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Bone marrow transplantation 
induces changes in the gut 
microbiota that chronically 
increase the cytokine response 
pattern of splenocytes
Saeed Katiraei1,2, Janna A. van Diepen3, Luciana P. Tavares 4, Lisa R. Hoving 1,2, 
Amanda Pronk1,2,5, Ineke Verschueren3, Patrick C. N. Rensen 2,5, Jaap Jan Zwaginga6, 
Sarantos Kostidis 7, Martin Giera 7, Mauro Teixera4, Ko Willems van Dijk 1,2,5*, 
Mihai G. Netea 3, Jimmy F. P. Berbée 2,5,8 & Vanessa van Harmelen1,2,8

Bone marrow transplantation (BMT) involves conditioning regimens which acutely induce side effects, 
including systemic inflammation, intestinal damage and shifts in the gut microbial composition, 
some of which may persist chronically. As the gut microbiota affect systemic immune responses, we 
aimed to investigate whether, post-BMT, the peripheral immune system is modulated as a direct 
consequence of alterations in the gut microbiota. We show that 24 weeks post-BMT, splenocytes but 
not peritoneal macrophages display increased cytokine response patterns upon ex-vivo stimulation 
with various pathogens as compared to untreated controls. The pattern of BMT-induced cytokine 
responses was transferred to splenocytes, and not to peritoneal macrophages, of healthy controls via 
co-housing and transferred to germfree mice via transplantation of cecum content. Thus, BMT induces 
changes in gut microbiota that in their turn increase cytokine responsiveness of splenocytes. Thus, 
BMT establishes a dominant microbiota that attenuates normalization of the immune-response.

The intestine is not only the site where food digestion takes place, but it is also home to more than  1014 commensal 
microorganisms that are collectively called the gut microbiota. The microbiota continuously interact with and 
provide benefits to the host, as they are involved in processes such as fermentation of indigestible fibres, metabo-
lism of xenobiotics and regulation of the immune system. Studies in germfree mice that lack gut microbiota 
have provided insight into the role of gut microbiota in regulating the immune system. For example, germfree 
mice have a dysfunctional mucosal immune system with less and smaller Peyer’s patches and mesenteric lymph 
 nodes1,2. These mice also have reduced numbers of intra-epithelial lymphocytes with a compromised immune 
 function3. The gut microbiota are thus important for shaping a functional mucosal immune system.

In addition to affecting the mucosal immune system, recent studies have demonstrated that the gut microbiota 
are important in the development and function of the immune system beyond the intestine. For example, the 
gut microbiota play a role in the pathogenesis of autoimmune disorders such as rheumatoid arthritis and type-1 
 diabetes2,4,5. Clarke et al.6 reported that bacterial components translocate from the gut into the circulation under 
basal conditions and serve as mediators that systemically prime neutrophils in the bone marrow. However, the 
effects of the gut microbiota on other key lymphoid tissues such as the spleen have not been fully characterized. 
Germfree mice have reduced numbers of CD4+ cells and smaller germinal centers within the spleen as well 
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as lower systemic antibody  levels4,7. Moreover, oral administration of dietary fibres or short-chain fatty acids 
(SCFA) to mice increases antibody responses by B cells in the  spleen8, which indicates that metabolites from the 
gut microbiota affect spleen function.

Bone marrow transplantation (BMT) is applied as therapy for patients with specific cancers of the bone 
marrow or blood, such as multiple myeloma or leukemia. To minimize residual disease, to create space for 
the transplant, and to achieve immune-ablation, BMT is preceded by conditioning regimens like total body 
irradiation (TBI) or chemotherapeutic agents. A drawback of these conditioning regimens is that they induce 
acute and chronic side effects. TBI not only ablates bone marrow cells, but may also cause acute damage to the 
gastrointestinal tract. This damage promotes the leakage of bacterial components from the gut into the systemic 
circulation. Bacterial components act as toll-like receptor ligands, activate immune cells and thus cause systemic 
 inflammation9. This phenomenon may certainly explain some of the acute side effects of the BMT treatment.

However, BMT treatment not only resets the host immune system but also affects host  microbiota10. The long 
term composition and activity of the intestinal microbiota is the result of intricate interactions between bacteria, 
host and environment. It is more than likely that BMT treatment thus results in permanently altered microbiota 
that may contribute to changes in the intra- and extra-intestinal immune system of the  host11.

In the current study, we investigated in mice the effect of BMT on the response patterns of splenocytes and 
peritoneal macrophages to various pathogenic stimuli as markers of the extra-intestinal immune system. Sple-
nocytes are a mixed population of immune cells and thus represent responses from both the adaptive and innate 
immune system, whereas peritoneal macrophages represent the innate immune system. The potential role of 
microbiota in the response patterns of splenocytes and peritoneal macrophages was investigated by co-housing 
control mice with BMT-treated mice and by transfer of cecum content to germfree mice. Our data show that the 
BMT-induced increase in the cytokine response pattern of splenocytes to pathogenic stimuli can be transferred 
via the gut microbiota.

Results
The cytokine response pattern of stimulated splenocytes was increased after BMT and trans-
ferred to healthy controls via co-housing. To study the effect of BMT on the response patterns of sple-
nocytes and peritoneal macrophages to various pathogenic stimuli and the potential role of microbiota herein, 
C57BL/6 mice underwent syngeneic BMT or sham procedure and were co-housed in three combinations to 
arrive at the following four groups: (1) healthy control mice co-housed with healthy control mice, (2) BMT-
treated mice co-housed with other BMT-treated mice, (3) BMT-treated mice co-housed with healthy control 
mice, and (4) healthy controls co-housed with BMT-treated mice. Group 1 served as control for the other three 
groups. All mice, both BMT-treated and control mice, received water containing antibiotics and were exposed to 
the same dietary regimen. After recovery from the BMT procedure, mice were fed a low-fat diet for 16 weeks to 
determine the chronic effects of microbiota exchange via co-housing on the responses of splenocytes and peri-
toneal macrophages. At the end of the study, peritoneal macrophages were isolated and the spleen was harvested 
and cells were immediately used for ex vivo stimulation assays.

To assess the general health condition of the mice after BMT, we monitored body weight during the study. 
As reported  previously12–14, the BMT procedure reduced body weight already within a few days (Supplemen-
tary Fig. S1). The BMT-induced decrease in body weight was not restored by co-housing the mice with healthy 
controls and vice versa the body weight of the healthy co-housed controls was not affected by co-housing with 
BMT-treated mice.

Splenocytes of BMT-treated mice showed higher IL-10, IL-22 and TNF-α cytokine release as compared 
to healthy controls, when stimulated with various pathogenic stimuli such as LPS, Polyinosinic:polycytidylic 
acid (Poly(I:C)), Candida conidia or Salmonella typhimurium (outer light blue lines versus inner grey lines, 
Fig. 1a). Similar IL-10, IL-22 and TNF-α cytokine response patterns were seen in the BMT-treated mice that 
were co-housed with healthy control mice (outer dark blue lines versus inner grey lines, Fig. 1b), suggesting 
that co-housing with healthy controls did not rescue the hyper-responsive phenotype of the splenocytes induced 
by BMT. Strikingly, the healthy controls that were co-housed with the BMT-treated mice also showed a similar 
IL-10, IL-22 and TNF-α response pattern upon pathogenic stimulation (outer red lines versus inner grey lines 
Fig. 1c), indicating that the BMT-induced responsiveness of the splenocytes was transferred to healthy controls 
via co-housing.

The cytokine response pattern of stimulated peritoneal macrophages was not affected after 
BMT. Peritoneal macrophages of BMT-treated mice did not show increased cytokine release upon ex vivo 
stimulation with various stimuli, except for a tendency towards increased IL-6 release upon stimulation with 
S. typhimurium stimulation (outer light blue lines versus inner grey lines, Fig. 2a). Peritoneal macrophages of 
BMT-treated mice that were co-housed with healthy control mice released more IL-6 after stimulation, which 
was significant for Pam3Cys, poly(I:C), S. typhimurium and Staphylococcus aureus (outer dark blue lines versus 
inner grey lines, Fig.  2b). Although the cytokine response pattern of splenocytes upon different pathogenic 
stimuli was similar between the two groups of BMT-treated mice (Fig. 1a,b), the IL-6 cytokine response pattern 
of macrophages from co-housed BMT-treated mice was different (Fig. 2b). For TNF-α secretion, no differences 
were observed between the different groups (Fig. 2a–c). These data indicate that the cytokine response pattern 
of peritoneal macrophages upon stimulation was not transferred from BMT-treated mice to control mice via 
co-housing.

The cytokine response pattern after BMT was transferred to splenocytes of germfree mice 
after transplantation of cecum content. To determine whether intestinal microbiota were causally 
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Figure 1.  The effect of co-housing after BMT on cytokine secretion of stimulated splenocytes. Spiderplots show 
IL-10, IL-22 and TNF-α release in response to various pathogenic stimuli from splenocytes derived from (a) 
BMT-treated mice co-housed with BMT mice (outer light blue lines), (b) BMT-treated mice co-housed with 
healthy control mice (outer dark blue lines), and (c) control mice co-housed with BMT-treated mice (outer 
red lines). Cytokine concentrations in response to the stimuli are normalized to the cytokine concentrations 
of healthy control mice co-housed with control mice (inner grey lines), averaged per group and plotted on a 
log scale. Every corner of the spiderplot hexagon represents the response to one stimulus. The data lines and 
shades represent means and SEM, respectively; Groups were compared using Mann–Whitney U test; n = 5–6 per 
group; *p < 0.05; **p < 0.01. Candida, Candida conidia; LPS, lipopolysaccharide; PHA, Polyhydroxyalkanoates; 
poly(I:C), Polyinosinic:polycytidylic acid; Salm, Salmonella typhimurium; Staph, Staphylococcus aureus.
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involved in the altered cytokine response pattern by splenocytes after BMT, germfree mice were inoculated with 
the cecum content of BMT-treated mice co-housed with or without control mice or with the cecum content of 
co-housed control mice. Splenocytes derived from germfree mice that were colonized with cecum content of 
BMT-treated mice as compared to those colonized with cecum content of control mice, secreted more cytokines 
after stimulation with various pathogenic stimuli, which reached significance for LPS (IL-22 and TNF-α), PHA 
(IL-10 and TNF-α), poly(I:C) (IL-10, IL-22 and TNF-α) and C. conidia (IL10 and TNF-α) (outer light blue lines 
versus inner grey lines, Fig. 3a). A partly overlapping cytokine response pattern was observed in germfree mice 
inoculated with cecum content of BMT-treated mice co-housed with BMT mice and in germfree mice inocu-
lated with cecum content of BMT-treated mice co-housed with control mice (outer light and dark blue lines 
versus inner grey lines, Fig. 3a,b), with similar (trends in) responses of IL-10, IL-22 and TNF-α secretion to 
PHA stimulation. Remarkably, splenocytes derived from germfree mice colonized with cecum content of control 
mice co-housed with BMT-treated mice showed a cytokine response pattern very similar to splenocytes from 
germfree mice that were colonized with cecum content of BMT-treated mice (outer red lines and light blue lines 
versus inner grey lines, Fig. 3a,c). The IL-10 response to PHA, poly (I:C) and C. conidia were identical, as was 
the TNF-α response to LPS and C. conidia. These data are in line with the results derived from the co-housing 
experiment and indicate that the increased responsiveness of splenocytes after BMT can be largely transferred 
by cecum content transplantation.

Peritoneal macrophages of germfree mice inoculated with cecum content of BMT-treated mice and co-housed 
BMT-treated mice did not show increased IL-6 and TNF-α secretion upon stimulation (outer light blue and dark 

Figure 2.  The effect of co-housing after BMT on cytokine secretion of stimulated peritoneal macrophages. 
Spiderplots show IL-6 and TNF-α release in response to various pathogenic stimuli from peritoneal 
macrophages derived from (a) BMT-treated mice co-housed with BMT mice (outer light blue lines), (b) 
BMT-treated mice co-housed with healthy control mice (outer dark blue lines), and (c) control co-housed mice 
co-housed with BMT-treated mice (outer red lines). Cytokine concentrations in response to the stimuli are 
normalized to the cytokine concentrations of healthy control mice co-housed with control mice (inner grey 
lines), averaged per group and plotted on a log scale. See legend to Fig. 1 for more information. Groups were 
compared using Mann–Whitney U test; n = 6; *p < 0.05.
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Figure 3.  The effect of cecum content transfer after BMT on cytokine secretion of stimulated splenocytes. 
Spiderplots show IL-10, IL-22 and TNF-α release in response to various pathogenic stimuli from splenocytes 
derived from (a) germfree mice inoculated with cecum content samples of BMT-treated mice co-housed with 
BMT-mice (outer light blue lines), (b) germfree mice inoculated with cecum content samples of BMT-treated 
mice co-housed with control mice (outer dark blue lines), and (c) germfree mice inoculated with cecum content 
samples of control mice co-housed with BMT mice (outer red lines). Cytokine concentrations in response to 
stimuli are normalized to the cytokine concentrations of splenocytes from germfree mice inoculated with cecum 
content samples of control mice co-housed with control mice (inner grey lines). See legend to Fig. 1 for more 
information. Groups were compared using Mann–Whitney U test; n = 3–5; *p < 0.05.
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blue lines versus inner grey lines, Fig. 4a–c). Peritoneal macrophages of germfree mice inoculated with cecum 
content of co-housed controls only showed a minor increase in IL-6 secretion upon S. aureus incubation (outer 
red lines versus inner grey lines, Fig. 4c). These data indicate that gut microbiota specifically stimulate cytokine 
secretion of splenocytes but not of peritoneal macrophages after BMT.

Splenocytes of germfree mice showed lower cytokine secretion compared to conventional 
mice. To further investigate the role of gut microbiota in the responsiveness of splenocytes and macrophages, 
we compared cytokine response pattern of ex-vivo stimulated splenocytes and peritoneal macrophages derived 
from conventionally versus germfree raised mice. Splenocytes from conventional mice secreted more IL-10, 
IL-22 and TNF-α as compared to untreated germfree mice upon stimulation with LPS, Polyhydroxyalkanoates 
(PHA) and poly(I:C), and more IL-10 and IL-22 upon stimulation with S. typhimurium and S. aureus (outer pink 
lines versus inner purple lines, Fig. 5a–c). These data indicate that the presence of gut microbiota increases the 
cytokine response pattern of splenocytes upon pathogenic stimulation. In contrast to splenocytes, there was no 
increase of cytokine secretion by ex-vivo stimulated peritoneal macrophages between conventional mice and 
untreated germfree mice (outer pink lines versus inner purple lines, Fig. 5d,e). These data confirm that cytokine 
secretion of stimulated peritoneal macrophages is not affected by the presence of gut microbiota.

Figure 4.  The effect of cecum content transfer after BMT on cytokine secretion of stimulated peritoneal 
macrophages. Spiderplots show IL-6 and TNF-α release in response to various pathogenic stimuli from 
peritoneal macrophages derived from (a) germfree mice inoculated with cecum content samples of BMT-treated 
mice co-housed with BMT-mice (outer light blue lines), (b) germfree mice inoculated with cecum content 
samples of BMT-treated mice co-housed with control mice (outer dark blue lines), and (c) germfree mice 
inoculated with cecum content samples of control mice co-housed with BMT mice (outer red lines). Cytokine 
concentrations in response to stimuli are normalized to the cytokine concentrations of peritoneal macrophages 
from germfree mice inoculated with cecum content samples of control mice co-housed with control mice (inner 
grey lines). See legend to Fig. 1 for more information. Groups were compared using Mann–Whitney U test; 
n = 4–5.
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16S sequencing did not show consistent longitudinal effects of BMT on intestinal microbiota 
composition. To investigate potential changes in gut microbiota composition induced by BMT that may 
explain the increased cytokine response pattern of the splenocytes, we determined the intestinal microbial com-
position by 16S sequencing. We sequenced fecal samples 24 weeks post-BMT, which was just prior to the ex-vivo 
splenocyte stimulations and collection of the cecum contents. Bacterial taxa were not significantly different 
between BMT-treated and control mice, either with or without co-housing (Fig. 6a). There was a large inter-
individual variation between the individual samples from the different groups as revealed by the PCoA plots 
of unweighted UniFrac distance (Fig.  6b). Individual samples from the different treatment groups clustered 
together in three sub-clusters, but no clustering was observed based on treatment. The splenocyte responsive-
ness could thus not be linked to obvious BMT-induced differences in intestinal microbial composition as deter-
mined by 16S sequencing.

Co-housing with BMT-treated mice affected cecum metabolite profiles of healthy control 
mice. To investigate whether BMT induced alterations in gut microbial function that may explain the cytokine 
response pattern of the splenocytes, we measured 61 metabolites in cecum content samples by 1H-NMR. Metab-
olite concentrations were quantitatively measured and plotted as z scores in a heat map after unsupervised clus-
tering of all mice (Fig. 6c). The metabolite profile patterns showed considerable heterogeneity between the four 

Figure 5.  Cytokine secretion of stimulated splenocytes and peritoneal macrophages from germfree versus 
conventionally housed mice. Spiderplots show (a) IL-10, (b) IL-22 and (c) TNF-α release from splenocytes 
of germfree mice (inner purple lines) upon stimulation with different stimuli compared to splenocytes 
of conventional mice (outer pink lines). Spiderplots show (d) IL-6 and (e) TNF-α release of peritoneal 
macrophages of germfree mice (inner purple lines) upon stimulation, compared to conventional mice (outer 
pink lines). Cytokine concentrations in response to the stimuli are normalized to the cytokine concentrations 
of splenocytes of germfree mice (inner grey lines), averaged per group and plotted on a log scale. See legend 
to Fig. 1 for more information. Values are means ± SEM; Groups were compared using Mann–Whitney U test; 
n = 4–9; *p < 0.05; **p < 0.01; ***p < 0.001.



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6883  | https://doi.org/10.1038/s41598-022-10637-7

www.nature.com/scientificreports/

Figure 6.  The effect of BMT on fecal microbiota composition and metabolites in the cecum. (a) Relative 
abundance of fecal microbiota in each experimental group as determined by 16S rRNA gene sequencing 
24 weeks after BMT. (b) Unweighted UniFrac-based principal coordinate analysis (PCoA) of bacterial 
communities in fecal samples 24 weeks after BMT. Each dot represents one mouse, each colour represents 
one experimental mouse group; n = 7–8 per group. (c) Heatmap of metabolites in cecum content measured by 
1H-NMR; n = 7–9 per group.
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experimental groups (Fig. 6c). However, the mice from the control group are largely clustered together and are 
overall different from the other groups. These data indicate that BMT-treated and healthy control mice modulate 
each other’s metabolites via co-housing. However, none of the metabolites were clearly linked to the cytokine 
responses pattern of splenocytes of BMT-treated mice.

Discussion
Our results demonstrate that BMT induced chronically increased cytokine responses of splenocytes but not 
peritoneal macrophages upon ex-vivo stimulation with various pathogenic stimuli. For splenocytes, and not for 
peritoneal macrophages, the BMT-induced cytokine response patterns were at least partly mediated via the gut 
microbiota, as the increased response pattern was largely transferred to splenocytes of healthy control mice via 
co-housing and via cecum content transplantation to germfree mice. In line with a role for microbiota, spleno-
cytes, but not peritoneal macrophages from germfree mice showed lower stimulated cytokine response patterns 
as compared to conventional mice. The BMT-induced increased splenocyte response pattern could not be linked 
to obvious BMT-induced differences in gut microbiota composition or metabolites in cecum. Nevertheless, our 
data clearly show that gut microbiota are an important determinant of the cytokine response pattern of spleno-
cytes, but not of peritoneal macrophages.

The differential role of microbiota in the cytokine responses pattern of splenocytes but not peritoneal mac-
rophages may be associated with physical access of (components of) the intestinal content to splenocytes. In 
contrast to the peritoneal cavity, the spleen is an integral part of the blood circulation. In addition to accessibility, 
the immune cell composition and function of the spleen differs from peritoneal macrophages. The spleen con-
tains multiple populations of leukocytes from both the innate and adaptive immune system, whereas peritoneal 
macrophages belong to the innate immune system. The increased secretion of IL-10 and IL-22 by splenocytes 
upon BMT suggests an elevated adaptive immune response, as these cytokines are mainly secreted by T cells. 
However, it remains to be investigated whether the microbiota affect specific subsets of immune cells from the 
adaptive or innate immune system in the spleen.

The higher response pattern of splenocytes after BMT did not coincide with detectable changes in gut micro-
bial composition as determined by 16S sequencing. It is possible that the resolution of the 16S sequencing tech-
nique to distinguish bacterial taxa was not sufficient to show such alterations. Metagenomic sequencing in this 
respect might have revealed differences at the species level. However, the intra-individual variation in microbial 
composition between the mice at baseline before BMT-treatment was extremely large. This more than likely 
hampered detection of significant changes in microbial composition induced by the BMT.

To identify mechanisms underlying the higher response pattern of splenocytes induced by gut microbiota, 
we further focused on alterations in the function of the gut microbiota induced by BMT. We considered that 
multiple species of bacteria can exert the same function and produce the same metabolites. For instance, multi-
ple bacterial species can produce SCFA which can cross the intestinal border and have extra-intestinal immune 
modulatory effects in several tissues including the  spleen8,15. By performing 1H-NMR on the cecum content 
samples that were used to inoculate the germfree mice and subsequent unsupervised clustering on the mice, we 
observed significant heterogeneity in the experimental groups. However, the mice from the control group largely 
clustered together and are overall different from the other groups. These data indicate that both the BMT and 
co-housing procedure affected metabolite levels in the gut. Although we can conclude that BMT and co-housing 
led to alterations in microbial function in our study, the underlying mechanisms linking the gut microbiota to 
splenocyte cytokine response pattern remain to be elucidated.

In addition to bacterial metabolites, bacterial components such as LPS and peptidoglycans can modulate 
the immune system. BMT conditioning results in intestinal damage with the likely consequence of LPS leaking 
into the system. Our data show that the response pattern of splenocytes of BMT-treated mice was transferrable 
to splenocytes of healthy controls which have no damaged intestine. This makes LPS leakage an unlikely cause 
for the hyper-responsiveness of the splenocytes in the healthy controls co-housed with BMT mice. On the other 
hand, bacterial peptidoglycans have been reported to translocate from the gut into the circulation also under 
basal  conditions6. It remains to be investigated whether peptidoglycans can explain the hyper-responsiveness 
of splenocytes after BMT.

Although we conclude that the microbiota are at least partly responsible for the long term transfer of sple-
nocyte cytokine response patterns via co-housing and cecum transplantation, we cannot exclude that other 
factors are involved. Recently, Liu et al.15 identified microRNAs (MIR) in feces that are produced by epithelial 
cells in the intestine and affect microbial function by regulating bacterial gene transcription. It is thus possible 
that BMT-induced alterations in epithelial cell MIR secretion play a role in the altered responsiveness of sple-
nocytes after BMT.

Our study may have clinical implications. Here, we focussed on the role of microbiota in syngeneic BMT. 
However, in humans allogenic BMT is common practice and is associated with graft versus host disease (GVHD). 
In GVHD, donor immune cells (mainly the T cells) are activated by recipient cells and cause severe inflammation 
and damage to skin, liver, hematopoietic system and gut. The initiation of GVHD depends not only on activa-
tion of the donor T cells, but also on activation of the recipient’s antigen presenting cells and the interaction 
between these two. As the current study shows, also gut changed microbiota influence the recipient’s immune 
response and could affect GVHD activation and outcome. Further research is needed to monitor gut microbiota 
dysbiosis and the possibility of restoring the gut microbiome to a healthy state in BMT patients to reduce the 
risk of GVHD development.

In conclusion, gut microbiota increase the cytokine responses pattern of splenocytes after BMT. This pheno-
type can be transferred to splenocytes of healthy controls by co-housing or to germfree mice via transfer of cecum 
content, indicating that they are independent of BMT-induced intestinal damage and microbial leakage. Whether 



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6883  | https://doi.org/10.1038/s41598-022-10637-7

www.nature.com/scientificreports/

the BMT-induced higher cytokine response pattern of splenocytes is due to changes in microbial composition 
or activity, or other transferable factors, remains to be further investigated.

Methods
Bone marrow transplantation and co-housing experiment with mice. 6 week old male C57Bl/6J 
mice were purchased from Charles River (Maastricht, The Netherlands) and housed under standard conditions 
with free access to water and food. After a period of 2 weeks acclimatisation, half of the mice underwent syn-
geneic BMT. Already before the BMT procedure and during the whole experiment, the BMT-treated mice were 
co-housed with BMT-treated mice or healthy control mice. This resulted in four different experimental mouse 
groups: (1) healthy control mice co-housed with healthy control mice, (2) BMT-treated mice co-housed with 
BMT-treated mice, (3) BMT-treated mice co-housed with healthy controls, (4) healthy controls co-housed with 
BMT-treated mice. For the BMT procedure, mice received 8 Gy X-ray radiation using an Orthovolt and the day 
thereafter they received an intravenous injection with donor bone marrow cells in the tail vein. The donor mice 
were male C57Bl/6J mice of similar age. All mice, both BMT-treated and control mice, received water contain-
ing antibiotics (Amphotericin B, Ciprofloxacin, Polymyxin B) from 3 days before until 4 weeks after BMT and 
were exposed to the same dietary regimen. After 8 weeks recovery on chow diet, mice were fed a low-fat diet 
(10% energy derived from lard fat; D12450B, Research Diet Services, Wijk bij Duurstede, The Netherlands). 
Body weight was measured weekly during the entire experiment. Fresh fecal samples from individual mice were 
obtained 1 week before and 24 weeks after BMT by colon massaging. Each fecal sample was separately stored 
in a cryovial and snap frozen in liquid nitrogen immediately after collection and subsequently stored at − 80 °C 
until time of genomic DNA isolation. Mice were euthanized after anesthetization by a subcutaneous injection of 
a mixture of Neurotranq, Midazolam and Fentanyl. The spleen, peritoneal macrophages and cecum content were 
collected. This study was part of a larger study of which recently the metabolic characterization was  described14. 
All experiments were approved by the animal ethics committee of the Leiden University Medical Center, Neth-
erlands (protocol no. 121031), and conducted in accordance with the European directive 2010/63/UE. This study 
was carried out in compliance with the ARRIVE guidelines.

Experiments with germfree mice. Eight to twelve weeks old male germfree Swiss/NIH mice were 
obtained from Taconic Farms and kept in sterile flexible plastic isolators (Standard Safety Equipment) with free 
access to sterile water and food. Conventional Swiss/NIH mice were obtained from the local Animal Facility at 
Universidade Federal de Minas Gerais, Brasil. The cecum content of the mice from the four different experimen-
tal groups (1—healthy control mice co-housed with healthy control mice, 2—BMT-treated mice co-housed with 
BMT-treated mice, 3—healthy controls co-housed with BMT-treated mice, 4—BMT-treated mice co-housed 
with healthy controls. All mice in the four groups received water containing antibiotics (Amphotericin B, Cip-
rofloxacin, Polymyxin B) from 3 days before until 4 weeks after BMT and were exposed to the same dietary 
regimen) were diluted in PBS (10% w/v) and administered by intragastric gavage (200  µL per mice) to the 
germfree mice. After 2 weeks of microbiota reconstitution, the colonized mice were euthanized to collect spleen 
and peritoneal macrophages. Spleen and peritoneal macrophages were also obtained from germfree mice and 
conventional mice of similar age.

Ex-vivo stimulations of splenocytes. Spleen cells were isolated by gently passing spleens through a 
sterile 70 μm filter chamber. After washing with sterile PBS and centrifugation at 4 °C (1700 rpm for 10 min), 
cells were counted using a Z1 Coulter Particle Counter (Beckman Coulter, Woerden, The Netherlands), and 
subsequently cultured in 24-wells plates (Costar, Corning, the Netherlands) at 5 ×  106 cells/well in RPMI-1640 
containing 1 mM pyruvate, 2 mM l-glutamine, and 50 mg/L gentamicin, in the presence of 10% fetal calf serum 
(FCS). Different stimuli were added in a final volume of 1 mL. Splenocytes were stimulated with LPS 10 ng/mL, 
Polyhydroxyalkanoates (PHA) 10 µg/mL, Polyinosinic:polycytidylic acid (poly(I:C)) 50 µg/mL, heat killed C. 
conidia 1 ×  106/mL, heat killed S. typhimurium 1 ×  107/mL or heat killed S. aureus 1 ×  107/mL. Supernatants were 
collected after 48 h for IL-10 and TNF-α determination and after 120 h for IL-22 determination. Supernatants 
were stored at − 80 °C until concentrations of cytokines were measured.

Ex-vivo stimulations of peritoneal macrophages. Peritoneal macrophages were isolated from mice 
by injecting 10 mL of ice-cold sterile PBS (pH 7.4) into the peritoneal cavity, as previously  described16. After 
centrifugation and washing, cells were resuspended in RPMI-1640 culture medium containing 1 mM pyruvate, 
2 mM l-glutamine, and 50 mg/L gentamicin. Cells were counted and cultured in 96-well round-bottom micro-
titer plates (Costar, Corning, The Netherlands) at 1 ×  105 cells/well, in a final volume of 200 μL. The stimuli were 
the same as for the splenocytes except that instead of PHA, Pam3Cys was used at 10 µg/mL. Supernatants were 
collected after 24 h incubation and stored at − 80 °C for measurement of TNF-α and IL-6.

Cytokine measurements. Cytokine concentrations were measured in supernatants of the ex-vivo stim-
ulation experiments. TNF-α concentrations were determined by a specific radioimmunoassay as previously 
 described17. IL-6 was measured using a commercially available ELISA kit (Thermo Fisher Scientific, Waltham, 
MA, USA). Similarly, IL-22 and IL-10 concentrations were measured using commercially available ELISA kits 
(R&D Systems, Minneapolis, MN, USA). All according to the instructions of the manufacturer.

16S rRNA gene sequencing and data analysis. From the fecal samples, genomic DNA was extracted 
using phenol:chloroform:isoamylalcohol (25:24:1) (Invitrogen), precipitated with isopropanol, and washed with 
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70% ethanol. The DNA samples were sent to the Broad Institute of MIT and Harvard (Cambridge, USA) for 
16S rRNA gene sequencing. Microbial 16S rRNA gene was amplified targeting the hyper-variable region V4 
using forward primer 515F (5′-GTG CCA GCMGCC GCG GTAA-3′) and the reverse primer 806R (5′-GGA CTA 
CHVGGG TWT CTAAT-3′). The cycling conditions consisted of an initial denaturation step at 94 °C for 3 min, 
followed by 25 cycles of denaturation at 94 °C for 45 s, annealing at 50 °C for 60 s, extension at 72 °C for 5 min, 
and a final extension at 72 °C for 10 min. Sequencing was performed using the Illumina MiSeq platform gener-
ating paired-end reads of 175 bp in length in each direction. Overlapping paired-end reads were subsequently 
aligned. Details of this protocol have been described  previously18.

Raw sequence data quality was assessed using FastQC, version: 0.11.2 (http:// www. bioin forma tics. babra 
ham. ac. uk/ proje cts/ fastqc/). Reads quality was checked with Sickle, version: 1.33 (https:// github. com/ najos hi/ 
sickle) and low quality reads were removed. For visualising the taxonomic composition of the fecal microbiota 
and further beta diversity analysis, QIIME, version: 1.9.1 was  used19. In brief, closed reference OTU picking 
with 97% sequence similarity against GreenGenes 13.8 reference database was done. Jackknifed beta-diversity 
of unweighted UniFrac distances with 10 jackknife replicates was measured at rarefaction depth of 20,000 reads/
sample.

Metabolites measurement by 1H-NMR. Weighed cecum content samples (28.4 ± 8.9  mg) were 
mixed with 5 volumes of milliQ water and prepared and measured using 1H-NMR spectroscopy as described 
 previously20. The identification of metabolites was performed using the databases from Bruker (Bruker Biospin 
Ltd.) and Chenomx (Chenomx NMR suite 8.2) and assignments were verified by 2D 1H-NMR experiments of 
selected samples. The quantification of metabolites was performed with the Chenomx software and quantities 
were corrected for sample  weight21.

Statistics. Data are presented as means ± SEM. Experimental groups were compared using Mann–Whitney 
U test. All statistical analyses were performed using GraphPad Prism version 6 (GraphPad software, San Diego, 
CA, USA).
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