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Assessment of Parkinson’s Disease Severity
From Videos Using Deep Architectures

Zhao Yin , Victor J. Geraedts , Ziqi Wang , Maria Fiorella Contarino , Hamdi Dibeklioglu , and
Jan van Gemert

Abstract—Parkinson’s disease (PD) diagnosis is based
on clinical criteria, i.e., bradykinesia, rest tremor, rigidity,
etc. Assessment of the severity of PD symptoms with clin-
ical rating scales, however, is subject to inter-rater vari-
ability. In this paper, we propose a deep learning based
automatic PD diagnosis method using videos to assist the
diagnosis in clinical practices. We deploy a 3D Convolu-
tional Neural Network (CNN) as the baseline approach for
the PD severity classification and show the effectiveness.
Due to the lack of data in clinical field, we explore the
possibility of transfer learning from non-medical dataset
and show that PD severity classification can benefit from
it. To bridge the domain discrepancy between medical and
non-medical datasets, we let the network focus more on the
subtle temporal visual cues, i.e., the frequency of tremors,
by designing a Temporal Self-Attention (TSA) mechanism.
Seven tasks from the Movement Disorders Society - Uni-
fied PD rating scale (MDS-UPDRS) part III are investigated,
which reveal the symptoms of bradykinesia and postural
tremors. Furthermore, we propose a multi-domain learning
method to predict the patient-level PD severity through
task-assembling. We show the effectiveness of TSA and
task-assembling method on our PD video dataset empiri-
cally. We achieve the best MCC of 0.55 on binary task-level
and 0.39 on three-class patient-level classification.

Index Terms—Parkinson’s disease (PD), severity
classification, deep learning, transfer learning, self-
attention, multi-domain learning.

I. INTRODUCTION

PARKINSON’S disease (PD) is a chronic, progressive
neurological disorder, affecting over 10 million people
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around the world according to the American Parkinson Dis-
ease Association (APDA) [45]. Individuals with Parkinson’s
disease typically present with characteristic motor symptoms,
including bradykinesia (i.e. slowness of movement), rigidity
(stiffness), and rest tremor [48]. These symptoms are progres-
sive over time, subsequently leading to an increase in their
severity.

At present, the Movement Disorder Society - Unified Parkin-
son’s Disease Rating Scale (MDS-UPDRS), containing four
parts: I for non-motor experiences of daily living, II for motor
experiences of daily living, III for motor examination and IV for
motor complications, has been widely used as a validated tool to
quantify PD severity [20], [33]. MDS-UPDRS is the revised and
more comprehensive version of the original UPDRS [17] and
they are highly correlated on the motor sections [34]. This study
uses the MDS-UPDRS part III (MDS-UPDRS-III) as the mea-
surement for analysis, which contains 18 tasks and 33 scores,
with some tasks pertaining to either left or right extremities. Each
task, tied to a symptom, has five responses linked to symptom-
severity: 0-normal, 1-slight, 2-mild, 3-moderate, and 4-severe,
providing consistency across tasks. The clinical scores are as-
sessed by a single examinator, that is either a nurse specialized in
Parkinson’s Disease or a physician. Both have the certification to
rate the MDS-UPDRS III. Collapsing all the scores to provide
the patient with a composite total score is not recommended
by [20] but can still be applicable given the minimal clinically
important difference threshold values [32] and is often used
in clinical practice to monitor disease progression. Although
MDS-UPDRS-III is currently the gold standard to quantify the
severity, it still has the potential to cause less reliable ratings
due to the intrinsic inter-rater variability caused by the non-
identical inter-rater protocols and inexperienced examiners [16],
[51]. Besides, the presence of the specialist is mandatory when
giving the rating decisions. These difficulties make the manual
rating inefficient and urge for automatic quantification method.
In this work, we propose a deep learning based PD severity
quantification approach using videos. Fig. 1 shows the overall
pipeline.

The goal of PD severity quantification is that, given an individ-
ual patient’s video performing a specific task, the corresponding
severity level can be predicted by the machine learning algorithm
to assist ratings of examiners. As the task performed by the
patient in the video is a kind of action, we naturally think of
the human action recognition method to solve the identifica-
tion of Parkinson’s severity. Recently, many action recognition
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Fig. 1. The flowchart of the automatic PD severity quantification. The
task symbols from left to right denote task finger tapping, hand move-
ments, kinetic tremor, leg agility, postural tremor, pronation, and toe
tapping.

architectures [5], [18], [21] achieved promising performance
on public human action datasets and one of the mostly used
architecture is the inflated 3D CNN (I3D) [5], which is a 3D
CNN with 3D kernels inflated from a 2D CNN with an additional
temporal dimension. Therefore, we opt to use I3D as the base
model for this work.

Due to the small size of our PD dataset, directly training I3D
from scratch is inefficient and prone to overfitting; thus, we use
transfer learning to pre-train the network on large datasets to
make the training process more stable. However, public datasets
we pre-train on have noticeable motion differences while the
motion difference in our PD dataset is subtle. Such large domain
discrepancy makes it difficult to transfer knowledge between
domains, so we need a solution to focus on exploring the
temporal motion changes. Besides, the video in our dataset is
a repeating task with periodic actions, where the model should
learn the repeating frequency or the starting and ending point.
Thus, we need another solution to assign different weights for the
frames of the video. Additionally, as stated in [39], [41], not all
frames are equally crucial for action recognition, so we propose
to use temporal self-attention to assign the weights for frames
as well as solve the domain discrepancy issue. The benefit is
not only for such a repeating dataset but also for other datasets
because it holds for other datasets as well that not all frames are
equally important.

Once we can predict each task’s severity, each patient will
have a separate severity score for each task. However, it is
more clinically interesting to give a summary severity for the
patient rather than multiple ones, so we propose to apply a novel

task-assembling method to combine the predictions of different
tasks from the patient to predict a single score.

The contributions of this work are:
1) we perform automatic task-level PD severity classifica-

tion using I3D from videos of our PD dataset, based on
seven tasks in MDS-UPDRS-III;

2) we show that I3D can benefit from non-medical datasets
with transfer learning;

3) we propose TSA to focus on the temporal visual clues
and overcome the large discrepancy of motion difference
between non-medical datasets and our PD dataset during
transfer learning;

4) we propose a task-assembling method to combine models
of different tasks to produce a single concluding severity
score for a patient.

II. RELATED WORK

A. Machine/Deep Learning Based Approaches

Machine/deep learning based PD motor assessment and anal-
ysis has been intensively researched in recent years. For instance,
the K-nearest neighbors (KNN) AdaBoost classifier and support
vector machines (SVM) with RBF kernel were used to classify
between PD patients and controls based on the features extracted
from individual handwriting [15]. Butt et al. [4] applied machine
learning based methods to investigate the significance of PD
motor features. For signal-based analysis, signals acquired from
the gyroscope attached to the subject’s finger were extracted to
feed into multiple classifiers [49]. In [2], glottal flow features
were used as input for SVM classifier to detect PD with an
accuracy of 75.3%. Ferraris et al. [19] used data from optial
RGB-Depth devices, which tracks hands and body movements,
to train classifiers for PD motor severity rating. Apart from the
signal-based analysis, the video was also used as an input data
type for PD quantification [54], [59]. Lu et al. [30] designed a
pose-based estimation system for assessing Parkinson’s disease
motor severity. However, to the best of our knowledge, apart
from [46] in which freezing of gait videos were used to feed the
3D network, most researchers extracted the feature from videos
as the final input for classifiers without fully utilizing the video
resource. Based on machine/deep learning approaches, our work
applies action recognition method to quantify PD severity using
RGB video data.

B. Transfer Learning

Transfer learning is a research problem in machine learning
that focuses on storing knowledge gained while solving one
problem and applying it to a different but related problem [58].
It is widely used as a pre-training approach to offer the model a
better starting point instead of training from scratch. In the work
of [36], CNN layers trained from ImageNet is reused to transfer
visual recognition tasks to learn mid-level representations for
small datasets. In action recognition, researchers apply transfer
learning to pre-train the model on a large dataset to make the
training process faster, more efficient, and less prone to overfit-
ting with a significant performance improvement [5], [21]. Most
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related research shows that transfer learning can be a useful tool
to make the network work on small datasets, and thus we use
transfer learning in this work to help improve the performance
on our PD dataset.

C. Capture Temporal Information

1) For General Video Dataset: In action recognition, re-
searchers apply various methods to capture the temporal infor-
mation crucial in video data. In the work of [50] (C3D), 3D
CNN is used as a spatiotemporal feature extractor for videos,
and the extracted features are used as inputs for simple linear
classifiers. Based on the 3D CNN, an I3D is introduced to take
advantage of pre-trained 2D models [5]. Similar to 3D CNN,
I3D performs 3D convolution on both spatial and temporal
dimensions simultaneously. However, in I3D, pre-trained 2D
filters are repeated or inflated multiple times to form 3D filters.
Therefore, I3D can benefit from successful image (2D) classifi-
cation models trained on large datasets such as ImageNet [12].
Besides 3D CNN, a combination of a stack of CNNs and Long
Short-Term Memory (LSTM [23]) networks is applied to exploit
the temporal information [1], [13] as well. These methods apply
either 3D CNN or 2D CNN with fusion methods such as LSTM
on the video data to capture the temporal information. We use
I3D as our base model because of its decent performance on
public datasets, including Kinetics-400 experimented in [21].

2) For Periodic- and Subtle-Motion Video Dataset: The spa-
tiotemporal template of motion features is used to recognize
and segment the repetitive motion by template matching [38].
In [10], CNN is used to count the number of repetitions, and
circle length in periodic-motion videos. Besides the task of
action recognition, the estimation of repeating frequency is
studied in [37], using a Lagrangian approach and an Eulerian
approach as the frequency estimators. In periodic-motion videos,
we need to focus on the repeating frequency, starting, and ending
points to make the model work.

In medical datasets such as movement disorder dataset, videos
usually have subtle motion changes, which are hard for archi-
tectures to work because subtle motion information is difficult
to capture and can not even be seen with bare eyes. The subtle
motions can be magnified using a steerable pyramid [28], [53].
In the work of [11], motion frequency is used to estimate material
properties. Similarly, signal analysis in the Fourier domain is em-
ployed to estimate the tremor frequency of subtle motions [37].
In subtle-motion videos, we need to focus on magnifying the
subtle motion or directly estimating the frequency.

D. Self-Attention

Attention module is widely used in natural language process-
ing [7] and computer vision [43], [56] fields by allowing the
network to focus on key words or pixels. Self-attention mech-
anism is proposed to capture the relative relationship between
words or pixels. Self-attention is extensively explored since the
Transformer network is introduced for machine translation [52]
where the self-attention is used to compute the interactions
between words. In recent work, the QANet [60] architecture uses

self-attention in cooperation with convolutions for machine-
reading and question answering tasks, where the convolution
computes local interactions and self-attention computes global
interactions. In image tasks, self-attention with relative posi-
tional embeddings is usually used to compute the interactions
among pixels in the same image and allows the model to learn
which part of the image is of more importance [3]. In the non-
local network [55], self-attention can be used in convolutional
architectures to learn the long-range interactions among pixels
in images or videos for object detection and video classification.
In general, self-attention is used in architectures for modeling
sequences as it can capture long-distance interactions. In this
paper, we propose a new method, temporal self-attention model,
for PD quantification, which involves I3D and the self-attention
mechanism, attempting to detect the periodic and subtle motion
in the video data.

E. Multi-Domain Learning

Different non-i.i.d. Parkinson tasks can be treated in a multi-
domain setting [14], [29], [57] with each task being one domain.
Multiple similar domains can be learned to let the model work
on a new target domain using parameter combination from
multiple classifiers [26]. In [6], perceptron-based algorithms
are employed for multi-task binary classification problem with
the similarity estimation among tasks. Multi-domain learning
aims at exploring the relationship between tasks or domains
and integrating them to solve a common task. In this work, we
combine the features from multiple domains (i.e., tasks from
MDS-UPDRS-III) to predict patient-level PD severity classifi-
cation.

III. METHODS

The overall flow of the algorithm is described as follows.
Initially, each video is preprocessed to have the same spatial and
temporal size. At the same time, we use network-based transfer
learning to transfer knowledge from non-medical datasets to the
medical one, i.e., reusing the network trained on large datasets
as the pre-trained model to replace model initialization. Then,
the pre-trained model is fine-tuned on the collected Parkinson’s
dataset to learn the underlying patterns. After fine-tuning, the
model can be used as the classifier for task-level classification.
By combining the features extracted by the deep models from
different tasks and training a shallow neural network using those
features, patient-level analysis can be further made.

A. Inflated 3D Convolutional Neural Network (I3D)

In this paper, we use I3D as the base network with Residual
Networks (ResNet) as the backbone (currently 18, 34, 50, 101,
152-layer variations are available) and its pre-trained models
are already available [21]. Furthermore, rather than using two
streams (RGB frames and optical flow), we use RGB frames
as the only input because computing optical flow is time-
consuming, which is not feasible if the real-time prediction is
required.
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The model is optimized using gradient descent by minimizing
the empirical loss with class-balanced focal loss [9]:

J(ω) =
1

N

N∑
i=1

(
− 1− β

1− βny

C∑
c=1

(1− pti,c)
γ log(pti,c)

)

+ λ ‖ω‖22 , (1)

where C, N , ω and γ denote the number of classes, number of
samples, learned parameters and focusing parameter, and β =
(N − 1)/N . ny stands for the number of samples in the ground-
truth class y and pt is defined as

pt =

{
p if y = c

1− p otherwise.
(2)

B. Self-Attention Replacing Convolution

We describe the proposed temporal self-attention block for
video classification following the symbol styles of [3].

1) Temporal Self-Attention Over Video Volume: We first
transpose and flatten the input of shape (C, T,H,W )1 from the
previous layer to the shape of HW × T × C and then perform
multi-head-attention on the temporal dimension

Oh = Softmax

(
QKT√

dhk

)
V, (3)

where queries Q = XWq , keys K = XWk and values V =

XWv and Wq , Wk ∈ RC×dh
k and Wv ∈ RC×dh

v are learned
linear transformations.2 dhk and dhv stand for the dimension of
each head of K and V . Note that we transpose the last two
dimensions of V to correctly multiply with Q. Concatenating
the outputs from all heads we get

O = [O1, . . . , ONh
] . (4)

The shape of O is (HW × T × dhk) and is transformed with
WO ∈ Rdv×dv to

MultiHead(Q,K, V ) = OWO, (5)

where MultiHead(Q,K, V ) is of shape (HW × T × dhv ). After
reshaping back to the original spatial and temporal dimension,
we have the final output MultiHead(Q,K, V ) ∈ RT×H×W×dv

of our temporal self-attention block if relative postional embed-
dings [3] (see Section III-B2) not applied.

The novelty of our temporal self-attention block is applying
the self-attention mechanism solely on the temporal dimension,
leaving the spatial dimension untouched. The advantage is that
self-attention can capture the long-range temporal changes while
keeping standard CNN there, capturing the necessary visual
patterns simultaneously. As such, the abilities of both self-
attention and CNN be retained and incorporated in the temporal
self-attention block, which effectively makes up the drawback
of I3D.

Fig. 2 illustrates the temporal self-attention mechanism.
The temporal sequence of feature points (red ones) that

1The number of channels, time or frames, height and width.
2Bias terms are ignored when we mention linear transformations.

Fig. 2. An example of temporal self-attention. Assume the stack of
those rectangles is a feature map (or more intuitively for 3D data, feature
volume) from one channel. Each rectangle represents the spatial visual
patterns at a specific temporal position. Our temporal self-attention is
performed on the feature points colored in red, which share the same
spatial position along the temporal dimension. It can be seen as self-
attention through time.

share the same spatial position is the atomic unit, on top
of which the temporal self-attention applies. We have HW
sequences/units located at all spatial positions, and each of
them is independent of others when performing the temporal
self-attention.

2) Relative Positional Embeddings: The only difference be-
tween 1D and 2D relative positional embeddings is the dimen-
sions involved in the algorithm. Thus we refer to [3] for the de-
tails of 2D relative positional embeddings, and we do not discuss
the 1D variation anymore in this paper. To implement temporal
relative self-attention, we add relative temporal information to
the temporal self-attention block’s output. The output is now
changed from (3) to

Oh = Softmax

(
QKT + Srel

T√
dhk

)
V, (6)

whereSrel
T ∈ RHW×T×T is the matrix of relative position logits

along the temporal dimension.
3) Temporal Relative Self-Attention: We combine tempo-

ral self-attention with 1D relative positional embeddings to
form our new building block-temporal relative self-attention
block. Fig. 3 describes the whole pipeline of the proposed
block.

4) Temporal Relative Self-Attention Network (TSA): Once
the temporal relative self-attention block is built up, the con-
volutional block in any architecture can be substituted. Take
3D ResNet-34 for instance, which has 33 convolutional layers.
We replace as many layers as possible with our block from the
last convolutional layer to the first one until we hit the memory
bottleneck.

The time complexity of our block is O(HWT 2dk) compared
to the convolutional block O(HWTC), which is time-efficient
since the temporal size is typically small after a few layers. The
memory cost isO(HWT 2Nhd

h
k) compared to the convolutional

block O(HWTC).
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Fig. 3. The general pipeline of our temporal relative self-attention.
Rectangles in the workflow represent tensors with shape specified, and
italic words stand for tensor operations. ⊗ and + denote tensor product
and addition.

C. Multi-Task Assembling

Using the model we discussed in previous sections, it can
solve the task-level severity classification on our PD dataset.
Given a sample related to a specific task from the dataset, we
can predict its task severity St. Nonetheless, it is more clinically
interesting to tell the severity score of a patient Sp instead of
tasks. Therefore, we propose two multi-task assembling methods
to combine the tasks to do severity classification for patients.
Note that the following methods require trained models on the
PD dataset for task-level classification.

1) Vector Averaging and Vector Weighting: We use the
trained model as a feature extractor to compress the information
of a video into a dense one. We first extract the flattened vector
F ∈ Rd of dimension size d as the compressed information,
which is the input feature of the fully connected layer. Each
video, containing only a single task from a patient, produces
one feature vector Fm of task m and all videos from that patient
produce feature vectors FM ∈ Rd×M of all M tasks. Different
tasks may contribute unequally to a patient’s severity score, so
we use two strategies to convert (or combine) FM into a vector
F ∈ Rd, representing the feature of a patient.

The first approach is to average features, formulated as

F =
1

M

M∑
m=1

Fm, (7)

by assuming each feature (task) contributes equally. The second
approach is to take the weighted average of features as the

following

F =

M∑
m=1

αmFm, (8)

where αm (
∑M

m=1 αm = 1) is the learnable weight for task m.
The first approach is a special case of this one. Afterward, F is
fed as input to train a shallow neural network.3 The network is
optimized using gradient descent by minimizing the empirical
loss J(ω) (see 1) where N is the number of patients.

2) Attention-Based Feature Weighting: In the feature aver-
aging and weighting approach, we assume task weights are
identical across all patients. However, patients may not share
the same task weights so that the global task weights may
be insufficient and inaccurate. Therefore, we propose to use
channel-wise attention-based weighting, which automatically
assigns task weights for each patient separately. To do so, we
use another feature map FM ∈ RM×C×T×H×W (M denotes the
number of tasks), the output of the last convolutional or our
self-attention layer, as the extracted feature for a video.

The first weighting strategy is to apply squeeze-and-excitation
block [24] to map the input feature FM to a set of channel
weights. As the task weights are our concerns instead of the
channels, we take the task dimension as the channel dimension
in the squeeze-and-excitation block. The process can be for-
mulated as follows. First, squeeze global information into a task
descriptor by using global average pooling to generate task-wise
statistics

zm =
1

C × T ×H ×W

C∑
c=1

T∑
t=1

H∑
h=1

W∑
w=1

Fm(c, t, h, w), (9)

where Fm denotes the feature map for task m. Then we excite
the task-wise statistics to task weights (W1 ∈ R

M
r ×M , W2 ∈

RM×M
r in which r is the dimensionality-reduction ratio)

αM = σ(W2δ(W1zM )), (10)

where αM , σ and δ denote task weights, the sigmoid activation
and the ReLU [35] function. Finally we obtain the combined
feature map F ∈ RC×T×H×W

F = αMFM . (11)

Applying the squeeze-and-excitation block to get task weights
is rather simple but turns out to be efficient. It flexibly generates
different weights for different patients accordingly. However,
this approach assumes each feature point in the feature map
contributes equally, which means a task weight is a global weight
for all feature points. We can explore even further by making
each feature point having its own weight αt,h,w,m, which brings
about the pixel-wise attention-based weighting approach.

We opt to use the self-attention mechanism similar to our
temporal relative self-attention block for pixel-wise weighting,
by applying it on the task dimension instead of the temporal
dimension. First, we reshape and flatten FM ∈ RM×C×T×H×W

into the shape of (THW ×M × C) and then the output of a

30, 1 or 2 hidden layers with non-linear activation.
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TABLE I
THE SUMMARY OF FOUR TASK-ASSEMBLING METHODS

single attention head can be computed as

Oh = Softmax

(
(FMWq)(FMWk)

T√
dhk

)
(FMWv), (12)

where Wq , Wk ∈ RC×dh
k and Wv ∈ RC×dh

v are learned linear
transformations. Afterwards, we combine attention results of all
heads and project usingOW ∈ Rdv×dv to form the task weighted
feature map

F = [O1, . . . , ONh
]OW . (13)

Note that the task weights for each feature point αt,h,w,m is
implicitly embedded in the computation of attention output.

Task weighted features using both approaches are fed into a
shallow neural network consisting of batch normalization [25],
the ReLU function, global average pooling, and a fully con-
nected layer.

The summary of the proposed four task-assembling methods
can be found in Table I. Vector averaging and vector weighting
use the outputs of the last global average pooling layer while
attention-based weighting methods use the outputs of the last
convolutional/self-attention layer in the network. We denote
avgpool and layer4 as the feature types.

IV. EXPERIMENTAL SETTINGS

A. Dataset

In this paper, we introduce a new video dataset for Parkinson’s
disease analysis. We develop this dataset principally because
there is a lack of such datasets for Parkinson’s disease analysis.
We believe that having one will facilitate research in this area
because the dataset simulates the procedure of how experts
assess patients’ symptoms using MDS-UPDRS-III scores. Be-
sides, the dataset is challenging enough to act as a performance
benchmark where the advantages of different architectures can
be demonstrated.

1) Data Collection: Routine video recordings of consecu-
tive patients who underwent either a Levodopa Challenge Test
(LCT [40], [42]) prior to DBS surgery, or underwent a Stimu-
lator Challenge Test (SCT, [8], [22]) after DBS surgery, were
collected. All patients fulfilled the criteria for idiopathic PD.
Patients who underwent a LCT were videotaped twice (i.e.
Med-OFF and Med-ON); patients who underwent SCT were
videotaped three times (Med-OFF/Stim-ON [31], etc). Video
recordings were made with the camera in a fixed position, with a
complete overview of the patient central on the screen. Due to the
varying nature of the examination room, the camera’s position
and angle towards the patient varied, as well as the background

and surroundings. During the MDS-UPDRS-III examination,
the zoom-function was occasionally used to focus on the hands
or feet.

All videos were made in one continuous recording of the
examination. Separate segments were created by clipping the
videos per task (left and right separately if required): bradykine-
sia of the hands (MDS-UPDRS-III items 3.4, 3.5, 3.6), bradyki-
nesia of the legs (items 3.7, 3.8), postural tremor (item 3.15),
kinetic tremor (item 3.16). Rigidity was not included as this
symptom is not assessed through visual observation; global
bradykinesia, speech, freezing-of-gait, and rest-tremor were not
included as no specific video-segment pertained to those tasks
and they were evaluated throughout the entire recording. The
local medical ethics committee waived the formal evaluation of
the study. All patients gave written informed consent.

We are not allowed to make the dataset publicly under the
Dutch privacy law.

2) Dataset Overview: The dataset contains 39 subjects (all
patients) and 1082 video fragments after cutting. Each sample in
the dataset is of resolution 1920 by 1080 and 25 fps. The duration
of samples may be different on different tasks. Fig. 4(a) shows
the duration distribution of our dataset.

The dataset contains T = 11 tasks for most of the patients
based on the MDS-UPDRS-III, namely finger tapping, gait
freezing, hand movements, leg agility, pronation, toe tapping,
arising from chair, kinetic tremor, postural tremor, postural
stability and rest tremor. Note that not all tasks are used in
the experiments. Each video has a task-level severity score
St ∈ {0, 1, 2, 3, 4} (0: normal, 1: slight, 2: mild, 3: moderate
and 4: severe) labeled by experts. We have to emphasize that
a task score of 0 does not mean that the subject is not a PD
patient but indicates that the subject may have low severity on
the specific task. Each patient has a patient-level severity score,
which is the sum of all task-level severity scores, as shown in
the following equation:

Sp =

T∑
t=1

St. (14)

The distributions of St (over all tasks) and Sp are shown in
Fig. 4(b) and Fig. 4(c).

B. Settings

To evaluate our methods for Parkinson’s severity classifica-
tion, we use the above-described dataset. In our experiments,
only RGB frames are used as the input for the deep architectures.
The clips are resized to 32× 224× 224 resolution without
changing their spatial aspect ratios.
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Fig. 4. Distributions of the sample duration and task/patient-level severity of our dataset.

Fig. 5. ROC curves of all 6 settings in Table III.

The dataset is split into five folds at the patient level but not
the video level. One subject only appears in either the training
or testing fold to avoid network cheating by recognizing the
appearance of the patient. We train networks on four of them
and test it on the remaining one in the cross validation setting.
The overall accuracy is obtained by taking the average of the
individual accuracy tested on each fold.

I3D is pre-trained on both UCF-101 (by ourselves) and
Kinetics-400 (by [21]). TSA is pre-trained only from UCF-101

(by ourselves). Batch size of 15, learning rate of 0.001 without
decay and weight decay (λ) of 0.01 are used.

The task-level score St ∈ 0, 1, 2, 3, 4 is split into two classes:
class 0 for {0, 1} and class 1 for {2, 3, 4} since we are more
interested in whether the model can distinguish between the
slight and severe group of patients. The patient-level score Sp

is split into three classes in the way that each class has an
equal number of patients. Method specific settings are provided
alongside when showing the results in Section V.
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TABLE II
TOP-1 ACCURACY ON UCF-101 AND HMDB-51. ALL ACCURACY ARE

AVERAGED OVER THREE SPLITS. BOTH METHODS USE RESNET-18 AS THE
BACKBONE. TSA SHOWS BETTER PERFORMANCE ON BOTH DATASETS SO

THAT IT CAN BE FURTHER APPLIED TO PD DATASET

We briefly introduce the results in order shown in the next
section. We first validate the performance of TSA on public
dataset in section V-A, and then inspect the performance im-
provement using transfer learning in section V-B. In Section V-C,
we show results on seven PD tasks using models with differ-
ent settings followed with comparison between those models.
In Section V-D, we analyze the performance on patient-level
severity classification, compare different strategies to combine
PD tasks, and show the model behavior on classifying only the
highest and lowest severity class.

V. RESULTS

In this section, we show the results of our experiments. We
test seven tasks with high quality videos, finger tapping, hand
movements, pronation, toe tapping, leg agility, postural tremor
and kinetic tremor. They are denoted as finger, hand, pronation,
toe, leg, postural and kinetic for simplicity. We use ResNet-34 as
backbone because through experiments we find that ResNet-34
is the most suitable one in this study, considering the size and
difficulty of our dataset. One can of course use other backbones if
the size, complexity and classes of the dataset are different from
ours. We have to emphasize that, in all experiments, although
patients contribute more than one video, no patient is included
into both the training- and test-set because even though videos of
a patient are separate ones, they are still from the same patient.

A. Validate Temporal Relative Self-Attention Network

Before applying TSA on PD dataset, we first check whether
it works better than I3D on two frequently used public datasets
UCF-101 and HMDB-51. Hyper-parameters are chosen without
optimization: input shape of 64× 224× 224, lr of 0.001, batch
size of 45, weight decay of 10−5 and optimizer of SGD with
momentum [47]. The backbone is ResNet-18 for fast illustration.
Table II shows that TSA outperforms I3D when both trained
from scratch. The performance improvements demonstrate the
effectiveness of TSA and the possibility of applying it to our PD
dataset.

B. Benefit From Transfer Learning

We utilize three datasets: Kinetics-400 [27] and UCF-101 [44]
to pre-train our models considering their large sizes, high quality
and popularity. Then, we fine-tune the pretrained models on our
PD dataset. Since our dataset contains periodic and subtle mo-
tions while public datasets have easily distinguishable motions,
the relatedness between our dataset and public datasets is not
tight. As such, the parameters from the convolutional stem may

TABLE III
ACCURACY, PRECISONS, RECALL AND MCC (WITH CI 95% AND P-VALUE)

ON TASK FINGER AND HAND (BINARY CLASSIFICATION) USING I3D WITH
AND WITHOUT TRANSFER LEARNING. DATASETS IN THE BRACKETS DENOTE

WHERE THE MODEL IS PRETRAINED. I3D USING TRANSFER LEARNING
ACHIEVES BETTER RESULTS THAN I3D TRAINED FROM SCRATCH ON

BOTH FINGER AND HAND TASKS. MOREOVER, TRANSFER LEARNING WITH A
LARGER DATASET (I.E., KINETICS-400) HAS MORE BENEFITS TO THE MODEL

TABLE IV
THE NUMBER OF SAMPLES IN EACH CLASS OF SEVEN TASKS IN

OUR PD DATASET

not be optimal after transferring to our dataset. Thus all layers
of the model rather than part of them are fine-tuned.

I3D and task finger and hand are used to demonstrate the
function of transfer learning. Convergence is confirmed for every
compared setting for a fair comparison. Note that for task-level
classification we have binary classes. In Table III, I3D trained
from scratch, I3D pretrained from UCF-101, and I3D pretrained
from Kinetics-400 are compared based on the binary accuracy,
precision, recall, and Matthews correlation coefficient (MCC).
Here the MCC is formed as:

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(15)

where TP, TN, FP and FN stand for true positive, true negative,
false positive and false negative. We also show the receiver
operating characteristic (ROC) curves of all 6 settings based
on Table III. In general, I3D pretrained from the two datasets
outperform I3D (scratch), demonstrating that I3D can benefit
from non-medical datasets with transfer learning. Moreover,
the performance improvement of I3D (Kinetics-400) from I3D
(scratch) is more notable than I3D (UCF-101) especially on task
hand, which indicates the model would benefit more from a
larger dataset with transfer learning.

C. Task-Level Severity Classification

Building a model good at predicting the task severity score is
our first concern and affects the later experiments and research.
Two architectures - I3D and our TSA are compared in Table V
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TABLE V
ACCURACY, PRECISION, RECALL, AND MCC (WITH CI 95% AND P-VALUE) ON SEVEN TASKS FROM MDS-UPDRS-III USING I3D AND TSA. EACH ROW

SHOWS THE PERFORMANCE OF A TASK AND EACH COLUMN GIVES THE RESULT OF A MEASUREMENT (TWO CLASSES). DATASETS IN THE BRACKETS
DENOTE ON WHICH PUBLIC DATASET THE MODEL IS PRETRAINED IN GENERAL, I3D PRETRAINED ON KINETICS-400 OUTPERFORMS I3D PRETRAINED ON

UCF-101, INDICATING TRANSFER LEARNING FROM LARGER DATASETS HAS MORE BENEFITS THAN SMALLER DATASETS. TSA PRETRAINED FROM A
SMALLER DATASET, UCF-101, IS COMPARABLE TO KINETICS-400 PRETRAINED I3D

on seven tasks from MDS-UPDRS-III. The class distribution
can be found on Table IV. In general, the class imbalance in
task finger, hand, pronation and toe is acceptable. In remaining
tasks, the class imbalance issue is severe. Note that we replace
convolutional layers in 3D ResNet-34 layer3 and layer4 with
temporal relative self-attention block to construct our TSA net-
work. The dataset in the brackets denotes on which the model is
pretrained. We show the MCC along with precision and recall.

1) Task-Level Performance: Fig. 6 shows the ROC curve for
each task in the setting which achieves the best performance
(bold numbers) in Table V. Three out of seven tasks have the
best MCC higher than 0.5, and only one task leg is under 0.3.
The average MCC across all seven tasks is 0.40, sufficiently good
for classification on a medical dataset. It demonstrates that deep
architectures can predict the task (i.e., task from MDS-UPDRS)
severity of a patient with decent accuracy given the video from
that task.

In particular, task finger, hand and pronation are the top-
3 well-classified task in terms of MCC and ROC curves in
Fig. 6(a), 6(b) and 6(f), because 1) most of the videos are zoomed
in to focus on the objects, making it easier for the model to look at
the relevant patterns and 2) the class imbalance problem is slight
compared to task kinetic, leg and postural. On the opposite, task
leg has the lowest MCC, and the ROC curve in Fig. 6(d) does
not bulge towards the top-left corner of the figure, indicating a
corrupt model for task leg. Inspecting Table V, we can observe
quite low recalls of 0.17 and 0.14 using I3Ds and an inadequate
recall of 0.35 using TSA.

The performance discrepancy between tasks exposes some
disadvantages of our architectures. First, the ratio of objects,
e.g., hand in task hand movements and toe in task toe tapping,
occupying the bounding box of the video matters. In task finger

tapping, hand movements and pronation, the zoom-function
is occasionally used to focus on the objects, and most of the
videos are zoomed in during the pre-processing stage, which
gives the architectures cleaner and more easy-to-identify input
data. Second, the effects of the class imbalance problem on
the architectures cannot be ignored. Due to the PD dataset is
a periodic- and subtle-motion dataset, which is different from
public datasets. Identifying task severity is harder than classi-
fying different human actions. In such a case, the extreme class
imbalance can corrupt the architectures’ behavior even if the
class-balanced loss [9] is adopted. However, the class imbalance
is everywhere in real-world settings or at least in Parkinson’s
disease. As such, we leave solving class imbalance on the PD
dataset as one of the future work.

2) Model Comparison: In Table V, we see that in terms of
the MCC, TSA (UCF-101) outperforms I3D (UCF-101) on
six tasks with a significant margin. Besides, the average MCC
of the former is also clearly better than the latter. Since the
only difference between the two is the backbone used, we can
conclude that our TSA performs better than I3D on the PD
dataset.

Also, compared to I3D (Kinetics-400), TSA (UCF-101) still
has 1.5% improvements even if pretrained from a much smaller
and less complex dataset. It demonstrates that TSA is better
at dealing with the large discrepancy of motion difference be-
tween non-medical datasets and our PD dataset. So we think
TSA pretrained from Kinetics-400 would further improve the
performance. Due to the limit of time and computation resource,
we leave it as the future work.

Regarding the time cost of the temporal relative self-attention,
it is completely acceptable as the network can still run with a bit
more time cost. However, the memory cost can be problematic if
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Fig. 6. ROC curves for seven tasks in the setting where the best performance is achieved in Table V. The ROCs on task finger, hand, pronation
and toe are well shaped, indicating that models on these tasks performs well. The remaining ROCs are close to the diagonals, which means the
models’ performance is not good.

TABLE VI
CLINICAL INFORMATION FOR THREE CLASSES. NOTE THAT EACH PATIENT IS VIDEOTAPED TWO OR THREE TIMES, AND THE SEVERITY SCORE OF EACH TIME

MAY FALL INTO DIFFERENT CLASSES. FOR SIMPLICITY, L-OFF, L-ON, A, B, AND C DENOTE LEVODOPA CHALLENGE TEST OFF, LEVODOPA CHALLENGE
TEST ON, MED-OFF-STIM-ON, MED-OFF-STIM-OFF, AND MED-ON-STIM-ON. EACH CLASS HAS AN APPROXIMATELY EQUAL NUMBER OF PATIENTS AND

VIDEOS, I.E., NO SEVERE CLASS IMBALANCE ISSUE

the network is too deep due to the hardware memory limitation.
As such, we give some useful solutions in terms of the algorithm
itself:

1) only replace convolutional layers with small temporal size
(usually the last few),

2) reduce dk and
3) use large kernel size or stride on the temporal dimension

at the first few layers to quickly decrease the temporal size
to the one you want and use kernel size of 1 at following
layers to maintain the temporal size unchanged until the
last layer.

Another issue of TSA is that a large learning rate is possible to
cause the exploding gradients problem, which can be overcome
by applying approaches such as the ReLU activation function
and pre-training.

D. Patient-Level Severity Classification

We use the trained model on each task as the feature extractor
to extract the learned patterns and apply the proposed four task-
assembling methods to incorporate tasks to produce a single
concluding severity score for a patient. The patient-level severity
is split into three classes by cut-off: slight ∈ [0, 23], moderate ∈
(23, 40] and severe ∈ (40,−] with approximately equal number
of videos. Table VI shows the number of video fragments in each
class. Experiments are repeated 20 times to ensure validity.

1) Single-Task Baseline: To demonstrate the effectiveness
of task-assembling methods, we first do patient-level severity
classification using only one single task as the baseline. The
result is shown in Table VII. The best MCC is 0.31 using single
task hand, which is served as the baseline to compare with
assembling methods.
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TABLE VII
SINGLE TASK BASELINE FOR PATIENT-LEVEL SEVERITY CLASSIFICATION

(THREE CLASSES). EACH ROW SHOWS THE PERFORMANCE OF A TASK AND
COLUMNS GIVE THE RESULT OF ACCURACY AND MCC WITH STANDARD
DEVIATION PROVIDED. RANK IS CALCULATED BASED ON THE AVERAGE

MCC FROM TWO INPUTS. THE TOP-3 WELL-PERFORMED TASKS USED FOR
PATIENT-LEVEL CLASSIFICATION ARE TASK HAND, KINETIC AND FINGER.
TASK HAND ACHIEVES A MCC OF 0.31, WHICH IS USED AS THE BEST

SINGLE-TASK BASELINE

TABLE VIII
PATIENT-LEVEL SEVERITY CLASSIFICATION (THREE CLASSES) USING SINGLE
TASK AS A BASELINE AND TASK-ASSEMBLING APPROACHES (SEVEN TASKS).
EACH ROW SHOWS THE PERFORMANCE OF A TASK-ASSEMBLING METHOD

ON THE INPUT FROM A CERTAIN LAYER. THE FOUR TASK-ASSEMBLING
METHODS OUTPERFORM THE SINGLE-TASK BASELINE WITH THE
CHANNEL-WISE AND PIXEL-WISE ATTENTION WEIGHTING BEING

THE BEST METHODS

2) Benefit From Task-Assembling Methods: Four task-
assembling methods incorporate seven tasks used in task-level
severity classification. From Table VIII, we see that all task-
assembling methods, including the most straightforward aver-
aging strategy, outperforms the single-task baseline. The best
method is the pixel-wise self-attention based weighting in terms
of the MCC, with an improvement of 25.8% from the baseline.
These results demonstrate that patient-level severity classifica-
tion benefits from all tasks combined compared to based on a
single task, which is intuitive since it is also hard for experts to
diagnose a patient by inspecting just one task.

Comparing all four methods, we see the weighting strategy
is better than just simple averaging, indicating that each task
contributes unequally to the patient-level severity. Moreover,
the attention-based weighting slightly outperforms the learnable
vector-based weighting. It is because 1) layer4 has more feature
points, potentially more representable for a task than avgpool,
and 2) attention-based weighting gives more flexibility to the

Fig. 7. Weights for seven tasks learned by vector weighting method.
The weights of task finger and hand are higher than the average, which
means in the task-assembling approach, i.e., vector weighting, they
contribute more than other tasks in the prediction of the patient-level
severity.

TABLE IX
PATIENT-LEVEL SEVERITY CLASSIFICATION (TWO CLASSES WITH CLASS

MODERATE REMOVED) USING SINGLE TASK AND TASK-ASSEMBLING
APPROACHES (SEVEN TASKS). EACH ROW SHOWS THE PERFORMANCE OF
A TASK-ASSEMBLING METHOD ON THE INPUT FROM A CERTAIN LAYER. THE

FOUR TASK-ASSEMBLING METHODS OUTPERFORM THE SINGLE-TASK
BASELINE WITH THE PIXEL-WISE ATTENTION WEIGHTING BEING

THE BEST METHOD

weights such that patients can have task weights exclusively
learned based on their condition.

We show the weights learned in the vector weighting method
in Fig. 7 to give a general feeling of which task may contribute
less or more to the prediction of patient-level severity. Weights
are averaged across 20 runs on each fold, a total of 100 runs. As
the two attention-based weighting methods assign task weights
for patients exclusively, it is not intuitive to see the overall weight
distribution on tasks. In Fig. 7, we see the top-2 tasks with
highest weights are hand and finger, which well matches the
performance rank in Table VII. The rest tasks remain the similar
position as in Table VII except that task kinetic drops to the
lowest rank. We suspect the reason being the effect of severe
class imbalance problem of task kinetic.

3) Distinguishing Between Slight and Severe Classes: We
remove the class moderate with the remaining classes untouched
to focus on the classification between slight and severe classes.
The result of the best single task baseline and assembling
methods are shown in Table IX. By combining seven tasks,
we gain 1.7%-13.3% performance improvements compared to
using a single task. At best, we can achieve a MCC of 0.68 on
distinguishing between slight and severe classes. Moreover, the
attention-based weighting methods still outperform the vector-
based ones, matching the case in Table VIII.

In general, attention-based weighting strategy is the first
choice to assemble the tasks, but the vector-based one is also
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applicable, given its higher time efficiency. It is also worthwhile
to exclude some tasks to see the ablation effects on patient-level
performance. As the main focus of this paper is to show the
potential of combining tasks, we leave it as future work.

In Section V-D2 and V-D3, we empirically show the possi-
bility that a multi-task algorithm based on an incomplete video-
overview (i.e. not all MDS-UPDRS-III items are included) can
help discriminate between groups of disease severity in both
slight-moderate-severe and slight-severe cases with acceptable
MCC, 0.39 for the former case and 0.68 for the latter case. Be-
sides, the performance of single task and weights visualization
demonstrates the test of bradykinesia hands among all video-
taped items is the best reflections of the total MDS-UPDRS-III.

VI. CONCLUSION

In this paper, we successfully apply deep architectures on
the PD video dataset to automatically identify the task-level
severity, i.e., item scores in MDS-UPDRS-III given the video
of the task, with satisfactory performance in terms of both
accuracy and MCC. Due to the small size of our PD dataset, we
employ transfer learning from non-medical datasets to improve
the performance of the model.

We propose a temporal self-attention method, TSA, for action
recognition problem and validate it on two commonly used
public datasets and our PD dataset. The promising results com-
pared to I3D demonstrate the effectiveness of TSA and better
ability of handling motion discrepancy between non-medical
datasets and our PD dataset during transfer learning. TSA is
highly flexible and can be embedded in any 3D network for
action recognition by replacing the CNN layer with the temporal
relative self-attention block.

We propose four task-assembling methods to incorporate
tasks to identify the patient-level severity by using the models
trained on each task. Compared to using only a single task, tasks
combination can produce a better performance under both clas-
sification scenarios: slight-moderate-severe and slight-severe. It
is clinically interesting that through analysis of a limited number
of selected tasks, we can deduct a global severity score given the
reasonably good accuracy and MCC.

In this study, we focus on only 7 tasks and each of them is
based on one particular video-segment. In MDS-UPDRS-III, the
scores of other tasks are also indicators for PD severity, such as
resting state tremor and freezing of gait. However, video samples
from these tasks contain multiple view and scene changes and
most part of the video is not highly relevant for severity score
prediction. So we exclude these tasks temporarily to prevent
from leading to an inaccurate conclusion. In the future work, we
will try to include all the tasks with video data and propose new
methodologies to overcome these difficulties, further illustrating
the feasibility of our methods in this study. The clinical asym-
metry which may be present in PD was not considered in this
study. Future research should identify whether motor asymmetry
plays an important role during automated assessments of motor
severity in PD.

We take this study as a preliminary step for PD sever-
ity prediction. Several additional steps should still be taken

before algorithms can be applied robustly in the real clinical
world, such as collection of much more data and findings of
more advanced class-imbalance-free models. However, some
results of our current methods already matches the clinical
description of PD. For instance, the tasks related to finger or
hand movements are most sensitive to reflect motor disease
severity, in comparison to other tasks. This implies that the
severity of upper extremity bradykinesia best reflects the total
motor severity, which closely adheres to the clinical diagnosis
of PD. Furthermore, the result also shows that bradykinesia
of the upper extremity is more sensitive than bradykinesia of
the lower extremity, which suggests that assessment of severity
should be more focused on upper body bradykinesia than lower
body bradykinesia. However, it is questionable whether upper
limb bradykinesia should be considered a gold standard. Future
research should attempt to replicate and validate this finding
before implementation in clinical practice.

The proposed methodology here can be used in other disorders
with motor phenotypes, such as classification of disease severity
in e.g. Huntington’s Disease, or differentiating motor pheno-
types such as epilepsy vs. psychogenic non-epileptic seizures,
indicating its utility beyond Parkinson’s Disease.
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