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The vascular endothelial growth factor (VEGF) receptor (VEGFR) system plays a role in cancer and many
other diseases. It is widely accepted that VEGFR receptors dimerise in response to VEGF binding.
However, analysis of these mechanisms and their implications for drug development still requires further
exploration. In this paper, we present a mathematical model representing the binding of VEGF to VEGFR
and the subsequent ligand-induced dimerisation. A key factor in this work is the qualitative and quanti-
tative effect of binding cooperativity, which describes the effect that the binding of a ligand to a receptor
has on the binding of that ligand to a second receptor, and the dimerisation of these receptors. We anal-
yse the ordinary differential equation system at equilibrium, giving analytical solutions for the total
amount of ligand bound. For time-course dynamics, we use numerical methods to explore possible beha-
viours under various parameter regimes, while perturbation analysis is used to understand the intricacies
of these behaviours. Our simulation results show an excellent fit to experimental data, towards validating
the model.

� 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Classical pharmacological receptor theory was originally based
around assumptions of monomeric receptors detecting ligands
(Kenakin, 2009). In recent years, the possibility for dimerised or
higher-oligomerised receptors has been acknowledged (Milligan,
2004; Milligan, 2006; Milligan et al., 2013). New theoretical
insights into binding and functional consequences of G protein-
coupled receptors which exist as dimers have been provided by
mathematical models (White and Bridge, 2019; Franco et al.,
2005; Franco et al., 2006; Zhou and Giraldo, 2018). These models
concern the dynamics and equilibria of binding and signalling out-
comes of ligands at constitutively formed (pre-existing) dimers.
The linear differential equation ligand-binding models in White
and Bridge (2019) are specific to the pre-dimerised scenarios
explored for adenosine receptors in May et al. (2011). Subtle, yet
important, adjustment to these models is necessary to model the
receptor dimerisation process which is triggered by ligand binding
for other receptors.
Vascular endothelial growth factor (VEGF) is a signalling protein
that is a key mediator of angiogenesis, a process whereby new
blood vessels are formed from the pre-existing vasculature (Mac
Gabhann and Popel, 2007; Alarcón and Page, 2007). As angiogene-
sis is a key factor in many conditions, including cancer and inflam-
mation (Mac Gabhann and Popel, 2007; Shibuya, 2011; Peach et al.,
2018), research into the mechanism of VEGF binding and signalling
is essential towards progress in development of new therapies. The
VEGF family consists of five members, VEGF-A, -B, -C, -D and pla-
centa growth factor (PIGF), and is a sub-family of growth factors
(GFs). Similar to most GFs, VEGF is a multivalent ligand, in that
each molecule possesses more than one binding site, therefore, it
can bind with as many receptors as there are sites (Alarcón and
Page, 2007). Many aspects of cellular function, including survival,
proliferation, migration and differentiation are regulated by VEGF
(Gopalakrishnan et al., 2004; Olsson et al., 2006; Stuttfeld and
Ballmer-Hofer, 2009).

VEGF binds to three VEGF receptors (VEGFRs), namely VEGFR-1,
�2 and �3. These are receptor tyrosine kinases that are expressed
predominately on endothelial cells and regulated by the VEGF
ligand (Olsson et al., 2006). Like most other receptor tyrosine
kinases (RTK), activation occurs upon dimerisation (Mac Gabhann
and Popel, 2007; Alarcón and Page, 2007; Stuttfeld and Ballmer-
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Hofer, 2009). It is thought that VEGFRs diffuse across the cell mem-
brane as monomeric receptors, although there is recent evidence
suggesting that a percentage may exist as dimers (Maruyama,
2014) (also see references within). Binding of a ligand to the extra-
cellular domain of the receptor triggers dimerisation with adjacent
receptors, which leads to the receptors becoming activated, then
leading to trans-autophosphorylation of the receptors. This pro-
vides a docking site for downstream signalling proteins, which
results in the activation of signalling pathways, and ultimately a
response (Olsson et al., 2006; Maruyama, 2014; Mac Gabhann and
Popel, 2007).

Although advances have been made towards understanding the
interactions of RTK ligands and receptors, further research is
needed to fully understand their role as therapeutic targets
(Peach et al., 2018; Peach et al., 2019; Shibuya, 2011). While much
analysis assumes equilibrium (Mac Gabhann and Popel, 2007), a
recent study (Kilpatrick et al., 2017) has used new technologies
to provide a real time quantitative evaluation of VEGF-VEGFR bind-
ing. Developments in fluorescent ligand technologies have allowed
the complexities of ligand-receptor interactions in living cells to be
observed (Kilpatrick et al., 2017; Peach et al., 2018). Interaction
dynamics were explored by monitoring the binding of dual poled
VEGF ligand molecules (ligands which can bind two receptors
simultaneously) to VEGFR-2 receptors. For quantification purposes,
ligand binding timecourse results were fitted to a simple associa-
tion exponential model; however, in many cases the results failed
to fit with the standard model for simple mass-action equilibrium.
Hence there is need for a mathematical model that incorporates
the complexities of the VEGF binding dynamics, taking into
account the ligand-induced dimerisation (LID).

The LID process is modelled in Alarcón and Page (2007), where
multiple stochastic models are analysed to further understand the
role the VEGF receptor system plays in tumour growth, although
most models given there include biological processes beyond bind-
ing. Spatial models of the dimerisation process and subsequent sig-
nalling are developed in Mayawala et al. (2006), while dynamics of
receptor and transducer protein dimerisation are studied using an
ordinary differential equation (ODE) model in Vera et al. (2008),
wherein it is suggested that dimerisation may serve to regulate sig-
nalling over multiple time scales. An ODE model of receptor bind-
ing and aggregation is presented in Wanant and Quon (2000),
although only equilibrium is analysed. Equilibrium models in
Wofsy et al. (1992) and Klein et al., 2004 also explore the possibil-
ity of heterodimers. Mac Gabhann and Popel (2007) combine a LID
model with a dynamic pre-dimerisation model, whereby the dimers
are formed before ligand binding, in order to explore the mecha-
nisms of the dimerisation of VEGFR and the possibility of the VEGF
receptors having the ability to dimerise in the absence of ligand as
well as being induced by ligand. While a partial differential equa-
Fig. 2.1. Ligand binding and dimerisation is a two step process whereby a two poled ligan
instantaneously dimerising the monomers.

2

tion model for the evolution of all species is formulated, the
dynamics of LID were not simulated or explored in detail.

Key to the formulation of our previous GPCR dimer models
(White and Bridge, 2019) was the idea of binding cooperativity.
Mathematically, this manifests as a parameter which quantifies
the altered binding rate of a second ligand molecule to a pre-
formed dimer, due to a first ligand already being bound. Analytical
expressions for both equilibrium concentration curves and binding
kinetics, in terms of cooperativity factors gave insights into the
effects of crosstalk across the dimer on binding. Binding coopera-
tivity is also an important concept in a model of LID, whereby
the cooperativity factor now quantifies the altered binding rate
of a second receptor molecule to a dual-poled ligand, due to a first
receptor already being bound.

In this paper, we present and analyse a model for the dynamics
of ligand-binding and LID. Our aim is to contribute to receptor the-
ory by analysing the ligand-receptor interaction in detail without
considering downstream signalling. We formulate a LID model
similar to Mac Gabhann and Popel (2007), focussing on dimerisa-
tion and binding only, with explicit dependence on cooperativity
factors (so following the framework of White and Bridge (2019)).
The analytical solution methods for the linear ODE models in
White and Bridge (2019) are not available to us here, as the LID
model is nonlinear. We find numerical solutions for a range of con-
trol parameters, to explore possible time course behaviours. Fur-
ther, we use perturbation analysis inline with nonlinear GPCR
activation models (Woodroffe et al., 2009; Woodroffe et al.,
2010; Bridge et al., 2010) to give further insights through analytical
solutions for reduced problems under interesting parameter
regimes.

The remainder of this paper is organised as follows. In Section 2,
we formulate a nonlinear ODEmodel for LID dynamics. In Section 3,
we follow the receptor theory approach of deriving equilibrium
solutions, and in particular consider the effect of the equilibrium
cooperativity factor on log-concentration response curves. In Sec-
tion 4, we present typical timecourse results given by numerical
simulations, considering the effects of kinetic cooperativity factors.
To gain further insights into the dynamics, we nondimensionalise
the ODE system, then find asymptotic solutions under parameter
regimes of interest (Section 5). In Section 6, we fit our model to
recently published timecourse data for VEGF-A isoforms binding
at the VEGFR2 receptor, showing excellent agreement and plausi-
ble parameter values. We conclude in Section 7 with a discussion
of our main results and contribution to the literature.

2. Model formulation

In formulating the model we assume that all receptors exist
constitutively as monomers, represented by R, while ligand A is a
d (in red) first binds a monomeric receptor (blue) before then binding a second and
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two-poled ligand, which may be bound to two receptors simulta-
neously. Ligand binding and dimerisation is a two step process
which can be visualised as in Fig. 2.1 or given as a reaction scheme
in Fig. 2.2. In the first reversible reaction the ligand, whose concen-
tration is assumed constant, binds to a free monomeric receptor,
with association and dissociation rate constants kþ and k� respec-
tively, creating the complex AR. Once a ligand molecule is bound to
a receptor the ligand may reversibly bind a second receptor mono-
mer, simultaneously dimerising the two receptors. We define the
parameter w ¼ wþ=w� as the equilibrium cooperativity factor,
describing the ligand’s increased (or decreased) affinity for the sec-
ond receptor binding due to the first ligand pole being bound. If, for
example, wþ > 1 we have positive forward cooperativity, where
the rate of a second receptor binding is greater than the binding
rate of the first receptor, and negative forward cooperativity if
wþ < 1. We emphasise the difference in meaning of binding coop-
erativity between the current model and the pre-dimerised GPCR
model of White and Bridge (2019); in White and Bridge (2019),
the cooperativity considered gives a change in affinity of a second
ligand binding, whereas here cooperativity describes the change in
affinity of a second receptor binding.

Aþ R�
kþ

k�
AR

R þ AR �
wþkþ

w�k�
RAR

The law of mass action gives rise to a system of ordinary differ-
ential equations (ODEs) that govern the binding kinetics of the
reactions, namely:

d R½ �
dt

¼ �kþ A½ � R½ � þ k� AR½ � � wþkþ R½ � AR½ � þ w�k� RAR½ �; ð2:1aÞ
d AR½ �
dt

¼ kþ A½ � R½ � � k� AR½ � � wþkþ R½ � AR½ � þ w�k� RAR½ �; ð2:1bÞ
d RAR½ �
dt

¼ wþkþ R½ � AR½ � � w�k� RAR½ �: ð2:1cÞ

with initial conditions

R½ � 0ð Þ ¼ Rtot; AR½ � 0ð Þ ¼ 0; RAR½ � 0ð Þ ¼ 0; ð2:2Þ
where square brackets denote concentration, and all parameters
and measured quantities are restricted positive. Here, Rtot is the
total receptor concentration. We make the assumption that ligand
is supplied in such a way that its concentration remains unchanged
throughout any experiment (Lauffenburger and Linderman, 1993).
The signal S of interest is proportional to the concentration of
ligand-bound receptors (Kilpatrick et al., 2017), so we take

S ¼ a AR½ � þ 2 RAR½ �ð Þ; ð2:3Þ
where a is a scaling constant. Note that the signal contribution from
one RAR complex, which contains two receptor protomers, is double
that for one AR complex (see Kilpatrick et al., 2017). The total con-
centration of receptors is conserved, with

Rtot ¼ R½ � þ AR½ � þ 2 RAR½ �: ð2:4Þ
Fig. 2.2. Schematic representing the reactions resulting from the binding of a two
poled ligand to two monomeric receptors.

3

We may use this to reduce the system (2.1) and eliminate one
equation, leaving, for example

d R½ �
dt

¼ � kþ A½ � þ w�k�
2

� �
R½ � þ k� � w�k�

2

� �
AR½ �

� wþkþ R½ � AR½ � þ w�k�Rtot

2
; ð2:5aÞ

d AR½ �
dt

¼ kþ A½ � � w�k�
2

� �
R½ � � k� þ w�k�

2

� �
AR½ �

� wþkþ R½ � AR½ � þ w�k�Rtot

2
: ð2:5bÞ

This reduced initial value problem has the initial conditions

R½ � 0ð Þ ¼ Rtot; AR½ � 0ð Þ ¼ 0; ð2:5cÞ
with ligand introduced at time t ¼ 0. Note that we assume there
exists no constitutive dimerisation, hence dimers are solely
ligand-induced. It is worth observing here that the current model
is structurally similar to that of ‘Model 1’ in Alarcón and Page
(2007). We now focus on an in-depth study of ligand binding and
the induced dimerisation.
3. Equilibrium analysis

In the spirit of classical receptor theory, and in keeping with our
previous work (White and Bridge, 2019), we first investigate the
equilibrium behaviour of the system, in particular the effect of
the equilibrium cooperativity factor w ¼ wþ=w�. The equilibrium
relationships are

AR½ � ¼ KA A½ � R½ �; ð3:1aÞ
RAR½ � ¼ wKA R½ � AR½ � ¼ wK2

A A½ � R½ �2; ð3:1bÞ
where KA ¼ kþ=k� is the equilibrium association constant (that is
KA ¼ 1=KD, where KD is the usual dissociation constant). Combining
with Eq. (2.4) gives equilibrium species in terms of parameters as

R½ � ¼
� 1þ KA A½ �ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ KA A½ �ð Þ2 þ 8wK2

A A½ �Rtot

q
4wK2

A A½ � ; ð3:2aÞ

AR½ � ¼
� 1þ KA A½ �ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ KA A½ �ð Þ2 þ 8wK2

A A½ �Rtot

q
4wKA

; ð3:2bÞ

RAR½ � ¼
1þ KA A½ � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ KA A½ �ð Þ2 þ 8wK2

A A½ �Rtot

q� �2

16wK2
A A½ � : ð3:2cÞ

From (2.3), we then find the overall signal at equilibrium to be

Seq ¼
a 1þ KA A½ � þ 4wK2

A A½ �Rtot �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ KA A½ �ð Þ2 þ 8wK2

A A½ �Rtot

q� �
4wK2

A A½ � :

ð3:3Þ
Letting A½ � ! 1 we see that R½ �; RAR½ � ! 0, while

AR½ �; Seq ! aRtot . This signal is a scaled concentration of the total
bound ligand, hence is comparable to the total ligand bound
expression in White and Bridge (2019); although there is similarity
in the models, these expressions are very different. In White and
Bridge (2019), the appearance of multiple inflections in the signal
log dose–response (logDR) curve for pre-dimerised receptors is
seen to be possible, for a range of binding cooperativity. We now
consider the possibility of multiple inflections for the LID model.

Introducing a scaled signal

eSeq ¼ Seq
a

;



C. White, V. Rottschäfer and L.J. Bridge Journal of Theoretical Biology 538 (2022) 110996
we compute (symbolically in MATLAB Matlab, xxxx)

d2eSeq

dlog10 A½ �2
¼

log 10ð Þ2 3K2
A A½ �2þK3

A A½ �3þ3KA A½ �þ12wK2
A A½ �Rtotþ16w2K4

A A½ �2R2tot
þ8wK3

A A½ �2Rtotþ4wK4
A A½ �3Rtotþ1� 1þKA A½ �ð Þ2þ8wK2

A A½ �Rtotð Þ3=2
� �

4wK2
A A½ � 1þ KA A½ �ð Þ2 þ 8wK2

A A½ �Rtot

� �3=2 :

ð3:4Þ
Possible inflections in the logDR curve occur when A½ � satisfies

3K2
A A½ �2 þ K3

A A½ �3 þ 3KA A½ � þ 12wK2
A A½ �Rtot þ 16w2K4

A A½ �2R2
tot

þ 8wK3
A A½ �2Rtot þ 4wK4

A A½ �3Rtot þ 1

� 1þ KA A½ �ð Þ2 þ 8wK2
A A½ �Rtot

� �3=2
¼ 0; ð3:5Þ

that is, when

3K2
A A½ �2 þ K3

A A½ �3 þ 3KA A½ � þ 12wK2
A A½ �Rtot þ 16w2K4

A A½ �2R2
tot

�
þ8wK3

A A½ �2Rtot þ 4wK4
A A½ �3Rtot þ 1

�2
¼ 1þ KA A½ �ð Þ2 þ 8wK2

A A½ �Rtot

� �3
: ð3:6Þ

Expanding and simplifying gives

�8wK3
A A½ �3Rtot 2wKARtot þ1ð ÞðK4

A A½ �4 þ2K3
A 4wKARtot þ1ð Þ A½ �3

þ8wK3
ARtot 2wKARtot þ1ð Þ A½ �2 �2KA 4wKARtot þ1ð Þ A½ ��1Þ ¼ 0:

ð3:7Þ
Nonzero values of A½ � which give possible inflections must

therefore satisfy

K4
A A½ �4 þ 2K3

A 4wKARtot þ 1ð Þ A½ �3 þ 8wK3
ARtot 2wKARtot þ 1ð Þ A½ �2

� 2KA 4wKARtot þ 1ð Þ A½ � � 1

¼ 0: ð3:8Þ
We can quickly determine the number of positive roots for this

quartic equation. Applying Descartes’ Rule of Signs (Murray, 2007),
Fig. 3.1. LogDR curves for varying cooperativity factor, w. The plots show the overall sign
parameter values for the plot can be found in Appendix A.

4

since the sequence of coefficients in (3.8) contains only one sign
change (as all parameters are positive), we find that the number
of positive roots is exactly one. Therefore there is at most one
inflection in the logDR curve for the signal given in (3.3). This is
in contrast with the results found for pre-dimerised GPCRs
(White and Bridge, 2019); multiple inflections (‘‘multiphasic logDR
curves”) may be suggestive of pre-formed dimers but not of LID.

In Fig. 3.1 we show the effect of the equilibrium cooperativity
factor w on the logDR relationship for the signal S and each of
the receptor species. For each logDR curve for S, we note a single
inflection point. Using Eq. (3.3), we find the EC50 value (the ligand
concentration giving half-maximal signal) to be

EC50 ¼ 1
KA 1þ wKARtotð Þ : ð3:9Þ

This expression notably differs from the EC50 expression for the
linear pre-dimerised model (White and Bridge, 2019) in that it
depends on Rtot . Furthermore, A½ � ¼ EC50 is not a solution of (3.8),
so we conclude that for this LID model the EC50 does not coincide
exactly with an inflection in the logDR curve. We see in Fig. 3.1 that
as w increases there is an approximate leftward shift in the overall
signal, indicating a smaller EC50. Inspection of the individual spe-
cies curves gives further insights.

For high cooperativity, with low ligand concentration, the signal
is dominated by the contribution from RAR dimers, and
S � 2a RAR½ �. For high ligand concentration, the system becomes
saturated with ligand as A½ � increases, leading to a decrease in
RAR½ � as the availability of receptor monomers for dimerisation
drops off. A plateau in the logDR curve for RAR½ � is clear. We see
that the overall signal reaches saturation at a much lower concen-
tration of A than AR½ � does.

With low cooperativity, the decreased propensity for dimerisa-
tion results in lower concentrations of A½ � being required for the
same increase in bound monomers than when cooperativity is
high. Only a small proportion of ligand-bound monomers bind a
second receptor, causing dimerisation. Hence the signal increases
largely with monomeric bound receptors. Interestingly we see that
the peak in RAR½ � appears to be at the same level of A½ � regardless of
al as well as concentrations of R (Eq. (3.2a)), AR (Eq. (3.2b)) and RAR (Eq. (3.2c)). Base
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the cooperativity value. To find this value, we first compute the
derivative of RAR½ � A½ �ð Þ (using (3.2c)):

d RAR½ �
d A½ � ¼

1� KA A½ �ð Þ 1þ KA A½ � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ KA A½ �ð Þ2 þ 8wK2

A A½ �Rtot

q� �2

16wK2
A A½ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ KA A½ �ð Þ2 þ 8wK2

A A½ �Rtot

q :

ð3:10Þ
The positive critical point is given by

A½ � ¼ 1
KA

: ð3:11Þ
Fig. 4.1. A numerical investigation into the effects of cooperativity factors wþ and w�
(Equations. (2.1)) while in each row we fix the wþ value. Each plot then shows a results

5

That is, the location of the critical point is independent of w, and
is equal to the equilibrium dissociation constant, KD. Hence this
peak will appear to some extent regardless of the cooperativity
levels. The corresponding value of RAR½ � depends on the coopera-
tivity factor w, and is given by

RAR½ �j 1
KA

¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2wKARtot

p� �2
4wKA

: ð3:12Þ

It is apparent from Fig. 3.1 that as w ! 1, the maximum value
of RAR½ �j 1

KA
. tends to a limit. From (3.12), we see that
on dynamics. The columns show the overall signal as well as individual species
for varying w� . Plots are created with ligand concentration A½ � ¼ 10�10M.
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RAR½ �j 1
KA

! Rtot

2
as w ! 1: ð3:13Þ
4. Binding dynamics - numerical simulations

In Fig. 4.1, we present numerical results to show how kinetic
cooperativity factors affect the binding dynamics of individual spe-
cies and the resulting overall signal. The lefth-hand column shows
the signal S as we increase wþ from top to bottom. In the second,
third and fourth columns, we plot R½ �; AR½ � and RAR½ � respectively.
In each plot, we also vary w�. We fix kþ and k�, within the range
of reported binding affinities (Mac Gabhann and Popel, 2007 and
references within), to allow us to focus on the effects that cooper-
ativity factors wþ and w� have on the binding dynamics. Parameter
values used to create the plot can be seen in Appendix A.

First looking at the overall signal S (in the first column), we
notice that increasing wþ leads to a larger signal at equilibrium.
Increasing wþ gives an increased rate of binding of a second mono-
mer, and so the larger signal comes from higher RAR½ �. Similarly,
decreasing w� gives an increase in the equilibrium signal. As w�
decreases, the time taken to reach equilibrium is also increased.
The individual species timecourses give further insights.

When w� is small (slowed dimer dissociation rate), we see peaks
in the AR½ � curves. Ligand-boundmonomeric receptors dimerise but
have low propensity for undimerising, and the concentration of
bound monomers falls. The low undimerisation rate also explains
the extended time for the system to reach equilibrium. Conversely,
if w� is large, peaks appear instead in the dimer concentration,
RAR½ �. Ligands bindmonomerswhich in turn form dimers. However,
with an increased dimer dissociation rate these quickly return back
to monomers, and so we see a peak in the RAR½ � timecourse.

For large wþ, we note an initial rapid increase in AR½ �, followed
by an approach to equilibrium on a much longer timescale. The
large forward cooperativity factor results in rapid dimerisation of
ligand-bound monomers, and hence fewer free monomeric recep-
tors, which keeps AR½ � low. Exact solutions to (2.1) are not available
to give further insights and results, but in Section 5, we use asymp-
totic analysis to find approximate solutions for certain parameter
regimes.

5. Asymptotic analysis

5.1. Dimensionless equations

In order to analyse the system asymptotically we first cast the
initial value problem (2.1) in dimensionless form. We let

R½ � ¼ Rtotr; AR½ � ¼ aRtotp; RAR½ � ¼ a2bRtot

c
q; t ¼ 1

k�
~t; ð5:1Þ

where

a ¼ KA A½ �; b ¼ wþRtot

A½ � ; c ¼ w�; ð5:2Þ

The governing system (2.1) then gives the dimensionless
system

dr
d~t

¼ a p� rð Þ þ a2b q� rpð Þ; ð5:3aÞ
dp
d~t

¼ r � pþ ab q� rpð Þ; ð5:3bÞ
dq
d~t

¼ c pr � qð Þ; ð5:3cÞ

with initial conditions

r 0ð Þ ¼ 1; p 0ð Þ ¼ 0; q 0ð Þ ¼ 0: ð5:4Þ
6

Alternatively, we can use the nondimensionalised version of the
reduced system (2.5), namely:

dr
d~t

¼ � aþ c
2

� �
r þ 1� c

2

� �
ap� a2brpþ c

2
; ð5:5aÞ

dp
d~t

¼ 1� c
2a

� �
r � 1þ c

2

� �
p� abrpþ c

2a
; ð5:5bÞ

with initial conditions

r 0ð Þ ¼ 1; p 0ð Þ ¼ 0; ð5:5cÞ
Conservation of receptor (2.4) now reads

1 ¼ r þ apþ 2a2b
c

q; ð5:6Þ

which can be used to determine the concentration of q where nec-
essary. Full details of the nondimensionalisation calculations are
given in Appendix B.

Biologically, a is the ligand concentration scaled by equilibrium
dissociation rate, so a � 1 if either the ligand concentration is very
high or has a very high affinity. The parameter b depends on the
cooperativity factor wþ as well as the total ligand-receptor concen-
tration ratio. So b � 1 may correspond to large wþ, which gives an
increased rate at which dimers are formed. Also, b � 1 may corre-
spond to overexpression of receptor. As c is simply the parameter
w�, if c � 1 then we have fast dimer dissociation compared with
monomeric receptor dissociation. The equilibrium solutions for
this dimensionless system are

req ¼ peq ¼
c � 1þ að Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ að Þ2 þ 8 a2b

c

q� �
4a2b

; qeq ¼ reqð Þ2:
ð5:7Þ
5.2. Asymptotic approximations

In the numerical results of Section 4 we saw that small w� leads
to a peak in the AR½ � tð Þ curve, whilst large w� leads to a peak
instead in RAR½ � tð Þ. Also, large wþ gives a rapid increase in AR½ � tð Þ.
To investigate such behaviour further, we now consider asymptotic
regimes for the three nondimensional parameters a; b and c in
Equations. (5.5) (where we drop the tilde on t for simplicity). We
consider three parameter regimes corresponding to dimerisation
behaviour of interest. Binding rates of VEGF are well documented
(Mac Gabhann and Popel, 2007 and references within); throughout
this section we assume a ¼ O 1ð Þ, allowing us to focus on the pos-
sible effects of cooperativity.

5.3. Small backwards cooperativity (c) asymptotics - slow dimer
dissociation

In Fig. 4.1 we saw that slow dimer dissociation rate gave a peak
in AR½ � tð Þ. Slow dimer dissociation corresponds to small c in the
dimensionless system, so we set c ¼ �, where 0 < �� 1. Substitut-
ing this into (5.5) gives

dr
dt

¼ � aþ �
2

� �
r þ 1� �

2

� �
ap� a2brpþ �

2
; ð5:8aÞ

dp
dt

¼ 1� �
2a

� �
r � 1þ �

2

� �
p� abrpþ �

2a
; ð5:8bÞ

where conservation of receptor (5.6) gives

q ¼ �
2a2b

1� r � apð Þ ð5:8cÞ

This is a regularly perturbed problem. Assuming asymptotic
approximations
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r � r0 þ �r1 þ . . . ; p � p0 þ �p1 þ . . . ; ð5:9Þ
where each ri;pi is O 1ð Þ, and substituting these into Equations. (5.8)
gives the leading order problem as

dr0
dt

¼ �ar0 þ ap0 � a2br0p0; ð5:10aÞ
dp0

dt
¼ r0 � p0 � abr0p0; ð5:10bÞ

r 0ð Þ ¼ 1; p 0ð Þ ¼ 0; ð5:10cÞ
Although this is still a nonlinear system that we are not able to

solve analytically, we can make some observations. The terms that
remain in the ODEs include the linear terms, representing the
reversible binding of ligand to monomeric receptor, as well as
the nonlinear term representing forward dimerisation. Terms rep-
resenting the dissociation of dimers do not appear in the reduced
system (5.10). So as receptors dimerise, they become ‘‘stuck” in
this form, with the concentration of dimers increasing monotoni-
cally. In Fig. 5.1 we plot a typical solution of the full nondimen-
sional system (5.8), along with the solution of the corresponding
approximate system (5.10). We see little difference in the two
solutions; neglecting the terms in the approximate solution has lit-
tle effect on the overall dynamics.

5.4. Large b asymptotics (fast dimerisation)

Another feature appearing in Fig. 4.1 is that when wþ is large,
we see a rapid initial increase in AR½ � tð Þ, followed by approach to
equilibrium on a longer timescales. To gain further insights for
the case of fast dimerisation (large wþ, giving large b), we set
b ¼ 1=�, where 0 < �� 1. Then the system (5.3) becomes

�
dr
dt

¼ �a p� rð Þ þ a2 q� rpð Þ; ð5:11aÞ

�
dp
dt

¼ � r � pð Þ þ a q� rpð Þ; ð5:11bÞ
dq
dt

¼ c pr � qð Þ; ð5:11cÞ

with initial conditions

r 0ð Þ ¼ 1; p 0ð Þ ¼ 0; q 0ð Þ ¼ 0: ð5:11dÞ
We have a singularly perturbed problem; the asymptotic anal-

ysis here will elucidate the multiple timescales which govern the
dynamics. Full details of the analysis are given in Appendix C.

The first timescale of interest is t ¼ O �ð Þ, which gives an inner or
initial layer. The leading-order approximation to the solution of
(5.11) in this layer is found to be (see Appendix C.2):
Fig. 5.1. Both the solution to the full system in Equations. (5.8) is plotted along side the so
of receptors is used to show the approximation for q. Parameters used to create plots a
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r tð Þ � 1; p tð Þ ¼ �
1� e�

at
�

a

 !
; q tð Þ ¼ �2

c
a2

at
�
� 1þ e�

at
�

� �
:

ð5:12Þ
Note that the solutions r tð Þ and p tð Þ are independent of c. Bio-

logically, the solution p tð Þ corresponds to monoexponential
ligand-monomeric receptor binding kinetics. We note that p tð Þ
depends on a, which controls binding kinetics but not dimerisa-
tion. This binding phase is confined to the short timescale
t ¼ O �ð Þ, beyond which the effect of large dimerisation rate is seen.
On this short timescale, the kinetics of q are driven by forward
dimerisation only (as seen by the terms which remain in the
reduced ODE system (C.10)).

The next timescale that we consider is t ¼ O 1ð Þ, under an inter-
mediate scaling of the dependent variables with r ¼ O 1ð Þ; p ¼ O �ð Þ
and q ¼ O �ð Þ. The approximate solutions of (5.11) in this region are
(see the analysis in Appendix C.3):

r tð Þ ¼ e�2at; p tð Þ ¼ �
1
a
þ c
2a2 e2at � 1

� �� �
; q tð Þ

¼ �c
2a2 1� e�2at� �

: ð5:13Þ

As the parameter c appears in this solution we can see that as
we move into this region the second reaction, whereby the ligand
binds a second monomer, now also plays a role in the dynamics of
the system. The observed decay constant of the receptor concen-
tration, 2a, is due to both free ligand and receptor-bound ligand
binding available monomeric receptors. Also, we note the expo-
nential growth and decay terms in the solution on this timescale.
These intermediate solutions are valid in an ‘‘overlap” region,
where they agree with the outer solutions, which capture the
approach to equilibrium.

The final approximate solution we consider, namely the outer

solution, has t ¼ O 1ð Þ with r ¼ O �1
2

� �
; p ¼ O �1

2

� �
and q ¼ O �ð Þ. We

find that the approximate solution of (5.11) in this outer region
has r tð Þ given implicitly by (see Appendix C.4):

log ��
1
2r tð Þ

� �
� aþ 1ð Þ log jc� 2a2��1r2 tð Þj

2a

¼ 2t þ c1; c1 ¼ 1
2a

log
�

2a2ð Þaþ1 ; ð5:14Þ

and p tð Þ and q tð Þ given by

p tð Þ ¼ �
c

2a2r tð Þ ; q tð Þ � �
c

2a2 : ð5:15Þ
lution of the reduced, approximated system (Equations. (5.10)) in red. Conservation
re a ¼ b ¼ 1 and c ¼ � ¼ 0:001.
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Biologically, reversible dimerisation is in approximate equilib-
rium in this outer region, with all species approaching their
steady-state concentrations. All of the approximate solutions
now depend on both a and c, and we conclude that on this final
timescale, both reactions (ligand binding monomer receptor, and
dimerisation) now affect all concentrations.

Fig. 5.2 shows an example numerical computation. We see a
good match between the intermediate solution and both the inner
and outer solutions for all variables, and together the approxima-
tions agree with the numerics in each region.

5.5. Large c asymptotics

The last case we consider is when we have fast dimer dissocia-
tion, that is when c is large. In Fig. 4.1 we saw that taking w�, and
hence c ¼ w�, large caused a peak in the bound dimer, RAR½ � tð Þ,
curve. As such we set c ¼ 1=�, with 0 < �� 1. Then the system
(5.3) gives

dr
dt

¼ a p� rð Þ þ a2b q� rpð Þ; ð5:16aÞ
dp
dt

¼ r � pþ ab q� rpð Þ; ð5:16bÞ

�
dq
dt

¼ pr � q; ð5:16cÞ

with initial conditions

r 0ð Þ ¼ 1; p 0ð Þ ¼ 0; q 0ð Þ ¼ 0: ð5:17Þ
Again we find a singular perturbation problem, indicating mul-

tiple time scales that contribute to the dynamics. Full details of the
analysis can be found in Appendix D. We consider the solution over
different timescales, and only state the results here.
Fig. 5.2. Numerical solution of Equation. (5.11) with inner (Eq. (5.12)), intermediate
intermediate solution matches both the inner and outer solution, creating a full appro
approximation for q. Plot created with a ¼ 6:8; c ¼ 1:4 and b ¼ � ¼ 10�4.

Fig. 5.3. The numerical solution of Equation. (5.16) with asymptotic solutions (5.18) and
to create plot are a=6.8, b=1, � ¼ 10�4.
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We first consider an inner region, where t ¼ O �ð Þ, and in which
r ¼ O 1ð Þ; p ¼ O �ð Þ and q ¼ O �ð Þ. The leading order approximate
solution to (5.16) in this region is found to be (see Appendix D.2):

r tð Þ � 1; p tð Þ ¼ t; q tð Þ ¼ t þ � e�
t
� � 1

� �
: ð5:18Þ

Biologically, the dominant reactions on this timescale are the
forward binding of ligand to monomeric receptor, which only
affects AR dynamics, and the reversible dimerisation.

In the outer region, in which t ¼ O 1ð Þ; r ¼ O 1ð Þ; p ¼ O 1ð Þ and
q ¼ O 1ð Þ, the leading order approximate solutions to (5.16) are
given by (see Appendix D.3):

r tð Þ ¼ 1þae� aþ1ð Þt
1þa ; p tð Þ ¼ 1�e� aþ1ð Þt

1þa ;

q tð Þ ¼ 1þ a�1ð Þe� aþ1ð Þt�ae�2 aþ1ð Þt

1það Þ2 :
ð5:19Þ

Biologically, the dominant reactions on this timescale are the
reversible binding of ligand to monomeric receptor, while reversi-
ble dimerisation has approximately reached equilibrium due to the
rapid undimerisation. Any receptors in dimerised form quickly
return to monomeric state. The outer solution for q tð Þ in (5.19)
gives an approximate condition for, and location of, the observed
peak in q tð Þ. We calculate

dq tð Þ
dt

¼ �e�2 aþ1ð Þt 2aþ e aþ1ð Þt � ae aþ1ð Þt� �
aþ 1

: ð5:20Þ

Equating this derivative to zero, we find that a stationary point
for q tð Þ is located at

ts ¼
log 2a

a�1

� �
aþ 1

; ð5:21Þ

for a > 1. A peak appears for a > 1, that is, for the scaled ligand con-
centration greater than unity.
(Eq. (5.13)) and outer (Eqs. (5.14) and (5.15)) solutions, on a log–log scale. The
ximation to the numerical solution. Conservation of receptors is used to show the

(5.19) on a log–log scale, showing good agreement in both regions. Parameters used
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In Fig. 5.3 we see a good match between the inner and outer
solution in all curves. We also see good agreement between the
approximate solution and the numerical solutions in both regions.
6. Model validation

Here we present a preliminary validation of our model by fitting
numerical solutions of the system (2.1)–(2.3) to published experi-
mental data in the form of timecourses corresponding to the signal
S tð Þ defined in (2.3), in response to three ligands over a range of
concentrations. Raw data were kindly provided by Dr. Chloe Peach
(P. communication between Lloyd Bridge, 2019). In Peach et al.
(2019), three VEGF-A isoforms (VEGF165a-TMR, VEGF165b-TMR
and VEGF121a-TMR) are each supplied to cells or membranes, over
a range of five concentrations, and the ‘‘binding signal” corre-
sponding to S tð Þ (ligand bound to VEGFR2) is measured using bio-
luminescence resonance energy transfer (BRET). While
experiments are performed using both HEK293T intact cells and
membranes, we focus only on membrane results, thus reducing
the possibility of data being affected by other processes such as
receptor internalisation which may cause a reduction in signal on
longer time scales.

For each of the three ligands, the sum of the squared differences
between the simulation results and the experimental data, across
all time points for all five concentrations, is minimised. The optimi-
sation is performed in Copasi (Hoops et al., 2006) using a particle
swarm optimization method, with a swarm size of 100 and 3000
iterations. For each ligand, the five timecourses are fitted to simul-
taneously, and estimates for a;Rtot ; kþ; k�;wþ and w� are found. We
note that it is reasonable to expect the underlying values of a,
which is an experimental scaling factor, and Rtot to be close across
all experiments since the experimental conditions will be con-
trolled and membrane preparations with similar receptor numbers
are to be expected. We indeed see order-of-magnitude agreement
Table 6.1
Estimated parameters returned from fitting to the data, as seen in Fig. 6.1. Units: kþ (M�1

a kþ k�

VEGF165a-TMR 1:71� 107 5:78� 106 4:60�
VEGF165b-TMR 5:04� 107 1:61� 106 6:58�
VEGF121a-TMR 1:64� 107 3:08� 106 2:45�

Fig. 6.1. Data published in Peach et al. (2019) are used to estimate the model paramete
isoforms (VEGF 165a-TMR, VEGF 165b-TMR and VEGF 121a-TMR) and the signal S tð Þ (2.3) is
Parameter values returned can be seen in Table 6.1.
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in these two parameters across all estimates shown in Table 6.1. An
alternative approach to parameter estimation assuming these two
parameters to be equal across all experiments is possible; an illus-
trative result is shown in Fig. E.1 and Table E.1.

In Table 6.1 we show the parameter estimates returned from
fitting, while in Fig. 6.1 we plot the fitted curves together with
the data. Clearly the estimates give an excellent fit to all data sets.
Looking at the estimated parameter values, we also note that all
association and dissociation kinetic rate constants fall into the pre-
viously reported ranges (Mac Gabhann and Popel, 2007) (and refer-
ences within), and agree within order-of-magnitude with the
simulation parameters listed in Table A.1.

In all cases, we have wþ > w� and, therefore, positive equilib-
rium cooperativity. Comparing our estimates with those presented
in Peach et al. (2019), where the data were fitted to a simple mono-
meric binding model, we see our estimated kþ values are consis-
tently lower than in Peach et al. (2019), and our k� values are
consistently higher, but within order-of-magnitude. Our rank-
order for the association rates is in agreement with (Peach et al.,
2019), with VEGF165a-TMR having the highest kþ, and VEGF121a-
TMR having the lowest. Differences in these parameter values
across the two studies are to be expected, of course, since the pro-
cess of LID is not modelled in (Peach et al., 2019).

To further understand the implications of these estimations we
plot the individual species curves for all results in Fig. 6.2. We note
the appearance of peaks in some of the RAR½ � tð Þ curves. In particu-
lar, these appear for the higher ligand concentrations of the
VEGF165a-TMR and VEGF121a-TMR curves. In Table 6.2 we consider
the nondimensional parameter values for the estimated parame-
ters. For each ligand, our estimates correspond to large b and large
c, which were studied independently as asymptotic cases in Sec-
tion 5, where it was assumed that a ¼ O 1ð Þ (which our estimates
yield for moderate to high ligand concentration). Peaks in RAR½ �
are observed in 6.2 for high ligand concentration (with a > 1) for
isoforms VEGF165a-TMR and VEGF121a-TMR, as in (5.21) where
min�1), k� (min�1), Rtot (M).

wþ w� Rtot

10�2 3:11� 103 1:79� 103 6:19� 10�9

10�2 2:31� 104 5:05� 102 1:87� 10�9

10�2 6:51� 103 4:97� 103 5:35� 10�9

rs. Experiments were performed using five concentrations of three different VEGF
recorded. An excellent fit to the data is seen from fitting to all data sets individually.



Fig. 6.2. Individual species curves and signal timecourses (numerical solutions to (2.1)–(2.3)) using the estimated parameters from Table 6.1 show peaks in some of the
R:AR½ � tð Þ curves.
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we considered a ¼ O 1ð Þ and c � 1. Further, we note that the
monotonic nature of the measured signal S versus ligand concen-
tration relationship at all time points is not always replicated in
the RAR½ � versus concentration curves. Given the potential differen-
tial roles and kinetic rates associated with AR and RAR in signalling
(Mac Gabhann and Popel, 2007) and internalisation (Kilpatrick
et al., 2017), and that the interaction of RAR with other species is
of significant biological importance (Mac Gabhann and Popel,
2007), it is clear that being able to parameterise the LID process
in terms of binding cooperativity may be potentially important
towards functional studies and more detailed signalling and sys-
Table 6.2
Nondimensional parameter combinations with estimated parameters, taking
A½ � ¼ 5� 10�9 as a representative value in the middle of the range considered.

VEGF165a-TMR VEGF165b-TMR VEGF121a-TMR

a ¼ KA A½ � 0:628 0:122 0:629
b ¼ wþRtot= A½ � 3850 8639 6965

c ¼ w� 1790 505 4970
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tems biology models (Mac Gabhann et al., 2010). As noted in
Mac Gabhann et al. (2010); Mac Gabhann and Popel (2004), differ-
ent receptor combinations (including those modelled by AR and
RAR here) may differentially activate a number of alternate sig-
nalling pathways. The development of VEGF-targeted therapies
will benefit from quantitative understanding of the range of poten-
tial binding dynamics at the top of these pathways.
7. Discussion

We have presented a model for the dynamics of ligand-induced
dimerisation (LID), with specific reference to the binding of VEGF
to VEGFRs. This work represents an in-depth mathematical analy-
sis of the binding kinetics which have been considered partially in
earlier models (Mac Gabhann and Popel, 2007;Alarcón and Page,
2007). This detailed analysis has resulted in an elucidation of the
potential dynamics in response to a range of model parameters.
In particular, new analytical expressions for equilibrium responses
provide a simple, powerful platform for the analysis of systems



Table A.1
Values used for plotting are taken from Mac Gabhann and Popel (2007).

Parameter Rtot kþ k� KA

Value 2� 10�10M 4:4� 107M�1s�1 1:32� 10�3s�1 3:3� 1010M�1
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exhibiting LID. An interesting feature of the expressions for equi-
librium binding is that log-dose–response (logDR) curves will not
contain multiple inflections for LID, in contrast with the analagous
results for ligands binding pre-dimerised GPCRs (White and Bridge,
2019). Hence the existence of multiphasic logDR curves with mul-
tiple inflections is not an indicator of LID.

A significant advance over equilibrium studies (even where ODE
models have been formulated Mac Gabhann and Popel, 2007) is the
analysis of ligand binding dynamics for LID. While a purely pre-
dimerised receptor model results in a linear model which can be
solved exactly via eigenvalue analysis or Laplace Transforms
(White and Bridge, 2019), the corresponding LID model considered
here is significantly more challenging to solve. The nonlinear nat-
ure of the ODE system requires numerical solutions. Numerical
simulations have provided insights into the signalling dynamics
by considering a modelled signal corresponding to experimental
data (Peach et al., 2019), while asymptotic analysis has been used
to provide insights into the key dominant reaction sequences over
multiple timescales, and exact solutions for particular parameter
regimes. The analysis presented here extends both our understand-
ing of the potential dynamics of the LID system, and the ‘‘mathe-
matical pharmacology” literature in receptor theory (Bridge,
2009; Bridge et al., 2010; Woodroffe et al., 2009; Peletier and
Gabrielsson, 2018; van der Graaf et al., 2016).

We validate our model by fitting to recent published, experi-
mental data, where we see that the model gives an excellent fit
to the data across all curves. This gives confidence that the model
may accurately describe the binding and dimerisation processes
for the VEGF-VEGFR system, and may be used to estimate pharma-
cologically relevant kinetic parameters.

A key next step in our work will be the application of structural
identifiability analysis (SIA) to our ODE model in order to deter-
mine which parameters are theoretically estimable from a given
model readout. Compared to many systems biology ODE models,
our LID model is low-dimensional. Even so, SIA is challenging.
For low-dimensional linear models, SIA results may be obtained
via relatively straightforward transfer function methods (Grewal
and Glover, 1976; Godfrey and DiStefano, 1985; Janzén et al.,
2016), but the nonlinear LID model will require series solution or
transformation methods (Janzén et al., 2016; Pohjanpalo, 1978;
Chis et al., 2011). While SIA is often used in pharmacokinetic stud-
ies, its use in receptor theory kinetic models is sparse. We propose
a comparative study of SIA applied to ligand binding models for
both pre-dimerised and ligand-induced dimers.

Finally, given the apparent excellent fit of our model to recent
experimental data for non-internalising VEGF receptors, we pro-
pose as future work an extension of the current model to incorpo-
rate the internalisation of VEGFR which has also been observed in
recent experiments (Peach et al., 2018; Peach et al., 2019;
Kilpatrick et al., 2017). Further analysis, quantification of binding
and internalisation rates, and simulation will contribute to the lit-
erature on VEGFR and its associated signalling pathways of
biomedical interest.
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Appendix A. Parameter values

In this appendix, we give parameter values used for simula-
tions. The values were taken from ranges reported in Mac
Gabhann and Popel (2007) (and references within) and can be seen
in Table A.1.

Appendix B. Nondimensionalisation

We consider the nondimensionalisation of Equations. (2.1). We
let the dimensionless free receptor r be given by

R½ � ¼ Rtotr ) r ¼ R½ �
Rtot

: ðB:1Þ

To scale AR½ � and RAR½ � we first recall the equilibrium
concentrations

AR½ � ¼ KA A½ � R½ �; RAR½ � ¼ wKA R½ � AR½ � ¼ wK2
A A½ � R½ �2; ðB:2Þ

We use these to give us scalings for AR½ � and RAR½ � as

AR½ � ¼ KA A½ �Rtotp ) p ¼ AR½ �
KA A½ �Rtot

; ðB:3Þ

RAR½ � ¼ wK2
A A½ �R2

totq ) q ¼ RAR½ �
wK2

A A½ �R2
tot

; ðB:4Þ

where p and q are the new nondimensional single-bound receptor
and dimerised receptor, respectively. Finally, we set

t ¼
~t
k�

) ~t ¼ k�t: ðB:5Þ

The original system (2.1) then gives the dimensionless system

dr
d~t

¼ a p� rð Þ þ a2b q� rpð Þ; ðB:6aÞ
dp
d~t

¼ r � pþ ab q� rpð Þ; ðB:6bÞ
dq
d~t

¼ c pr � qð Þ; ðB:6cÞ

where

a ¼ KA A½ �; b ¼ wþRtot

A½ � ; c ¼ w�; ðB:7Þ

with initial conditions

r 0ð Þ ¼ 1; p 0ð Þ ¼ 0; q 0ð Þ ¼ 0: ðB:8Þ
Conservation of receptor now reads

1 ¼ r þ apþ 2a2b
c

q; ðB:9Þ
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which gives an expression for q:

q ¼ c
2a2b

1� r � apð Þ: ðB:10Þ

Alternatively, the reduced system (2.5) gives

dr
d~t

¼ � aþ c
2

� �
r þ 1� c

2

� �
ap� a2brpþ c

2
; ðB:11aÞ

dp
d~t

¼ 1� c
2a

� �
r � 1þ c

2

� �
p� abrpþ c

2a
; ðB:11bÞ
Appendix C. Large b asymptotic analysis

Setting b ¼ 1
� and dropping the tilde, the system (5.3) (also (B.6))

becomes

�
dr
dt

¼ �a p� rð Þ þ a2 q� rpð Þ; ðC:1aÞ

�
dp
dt

¼ � r � pð Þ þ a q� rpð Þ; ðC:1bÞ
dq
dt

¼ c pr � qð Þ; ðC:1cÞ

with initial conditions

r 0ð Þ ¼ 1; p 0ð Þ ¼ 0; q 0ð Þ ¼ 0: ðC:2Þ
Conservation of receptor now reads

1 ¼ r þ apþ 2a2

�c
q; ðC:3Þ

or

� ¼ �r þ �apþ 2a2

c
q: ðC:4Þ

Clearly, we require q ¼ O �ð Þ. An expression for q is given by

q ¼ c�
2a2 1� r � apð Þ: ðC:5Þ

The reduced problem is

�
dr
dt

¼ �� aþ c
2

� �
r þ � 1� c

2

� �
ap� a2rpþ c�

2
; ðC:6aÞ

�
dp
dt

¼ � 1� c
2a

� �
r � � 1þ c

2

� �
p� arpþ c�

2a
; ðC:6bÞ

r 0ð Þ ¼ 1; p 0ð Þ ¼ 0: ðC:6cÞ
where conservation gives
Fig. C.1. Numerical results for system (C.1), showing timescales

12
q ¼ c�
2a2 1� r � apð Þ: ðC:6dÞ

Now we consider analysing the system (C.1) or the reduced system
(C.6).

C.1. Numerical results and timescales

In Fig. C.1, we show an example numerical solution on a log–log
scale. It is clear that for t ¼ O �ð Þ, the following scalings for the
dependent variables in this inner layer (ie. on this timescale) or ini-
tial layer are appropriate:

t ¼ �s; r ¼ ~r; p ¼ �~p; q ¼ �2~q:

On a longer timescale with t ¼ O 1ð Þ, the following scalings are
appropriate:

r ¼ �r; p ¼ ��p; q ¼ ��q:

On a shifted timescale with t ¼ O 1ð Þ, we see the system
approaching equilibrium, and the following scalings are
appropriate:

r ¼ �
1
2 r̂; p ¼ �

1
2p̂; q ¼ �q̂:
C.2. Inner solution

Under the inner layer scalings

t ¼ �s; r ¼ ~r; p ¼ �~p; q ¼ �2~q; ðC:7Þ
the governing system (C.1) gives:

d~r
ds

¼ �a �~p� ~rð Þ þ �a2 �~q� ~r~pð Þ; ðC:8aÞ
d~p
ds

¼ ~r � �~pþ a �~q� ~r~pð Þ; ðC:8bÞ
d~q
ds

¼ c ~p~r � �~qð Þ; ðC:8cÞ

with initial conditions

~r 0ð Þ ¼ 1; ~p 0ð Þ ¼ 0; ~q 0ð Þ ¼ 0: ðC:8dÞ
Considering expansions of the form

~r � ~r0 þ �
1
2~r1 þ . . . ; ~p � ~p0 þ �

1
2~p1 þ . . . ; ~q

� ~q0 þ �
1
2~q1 þ . . . ; ðC:9Þ

we find, at leading order, the following system:
and scalings of interest. Here, a ¼ 1; c ¼ 1:4 and � ¼ 10�8.
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d~r0
ds

¼ 0; ðC:10aÞ
d~p0

ds
¼ ~r0 � a~r0~p0; ðC:10bÞ

d~q0

ds
¼ c~r0~p0; ðC:10cÞ

with initial conditions

~r0 0ð Þ ¼ 1; ~p0 0ð Þ ¼ 0; ~q0 0ð Þ ¼ 0: ðC:10dÞ
This system has solution

~r0 sð Þ � 1; ~p0 sð Þ ¼ 1�e�as
a ; ~q0 sð Þ ¼ c

a2 as� 1þ e�asð Þ:
ðC:11Þ

We note that ~q0 sð Þ is unbounded as s! 1, so matching to an
outer solution would not necessarily be straightforward.

Biologically, the solution ~p0 sð Þ corresponds to monoexponential
ligand-monomeric receptor binding kinetics. We note that ~p0 sð Þ
depends only on a, which controls binding kinetics but not dimeri-
sation. This binding phase is confined to the short timescale
t ¼ O �ð Þ, beyond which the effect of large dimerisation rate is seen.
On this short timescale, the kinetics of q are driven by forward
dimerisation only.

C.3. Intermediate solution

We seek an intermediate-time solution by considering (C.1) on
the timescale t ¼ O 1ð Þwhile retaining the inner species scalings for
p and r, with q ¼ O �ð Þ. Specifically, we consider
r ¼ �r; p ¼ ��p; q ¼ ��q: ðC:12Þ

Under these scalings, the system (C.1) becomes

d�r
dt

¼ a ��p� �rð Þ þ a2 �q� �r�pð Þ; ðC:13aÞ

�
d�p
dt

¼ �r � ��pþ a �q� �r�pð Þ; ðC:13bÞ
d�q
dt

¼ c �r�p� �qð Þ: ðC:13cÞ

We find, at leading order, the following system:

d�r0
dt

¼ �a�r0 þ a2 �q0 � �r0�p0ð Þ; ðC:14aÞ
0 ¼ �r0 � a �q0 � �r0�p0ð Þ; ðC:14bÞ
d�q
dt

¼ c �r0�p0 � �q0ð Þ: ðC:14cÞ

The dominant reactions on this timescale are forward binding of
ligand to monomeric receptor and reversible dimerisation. The sys-
tem (C.14) has solutions

�r0 tð Þ ¼ Ce�2at; �p0 tð Þ ¼ 1
a
� c
2a2 þ

D
C
e2at ; �q0 tð Þ

¼ D� C
c

2a2 e
�2at;

where C and D are constants. These constants are found by match-
ing to the inner solutions. By requiring

lim
t!0

�r0 tð Þ ¼ lim
s!1

~r0 sð Þ; and lim
t!0

�p0 tð Þ ¼ lim
s!1

~p0 sð Þ; ðC:15Þ

we find that

C ¼ 1; D ¼ c
2a2 ;

which gives the leading order solutions

�r0 tð Þ ¼ e�2at; �p0 tð Þ ¼ 1
aþ c

2a2 e2at �1
� �

; �q0 tð Þ ¼ c
2a2 1� e�2at
� �

:

ðC:16Þ
13
We note here that the observed decay constant of the receptor
concentration, 2a, is due to both free ligand and receptor-bound
ligand binding available monomeric receptors. Also, we note the
exponential growth and decay terms in the solution on this time-
scale. The intermediate solutions will be matched to outer solu-
tions in an ‘‘overlap” region, which approach finite nontrivial
equilibrium values.

C.4. Outer solution

Under the outer solution scalings

r ¼ �
1
2 r̂; p ¼ �

1
2p̂; q ¼ �q̂; ðC:17Þ

the governing system (C.1) gives:

�
1
2
dr̂
dt

¼ �
1
2a p̂� r̂ð Þ þ a2 q̂� r̂p̂ð Þ; ðC:18aÞ

�
1
2
dp̂
dt

¼ �
1
2 r̂ � p̂ð Þ þ a q̂� r̂p̂ð Þ; ðC:18bÞ

dq̂
dt

¼ c p̂r̂ � q̂ð Þ: ðC:18cÞ

Considering expansions of the form

r̂ � r̂0 þ �
1
2 r̂1 þ . . . ; p̂ � p̂0 þ �

1
2p̂1 þ . . . ; q̂

� q̂0 þ �
1
2q̂1 þ . . . ; ðC:19Þ

we find, at leading order, the following system:

0 ¼ q̂0 � r̂0p̂0; ðC:20aÞ
0 ¼ q̂0 � r̂0p̂0; ðC:20bÞ
dq̂0

dt
¼ 0: ðC:20cÞ

This system’s solutions satisfy

q̂0 tð Þ � const; p̂0 tð Þ ¼ q̂0 tð Þ
r̂0 tð Þ : ðC:21Þ

Matching to the long-term behaviour of �q0 tð Þ in (C.16), we find
that

q̂0 tð Þ � c
2a2 ; p̂0 tð Þ ¼ c

2a2 r̂0 tð Þ : ðC:22Þ

To determine the dynamics of the leading order system, we con-

sider O �1
2

� �
terms in the first two equations of (C.18), which give

the system

dr̂0
dt

¼ a p̂0 � r̂0ð Þ þ a2 q̂1 � r̂1p̂0 � r̂0p̂1ð Þ; ðC:23aÞ
dp̂0

dt
¼ p̂0 � r̂0 þ a q̂1 � r̂1p̂0 � r̂0p̂1ð Þ: ðC:23bÞ

We can eliminate the nonlinear terms to give a single ODE:

dr̂0
dt

� a
dp̂0

dt
¼ 2a p̂0 � r̂0ð Þ: ðC:24Þ

We can now make progress by using the second relationship in
(C.22) to write

dp̂0

dt
¼ � c

2a2 r̂20

dr̂0
dt

:

Substituting for both p̂0 and dp̂0
dt in (C.24) gives the ODE for the

outer solution r̂0 as

dr̂0
dt

¼ 2r̂0 c� 2a2r̂20
� �
cþ 2ar̂20

: ðC:25Þ
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We find the solution to this separable ODE to be given implicitly
by

log r̂0 �
aþ 1ð Þ log 2a2 r̂20 � c

� �
2a

¼ 2t þ c1; ðC:26Þ

for a constant c1. Our leading order outer solutions r̂0; p̂0; q̂0, may
thus be summarised and computed as follows:

log r̂0 tð Þ � aþ 1ð Þ log 2a2 r̂20 tð Þ � c
� �
2a

¼ 2t þ c1; ðC:27aÞ

p̂0 tð Þ ¼ c
2a2r̂0 tð Þ ; ðC:27bÞ

q̂0 tð Þ � c
2a2 : ðC:27cÞ

Biologically, ligand binding continues on this timescale, with
reversible dimerisation in approximate equilibrium.

The single integration constant c1 in (C.27) can be found by
matching to the intermediate solution for �r0 in (C.16). For that
we take into account the scalings (C.12) and (C.17) which gives

r̂0 tð Þ 	 ��
1
2�r0 tð Þ; ðC:28Þ

in the region where these solutions should overlap. Upon substitut-
ing this into (C.27a) and writing the log-terms into one term, we
find

log ��
1
2�r0 tð Þ

2a2��1�r20 tð Þ�cð Þ
aþ1ð Þ
2a

¼ 2t þ c1;

) ��
1
2�r0 tð Þ

2a2��1�r20 tð Þ�cð Þ aþ1ð Þ
2a

¼ e2tþc1 ;

) �
1
2a�r0 tð Þ

2a2�r20 tð Þ��cð Þ
aþ1ð Þ
2a

¼ e2tþc1 ;

ðC:29Þ

where in the last step we multiply both the denominator and the

numerator by �ð Þ aþ1ð Þ
2a .

Then, we find to leading order

�
1
2a�r0 tð Þ

2a2�r2
0
tð Þð Þ aþ1ð Þ

2a
¼ e2tþc1 ;

) �r0 tð Þð Þ�1
a ¼ �� 1

2a 2a2
� � aþ1ð Þ

2a e2tþc1 ;

) �r0 tð Þ ¼ �1
2 2a2
� �� aþ1ð Þ

2 e�2ta�ac1 :

ðC:30Þ

Thus, the expression �r0 is identical for that in the intermediate
region in (C.16) when we choose

�1
2 2a2
� �� aþ1ð Þ

2 e�ac1 ¼ 1;

) �1
2 2a2
� �� aþ1ð Þ

2 ¼ eac1 ;

) 1
a log �1

2 2a2
� �� aþ1ð Þ

2

� �
¼ c1;

) log � 2a2ð Þ� aþ1ð Þ� �
2a ¼ c1:

ðC:31Þ

In summary, we have

log r̂0 tð Þ � aþ1ð Þ log jc�2a2 r̂20 tð Þj
2a ¼ 2t þ c1; c1 ¼ 1

2a log
�

2a2ð Þaþ1 ; ðC:32Þ

p̂0 tð Þ ¼ c
2a2 r̂0 tð Þ ; q̂0 tð Þ � c

2a2 : ðC:33Þ
14
Appendix D. Large c asymptotics

Setting c ¼ 1
� and dropping the tilde, the system (5.3) becomes

dr
dt

¼ a p� rð Þ þ a2b q� rpð Þ; ðD:1aÞ
dp
dt

¼ r � pþ ab q� rpð Þ; ðD:1bÞ

�
dq
dt

¼ pr � q; ðD:1cÞ

with initial conditions

r 0ð Þ ¼ 1; p 0ð Þ ¼ 0; q 0ð Þ ¼ 0: ðD:2Þ
Conservation of receptor now reads

1 ¼ r þ apþ 2a2b�q: ðD:3Þ
The reduced problem is

�
dr
dt

¼ � �aþ 1
2

� �
r þ a �� 1

2

� �
p� �a2brpþ 1

2a
; ðD:4aÞ

�
dp
dt

¼ �� 1
2a

� �
r � �þ 1

2

� �
p� �abrpþ 1

2a
; ðD:4bÞ

r 0ð Þ ¼ 1; p 0ð Þ ¼ 0: ðD:4cÞ
where conservation gives

q ¼ 1� r � ap
2a2b�

: ðD:4dÞ

Nowwe consider analysing the system (D.1) or the reduced sys-
tem (D.4).

D.1. Numerical results and timescales

In Fig. D.1, we show an example numerical solution on a log–log
scale. It is clear that for t ¼ O �ð Þ, the following scalings for the
dependent variables in this inner layer (ie. on this timescale) or ini-
tial layer are appropriate:

t ¼ �s; r ¼ ~r; p ¼ �~p; q ¼ �~q:

On a longer timescale with t ¼ O 1ð Þ, the following scalings are
appropriate:

r ¼ �r; p ¼ �p; q ¼ �q:
D.2. Inner solution

Under the inner layer scalings

t ¼ �s; r ¼ ~r; p ¼ �~p; q ¼ �~q; ðD:5Þ
the governing system (D.1) gives:

d~r
ds ¼ a �2~p� �~r

� �þ �2a2b ~q� ~r~pð Þ; ðD:6aÞ
d~p
ds

¼ ~r � �~pþ �ab ~q� ~r~pð Þ; ðD:6bÞ
d~q
ds

¼ ~p~r � ~q; ðD:6cÞ

with initial conditions

~r 0ð Þ ¼ 1; ~p 0ð Þ ¼ 0; ~q 0ð Þ ¼ 0: ðD:6dÞ

Considering expansions of the form

~r � ~r0 þ �
1
2~r1 þ . . . ; ~p � ~p0 þ �

1
2~p1 þ . . . ; ~q

� ~q0 þ �
1
2~q1 þ . . . ; ðD:7Þ



Fig. D.1. Numerical results for system (C.1), showing timescales and scalings of interest. Here, a ¼ 4; b ¼ 0:2 and � ¼ 10�8.
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we find, at leading order, the following system:

d~r0
ds

¼ 0; ðD:8aÞ
d~p0

ds
¼ ~r0; ðD:8bÞ

d~q0

ds
¼ ~r0~p0 � ~q0; ðD:8cÞ

with initial conditions

~r0 0ð Þ ¼ 1; ~p0 0ð Þ ¼ 0; ~q0 0ð Þ ¼ 0: ðD:8dÞ
This system has solution

~r0 sð Þ � 1; ~p0 sð Þ ¼ s; ~q0 sð Þ ¼ e�s þ s� 1: ðD:9Þ
Both ~p0 sð Þ and ~q0 sð Þ is unbounded as s! 1, so matching to an

outer solution would not necessarily be straightforward.
Biologically, the dominant reactions on this timescale are the

forward binding of ligand to monomeric receptor, which only
affects AR dynamics, and the reversible dimerisation.
Fig. D.2. Numerical and asymptotic results for system (D.1), showing ti
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D.3. Outer solution

For the outer solution

r ¼ r̂; p ¼ p̂; q ¼ q̂; ðD:10Þ

to the governing system (D.1), we considering expansions of the
form

r̂ � r̂0 þ �
1
2 r̂1 þ . . . ; p̂ � p̂0 þ �

1
2p̂1 þ . . . ; q̂

� q̂0 þ �
1
2q̂1 þ . . . : ðD:11Þ

We find, at leading order, the following system:

dr̂0
dt

¼ a p̂0 � r̂0ð Þ; ðD:12aÞ
dp̂0

dt
¼ p̂0 � r̂0; ðD:12bÞ

0 ¼ r̂0p̂0 � q̂0: ðD:12cÞ
mescales and scalings of interest. Here, a ¼ 4;b ¼ 0:2 and � ¼ 10�4.



Table E.1
Estimated parameters returned from fitting to the data, as seen in Fig. 6.1. Units: kþ (M�1 min�1), k� (min�1), Rtot (M).

a kþ k� wþ w� Rtot

VEGF165a-TMR 2:78� 107 6:85� 106 3:44� 10�2 1:95� 103 1:79� 103 3:59� 10�9

VEGF165b-TMR 2:78� 107 1:48� 106 8:04� 10�2 6:30� 103 1:65� 102 3:59� 10�9

VEGF121a-TMR 2:78� 107 2:23� 106 5:09� 10�2 2:61� 104 1:63� 103 3:59� 10�9

Fig. E.1. Data published in Peach et al. (2019) are used to estimate the model parameters. Experiments were performed using five concentrations of three different VEGF
isoforms (VEGF 165a-TMR, VEGF 165b-TMR and VEGF 121a-TMR) and the signal S tð Þ (2.3) is recorded. Parameters a and Rtot are constrained to be equal across all experiments.
Parameter values returned can be seen in Table E.1.
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This system’s solutions satisfy

r̂0 tð Þ ¼ Bþ Aae� aþ1ð Þt ; p̂0 tð Þ ¼ B� Ae� aþ1ð Þt
;

q̂0 tð Þ ¼ B2 þ AB a� 1ð Þe� aþ1ð Þt � A2e�2 aþ1ð Þt ;
ðD:14Þ

for constants A and B to be found by matching to the inner solu-
tions. By requiring that

lim
s!1

~r0 sð Þ ¼ lim
t!0

r̂0 tð Þ;

we find that

B ¼ 1� Aa:

Also, we require that

~p0 sð Þ 	 p̂0 tð Þ for t ¼ �d; s ¼ ��d;

for 0 < d < 1. Taking, for example, d ¼ 1
2, we find that

A ¼ B ¼ 1
aþ 1

:

Then the outer solution is given by

r̂0 tð Þ ¼ 1þae� aþ1ð Þt
1þa ; p̂0 tð Þ ¼ 1�e� aþ1ð Þt

1þa ;

q̂0 tð Þ ¼ 1þ a�1ð Þe� aþ1ð Þt�ae�2 aþ1ð Þt

1það Þ2 :
ðD:15Þ

Biologically, the dominant reactions on this timescale are the
reversible binding of ligand to monomeric receptor, while reversi-
ble dimerisation has approximately reached equilibrium due to the
rapid undimerisation.

In Fig. D.2, we show example numerical results and asymptotic
approximations. Agreement between the numerical solution and
the inner and outer approximations is clear for the inner and outer
timescales.
16
Appendix E. Data fitting

In Fig. E.1 and Table E.1, we show illustrative results of an alter-
native parameter estimation implementation, with a and Rtot fixed
across all parameter sets, as described in Section 6. We note the
order-of-magnitude agreement with the results shown in Fig. 6.1
and Table 6.1, where a and Rtot were estimated independently for
each of the three experiments.
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