix‑high); variants with a low Helix score (Helix‑low). E PALB2. PALB2 risk categories: carriers of any 
missense variant (Carriers)
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variants defined as (likely) pathogenic were excluded (OR 
1.60 (1.29–1.99)). Two of the variants classified as (likely) 
pathogenic were observed in controls only (Additional 
File 1: Table S7). One of these (c.8546G > C) is located in 
the PIK domain, the other (c.3848 T > C) is not within any 
domain; however, both have a Q5 CADD score.

The pathogenic variants listed on ClinVar include 
c.7271 T > G (p.Val2424Gly), previously reported as asso-
ciated with high risk of breast cancer [29, 30]. In the 
training dataset, c.7271 T > G was identified in 12 cases (6 
population-based) and 6 controls and was not associated 
with risk (p = 0.37, pALL = 0.081); its population-based 
OR estimate of 1.63 (0.56–4.73) was lower than previous 
estimates (for example [31]). Another variant previously 
reported as risk associated, c.6919C > T (p.Leu2307Phe) 
[32], was associated with an increased population risk 
(OR = 3.71 (1.87–7.38), p = 0.00018). Both variants are 
located in the FAT domain and have a CADD score in 
Q5, but after excluding them from the model, there 
remained a significantly increased risk for carriers in 
the FAT/PIK + CADD5 risk group (OR 1.48 (1.18–1.85), 
p = 0.00064).

BRCA1
The analysis of BRCA1 missense variants included 
2288 carriers of 644 unique variants. For missense vari-
ant carriers, all five continuous in silico scores were 
associated with risk (Align-GVGD pALL = 1.3 ×  10−8, 
BayesDel pALL = 0.0013, CADD pALL = 0.011, Helix 
pALL = 2.1 ×  10−9, REVEL pALL = 1.5 ×  10−5). Variants in 
two protein domains were also significantly associated 
with risk compared with variants outside these domains 
(RING finger domain pALL = 3.5 ×  10−4; BRCA1 C-ter-
minal domains (BRCT I-II) pALL = 0.0030; see Additional 
File 2: Table S5). The Helix tool categorizes variants with 
a high score (> 0.5) as “deleterious” and variants with a 
low score (< 0.5) as “benign”; hereafter, we refer to these 
categories as Helix-high and Helix-low, respectively. 
Including Helix category and protein domain, we found 
that only variants that were inside the RING or BRCT 
I-II domains and also in the Helix-high category (RING/
BRCT + Helix-high) were associated with risk (OR com-
pared with non-carriers 4.94 (2.83–8.61), p = 1.9 ×  10−8; 
pALL = 2.5 ×  10−9; Table 1, Figs. 1b and 2b). In a mixture 
model in which the OR for risk associated missense vari-
ants was constrained to that for PTVs (OR 10.61 (7.92–
14.21)), the estimated proportions of risk associated 
variants in the RING/BRCT + Helix-high risk category 
was 48% (19–78%) and close to 0% for all other variants 
(Table  1, Figs.  1b and 2b). There was no evidence that 
the risk associated missense OR differed from the PTV 
OR (p = 0.98). The LR and mixture models were similarly 
good fits to the data (2 × log-likelihood difference = 0.30).

In a case-only analysis, the OR associated with variants 
in the RING/BRCT + Helix-high risk category reduced 
as age increased (per year OR 0.98 (0.96–1.00), p = 0.036; 
see Additional File 1: Table S6).

According to the ENIGMA guidelines and/or ClinVar 
classifications [13, 14], 13 of the BRCA1 missense vari-
ants in the dataset (four in the RING domain and nine 
in the BRCT domains) would be classified as (likely) 
pathogenic (see Additional File 1: Table S7). In total, the 
13 variants were carried by 60 cases and 6 controls and 
were strongly associated with risk in the subset of popu-
lation samples (OR 16.68 (5.16–53.94), p = 2.6 ×  10−6). 
In our dataset, the most frequent of these variants was 
c.181 T > G (p.Cys61Gly), carried by 29 cases and 2 con-
trols (OR 15.06 (3.58–63.36)). After excluding all (likely) 
pathogenic variants, there also remained an increased 
risk associated with variants in the RING/BRCT + Helix-
high category (OR 2.39 (1.19–4.78), p = 0.014)).

RF and NVM predictions from the analysis of Hart 
et al. were available for 577 unique BRCA1 missense vari-
ants. Variants predicted to be damaging by the RF model 
(OR 1.82 (1.33–2.49), p = 1.9 ×  10−4) or the NVM model 
(OR 2.14 (1.52–3.01), p = 1.2 ×  10−5) were associated 
with increased risk of breast cancer but not as strongly 
as for variants in the Helix-high category (OR 2.76 (1.93–
3.95), p = 2.6 ×  10−8; see Additional File 2: Table S5).

BRCA1 Saturation Genome Editing (SGE) score [22] 
was available for 100 unique variants and was strongly 
associated with risk (pALL = 1.5 ×  10−4; see Additional 
File 2: Table S5). Carriers of variants with an SGE loss of 
function  (LOFSGE) consequence had a higher risk than 
carriers of variants with a functional  (FUNCSGE) conse-
quence  (ORALL 10.79 (3.31–35.16)). Carriers of variants 
with an intermediate function  (INTSGE) consequence also 
had, on average, a higher risk than carriers of  FUNCSGE 
variants  (ORALL 3.17 (0.32–31.15)) though the number of 
 INTSGE carriers was small (total n = 6). Since the BRCA1 
SGE experiment specifically targeted the domain-cod-
ing regions of the gene, only four variants outside of the 
domains were scored. Thus, all BRCA1 missense variants 
were assigned to one of four potential risk levels, with 
SGE score prioritized where available:  INTSGE/LOFSGE; 
RING/BRCT + Helix-high (SGE score missing); RING/
BRCT + Helix-low (SGE score missing); or  FUNCSGE or 
carriers of variants outside of the domains. Compared 
with non-carriers, there was increased risk for carriers of 
variants in the  INTSGE/LOFSGE category (OR 7.22 (2.48–
21.01), p = 2.9 ×  10−4) and in the RING/BRCT + Helix-
high category (OR 5.35 (2.48–11.57), p = 2.0 ×  10−5; see 
Additional File 1: Table S8). In a mixture model in which 
the OR for risk associated missense variants was con-
strained to that for PTVs (OR 10.69 (7.97–14.33)), the 
estimated proportions of risk associated variants in the 
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 INTSGE /LOFSGE and the RING/BRCT + Helix-high risk 
categories were 75% (24–97%) and 51% (6–94%), respec-
tively (Additional File 1: Table  S8). The SGE LR model 
and SGE mixture model were similarly good fits to the 
data (2 × log-likelihood difference = 0.12) and both were 
better fits to the data compared to the Helix-only models 
(LR models 2 × log-likelihood difference = 3.40, mixture 
models 2 × log-likelihood difference = 3.58).

BRCA2
The analysis of BRCA2 missense variants included 
5467 carriers of 1425 unique variants. Align-GVGD 
(pALL = 0.0072), BayesDel (pALL = 0.059), CADD 
(pALL = 0.036), and Helix (pALL = 0.0016) scores were 
associated with risk for carriers of BRCA2 missense vari-
ants (see Additional File 2: Table S5). Risks did not differ 
by protein domain (pALL = 0.91). Compared with non-
carriers, carriers of Helix-high variants had a modestly 
increased risk of breast cancer (OR 1.28 (0.96–1.70), 
p = 0.087; pALL = 0.020) whereas carriers of a Helix-
low variant had no increased risk (OR 0.98 (0.92–1.04), 
p = 0.47; pALL = 0.40; Table  1, Figs.  1c and 2c). Under a 
mixture model in which risk associated missense vari-
ants conferred the same risk as PTVs (OR 5.87 (4.75–
7.24)), an estimated 11% (4–25%) of the Helix-high 
variants were associated with risk, compared with < 0.1% 
of Helix-low variants (Table 1, Figs. 1c and 2c). A model 
that allowed the OR for missense variants to differ from 
that of PTVs did not converge. The constrained mixture 
model was a better fit to the data than the logistic regres-
sion model (2 × log-likelihood difference = 6.38). There 
was no association between age-at-diagnosis and risk cat-
egory (see Additional File 1: Table S6).

Twelve BRCA2 variants would be classified as (likely) 
pathogenic according to ENIGMA guidelines or ClinVar 
(see Additional File 1: Table  S7). In aggregate, the rela-
tive risk estimate for these variants was similar to that for 
PTVs (OR 8.91 (2.61–30.42), p = 4.8 ×  10−4). Ten of these 
variants were categorized as Helix-high and two as Helix-
low. Two of the variants categorized as (likely) patho-
genic and Helix-high were observed in controls only (see 
Additional File 1: Table  S7). After excluding the (likely) 
pathogenic variants from the LR model, there remained 
no increased risk associated with variants classified as 
Helix-high (OR 0.60 (0.27–1.34)).

RF and NVM predictions were available for 1338 and 
1339 unique BRCA2 missense variants, respectively. 
There was no association with risk for variants predicted 
to be damaging by either the RF model (p = 0.16) or the 
NVM model (p = 0.32; see Additional File 2: Table S5).

BRCA2 HDR assay score was available for 82 
unique variants and was strongly associated with risk 
(pALL = 6.7 ×  10−4; see Additional File 2: Table  S5). 

Carriers of variants with a prediction of likely patho-
genic or pathogenic (LP/P) had a higher risk than carriers 
of variants with a prediction of likely benign or benign 
(LB/B)  (ORALL 5.57 (2.36–13.17)). Since the BRCA2 
HDR experiment specifically targeted the DNA binding 
domain-coding region of the gene, no variants outside 
of the domains were scored. Thus, all BRCA2 missense 
variants were assigned to one of four potential risk levels, 
with functional classification prioritized where available: 
LP/P; Helix-high (no functional classification); Helix-
low (no functional classification); or LB/B. Compared 
with non-carriers, there was increased risk for carriers of 
variants in the LP/P category only (OR 4.72 (1.88–11.84), 
p = 9.3 ×  10−4); see Additional File 1: Table  S9). In a 
mixture model in which the OR for risk associated mis-
sense variants was constrained to that for PTVs (OR 5.86 
(4.75–7.24)), the estimated proportions of risk associated 
variants in LP/P risk category was 43% (11–82%) (see 
Additional File 1: Table S9). The functional LR model was 
a slightly better fit to the data than the mixture model 
(2 × log-likelihood difference = 1.85) but both were bet-
ter fits to the data compared to the Helix-only models 
(LR models 2 × log-likelihood difference = 13.88, mixture 
models 2 × log-likelihood difference = 5.65).

CHEK2
The analysis of CHEK2 missense variants included 1552 
carriers of 325 unique variants. In the carrier-only anal-
ysis, BayesDel (pALL = 0.0091), CADD (pALL = 0.0073), 
Helix (pALL = 0.0021), and REVEL (pALL = 0.016) scores 
were associated with risk (see Additional File 2: Table S5). 
Compared with non-carriers, carriers of a Helix-high 
variant had a larger increased risk (OR 1.73 (1.42–2.11), 
p = 4.7 ×  10−8) than carriers of Helix-low variants, but 
the latter were also associated with an increased risk (OR 
1.26 (1.08–1.46), p = 0.0025; see Table 1, Figs. 1d and 2d). 
There was no significant association with protein domain 
(pALL = 0.98).

In the mixture model analysis, the constrained model 
in which risk associated missense variants conferred the 
same risk as PTVs could be rejected (p = 0.027). Under 
the best fitting model, the OR for missense variants was 
1.75 (1.47–2.08), with 95% (86–98%) of Helix-high vari-
ants and 33% (25–43%) of Helix-low variants being risk 
associated (see Table  1, Figs.  1d and 2d). The mixture 
model was a similar fit to the LR model (2 × log-likeli-
hood difference = 0.52). We also explored mixture mod-
els with two levels of risk variant: one with an OR equal 
to that of PTVs and another conferring a lower risk com-
pared to that of PTVs. The two-level model fitted slightly 
better in the full training dataset (2 × log-likelihood dif-
ference = 1.10) but not in the population-based studies 
(two-level model converged to the one-level model). The 
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OR associated with Helix-high variants decreased as age 
increased (per year OR 0.99 (0.98–1.00), p = 0.017; see 
Additional File 1: Table S6).

Two variants, c.470 T > G (p.Ile157Ser) and c.433C > T 
(p.Arg145Trp), were listed as (likely) pathogenic on 
ClinVar; both variants have high Helix scores but the 
number of carriers in our population-based sam-
ple was too small to evaluate their association with 
risk (see Additional File 1: Table  S7). One rare vari-
ant, c.349A > G (p.Arg117Gly), was previously identi-
fied as risk associated in BCAC samples, as part of the 
OncoArray genome-wide association study (GWAS) 
project [31]. In the current dataset, this variant, which is 
in the Helix-high category, had an OR 2.69 (1.46–4.94). 
After excluding the BCAC GWAS samples from the 
current dataset, the OR was 3.40 (1.52–7.61). Excluding 
c.349A > G from the LR model did not change the over-
all relative risk associated with the Helix-high category 
(OR 1.64 (1.33–2.02)).

PALB2
The analysis of PALB2 missense variants included 1659 
carriers of 472 unique variants. We found no over-
all evidence of risk associated with missense variants 
in PALB2 (OR 0.95 (0.85–1.06), p = 0.34; pALL = 0.98). 
In the carrier-only analysis, CADD was the only score 
associated with risk (pALL = 0.020; see Additional File 
2: Table  S5); however, there was no significant differ-
ence in risk between CADD quintiles (pALL = 0.16). 
There was no evidence for a difference in risk for car-
riers of variants inside any protein domain versus those 
outside (pALL = 0.25). In a mixture model in which the 
missense variant risk was constrained to that for PTVs 
(OR 4.87 (3.50–6.77)), the estimated proportion of risk 
associated variants was 0.011% (95% CI 0–88%; Table 1, 
Figs.  1e and 2e). The log-likelihoods for the mixture 
model and logistic regression model were similar 
(2 × log-likelihood difference = 1.01).

Three (likely) pathogenic variants were listed on Clin-
Var but none of these were present in our samples. 
Another variant, c.104 T > C (p.Leu35Pro), has been sug-
gested to be pathogenic based on evidence from one fam-
ily and tumor genomic analysis [33], but this variant was 
also not found in our samples.

A subset of the variants from the functional screening 
studies were available in the training data set: 26 of the 
48 assayed by Boonen et al. [24], 34 of the 84 assayed by 
Wiltshire et  al. [26] and 18 of the 44 assayed by Rodri-
gue et al. [25]. None of the functional assay scores or the 
authors’ corresponding classifications of pathogenicity 
were associated with risk in the BRIDGES samples (see 
Additional File 2: Table S5).

Frequency analysis
In burden analyses of variants with frequencies up to 
5%, variants in ATM with frequency < 0.1% were associ-
ated, in aggregate, with risk (p = 0.0024) but no group 
of variants of greater frequency was associated (see 
Additional File 1: Table  S10). For CHEK2, variants with 
frequency < 0.1% (p = 1.1 ×  10−14) and those with fre-
quency 0.1–0.5% (p = 3.6 ×  10−5) were associated with 
risk; there were no variants with frequency 0.5–5%. None 
of the other genes showed an association between any 
variant frequency group and risk (see Additional File 1: 
Table S10).

When analyses were restricted to frequencies up to 
0.5%, there was no association between risk and fre-
quency, either on a continuous scale or as the differ-
ence in risk between the two frequency groups < 0.1% 
and 0.1–0.5%, for BRCA2, CHEK2, or PALB2 (see Addi-
tional File 1: Table  S11). For ATM, we found frequency 
inversely associated with risk (continuous pALL = 0.0098) 
and a higher risk for variants with frequency < 0.1% com-
pared with variants of frequency 0.1–0.5% (pALL = 0.031). 
After adjusting for the CADD and domain risk groups, 
the associations remained statistically significant 
(pALL = 0.0097 and pALL = 0.012, respectively). For 
BRCA1, we found frequency inversely associated with 
risk (continuous pALL = 0.022) and a significantly higher 
risk for variants with frequency < 0.1% compared with 
variants of frequency 0.1–0.5% (pALL = 0.0066). However, 
after adjusting for the Helix and domain risk groups, nei-
ther of these associations remained statistically signifi-
cant (pALL = 0.36 and pALL = 0.39, respectively).

We evaluated the risks for individual missense vari-
ants with frequency between 0.1 and 5% (see Additional 
File 1: Table  S12). In BRCA1, one variant, c.2521C > T 
(p.Arg841Trp), was associated with a decreased risk of 
breast cancer (OR 0.67 (0.52–0.87), p = 0.0027). Two 
previously-reported variants in CHEK2 were identified: 
c.470  T > C (p.Ile157Thr) and c.538C > T (p.Arg180Cys) 
[34]. c.470  T > C was associated with an OR of 1.24 
(1.09–1.42), consistent with the estimate for the Helix-
low risk category, while c.538C > T was associated with a 
higher OR 1.44 (1.12–1.84). No ATM, BRCA2, or PALB2 
missense variants were individually associated with 
increased risk.

Model validation
We evaluated the calibration of the best fitting models 
from the training set, for each gene, in the validation set: 
these included the LR models, the mixture model using 
the estimated proportions (α) from the training set, 
and the mixture model using the posterior probabilities 
derived from the training set. For each gene and each 
model, carriers of variants in the predicted risk groups 
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were associated with an increased risk, and there were 
no differences between the observed and predicted ORs 
(see Additional File 1: Table S13 and Figs. S2-S6). In silico 
scores, likelihood ratios and posterior probabilities for 
every variant included in the population training dataset 
are given in Additional File 2: Tables S14-18.

Using a composite five gene model, we estimated ORs 
for eleven risk categories (Fig.  3). In total, 184 samples 
carried a missense variant in more than one of the five 
genes and were excluded from this analysis. Four catego-
ries were significantly associated with an increased risk 
relative to non-carriers, consistent with the estimates 
derived from the training set: ATM FAT/PIK + CADD5 
(OR 1.76 (1.16–2.68), p = 0.0078), CHEK2 Helix-low 

(OR 1.40 (1.04–1.88), p = 0.025), CHEK2 Helix-high 
(OR = 1.89 (1.27–2.81), p = 0.0017), and BRCA1 
within domain and Helix-high (OR 4.44 (1.45–13.59), 
p = 0.0089) risk groups. The OR estimate for BRCA2 
Helix-high variant carriers was higher than that in the 
training dataset, but the confidence interval was consid-
erably wider (OR 1.54 (0.88–2.68)). As predicted, variants 
in the remaining categories were not associated with risk.

Discussion
To date, the risks associated with missense variants in 
breast cancer predisposition genes have been largely 
unclear. In this study of over 112,000 women, we were 
able to use a range of in silico scores produced by 

Fig. 3 Breast cancer risk estimates from composite gene model in validation samples. Black marks indicate corresponding ORs from training 
models. Risk categories: ATM FAT/PIK + CADD5: ATM variants lying within the FAT or PI3K/PI4K protein domains with CADD score in fifth quintile; 
ATM FAT/PIK + CADD1‑4: ATM variants lying within the FAT or PI3K/PI4K protein domains with CADD score in any of first four quintiles; ATM outside 
FAT/PIK: variants lying outside the FAT and PI3K/PI4K protein domains; BRCA1 RING/BRCT + Helix‑high: BRCA1 variants lying within the RING or BRCT 
domains with a high Helix score; BRCA1 RING/BRCT + Helix‑low: BRCA1 variants lying with the RING or BRCT domains with a low Helix score; BRCA1 
outside RING/BRCT: BRCA1 variants lying outside the RING and BRCT domains; BRCA2 Helix‑high: BRCA2 variants with a high Helix score; BRCA2 
Helix‑low: BRCA2 variants with a low Helix score; CHEK2 Helix‑high: CHEK2 variants with a high Helix score; CHEK2 Helix‑low: CHEK2 variants with a 
low Helix score; PALB2 carriers: carriers of any missense variant in PALB2 
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statistical algorithms and knowledge of functional pro-
tein domains to determine the risks associated with sub-
sets of rare missense variants. We identified groups of 
missense variants conferring increased risks of breast 
cancer in ATM, BRCA1, BRCA2, and CHEK2, but not 
in PALB2. The ORs for BRCA1 and CHEK2 decreased 
with age at diagnosis, consistent with previous observa-
tions for PTVs [7]. Previous analysis of the full BRIDGES 
dataset showed that protein domains in ATM and BRCA1 
were predictive of risk [7]; the analysis presented here 
showed that in silico scores improved these predictions, 
in a formal model evaluation that allowed the mod-
els to be tested in an independent validation set. Under 
the best fitting mixture models, for ATM, BRCA1, and 
BRCA2, a small proportion of rare missense variants 
were associated with risks comparable to those for PTVs. 
In contrast, for CHEK2, a high proportion of CHEK2 
missense variants were risk associated and the estimated 
risk was markedly lower than that associated with PTVs. 
In PALB2, the evidence for association was weak; the 
mixture model analysis indicated that the proportion of 
missense variants associated with a high risk is likely to 
be very small. However, we cannot rule out the possibil-
ity that some variants are risk-associated since the power 
for detecting an association with risk for PALB2 is lower 
than, for example, BRCA1 and BRCA2. One variant in 
BRCA1 (p.Arg841Trp) was individually associated with 
a reduced risk of breast cancer (0.67 (0.52–0.87)). Given 
that this finding is inconsistent with all the other associa-
tions and that the variant is not in any of the key func-
tional domains, it seems quite likely that this is a chance 
association; further replication in other datasets will be 
required to confirm or refute the association.

We used five in silico scores to predict the pathogenic-
ity of individual variants. Helix, BayesDel, and CADD 
were all predictive for the four genes for which we were 
able to identify subsets of risk-associated variants; Helix 
was most predictive for BRCA1, BRCA2, and CHEK2 
while CADD outperformed all the other scores for 
ATM. In addition to the in silico scores, we also tested 
the BRCA1 SGE functional assay score. We found that 
the SGE score slightly improved the performance of the 
model for predicting risk for BRCA1 missense variant 
carriers, compared with the Helix-only model. Consist-
ent with this, we observed two variants that were classi-
fied as loss-of-function variants by SGE but appeared in 
our low-risk group; these were present in three cases and 
no controls. Conversely, another four variants that were 
classified as normal function by SGE but appeared in our 
high-risk group were present in eight cases and five con-
trols. Overall, variants categorized by SGE as disruptive 
to function, or lying within a protein domain and scored 
high by Helix, were strongly associated with increased 

risk. Under the mixture model, the proportions of risk-
associated variants were also high, although the confi-
dence intervals for the proportion of associated variants 
were wide. It is notable that 11 of the 31 variants in these 
categories have previously been identified as (likely) 
pathogenic by ClinVar and/or ENIGMA.

Similarly, for BRCA2, we also tested the HDR func-
tional assay score and found it improved the performance 
of the model for predicting risk for BRCA2 variant carri-
ers, compared to the Helix-only model. Consistent with 
this, four variants in the Helix-high category were clas-
sified as benign by the functional study and observed 
in 22 cases and 35 controls. Conversely, one variant in 
the Helix-low category was classified as pathogenic by 
the functional study and observed in two cases and no 
controls. After accounting for variants predicted to be 
pathogenic by the functional assay, there remained no 
significant increase in risk for carriers of variants in the 
Helix-high variant category, compared to non-carriers, 
although the OR of 1.37 for the Helix-high category was 
higher than the ORs of 0.97 and 0.96 for the Helix-low 
and predicted benign categories, respectively. We note 
that the variants tested using the HDR assay were subse-
quently classified using a combination of the assay result 
and American College of Medical Genetics and Genom-
ics/Association for Molecular Pathology (ACMG/AMP) 
guidelines; ACMG guidelines also used by the ENIGMA 
BRCA1/2 expert panel and in evidence for pathogenicity 
in ClinVar. Consequently, there is considerable overlap 
between classifications; nine of the 14 variants classified 
as (likely) pathogenic by the functional study have been 
previously identified as (likely) pathogenic by ClinVar 
and/or ENIGMA.

The BRCA2 HDR functional assay included only vari-
ants lying in the DNA binding domain of BRCA2. The 
majority of high-Helix variants were also in the DNA 
binding domain (37/62) and fewer [21] in the “colds-
pot” regions of exons 10 and 11 as described by Dines 
et al. [35] (by definition, none of the BRCA1 variants in 
the high-risk category fall in the corresponding exon 11 
coldspot).

In ATM, the risk conferred by missense variants was 
confined to specific protein-coding domains, namely 
the FAT and PIK domains, consistent with previous 
studies [5] and as shown previously in BRIDGES [7]. 
Variants within these domains could be further dis-
tinguished using the CADD score; variants in the top 
quintile were associated with risk whereas variants in 
the first four quintiles were not. In a mixture model, 
54% of variants in the top CADD quintile were esti-
mated to be associated with risk. One variant in this 
group, c.7271 T > G (p.Val2424Gly), has been previously 
reported as a breast cancer risk variant but the OR 
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estimate for this variant, 1.63 (0.56–4.73), was mark-
edly lower than previously estimated (relative risks 
ranging from 8.0 to 12.7) [29–31]. The reasons for this 
difference are unclear but might be due, in part, to pre-
vious studies oversampling for cases with a family his-
tory of breast cancer.

The results for CHEK2 were in marked contrast to 
those for BRCA1, BRCA2, and ATM. In the best fitting 
mixture model, the proportion of associated variants 
was high, and the estimated risk was clearly lower than 
for PTVs. A model in which there were two levels of 
risk, with the higher level equal to the PTV risk, fitted 
slightly better in the full training dataset but not in the 
population-based training studies. In addition, how-
ever, three individual CHEK2 variants were associated 
with differing levels of risk: c.470  T > C (p.Ile157Thr) 
OR 1.24 (1.09–1.42); c.538C > T (p.Arg180Cys) OR 1.44 
(1.12–1.84); and c.349A > G (p.Arg117Gly) OR 2.69 
(1.46–4.94). The c.470  T > C variant was too common 
to be included in the main analyses, possibly explaining 
why the heterogeneity in risk was not readily detectable 
by the mixture models; however, the confidence inter-
val for c.470 T > C from the individual-level analysis did 
not include the LR and mixture model OR estimates of 
1.73 and 1.75, respectively, for the risk-associated vari-
ants. Taken together, these observations suggest that 
there is substantial variation in risk associated with 
CHEK2 missense variants.

The relative performances of the in silico prediction 
algorithms are perhaps less marked than might appear; 
for example, Helix, which was the most predictive algo-
rithm for three of the genes, was also predictive for 
ATM. Some of the differences in the associations may be 
due to chance. Align-GVGD was initially developed for 
BRCA1/2 so it is perhaps not surprising that the algo-
rithm does relatively well for BRCA1 but less well for 
CHEK2, for example. Helix was not developed for a spe-
cific gene so may be a more useful tool in general.

We controlled for the potential effects of population 
stratification by stratifying analyses by country and by 
excluding individuals with the minority ancestry for that 
country. Thus, European studies excluded individuals of 
non-European ancestry and Asian studies excluded indi-
viduals of non-Asian ancestry. In addition, for the studies 
in Malaysia and Singapore, we further stratified into the 
three ethnic groups (Chinese, Malay, Indian). In previous 
analysis of PTVs, we found no differences in effect sizes 
when additionally correcting for ancestry informative 
principal components, suggesting that this correction 
was adequate, particularly since most of the associations 
were based on many variants [7]. Nevertheless, it remains 
possible that some estimates may be biased due to resid-
ual population stratification [36, 37].

Under the best fitting mixture model, approximately 
7% of all rare missense variants in ATM were associated 
with similar risk to that of PTVs. The estimated carrier 
frequency of pathogenic missense variants in ATM was 
0.0030, or approximately 89% of the PTV frequency. The 
corresponding proportion of associated rare missense 
variants for BRCA1 and BRCA2 was 2% and 0.6%, with 
an estimated carrier frequency of 0.00026 (~ 18%) and 
0.00028 (~ 9%), respectively. Thus, missense variants 
add modestly to the contribution of BRCA1 and BRCA2 
variants to breast cancer incidence, but make a relatively 
more substantial contribution for ATM. The differences 
between genes in the relative contributions of missense 
variants to risk presumably reflect the relative propor-
tion of residues within functional domains in which dis-
rupted function is associated with cancer risk, and the 
size of those domains. For CHEK2, approximately 60% of 
rare missense variants were risk associated and the esti-
mated carrier frequency of pathogenic missense variants 
in CHEK2 was comparable to the frequency of PTVs. 
The predicted proportion of breast cancer cases possess-
ing pathogenic germline missense variants in these genes 
is approximately 0.6%, 0.3%, 0.2%, and 1.3% for ATM, 
BRCA1, BRCA2, and CHEK2, respectively. The estimated 
additional contribution to the familial relative risk of 
breast cancer made by pathogenic missense variants in 
these five genes is approximately 2.7%.

The task of identifying which specific individual mis-
sense variants are risk associated is a complex one and is 
difficult to resolve fully even with a large dataset, since 
most variants are rare and there are many possible mod-
els to consider. Despite the size of our study, it was dif-
ficult to distinguish, for any gene, between the LR models 
(in which all variants in a given category confer a given 
risk) and the mixture models (in which all risk-associated 
variants confer the same risk, but the proportion that 
are associated varies by category). This difficulty arises 
because the number of carriers for individual variants is 
small, and as a result, the estimated risk of pathogenic 
missense variants and probability of pathogenicity (α) are 
strongly confounded. Further, selecting the best models 
and estimating the risks based on these models is likely 
to result in overfitting and biased risk estimates. In order 
to strengthen the validity of our findings, we used a train-
ing-validation study design. We were able to replicate the 
predicted OR estimates in the validation dataset, suggest-
ing that any bias due to overfitting was small. Neverthe-
less, the validation dataset was relatively small, so further 
validation of the best models reported here in large inde-
pendent datasets is critical.

Ultimately, high-throughput functional assays that 
can evaluate all possible missense substitutions may 
provide more precise definitions of risk categories. The 
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analyses of the BRCA1 SGE scores and the BRCA2 HDR 
assay scores suggest that this approach should be useful, 
although the scores for BRCA1 were highly concordant 
with the best in silico score in this case. The available 
PALB2 functional assays did not predict risk, but this 
may just reflect the low power of these analyses when 
the proportion of risk-associated variants is very low. As 
further prediction algorithms based on in silico and/or 
in  vitro data are developed, large population-based epi-
demiological datasets such as BRIDGES can be used to 
validate their predictions. However, further large studies 
are likely to be required to provide more precise variant-
specific risk estimates.

Conclusions
This study confirms that subsets of missense variants in 
established breast cancer susceptibility genes are asso-
ciated with increased risks of the disease and provides 
estimates of relative risks for those subsets, as well as 
probabilities for association with risk at the variant level. 
The pattern of risk varies substantially by gene. Accu-
rately and precisely defining these risks is critical to the 
counselling and management of women in whom these 
variants are identified.
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