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The first principle is that you must not fool yourself – and you are the easiest person to fool.
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1
How a cell decides its own fate: A

single-cell view of molecular

mechanisms and dynamics of cell type

specification

On its path from a fertilized egg to one of the many cell types in a multicellular organism,

a cell turns the blank canvas of its early embryonic state into a molecular profile fine-tuned

to achieve a vital organismal function. This remarkable transformation emerges from the

interplay between dynamically changing external signals, the cell’s internal, variable state and

a tremendously complex molecular machinery we are only beginning to understand. Recently

developed single-cell omics techniques have started to provide an unprecedented, comprehen-

sive view of the molecular changes during cell type specification and promise to reveal the

underlying gene regulatory mechanism. The exponentially increasing amount of quantitative

molecular data being created at the moment is slated to inform predictive, mathematical

models. Such models can suggest novel ways to manipulate cell types experimentally, which

has important biomedical applications. This review is meant to give the reader a starting point

to participate in this exciting phase of molecular developmental biology. We first introduce

some of the principal molecular players involved in cell type specification and discuss the

important organizing ability of biomolecular condensates, which has been discovered recently.

We then review some of the most important single-cell omics methods and relevant findings

they produced. We devote special attention to the dynamics of the molecular changes and

discuss methods to measure them, most importantly lineage tracing. Finally, we introduce a

conceptual framework that connects all molecular agents in a mathematical model and helps

us make sense of the experimental data.

This chapter is based on Maria Mircea, Stefan Semrau; How a cell decides its own fate: a single-cell view of
molecular mechanisms and dynamics of cell-type specification. Biochem Soc Trans 17 December 2021; 49 (6):
2509–2525. doi: https://doi.org/10.1042/BST20210135 [1]
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1.1 Introduction

Single-cell omics technologies:
Experimental methods to measure the
entire genome, epigenome, transcrip-
tome, proteome etc. of a cell in high-
throughput.
Pluripotency:
Ability of a cell to give rise to multiple
cell types.
Histone:
Proteins that are crucial for the orga-
nization of DNA in the nucleus. DNA
is tightly wound around nucleosome
core particles which consist of 8 his-
tones.

What is a cell type, anyway? Traditionally, cell types have
been defined by their function within an organism: Neu-
rons process and transmit information, macrophages re-
move harmful microorganisms and podocytes are crucial
for blood filtration in the kidney. As function can be dif-
ficult to ascertain, especially for subtle variants of cell
types, cell morphology and the presence of certain marker
genes are often used as proxies [2, 3]. With the advent of
single-cell omics technologies, cell types have increas-
ingly come to be identified with their molecular profiles.
While most cell types persist over long periods of time,
often the entire life span of an adult organism, cells are found in short-lived, transient
states such as different phases of the cell cycle, different metabolic states or multiple
forms of stress response. Here, we are only concerned with the specification of cell types,
which occurs during embryonic development or regeneration of adult tissues. During
development, pluripotent embryonic cells differentiate into progenitors with diminishing
developmental potential, and eventually fully specified cell types [2, 4–6]. In adult tissue,
long-lived adult stem cells give rise to multiple types of descendants. These processes are
collectively termed differentiation. Differentiation involves changes in gene expression
(i.e., messenger RNA and protein levels), which are accompanied and guided by epigenetic
changes. Broadly, the epigenetic profile of a cell encompasses any heritable molecular mark,
with the exceptions of changes in the DNA sequence [7, 8]. Two of the most important
epigenetic marks are DNAmethylation and histonemodifications. These marks are tightly
linked to the accessibility of the DNA and thus influence the expression of specific genes.
A comprehensive introduction to epigenetics can be found in [9].
Here, we will review a few of the many cell-autonomous molecular mechanism that make
differentiation a reproducible process and ensure the long-term stability of cell types. Im-
portantly, cells do not develop in isolation. Their communication with neighboring cells
via chemical and mechanical signaling is an integral part of embryonic development and
tissue regeneration, which we will not discuss here (for recent reviews see [10, 11]). Equally
important, but also outside the scope of this review, is the role of molecular noise, which
can drive cell type decisions but must also be controlled to ensure the stability of the fully
differentiated state (for recent reviews see [12, 13]). In this review, we will first introduce
some of the most important molecular players, which can be used to define a cell type, and
discuss omics techniques that can measure molecular profiles comprehensively in single
cells. We will then focus on the dynamics of differentiation and novel methods that allow
the inference of the developmental lineage tree. Finally, we will discuss challenges arising
in the analysis of data sets comprising multiple modalities and a conceptual framework
that enables a quantitative understanding of differentiation (Figure 1.1).
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Figure 1.1: Conceptual framework for cell types and differentiation dynamics. Left: TFs bind to enhancer
and promoter regions depending on the chromatin state. All molecules are drawn at a scale of 1:106. Center
left: A simplified gene regulatory network consisting of TFs (nodes of the network graph) and their interactions
(edges of the network graph). Center right: A gene regulatory network can be modeled by a dynamical system,
which can be represented by a potential energy landscape. The position in the landscape is determined by TF
abundance. The shape of the landscape depends on the TF interactions. Cells follow the path of steepest descent
to stable states, which correspond to cell types. Right: The collection of trajectories in the potential landscape
form a cell type decision tree, which highlights the hierarchical nature of differentiation.

1.2 Molecular embodiment of a cell type

Transcription factor:
A protein that binds to specific DNA
sequences and regulates transcription.
Cis-regulatory elements:
Sequences of non-coding DNA which
regulate the transcription of genes.
Chromatin:
The complex of nucleosomes, DNA
and other associated proteins.
Nucleosome:
Smallest unit of DNA organization.
Consists of DNA wound around 8 hi-
stones.
Pioneer factor:
A transcription factor that can bind to
nucleosome-bound DNA.

Most, if not all, cell type decisions involve specific tran-
scription factors (TFs) [2, 3, 5, 6, 14, 15]. These DNA
binding proteins control a gene’s transcription level by
binding to cis-regulatory elements (CREs) in the DNA.
Enhancers, CREs that can be found at large distances from
the regulated gene, play a particularly important role for
cell type determination. Enhancers work in concert and
physically interact with promoters, another type of CRE
that is usually found near the regulated gene. TF bind-
ing of CREs not only depends on the presence of specific
DNA sequence motifs but is also strongly modulated by
the configuration of the chromatin (the complex of DNA,
nucleosomes and other associated proteins, see Figure 1, left). With the exception of
so-called pioneer factors [16], TFs only bind accessible, nucleosome-free DNA [17]. Chro-
matin configuration and TF binding are affected by chemical modifications of histones (the
components of a nucleosome), as well as the DNA [17]. Different histone modifications, or
marks, are associated with different functions, broadly categorized as active and repressive,
and the effect of DNA modifications strongly depends on the genomic context [18, 19]. For
example, DNA methylation at the enhancer regions of the pluripotency gene Sox2 results
in silencing of its expression in embryonic stem cells [19]. Importantly, the interaction
between TFs and chromatin configuration is reciprocal: TFs recruit enzymes that locally
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Regulatory network:
A system of interacting molecules that
regulate each other’s gene expression
as well as a set of target genes.
Master transcription factor / mas-
ter regulator:
A transcription factor that effects the
transcription of multiple downstream
genes and is essential for cell type spec-
ification.
Super-enhancer:
A group of multiple enhancers in close
proximity characterized by high levels
of Mediator complex, which strongly
drives gene expression of its target
genes.
Mediator:
A multiprotein complex that coacti-
vates transcription by interacting with
TFs and RNA polymerase II.
Biomolecular condensates:
Droplets of a condensed liquid phase
formed in cells by homotypic, multiva-
lent interactions (i.e., interactions be-
tween identical molecules that involve
multiple binding sites). One example
are membrane-less organelles.
Liquid-liquid phase separation:
De-mixing of a homogeneous liquid
into two distinct liquid phases.

change the molecular make-up of the chromatin [17].
Both histone marks and DNA methylation are heritable
molecular marks, as they are copied to the newly syn-
thesized DNA during cell division [8, 9, 20]. They can
therefore function as long-term memory of a cell’s molec-
ular profile and hence cell type. The pattern of chromatin
accessibility and epigenetic marks can thus be used to
identify a cell type and reveal relevant CREs [17, 21]. Im-
portantly, cell type specification cannot be understood by
studying individual TFs or epigenetic features in isolation.
Cell types rather emerge from the complex interactions of
several TFs. The presence of particular subsets of TFs has
therefore been used to define a periodic table of cell types
[5]. Together with their target genes, TFs form gene regu-

latory networks that establish and maintain cell identity
[2], see Figure 1, middle. Regulatory interactions between
TFs, in particular negative feedback loops, are crucial for
the stability of molecular states. Due to the presence of
fluctuations in the environment as well as the internal
state of the cell, robustness is an important requirement
for regulatory networks. At the same time, they need to
be dynamic and react appropriately to external signaling
inputs [2]. Mutual repression of TFs is one mechanism by which multiple, alternative cell
types can be created. A prominent example is the interaction between the TFs GATA6
and NANOG, which governs the lineage decision between two of the earliest cell types in
the mammalian embryo [22–24]. The conceptual framework discussed in the final section
of this review explains how various stable cell types and unidirectional differentiation
dynamics emerge from gene regulatory networks, see Figure 1.1, right.
Despite the fact that TFs always work in concert, some have a particularly large impact
on lineage decisions: Overexpression of certain TFs can revert a differentiated cell back
to a pluripotent state (reprogramming) or convert one cell type into another (transdif-
ferentiation) [25]. The remarkable power of these TFs, termed master TFs or master

regulators, can be rationalized by their DNA binding patterns. Master TFs have been
shown to bind clusters of enhancers, or super-enhancers, which drive high levels of key
cell type-specific genes [26, 27], see Figure 1.2. Super-enhancers owe their special role to a
high density of co-localized Mediator complex [26, 27], a protein complex that links TF
binding to the recruitment of the transcription machinery and therefore gene expression.
A well-studied example of master TFs that bind cell-type specific super-enhancers are
regulators of the pluripotent state in embryonic stem cells: NANOG, SOX2 and OCT4 [27].
TFs, CREs, epigenetic marks and enzymes that modify chromatin state are just a small,
albeit important, subset of the many molecular species that are involved in cell type speci-
fication. It has long been unclear, how all of these mobile molecules, some of which are
freely diffusing in the nucleus, can interact in an efficient manner. Recently, biomolecular

condensates, which form through liquid-liquid phase separation (LLPS) [28–30], have
been suggested as a possible answer to this question. Biomolecular condensates form



1.3 Molecular profiling

1

5

Paraspeckle:
A biomolecular condensate that forms
in the presence of the long non-coding
RNA NEAT1 and several RNA binding
proteins.
Intrinsically disordered regions:
Segments of a protein that do not form
a stable three-dimensional structure.

according to well-known thermodynamic principles as
a result of multivalent, homotypic interactions between
molecules [31]. The high concentration of several molec-
ular species in the condensed phase leads to increased
interaction rates [30]. Examples of biomolecular conden-
sates are the well-known membrane-less organelles, such
as the nucleolus or Cajal bodies, as well as paraspeckles
and many more [28, 29, 32]. It has been found that intrinsically disordered regions

(IDRs) of proteins can lead to the multivalent interactions that can cause condensates
to form [33–35]. Interestingly, MED1, a member of the Mediator complex, and BRD4, a
coactivator of transcription, have large IDRs and form condensates at super-enhancers [33],
see Figure 1.2. Thus, phase-separated condensates likely concentrate components of the
transcription apparatus and thereby ensure robust transcription of key cell type-specific
genes. Additionally, the large size of the Mediator cluster at super-enhancers enables the
contact with multiple promoter sites [36]. Therefore, biomolecular condensates are likely
of crucial importance for establishing a cell type.
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Figure 1.2: Master transcription factors and super-enhancers play a major role in guiding cell type
specification and are compartmentalized by biomolecular condensates. Left: super-enhancer with bound
master transcription factors in a large biomolecular condensate. Right: A paraspeckle that forms in the presence
of the lncRNA NEAT1. All molecules are drawn at a scale of 1 ∶ 2 ⋅ 105.
1.3 Molecular profiling

In recent years, omics technologies have emerged that measure one or multiple molecular
species comprehensively in single cells (see Box 3 and Figure 1.3 for a selection of common
methods). These technologies can reveal cell type-specific molecular profiles in high
throughput. With single-cell RNA-sequencing (scRNA-seq) the transcriptomes of individual
cells can be obtained [2, 5, 6], which enables the identification of new cell types and
cell states in complex tissues [37]. Multiple large consortia are currently generating
transcriptional atlases of entire organisms (reviewed in [38]). The human cell atlas [39]



1

6 1 How a cell decides its own fate.

and Tabula Muris [40] are two prominent examples. Notwithstanding the great value of
scRNA-seq measurements, gene expression should ideally be measured at the protein level.
Numerous regulatory mechanisms at the translational and post-translational level make
mRNA abundance just a proxy for protein abundance. Protein measurements have indeed
revealed phenotypic features that could not be discerned with scRNA-seq alone [41, 42]. As
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Figure 1.3: A selection of single-cell omics and multi-omics techniques useful for studying cell type
specification. Colors indicate the measurement of different molecular species in a cell (green: DNA sequence,
grey: RNA abundance, blue: protein abundance , orange: chromatin accessibility, red: DNA methylation, pink:
histone modifications, violet: chromatin conformation). Circles with color gradients contain techniques that
measure several types of molecules at the same time. Dashed lines envelop techniques that aim at understanding
similar concepts.

mentioned before, chromatin state is an important factor in gene regulation. Knowledge of
the chromatin landscape can therefore improve the identification of cell types [43]. There
is a growing variety of single-cell methods that measure chromatin features. For example,
by using scATAC-seq [44, 45], which reveals accessible chromatin regions in single cells, it
is possible to identify cell type-specific regulatory elements and candidate master TFs. By
combining scATAC-seq and scRNA-seq, open chromatin regions can be associated with
active transcription, which improves the identification of TFs and target genes compared
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to pure RNA measurements. It was also shown that considering the chromatin state of
distal CREs significantly increased the power to predict cell-type specific gene expression,
compared to using promoter chromatin state alone [46].

Transcriptomics: The currently most prevalent single-cell omics method is single-cell RNA
sequencing, which measures RNA abundance. Different experimental implementations of
this method include: Smart-seq2 [47], Drop-seq [48], CEL-seq2 [49] and Sci-RNA-seq [50].

Proteomics: It is not yet feasible to measure every protein in a single cell. Antibody-based
methods, for example scCyTOF [42], can measure hundreds of proteins, but cannot easily
be scaled to the whole proteome and rely on the existence of highly specific antibodies.
Mass spectrometry-based proteomics methods, which recently became available, might
soon produce high-quality proteomes of single cells. One example is SCoPE-MS [51],
which detects around 1000 proteins per cell. Improvements to this method have been
recently made in SCoPE2 [52] and another method [53]. By sequencing of DNA-tagged
antibodies, the quantification of hundreds of proteins together with the transcriptome in
single cells is possible with CITE-seq [54] and REAP-seq [55]. RAID [136] uses RNA-tagged
antibodies for the same purpose.

Epigenomics: To gain insights into chromatin accessibility, one of the most promi-
nent techniques is scATAC-seq [44, 45], which uses transposons to barcode accessible
DNA. scATAC-seq can be performed simultaneously with scRNA-seq, which was
implemented, for example, by sci-CAR [46] and Paired-seq [56]. DNA methylation is
measured by scBS-seq [57, 58] and scRRBS [59]. Single-cell 5hmC-seq measures DNA
hydroxymethylation [60]. Joint measurements of DNA methylation and the transcriptome
is possible with, for example, scM&T-seq [61] and scMT-seq [62]. A method to measure all
three molecular profiles (DNA methylation, transcriptome and chromatin accessibility) is
scNMT-seq [63]. Histone modifications can be measured, for example, with scChIP-seq
[64] and scCUT&Tag [65]. New methods to measure the transcriptome jointly with histone
modifications are CoTech [66] and PairedTag [67]. It is now also possible to study the
chromatin conformation in every single cell with scHi-C [68, 69]. Recent methods have
allowed the capture of both chromatin conformation and DNA methylation (sn-m3C-seq
[70] and methyl-HiC [71]).

Genomics: The DNA sequence of single cells can be measured by methods such
as MALBAC [72] and NanoSeq [73]. NanoSeq which has been designed to detect even
small somatic mutations in single DNA molecules. Measurement methods that combine
DNA sequencing with transcriptomics are, for example, G&T-seq [74] and TARGET-seq
[75].

Box 1: Common single-cell omics and multi-omics techniques
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Similarly, a simultaneous measurement of histone modifications and transcriptome showed
that active enhancers are epigenetically more variable across cell types than promoter
regions [67]. A related finding resulted from the simultaneous measurement of DNA
methylation and transcriptome (scM& T-seq [61]). The authors confirmed that promoter
DNA methylation in mouse ESCs is typically correlated with reduced gene expression. By
contrast, DNA methylation of distal enhancers is more often correlated with increased
gene expression, compared to promoters. Since active transcription typically requires the
physical proximity of enhancers and promoters, knowledge of chromatin organization can
be helpful to understand cell type decision making.
scHi-C is a high-throughput method to reveal chromatin interactions throughout the
genome in single cells [68, 69]. In combination with DNA methylation measurements,
cell type specific chromatin conformations can be obtained [70], which might help to
clarify the role of biomolecular condensates [76, 77]. In a recent study, a new variant
of Hi-C [77] was used to determine the stability of chromatin interactions, which were
revealed to vary substantially between organelles. Approaches to measure the spatial
distribution of transcripts [78, 79] and proteins [80] with sub-cellular resolution might lead
to an even better understanding of cellular compartmentalization through biomolecular
condensates. Multi-omics single-cell methods, like those presented here, promise to enable
an improved mechanistic understanding of cell type-specific gene regulation [81]. A more
comprehensive discussion of these methods can be found in [82].

1.4 Dynamics of differentiation

Chromatin remodeler:
Protein complexe that catalyze molec-
ular changes of the chromosome, such
as nucleosome removal.
Bivalent domain:
Chromatin domain that carries both
activating and repressing histone
marks.
RNA Polymerase II:
A multiprotein complex that
transcribes DNA into messenger
RNA.

During differentiation, the molecular profile of a cell is
remodeled substantially. TFs are, unsurprisingly, impor-
tant drivers of this transformation. As the majority of TFs
binds to accessible chromatin regions, differentiation is
accompanied by pervasive changes in chromatin accessi-
bility [13, 16, 17]. One underlying mechanism involves
pioneer TFs, which bind to nucleosome-associated DNA
and create an open chromatin state [16, 17]. These TFs
can explore nucleosomal DNA through non-specific and
transient binding, which in turn allows partial opening of
the chromatin and other, non-pioneering factors to bind [16]. This mechanism has been
recently validated, for example, for the pioneer factor PAX7 [83]. Another mechanism
is passive competition of TFs for DNA binding during short periods of local chromatin
opening, which increases and stabilizes with higher TF concentrations [17, 84].
Chromatin state is also influenced by chromatin remodelers that are recruited by TFs
[16, 18, 85] and bind to different histone marks [85, 86]. This is one mechanism by which
epigenetic marks strongly impact chromatin accessibility. Importantly, activating and
repressing histone marks can also occur simultaneously, on the same nucleosome. These
bivalent domains play a particularly important role in cell type decisions [87] and are
more abundant in embryonic stem cells (ESCs) than in adult tissues. A prominent example
is the combination of H3K4me3 (Trimethylation of histone H3 on lysine 4) which is asso-
ciated with active transcription and H3K27me3 (Trimethylation of histone H3 on lysine



1.5 Measurement of differentiation dynamics

1

9

27), which causes chromatin compaction and is thus a repressive mark. It has been shown
that bivalent domains are positioned at key TF genes that are important for development
[87–89]. Enhancers and promoters with bivalent marks are thought to be in a poised state,
that can be quickly resolved to either activation or repression. This effect can be mediated
by multiprotein complexes composed of polycomb group (PcG) proteins. These proteins
cause gene silencing by, for example, catalyzing methylation of H3K27 [90, 91]. In ESCs,
the occupancy of PcG proteins at bivalent histone marks can change during differentiation,
which results in altered gene expression [89, 92]. Poised enhancers have been found to
be necessary, for example, for the differentiation into specific neural cell types [93]. The
examples mentioned here are only few of many epigenetic mechanisms that drive dynamic
chromatin remodeling during stem cell differentiation (reviewed in [94]).
Epigenetic marks are not homogeneously distributed in the nucleus, but rather need to
be localized at important regulatory sites, which might be promoted by biomolecular
condensates. The formation of biomolecular condensates during differentiation has been
linked to different long non-coding RNAs (lncRNA) and RNA-binding proteins (RBPs)
[32, 95]. For example, the lncRNA DIGIT forms biomolecular condensates together with
the RNA binding protein BRD3, which contains an IDR [95]. BRD3 is recruited to sites of
the activating histone mark H3K18ac (Acetylation of histone H3 on lysine 18). Paraspeckles
are another important class of biomolecular condensates defined by the presence of the
lncRNA NEAT1, which recruits several RBPs [96], see Figure 1.2. These condensates can,
for example, influence transcriptional regulation via associated RBPs [96–98]. NEAT1
has been found to physically interact with EZH2, a PcG protein, which is involved in
catalyzing histone methylation [99]. Interestingly, paraspeckles were found to be involved
in slowing down the differentiation process and their number changes dynamically during
differentiation to several lineages [32, 97]. Another example of dynamic transcriptional
regulation through biomolecular condensates is the association of RNA polymerase II
with Mediator condensates (see Figure 1.2). It has been found that, upon phosphorylation,
RNA polymerase II transitions from condensates involved in transcription initiation to
condensates involved in RNA splicing at genes associated with super-enhancers [35].

1.5 Measurement of differentiation dynamics

In simple organisms the entire lineage tree can be assembled using a microscope [100].
In larger organisms that becomes unfeasible and scRNA-seq data of developing tissues
has been used instead to infer lineage relationships [101]. Due to asynchrony in embry-
onic development or regeneration of adult tissues, a single scRNA-seq measurement can
capture cells in different stages of differentiation [43, 102] and developmental order, or
pseudotime, can be inferred by computational methods (reviewed in [103], see also the
section on data analysis below). If the developmental process is sufficiently accessible for
repeated sampling, scRNA-seq measurements at several time points can be used to resolve
developmental dynamics [14, 104–107]. This approach improves the temporal resolution
and revealed that cells with different lineage histories can converge to globally similar cells
[108]. However, combining multiple data sets to infer the correct developmental trajectory
is challenging.
Lineage reconstruction has also been performed based on protein measurements in single
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cells at different time points. In a recent study [108], 27 proteins, of which 16 were TFs,
were measured over a time course of 22 days during hematopoietic differentiation. This
study showed that, at the protein level, cell type decisions are accompanied by gradual
changes in lineage specific TFs, as no abrupt switches in TF levels were observed.

There are two, conceptionally distinct approaches to lineage tracing: retrospective and
prospective. In retrospective lineage tracing, lineage relationships are inferred from natu-
rally occurring somatic mutations. These mutations can be traced using DNA sequencing
methods [73]. In a recent study, such mutations were linked with scRNA-seq data to inves-
tigate clonal relationships and cell types in human [109]. Mitochondrial DNA has a 10 fold
higher mutation rate than nuclear DNA [110, 111], which makes it a good candidate for
retrospective lineage tracing. Interestingly, these mutations can be tracked with ATAC-seq
measurements because mitochondrial DNA is accessible [111]. DNA methylation also
undergoes stochastic changes during cell division known as epimutations, which allows
tracking of lineage histories through measurements of DNA methylation [110, 112]. Cou-
pling genomics to DNA methylation measurements allows both lineage tracing and the
study of cell type specific methylation patterns [113]. However, naturally occurring muta-
tions are rare, which requires highly accurate and sensitive measurement techniques and
computational methods. In prospective lineage tracing, heritable markers are introduced
that are read out at a later time point. The most recently developed dynamic lineage tracing
methods insert ‘scars’ into the DNA at random or pre-determined locations, resulting in a
large variety of different markers [114, 115]. In some cases, these markers, or barcodes,
are also transcribed, so that scRNA-seq is able to capture transcriptomes and lineage in-
formation simultaneously. Different omics technologies have been used in the context
of lineage tracing (see Box 1 for a list of omics techniques). For retrospective lineage
tracing, NanoSeq [73] has been used to track even small somatic mutations and GoT [109]
linked transcriptomics to genotyping. scATAC-seq has been used to track mutations in
mitochondrial DNA [111] and scRRBS has been used together with DNA sequencing to
track DNA mutations together with DNA methylation [113]. Examples of prospective
lineage tracing techniques that use transcriptomics measurements are scScarTrace [116],
scGESTALT [117] and LINNAEUS [118].

Box 2: Lineage tracing

To reveal the gene regulatory programs that cause gene expression changes, chromatin
conformation measurements during development can be used. Bulk methods have been
used extensively to measure epigenetic changes and chromatin accessibility of cell popu-
lations [119], which produced many important insights. However, cell-to-cell variability
and rare cell populations can only be distinguished with single-cell methods. Therefore,
time-resolved single cell chromatin accessibility measurements can be very informative
[120], in particular in combination with transcriptomics [46, 56, 121, 122]. One study found
a class of genes with a high number of putative enhancers whose chromatin accessibility
is predictive of gene expression [122]. These genes are enriched in TFs that regulate cell
type-specific gene expression. These findings suggest participation in super-enhancers and
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a central role in cell-type specification. Additionally, it was observed that the expression of
TFs precedes the accessibility of their target sites, which might indicate a causal role of
TFs in chromatin remodeling, possibly through additional epigenetic mechanisms [121].
Another interesting case is the simultaneous measurement of chromatin accessibility, DNA
methylation and transcriptome (scNMT [123]) at several timepoints in mouse development.
The authors were able to study the dynamic changes of all three profiles in time and
confirmed ectoderm, one of the three embryonic germ layers, as the default developmental
pathway. Specific histone marks have also been measured during differentiation and devel-
opment. For example, the co-occurrence of H3K4me3 and H3K27me3 (bivalent mark) was
measured in mouse ESCs together with scRNA-seq. The authors calculated a bivalency
score along an RNA based pseudotime trajectory and were able to classify genes by trends
in bivalency dynamics [66]. A similar method found a significant overlap between H3K27ac
(Acetylation of histone H3 on lysine 27) and H3K27me3 in the adult mouse brain at CREs
related to forebrain development [67].

An entirely different approach to study developmental dynamics is used in lineage tracing
techniques [114, 115, 124] (see Box 2, which aim to find the correct phylogenetic tree
[125, 126] from pluripotent cells to fully specified cell types. Lineage tracing methods have
produced a large number of valuable insights. A recent study used lineage tracing to reveal
early biases towards particular cell types [127] that are not resolved with transcriptomics:
Transcriptionally similar cells were found to be committed to particular cell types prior
to the divergence of their transcriptional profiles [114, 128]. Importantly, such cells can
easily be mistaken for multipotent progenitors. Coupling lineage tracing with epigenomics
or proteomics measurements might help to avoid some of these biases and pinpoint the
correct sequence of transcriptional and epigenetic changes during development. Lineage
tracing experiments also seem to indicate that cell fate decisions occur in a more contin-
uous manner rather than abruptly, as previously believed [129]. Finally, lineage tracing
made it possible to observe the convergence of differentiation trajectories from distinct
developmental origins [128].
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1.6 Data analysis

Many single-cell methods involve advanced data analysis (see Box 3 and Figure 1.4 for
a selection of computational methods). In scRNA-seq data, cell types can in principle be
identified by clustering similar transcriptomes [130] and the underlying gene regulatory
networks can be inferred [131–133]. However, both cell type identification and network
inference are improved by integrating multiple omics data sets [41, 134]. Integration meth-
ods typically aim to extract variations common to all measured modalities [135–137]. That
is even possible if molecular species are not measured simultaneously in the same cell, as
shown, for example, for DNA methylation and transcriptome measurements [138]. Trajec-
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Figure 1.4: Common elements of single-cell omics data analysis. a) Each rectangle represents a data matrix
from an omics technology with cells in columns and features in rows. Data Integration methods can be used
to combine these data sets. b) Each circle represents a cell projected into a two-dimensional space. Cells that
are closer have more similar molecular profiles. Different colors indicate different clusters of cells, which have
been determined through a clustering algorithm. Clusters are usually identified with cell types. c) Inferred
gene regulatory network. Circles show transcription factors and their target genes. Edges correspond to the
interactions between them. d) Each circle represents a cell in a two-dimensional space. Developmental dynamics,
indicated by a black line, are revealed with trajectory inference methods. The cell fate decision boundary separates
molecular profiles that develop into different cell types. e) Each node represents a cell type. The leaves of the
tree (lowest nodes) are the observed final cell types, whereas the other cell types are transient. Lines indicate the
lineage relationships.

tory inference algorithms seek to reconstruct gene expression dynamics from scRNA-seq
measurements of developing tissues. Many of these methods use similarity of transcrip-
tomes to estimate temporal proximity, which comes with many challenges and limitations
[102, 127, 139, 140]: For example, the starting point of a differentiation trajectory has to be
provided by the user, because most methods cannot infer directionality. One exception is
RNA velocity [141, 142], which exploits RNA splicing dynamics to infer gene expression
dynamics and directionality. Time-resolved measurements can be analyzed with optimal
transport theory to infer probabilities for the transitions between the observed cell types
[14, 106].
Prospective lineage tracing presents a completely different set of challenges for data analy-
sis. The increase in data complexity caused by randomly inserted barcodes, necessitates
the development of novel algorithms to infer the underlying phylogenetic tree [127, 143],
which captures the hierarchy and relationship of cells during differentiation. As barcoding
is often limited to a short period of time, it becomes difficult to infer the lineage tree
beyond the point where barcoding has stopped. However, a new method [127] leverages
covariances between barcodes to transcend this limitation. An interesting concept in this
regard is phylodynamics [125], which studies how the cell type distribution changes over
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time, given an observed lineage tree. For example, it has been shown that a model with
constant cell division rate, can result in a skewed lineage tree that appears like earlier
generations were dividing more rapidly [125].
The algorithms mentioned here are just a small selection of the many tools that have been
developed specifically to deal with the challenges arising in single-cell methods. We refer
the reader to [144–146] for a much more comprehensive overview.

Clustering methods have been used extensively for transcriptomics data (reviewed in
[99]), where they partition cells based on the similarity of their transcriptomes. Clustering
is now also applied to a combination of different omics data sets (reviewed in [147–149]).
Clusters can be first obtained separately for each modality and then combined, or the
different data sets are integrated prior to clustering. Popular examples of integration
methods are WNN [41], totalVI [137], MOFA+ [135] and LIGER [138].

Inference of gene regulatory networks has been frequently performed using
scRNA-seq data [150]. Examples of existing algorithms are GENIE3 [131], SCENIC [132],
SINCERITIES [133] and Scribe [151]. A new method, CellOracle [134], allows the identifica-
tion of gene regulatory networks from a combination of scRNA-seq and scATAC-seq data.
Symphony [152] provides multi-omics clustering as well as gene regulatory network in-
ference. Importantly, these methods often rely on the proper identification of TFs and CREs.

Inference of differentiation trajectories was first introduced for transcriptomics
data. These methods make use of the asynchrony during differentiation and order
cells by developmental progress (pseudotime). Examples of trajectory inference
methods are PAGA [153], DPT [154], Monocle3 [155], FateID [156] and Palantir [157]
(reviewed in [103]). A pseudotime method that makes use of spliced and unspliced
RNA is RNA velocity [141, 142], which has also been expanded to include protein
dynamics [158]. In order to combine several transcriptomics data sets and recreate the
differentiation trajectory, optimal transport theory has been applied [14, 106]. A new, in-
terestingmethod is MATCHER [159], which infers pseudotime based onmulti-omics assays.

Reconstruction of lineage trees is the goal of dynamic lineage tracing tech-
niques, where barcodes are introduced randomly during a short period of time. Classic
reconstruction methods, like neighbor joining [160] are not robust enough for this purpose.
Several studies therefore designed custom made methods [118, 161] and additionally, a
new, more robust inference method has been proposed, Cassiopeia [143]. Building on
the neighbor joining algorithm, CLiNC [127] tries to discover inconsistencies within the
phylogenic tree.

Box 3: A selection of computational methods for the analysis of single-cell omics data
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1.7 Conceptual framework

Coupled differential equations:
Differential equations describe the
temporal evolution of a system. They
are coupled, if variables appear in sev-
eral equations. Such equations can
have multiple stable solutions, which
do not evolve in time, unless per-
turbed.
Critical point:
A point in parameter space where the
number or stability of solutions to a dy-
namical system change abruptly.
Intrinsically disordered regions: Seg-
ments of a protein that do not form
a stable three-dimensional structure.
Stable states:
A solution of a dynamical system that
is a local minimum of the correspond-
ing potential landscape.

Even with appropriate data analysis algorithms in place,
we still need a conceptual framework for the quantitative
understanding of cell types and their formation. The chal-
lenge is to reveal, how gene regulatory networks with
certain topologies give rise to the observed cell types and
molecular dynamics during differentiation. Dynamical
systems theory has been used extensively to model gene
regulatory networks quantitatively. In this framework, cell
types can be understood as stable states in a system of
coupled differential equations [162]. Number, position
and robustness of these stable states all depend on param-
eters that reflect the interactions between TFs and other
members of the regulatory network. These parameters can
be difficult to infer from experiments, except for (unrealis-
tically) small networks. Nevertheless, dynamical systems describe key properties of the
differentiation process. They explain how the interactions between several TFs jointly
give rise to cell types that are robust up to a certain level of perturbation [163]. They
also explain how a change in TF interactions causes cell types to destabilize [164]. Finally,
unstable, intermediate cell states can be found, depending on the parameters of the system
[165, 166].
A dynamical systems model can be represented by a potential energy landscape, where a
cell follows the path of steepest decent into locally stable states, that correspond to cell
types [166–168], see Figure 1.1, middle right. This potential energy landscape is closely
related to Waddington’s epigenetic landscape [169], a pioneering metaphor that abstracted
from molecular details to conceptualize embryonic development. Importantly, the shape of
Waddington’s landscape is constant in time and a location in the landscape corresponds
to the complete molecular profile of a cell. By contrast, most dynamical systems models
identify the state of a cell by its transcriptome or even just the expression levels of the
TFs in a gene regulatory network (see Figure 1.1, middle left). The shape of the potential
landscape is then defined by the gene regulatory network, most importantly the inter-
actions between TFs and their target genes [162]. Changes in the epigenetic state and
other gene regulatory molecules can modulate the strength of those interactions (i.e. the
parameters of the dynamic system) and thereby cause different stable and unstable states
to appear or disappear [166, 167]. Defining the gene expression profile as the state of the
cell and modeling the epigenetic profile as parameters of the gene regulatory network has
certain conceptual advantages. For example, at critical points, which have been studied
extensively by catastrophe theory, small changes of the parameters can cause large changes
in the stable states of a dynamical system [162, 166]. Lineage decisions might thus be
driven by dynamic epigenetic changes around critical points. Importantly, Waddington’s
landscape implies a strict hierarchy of differentiation, leading from multipotent to more
and more specified, unipotent states (see Figure 1.1, right).
Despite its many advantages, the landscape model also has clear drawbacks, including its
inability to describe periodic trajectories, e.g. caused by the cell cycle [102, 167]. Therefore,



1.8 Perspectives

1

15

many other ways to conceptualize differentiation have been devised. For example, the
spin glass, a model that originated in physics, describes a system of interacting particles
that can have stable low energy states corresponding to different cell types [162, 170]. It
accommodates different strengths of interactions between TFs, can describe symmetry
breaking events and is scalable to larger numbers of TFs. However, it is often simplified by
the usage of binary TF expression (on/off) and symmetric interactions for mathematical
tractability. The concepts discussed here are just a few examples of the many models that
are currently being developed. More comprehensive overviews can be found in [162, 171].

1.8 Perspectives

• To discover the molecular underpinnings of cell types and their formation is of funda-
mental interest in developmental and stem cell biology. It is equally important for the
understanding of diseases such as cancer, where cell types lose their stability and are
transformed to malignant states.

• New single-cell measurement techniques have given us unprecedented insights into the
interactions and dynamics of the relevant molecular agents. In the current paradigm,
transcription factors, regulatory DNA elements and other classes of molecules form a
regulatory network from which cell types emerge.

• In the future, lineage tracing and other quantitative methods will be leveraged to reveal
the complete lineage tree and infer a predictive mathematical model of the underlying
gene regulatory network. Such a model would allow us to manipulate cell types at will,
which has numerous medical applications.
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1.9 Outline of Thesis

Despite being the object of intense study, embryonic development has been difficult to
model for several reasons. One primary reason is that complex tissues can comprise many
cell types, of which we probably only know a subset. Thus, we first focus on discovering
cell types with single-cell RNA sequencing (scRNA-seq), which has proven very successful.
Throughout this thesis, we will use scRNA-seq to uncover different cell types and tran-
scriptional changes during cellular differentiation.
Additionally, many signaling processes and morphogenic events co-occur in a developing
tissue, making it hard to isolate the cell’s individual contributions. For this purpose, we
look at stem cell-derived in vitro systems, in which a small number of specific cell types
can be studied in isolation. In this thesis, we mainly focus on stem-cell-derived endothelial
cells, which line the inside of vessels, and gastruloids which mimic the process of gastru-
lation. We use scRNA-seq to investigate changes in gene expression patterns of master
transcription factors and their target genes. Cellular differentiation, particularly, depends
on extensive communication between cells and must lead to the formation of non-trivial
spatial patterns in a robust and reproducible way. For this purpose, we analyze different
in vitro model systems showing that cellular communication causes morphogenic and
transcriptional changes in the developing cells. Specifically, we show in one chapter that
cellular communication can overrule the developmental origin and in another that it can
cause the formation of epithelial structures.
Lastly, we want to use measurements of developmental processes to reveal the underlying
regulatory mechanisms. To that end, we use a neural network to infer the parameters of a
model for gene regulation and cellular communication.

In Chapter 2 we develop a new method to assess clusterability in single-cell transcrip-
tomics data. Single-cell transcriptomics data has revolutionized biology by its ability to find
new cell phenotypes through clustering. However, all clustering methods have adjustable
parameters, making it challenging to find the correct number of clusters. There was no
principled method to decide whether a cluster of cells contains meaningful sub-populations
that can be further resolved. We developed phiclust (𝜙𝑐𝑙𝑢𝑠𝑡 ) a clusterability measure de-
rived from random matrix theory and low-rank perturbation theory that can identify the
presence of non-random substructures. We showed that, by using this method, we could
identify previously overlooked subtypes.

In Chapter 3 we analyze the co-differentiation of endothelial cells and cardiomyocytes
from human-induced pluripotent stem cells (hiPSCs). Both cell types are building blocks
of the heart: Cardiomyocytes generate contractile forces, and endothelial cells line the
inside of blood vessels. During embryonic development, these two cell types arise from
a common hematoendothelial lineage. A known master regulator of this specification in
mice is ETV2. We used scRNA-seq and a reporter cell line to uncover the role of ETV2
in the differentiation from human iPSCs. We showed that a transient expression of an
ETV2-high state initiates the specification of endothelial cells. Functional cardiomyocytes
can arise from cells that do not express ETV2 or, surprisingly, have sub-threshold expression.
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In Chapter 4 we investigate the importance of cellular communication compared to devel-
opmental origin in a 3D model of endothelial cell differentiation from hiPSCs. Endothelial
cells appear across different organs where, on the one hand, their common function is
to create a barrier between a liquid, such as blood, and the surrounding tissue. On the
other hand, each vessel has specific requirements for each environment and liquid. We
lacked an understanding of how endothelial cells acquire their organ-specific function. We
investigated the hypothesis that developmental origin plays a role in the specification. For
this purpose, endothelial cells were differentiated from paraxial or cardiac mesoderm. We
showed that upon integration into a 3D microtissue, including cardiomyocytes and fibrob-
lasts, the transcriptomic signature of the developmental origin is partially removed. This
finding suggests that environmental cues might be more critical in function specification
than developmental origin.

In Chapter 5we characterize the effect of cellular communication between embryonic and
extra-embryonic cell types in an enhanced gastruloid system. In particular, we combined
in vitro mouse embryonic stem cells (mESCs), used in regular gastruloid protocols, with
extraembryonic-endoderm (XEN) cells. With this addition, we observed the formation
of a neural epithelium absent in gastruloids derived only from mESCs. We characterized
the neural epithelia with scRNA-seq, imaging, and differentiation protocols and observed
similarities with the formation of a neural tube with dorsal characteristics. The XEN
cells influence morphogenic changes in mESCs, and we also showed that mESCs induce
differentiation in the XEN cells. We analyzed candidates of signaling pathways between
these cell types and found that local inhibition of WNT signaling is one of the processes.

In Chapter 6 we explore the use of physics-informed neural networks (PINNs) for the
inference of gene regulatory networks (GRNs). GRNs regulate, among many other things,
the robust differentiation of a progenitor into specified cell types. Existing methods to infer
GRNs mostly use correlation or other similarity-based metrics which limits the predictive
power of the resulting model. In order to incorporate prior biological knowledge and
thereby make the inference of mechanistic relationships feasible, we chose to use PINNs.
We analyze two relevant experimental scenarios in detail: In the first scenario single-cell
trajectories are available and cells communicate with each other. In the other scenario,
cells do not communicate and the provided data is only a snapshot, which corresponds to
a destructive single-cell RNA-sequencing measurement. In both cases, a PINN is used to
infer the strengths of gene interactions. We show the benefits of using PINNs compared to
regular feedforward NNs in this context and determine the performance level of PINNs for
different experimental designs. This analysis will serve as the starting point for exploring
the great potential of PINNs for GRN inference.
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Phiclust: A clusterability measure for

single-cell transcriptomics reveals

phenotypic subpopulations

The ability to discover new cell phenotypes by unsupervised clustering of single-cell transcrip-

tomes has revolutionized biology. Currently, there is no principled way to decide whether a

cluster of cells contains meaningful subpopulations that should be further resolved. Here we

present phiclust (𝜙𝑐𝑙𝑢𝑠𝑡 ), a clusterability measure derived from random matrix theory, that

can be used to identify cell clusters with non-random substructure, testably leading to the

discovery of previously overlooked phenotypes.

This chapter is based on Mircea, M., Hochane, M., Fan, X., Chuva de Sousa Lopes, S.M., Garlaschelli, D., Semrau
S., Phiclust: a clusterability measure for single-cell transcriptomics reveals phenotypic subpopulations. Genome
Biology 23, 18 (2022). https://doi.org/10.1186/s13059-021-02590-x [1]
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2.1 Background

Unsupervised clustering methods [2–5] are integral to most single-cell RNA-sequencing
(scRNA-seq) analysis pipelines [6], as they can reveal distinct cell phenotypes. Importantly,
all existing clustering algorithms have adjustable parameters that have to be chosen care-
fully to reveal the true biological structure of the data. If the data is over-clustered, many
clusters are driven purely by technical noise and do not reflect distinct biological states.
If the data is under-clustered, subtly distinct phenotypes might be grouped with others
and will thus be overlooked. Furthermore, most analysis pipelines rely on qualitative
assessment of clusters based on prior knowledge, which can hinder the discovery of new
phenotypes. To assess the quality of a clustering quantitatively and help choose optimal
parameters, some measures of clustering quality and clusterability have been proposed [7],
most of which are not directly applicable to scRNA-seq data. For example, some existing
methods rely on multimodality of the expression matrix, which is not always justified for
scRNA-seq data, especially when considering highly dynamic systems. Other methods have
input parameters, such as the optimal number of dimensions for dimensionality reduction,
that cannot be easily determined. Also, general methods do not explicitly account for
uninformative sources of variability, related to cell cycle progression or the stress response,
for example, which can be important confounders. In the context of scRNA-seq, one of
the most widely used measures is the silhouette coefficient [8]. This measure requires the
choice of a distance metric to compute the similarity between cells. Notwithstanding its
usefulness, it cannot be excluded that a partition of random noise obtains a high silhouette
coefficient, indicating high clustering quality. Other measures based on distance metrics
or the fit of probability densities suffer from similar issues and often only provide binary
results instead of a quantitative score [9]. A different approach is pursued by ROGUE [10], a
recently developed tool to assess clustering quality specifically in scRNA-seq data. ROGUE
applies the concept of entropy on a per-gene basis to quantify the mixing of cell types.
While a clear improvement over existing methods, ROGUE depends on a challenging step
of selecting informative genes to explain the differences between cell types. It also assumes
a particular noise distribution and requires the careful choice of an adjustable parameter.
Here we present phiclust, a new clusterability measure for scRNA-seq data that addresses
some of the shortcomings of existing methods. This measure is based on the angle 𝜙
between vectors of the noise-free signal and the measured, noisy signal. We consider
clusterability to be the theoretically achievable agreement with the unknown ground truth
clustering, for a given signal-to-noise ratio. (Below, we will describe in detail how we
define “signal” and “noise” in this context.) Importantly, our measure can estimate the
level of achievable agreement without knowledge of the ground truth. High clusterability
(phiclust close to 1) means that multiple phenotypic subpopulations are present and that
clustering algorithms should be able to distinguish them. Low clusterability (phiclust close
to 0) means that the noise is too strong for even the best possible clustering algorithm to
find any clusters accurately. If phiclust equals 0, the observed variability within a cluster
is consistent with random noise. Any subclusters of such a cluster still have a phiclust of
0, which prevents over-clustering of random noise. Instead of assuming a certain noise
distribution or relying on a selection of informative genes, our measure can be applied
to arbitrary types of random noise and includes all genes in the analysis. This is made
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possible by certain universal properties of random matrix theory (RMT) [11], which has
been applied successfully in finance [12], physics [13] and recently also scRNA-seq data
analysis [14].

measurement
(gene expression,

observed)

Singular values

noise 
(random matrix, 

unobserved)

signal
(expression profiles,

unobserved)

fre
qu

en
cy

Phiclust

0 1
Calculate 

singular values
pure 
signal

pure 
noise

MP distribution

e

sub-clusters 
are present

no 
sub-clusters

Signal vectorM
ea

su
re

m
en

t
ve

ct
or

Signal vector

Measurement

vector

clust = cos2( )

TW threshold

* * *

1

2

3

4 5

a

Figure 2.1: Concept of phiclust a Scheme illustrating the rationale behind phiclust.

Below we will use results of RMT on the singular value decomposition (SVD) of a single-cell
gene expression matrix, where rows correspond to genes and columns correspond to cells.
To get an intuitive understanding of RMT, it is useful to first consider the cell-cell correlation
matrix, calculated from the gene expression profiles. We start from the null hypothesis
that the data does not contain any structure and is produced by a random process. In the
context of single-cell transcriptomics, “structure” means multiple, distinguishable clusters
of cells, or phenotypes. RMT can predict, what the correlation matrix looks like, if the
entries of the gene expression matrix are samples of random variables that are independent
and identically distributed. Trivially, the diagonal elements of this correlation matrix are
all equal to 1. The off-diagonal elements are not exactly 0, however, despite the absence of
any meaningful structure in the data. Only in the limit of measuring an infinite number of
(random) genes would the off-diagonal elements become identically 0 and the correlation
matrix would become the identity matrix. In that case, the only eigenvalue of the correlation
matrix is 1. RMT describes the properties of a correlation matrix for a finite ratio of cells



2

32
2 Phiclust: A clusterability measure for single-cell transcriptomics reveals phenotypic

subpopulations

and genes. These correlation matrices are, in a sense, distributed “around” the identity
matrix, which corresponds to an eigenvalue spectrum distributed around 1. Although
the individual entries of the correlation matrix fluctuate from realization to realization,
RMT shows that the eigenvalue spectrum is robust (a so-called “self-averaging” property)
and an analytical expression for it can be obtained [15]. Likewise, RMT predicts that
the singular value distribution of a purely random matrix is closely approximated by the
Marchenko-Pastur (MP) distribution. This result holds true irrespective of the distribution
of the random variable. This universal property of random matrices allows us to apply
RMT to gene expression matrices obtained by scRNA-seq. Of course, any biologically
interesting scRNA-seq measurement should contain structure, usually in the form of cell
clusters. RMT allows us to regard singular values lying above the MP distribution as
evidence for the rejection of the null hypothesis (i.e., the absence of structure in the data).
The MP distribution is characterized by sharp upper and lower limits for the singular
values of a random matrix, but is strictly valid only in the limit of infinite numbers of
genes and cells (while keeping the cell-gene ratio fixed). For finite matrices, the largest and
smallest singular values are distributed around those sharp limits, which is described by the
Tracy-Widom distribution [16]. As explained above, the presence of structure manifests
itself as singular values above the MP distribution (i.e., the prediction for a purely random
matrix). Qualitatively, the magnitude of those outlying singular values corresponds to the
magnitude of the differences between clusters. We can understand this relationship, if
we assume that the measured gene expression matrix is the sum of a random matrix (the
“noise”) and a matrix of noise-free gene expression profiles (the “signal”), see Fig. 2.1. The
bigger the difference in gene expression between phenotypes, the larger the magnitude
of the non-zero singular values of the signal matrix. If the number of non-zero singular
values (i.e., the rank of the signal matrix) is small compared to the dimensions of the matrix,
low-rank perturbation theory [17] is applicable. This theory allows us to calculate the
singular values of the measured gene expression matrix from the singular values of the
signal matrix. Remarkably, knowledge of the complete signal matrix is not required for
this calculation. phiclust is meant to help identify non-random (or deterministic) structure.
At the level of a complete data set, for example of a complex tissue, clusters are typically
easily discernible. However, if we zoom in on a single cluster, it is much more difficult to
decide, whether the variability within that cluster corresponds to meaningful sub-structure
(such as the presence of multiple phenotypes) or is consistent with random noise. Below,
we will precisely define a notion of clusterability, based on the adjusted rand index, and
show that it strongly correlates with phiclust. Furthermore, we will demonstrate that
our measure compares favorably to the silhouette coefficient and ROGUE on simulated
data and experimental data sets with known ground truth. (See Table S1 for a list of all
used simulated and experimental data sets.) Finally, we will apply phiclust to scRNA-seq
measurements of complex tissues and obtain new biological insights, which we validate
with follow-up measurements.
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2.2 Results

2.2.1 Phiclust is derived from first principles and does not
have free parameters

To derive phiclust, we considered the measured gene expression matrix as a random matrix
perturbed by the unobserved, noise-free gene expression profiles (Fig. 2.1). This is the exact
opposite of the conventional approach, which considers random noise as a perturbation to
a deterministic signal. Note that, in our approach, the random matrix contains both the
biological variability within a phenotype as well as the technical variability (which is due
to limited RNA capture and conversion efficiency, for example). Our point of view allows
us to leverage well-established results from RMT [14, 18] and perturbation theory [17].
Figure 2.2 illustrates the basic principles that were applied to derive phiclust. RMT predicts
that the SVD of a random noise matrix results in normal distributed singular vectors and
a distribution of singular values that is closely approximated by the MP distribution, if
the matrix is large enough (Fig. 2.2a, left column). Here, we consider the noise-free gene
expression profiles of the cells in various phenotypes, as the “signal” that perturbs the
random matrix and thus its singular value distribution. Since biological and technical
variability are lumped into the random matrix, expression profiles are identical for cells
that belong to the same phenotype. For example, in the case of two distinct phenotypes,
the signal matrix has only one non-zero singular value (Fig. 2.2a, middle column). The
observed (or measured) gene expression matrix is obtained as the sum of the random noise
matrix and the noise-free gene expression profiles (2.2a, right column). The singular value
distribution of the measured expression matrix has exactly one singular value above the
upper limit that the theory predicts for a purely random matrix, the Tracy-Widom (TW)
threshold. The outlying singular value and its associated singular vector correspond to
the deterministic component of the measured expression matrix. The distribution of the
remaining singular values (the “bulk”) is still closely approximated by the MP distribution.
Importantly, as the perturbation becomes larger, the value of the outlying singular value
also increases (Fig. 2.2b). A larger perturbation means more distinct and therefore more
easily clusterable phenotypes (compare the singular vectors in the middle row of Figs. 2.2a
and b). The basic idea of phiclust is to use the magnitude of the outlying singular values to
quantify clusterability.
Due to the universality of RMT, all described principles are independent of the particular
noise distribution (see Fig. 2.2a-b for normal distributed noise and Fig. 2.2c-d for Poisson
distributed noise). SVD of appropriately preprocessed real data sets therefore leads to
singular value distributions with the same shape as obtained in simulations: a bulk closely
approximated by the MP distribution and one or multiple outlying values. We found that
data preprocessing has to comprise normalization and log-transformation, as well as gene-
wise and cell-wise scaling (Fig. 2.3 a-d). SVD of raw data or log-transformed, normalized
data typically results in a largest outlying singular value that is much larger than all others
(Fig. 2.3 a,b). The corresponding singular vector reflects a global trend in the data and is
called “market mode” in the context of stock market analysis [12, 19].
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a b
Normal distributed noise matrix rank 1 signal matrix Measured expression matrix

c d
Poisson distributed noise matrix rank 1 signal matrix

for theta = 5

for theta = 5

for theta = 2

for theta = 2

Measured expression matrix

Measured expression matrixMeasured expression matrix

Figure 2.2: Basic principles of random matrix theory and perturbation theory a Top row: heatmaps of a
random matrix drawn from a normal distribution, a rank 1 signal matrix with a singular value 𝜃 of 2, and the
resulting expression matrix. Middle row: Singular vectors of the corresponding matrices. Bottom row: histograms
of the corresponding singular values. Red line: MP distribution, green line: TW threshold. b Heatmap, singular
vectors and singular values of an expression matrix constructed as in a, except the singular value of the signal
matrix was 5. c,d Matrices, singular vectors and singular values obtained as in a and b, but the random matrix
was drawn from a Poisson distribution.
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Here, we call it “transcriptome mode”, since it corresponds to an expression trend that is
present across all cells, irrespective of cell type (such as, for example, high expression of
particular cytoskeletal genes or essential enzymes and low expression of certain membrane
receptors or transcription factors). The transcriptome mode is obviously not informative
for clustering. Scaling shifts its singular value to 0, which effectively removes it from
further analysis (Fig. 2.3c,d).
We tested for all data sets used in this study, whether the bulk of the singular value distri-
bution of each cluster deviates significantly from the MP distribution after the described
preprocessing (Kolmogorov-Smirnov test, Fig. 2.3e). For reasonably large clusters (> 50
cells), we only found one example of a (marginally significant) deviation from the MP
distribution.
We next wanted to confirm, for real data, that the remaining outlying singular values
reflect the strength of the signal, i.e., differences between the phenotypes. To that end,
we extracted the gene expression profiles from two clusters in an experimental single-cell
RNA-seq data set and added, as additional signal, a matrix with one non-zero singular
value. As to be expected, SVD of the combined data results in one additional singular value,
which increases with the strength of the perturbation (Fig. 2.3f-g). See Table S2 for a list
of all outlying singular values of experimentally measured expression matrices as well as
the corresponding signal matrices. All in all, these tests show that the basic principles of
random matrix theory and perturbation theory are applicable to real single-cell RNA-seq
data.
So far, we have shown that the values of the outlying singular values are, qualitatively,
related to the differences between phenotypes. However, their magnitudes are difficult to
interpret. Phiclust is derived from the outlying singular values and can be interpreted as a
measure of clusterability, as we will show in the next section. More specifically, phiclust
is defined as the squared cosine of the angle between the leading singular vector of the
measured gene expression matrix and the corresponding singular vector of the unobserved,
noise-free expression matrix. Low-rank perturbation theory is able to predict this angle
using only the dimensions of the measured gene expression matrix and its singular values,
but without knowledge of the noise-free expression profiles. See Additional File 2 for a
detailed derivation. If the noise level is low compared to the signal, this angle will be
small, since the measured gene expression matrix is then very similar to the noise-free
signal. This would result in phiclust close to 1. As the level of noise increases, for a fixed
signal, the singular vectors of the measured expression matrix and the noise-free signal
become increasingly orthogonal and phiclust approaches 0. To illustrate the calculation of
phiclust, we simulated data sets with realistic noise structure using the Splatter package
[20] (Fig. 2.4a,b). As to be expected, increasing the number of genes that are differentially
expressed between clusters makes the clusters more easily separable and leads to larger
singular values outside of the MP distribution (Fig. 2.4a). By construction, this results in
higher values of phiclust (Fig. 2.4b). Please refer to Table S2 for the numerical values of the
outlying singular values in the simulated expression matrices as well as the corresponding
signal matrix.
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Figure 2.3: Importance of preprocessing for MP fit and effect of perturbation on singular value distri-
bution Singular value (SV) distributions of the fetal kidney single-cell RNA-seq data set after different preprocess-
ing steps. a Raw UMI counts. Arrow indicates transcriptome mode b Log-transformed, normalized UMI counts.
Arrow indicates transcriptome mode. Right: Transcriptome mode was excluded. c Log-transformed, normalized
data as in b, that was additionally centered gene-wise. The transcriptome mode, visible as the highest singular
value in a and b appears close to 0 (indicated by the arrow). d Log-transformed, normalized, and gene-wise
standardized data, as in c, that was additionally standardized cell-wise. The SV distribution coincides with the
bulk of the MP distribution. This is not a fit: The MP distribution is completely determined by the dimensions of
the matrix and has no free parameters. e Kolmogorov-Smirnov (KS) test of a significant difference between the
bulk of the singular value distributions and the MP distribution. The boxplot shows the adjusted p-values of the
KS test for each cluster per data set. Red dashed line indicates an adjusted p-value of 0.05. f Histogram of singular
values for the NPCa cluster of the fetal kidney data set. Left: original values. Rest: Singular values of the NPCa
expression matrix plus a rank 1 perturbation with increasing magnitudes of the perturbation (singular value𝜃 of the perturbation = 0.5, 1 or 5). The red arrow indicates the singular value that stems from the additional
perturbation. g Histogram of singular values for the UBCD cluster of the fetal kidney data set. Left: original
values. Rest: Singular values of UBCD expression matrix plus a rank 1 perturbation with increasing magnitudes
of perturbation (singular value 𝜃 of the pertrubation = 0.5, 1 or 5). The red arrow indicates the singular value that
stems from the additional perturbation.
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Figure 2.4: Phiclust is a proxy for the theoretically achievable adjusted rand index (tARI). a Singular
value distributions of simulated data sets with 5 clusters and different levels of noise; Red: low signal-to-noise,
Green: high signal-to-noise. The MP distribution is indicated by a solid blue line, the TW threshold is indicated
by a red solid line and significant singular values are highlighted with asterisks. Inserts show UMAPs of the data.
The data set with a higher signal-to-noise ratio has more significant singular values and those singular values
are bigger. b Value of the largest singular value versus for simulated data. Arrows indicate where the examples
from panel b are located. The relationship between the largest singular values and phiclust only depends on the
dimensions of the expression matrix. Simulations with different cell-to-gene ratios are shown in different colors.
c Phiclust versus theoretically achievable ARI (tARI). Red data points: Simulated data sets with two clusters. The
number of differentially expressed (DE) genes was varied, the log fold change between clusters was fixed. Green
data points: Simulated data sets with two clusters. The mean log fold change between clusters was varied, the
number of differentially expressed genes was fixed. Blue data points: Two synthetic clusters were created by
weighted averages of cells from two clusters in the PBMC data set. Cluster weights were varied. The grey dashed
line indicates identity. Inset: UMAP of PBMC data set with the two clusters used indicated by red solid circles. d
scRNA-seq of mixtures of RNA extracted from three different cell lines. Each data point is a mixture. For each
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from the three cell lines. e First two singular vectors of the cluster indicated by a black solid ellipse in f. The
amount of mRNA per mixture [pg] is indicated in color. g Normalized total counts per mixture versus first
singular vector of the cluster shown in g. Linear regression (dashed line) is used to regress out the correlation
with the total counts. Grey area indicates standard deviation.
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We would like to stress at this point that phiclust is derived from universal properties of
perturbed random matrices, which can be considered first principles. By contrast, many
other measures are developed based on empirical observations and justified post hoc by
their usefulness. Phiclust is calculated using only the SVD and the dimensions of the
expression matrix. Thus, it does not have any free, adjustable parameters, which would
have to be chosen by the user or learned from the data.
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Figure 2.5: An upper limit to the achievable ARI can be estimated using a Bayes classifier. a Left:
Histogram of the noise-free singular vector for a scenario with two clusters (or phenotypes) . Only the first
singular vector is significant. The dashed line indicates a possible decision boundary. Right: Histogram of the first
singular vector in the presence of noise. The color indicates to which simulated (ground truth) cluster the cells
belong. Two normal distributions fitted separately to the singular vector entries belonging to the two clusters are
shown as solid lines. The Bayesian error rate is estimated from the overlap of these two distributions and used to
calculate the theoretical ARI (tARI). The dashed line indicates the optimal decision boundary. b ARI achieved by
various clustering methods compared to the ground truth and tARI for simulated data with two clusters. The
number of differentially expressed genes was varied. c ARI achieved by various clustering methods compared
to the ground truth and tARI for simulated data with two clusters. The mean log fold change between clusters
was varied. d tARI versus phiclust for simulated data sets with two clusters and different fractions of DE genes.
Red curves: Values of phiclust for additive perturbation at different cell to gene ratios. Blue curves: Values of
phiclust for multiplicative perturbation at different cell to gene ratios. Dashed grey line indicates diagonal. e ARI
achieved by various clustering methods compared to the ground truth and tARI for PBMC cell type mixtures.
Two synthetic clusters were created by weighted averages of cells from two clusters in the PBMC data set (see
Fig. 1d). The mixture proportions were varied from 0 to 1. b,c,e The numbers in the legend indicate the resolution
parameter used.
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achieved by various clustering methods and tSIL for simulated data with two clusters. The mean log fold change
between clusters was varied. a,b The numbers in the legend indicate the resolution parameter used. c tSIL versus
phiclust. Red data points: Simulated data sets with two clusters. The number of DE genes was varied, the log fold
change between clusters was fixed. Green data points: Simulated data sets with two clusters. The log fold change
between clusters was varied, the number of DE genes was fixed. Blue data points: Two synthetic clusters were
created by weighted averages of cells from two clusters in the PBMC data set (see Fig. 2.4c). Cluster weights were
varied. The Grey dashed line indicates identity. d tARI versus 1 - [ROGUE] score. Red data points: Simulated
data sets with two clusters. The number of DE genes was varied, the log fold change between clusters was fixed.
Green data points: Simulated data sets with two clusters. The log fold change between clusters was varied, the
number of DE genes was fixed. Blue data points: Two synthetic clusters were created by weighted averages of
cells from two clusters in a PBMC data set (see Fig. 2.4c). Cluster weights were varied. The Grey dashed line
indicates identity.

2.2.2 Phiclust is a proxy for clusterability
To show that phiclust is a proxy for clusterability, we have to make the concept of cluster-
ability more precise and quantifiable. We adopted the Adjusted Rand Index (ARI) [21] as a
well-established measure for the agreement between an empirically obtained clustering and
the ground truth. Next, we will argue that perfect agreement with the ground truth (ARI
= 1) is not achievable in the presence of noise, even with the best conceivable clustering
algorithm.
Take, for instance, the simplest possible case of two cell types, A and B. Without any
noise (technical or biological), expression profiles within a cell type are identical and the
data can be clustered perfectly. Correspondingly, the singular vector of the expression
matrix has only two different entries Fig. 2.5a, left). Therefore, it is easy to find a threshold
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that discriminates between the two cell types. In the presence of noise, however, there
is a chance that the measured expression profile of a cell from cell type A looks more
like cell type B and is therefore clustered with other cells from cell type B and vice versa.
Correspondingly, the entries of the singular vector are now spread by the noise and can
overlap (Fig. 2.5a, right). Even if we use the best possible threshold to discriminate between
the two cell types, some cells will be necessarily misclassified, if the distributions overlap.
This type of error is unavoidable (or irreducible) and known as Bayes error rate [22] in
the context of statistical classification. From the overlap of the singular vector entries, we
can calculate the Bayes error rate or, equivalently, a theoretically achievable ARI (tARI,
see also Additional File 2). Of course, this is only possible for data with known ground
truth. We first used simulated data to show empirically that commonly used clustering
methods are not able to exceed the tARI (Fig. 2.5b,c). It therefore quantifies our notion of
clusterability: With increased noise, tARI decreases and it is more challenging even for the
best conceivable clustering algorithm to distinguish the difference between phenotypes.
Importantly, phiclust is strongly correlated with the tARI (Fig. 2.4d) and thus allows us to
estimate clusterability without knowing the ground truth.
So far, we have assumed additive noise (i.e., the measured gene expression is the sum of
a random matrix and the noise-free expression matrix). Low-rank perturbation theory
also makes a prediction for multiplicative noise (i.e., the measured gene expression is the
product of a random matrix and the noise-free expression matrix). In that case, phiclust
still scales approximately linearly with the tARI, but its dynamic range depends somewhat
on the cell-to-gene ratio (Fig. 2.5d). To our knowledge, the noise generating mechanisms at
work in scRNA-seq have not been pinpointed comprehensively. Therefore, we will continue
to assume additive noise, noting that our approach can be easily adapted to multiplicative
noise.
To test the relationship between phiclust and the tARI in experimentally measured data, we
used an scRNA-seq data set of peripheral blood mononuclear cells (PBMCs) [23]. We chose
two very distinct cell types and created new clusters as weighted, linear combinations of
expression profiles from the two cell types. This approach allowed us to precisely control
the difference between the newly created clusters, while maintaining the experimentally
observed noise structure (Fig. 2.5e). Also for this data, phiclust strongly correlates with
the tARI (Fig. 2.4d). As an alternative to the tARI, we also calculated the theoretically
achievable silhouette coefficient [8] (tSIL), which considers the distances between the best
possible clusters (Fig. 2.6 a-c). For a large range of simulation parameters, the tSIL has
a smaller dynamic range than the tARI, which makes it less useful overall for assessing
clusterability. In contrast to phiclust, ROGUE [10] does not show collinearity with the tARI
(Fig. 2.6d). Therefore, ROGUE seems to implement a notion of clusterability that is distinct
from our point of view.

2.2.3 Confounder regression removes unwanted variability

To further characterize the performance of phiclust on experimental data sets with known
ground truth, we used a measurement of purified RNA from 3 cell types, mixed at different
ratios [24] (Fig. 2.4e). We noticed a significant correlation between the amount of input
RNA and the entries of the first singular vector of individual clusters (Fig. 2.4f). This might
be explained by lowly expressed genes not being well-represented in the low-input libraries,
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and the resulting differences in the expression profiles. In any case, the amount of input
RNA seemed to be a confounding factor that could lead to high values of phiclust, even in
the absence of meaningful subclusters. Correspondingly, we found a correlation between
the singular vector entries and the number of total counts, despite normalization of the data
(Fig. 2.4g). This is consistent with the finding that total counts are a confounding factor in
scRNA-seq data that cannot be eliminated by normalization using one single scaling factor
per cell [23, 25]. Different groups of genes scale differently with the total counts per cell.
Therefore, a correlation with the total counts remains even after normalization.
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Figure 2.7: Correcting for nuisance parameters and unwanted variability. a Summary of adjusted R2 for
several nuisance parameters in all experimental data sets. b Original (uncorrected) phiclust values vs phiclust
corrected for the influence nuisance parameters in the BMNC and fetal kidney data sets. Dashed grey line indicates
diagonal. c Two examples of differentiation paths with different numbers of differentially expressed genes. Left:
UMAPs of simulated data sets with two differentiation paths. Right: Original (uncorrected) values of phiclust and
phiclust values corrected by confounder regression using pseudotime as the only confounder.

More generally, there are various experimental and biological factors that drive artefactual
or irrelevant variability in single-cell RNA-seq data [23, 26]. We therefore introduced a
regression step that removes the influence of any nuisance variables, such as the number
of total counts per cell, ribosomal gene expression, mitochondrial gene expression or cell
cycle phase (see also Additional File 2). More specifically, we first regress the entries of
a singular vector on one or multiple confounders. The fraction of variance explained by
all confounder is then given by the adjusted R2 (coefficient of determination) of the linear
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regression. Since the squared singular values can also be interpreted as the amount of
variance explained, we correct them by multiplying with 1 – the adjusted R2 found in the
confounder regression. (See Table S2 for a list of the uncorrected and corrected singular
values for both simulated and experimental expression matrices.) The corrected singular
values are then used to calculate phiclust.
Interestingly, the relative influence of the confounders considered in this study varied
substantially between data sets (Fig. 2.7 a). For example, cell stress is a relevant confounder
only in the kidney data set. This is likely related to the cell dissociation procedure, which
is necessarily more aggressive for kidney tissue, compared to the other samples: bone
marrow mononuclear cells (BMNCs) and purified RNA, extracted from cell cultures. Total
counts and ribosomal gene expression explain most of the artefactual variance in BMNCs.
This might be explained by high variability in the metabolic state of the cells. In Table S2
we list the R2 values of each considered confounder for each cluster. For real scRNA-seq
data sets, confounder regression can lead to a significant reduction of phiclust (Fig. 2.7b,
see Table S2 for the numerical values.) It is therefore an important part of the method.
Confounder regression can also help to analyze data sets that are not made up of regular
clusters but contain irregularly shaped continua of gene expression. For example, in
developmental and stem cell biology we commonly observe differentiation paths, which
are large clusters with gradually changing expression profiles. Uncorrected phiclust values
are high for such paths, which suggests meaningful subpopulations (2.7c,d). Depending
on the biological question, it might in fact be desirable to cluster differentiation paths, for
example, to separate a stem cell state from a differentiated cell type. For other applications,
it could be preferable to treat a differentiation path as one cluster. In that case we can use
pseudotime approaches [27] to infer a temporal order of the gene expression profiles and
use the inferred pseudotime in the confounder regression. If all observed variability is
explained by developmental dynamics, phiclust is reduced to 0 and thus no sub-clustering
is suggested (2.7c,d).

2.2.4 Phiclust has high sensitivity for the detection of sub-
structure

After correction for unwanted variability, we compared the performance of phiclust with
other clusterability measures in the RNA mixture data set (Fig. 2.4e). Phiclust successfully
indicated the presence or absence of subclusters for all tested combinations of the 7 original
mixtures (Fig. 2.8). By contrast, ROGUE only indicated the presence of substructure
when the merged clusters were very clearly distinguishable (Fig. 2.8 b,c). The silhouette
coefficient was qualitatively similar to phiclust but its dynamic range was much smaller
(Fig. 2.8, middle row). This might become critical in the case of highly similar phenotypes,
which is precisely where phiclust might have an advantage. An example for this can be
seen in Fig. 2.8b: the silhouette coefficients in the pure cluster are very similar to the
merged clusters (which were composed of two original clusters). To compare phiclust
with the silhouette coefficient in more detail, we carried out additional simulations (Fig.
2.9). First, we simulated 3 clusters and subsequently merged two of them. While phiclust
clearly distinguished the merged cluster from the pure cluster, the silhouette coefficients
were similar for both. Increasing the fraction of genes that are differentially expressed
between the merged cluster increased the difference in silhouette coefficient, but only
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gradually (Additional file 1: Fig. S7b). By contrast, phiclust jumped to values close to 1 for
the merged cluster for very small fractions of differentially expressed genes (around 0.03).
It is therefore the more sensitive measure. The silhouette coefficient strongly depends on
the number of principal components used in dimensionality reduction (Fig. 2.9c), as well as
the metric for distances between expression profiles (Fig. 2.9d). Phiclust does not depend
on such user-defined parameters.
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Figure 2.8: Phiclust outperforms other measures on experimental data. Clusters of mixtures of RNA
extracted from three different cell lines were merged in different ways to vary the amount of variability in
each merged cluster. Top: first two singular vectors of RNA mixture data. Colors indicate different ratios of
contributions from the three cell lines. Middle: The values of phiclust (rose), 1 – silhouette coefficient [SIL]
(orange), tARI (green) and 1 - [ROGUE] (blue) for each corresponding cluster. For the calculation of the error
bars, see Methods. Bottom: Bar plot of silhouette coefficients for each cell, sorted by cluster. a Original RNA
mixture. b Merged clusters. Red: 0-1-0 merged with 0.16-0.68-0.16. Blue: 0-0-1 merged with 0.16-0.16-0.68. Green:
1-0-0 merged with 0.68-0.16-0.16. c Violet: merged cluster contains mixtures 0.68-0.16-0.16, 0.16-0.68-0.16 and
0.16-0.16-0.68. Orange: merged cluster contains mixtures 1-0-0, 0-1-0, and 0-0-1.
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Figure 2.9: Phiclust outperforms the silhouette coefficient on simulated data. a Left: UMAP of 3 simulated
clusters. Two clusters were merged to one, resulting in two clusters in total. Middle: Bar plot of silhouette
coefficients for each cell, sorted by cluster. Right: phiclust value and average silhouette coefficient for each
cluster. b Simulation of clusters as shown in a with different fractions of differentially expressed genes. Phiclust
(blue) and average silhouette coefficient (red) for merged cluster and single cluster. c Simulation of clusters as
shown in a. The average silhouette coefficient per cluster was calculated for Euclidean distances using different
numbers of principal components. Value of phiclust for each cluster is indicated by diamond-shaped data points.
d Simulation of clusters as shown in a. Leftmost graph: Value of phiclust for each cluster. Other graphs: Bar
plot of silhouette coefficients for each cell, sorted by cluster, calculated with the following distance metrics:
Euclidean distances in principal component space, Euclidean distances in the original space, Pearson correlation
and Spearman correlation. e Simulation of a cluster consistent with random noise. Clustering was performed
with k-means to obtain 2 to 10 clusters. Left: UMAP of simulated data with 0, 2 and 8 clusters. Right: Boxplot of
the values of phiclust and the silhouette coefficient for each k-means clustering.
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Most importantly, the silhouette coefficient cannot answer the question, whether an iden-
tified cluster contains meaningful substructure, as it requires partitioning into at least 2
sub-clusters. We simulated a cluster without any substructure and all variability was purely
random (Fig.2.9e). The silhouette coefficient was maximal for a k-means clustering with
k=2, which might prompt a user to conclude (wrongly) that there are 2 sub-clusters present.
Phiclust, which does not require any further partitioning of the cluster, was 0, indicating
correctly that the observed variability was consistent with random noise. All in all, these
comparisons indicate that phiclust is a sensitive measure, which detects differences between
highly similar phenotypes.

2.2.5 Genes responsible for the detected substructure can
be identified

In full analogy to the reasoning outlined so far, our approach can also be used to characterize
variability in gene space, for which we defined the conjugate measure g-phiclust (see
Additional File 2 for the derivation). Above, we considered only the right singular vectors,
where each entry corresponds to a cell in the data set. We therefore also call them “cell-
singular vectors”. In the simplest case of well separated clusters, entries in the cell singular
vectors indicate the membership of a cell in a cluster or a group of clusters. For the left
singular vectors, each entry corresponds to a gene. Therefore, we also call them “gene-
singular vector”. The squared cosine of the angle between the leading gene-singular vector
in the measured gene expression matrix and the corresponding gene-singular vector of the
noise-free signal matrix is g-phiclust . As for phiclust, data sets with higher signal-to-noise
ratios are characterized by higher values of g-phiclust (Fig. 2.10a). “Signal” and “noise”
are defined exactly as above: “noise” is a random matrix and the “signal” is a low-rank
matrix consisting of noise-free expression profiles, where the strength of the signal (or
difference between the clusters) corresponds to the magnitude of the non-zero singular
values. A g-phiclust close to 0 would indicate that all observed differential gene expression
can be explained by random noise. Larger values of g-phiclust indicate less overlap of the
gene expression profiles between phenotypes. We therefore expect to find a bigger number
of significantly differentially expressed (DE) genes and/or larger fold changes between
phenotypes. We confirmed by simulations that genes with larger absolute entries in a
gene-singular vector contribute more to the differences between the clusters separated
along the corresponding cell-singular vector (Fig. 2.10b-d): For example, if two clusters (A
and B) are separated along a cell-singular vector and cells in cluster A are characterized by
positive entries, the genes with large positive entries in the corresponding gene-singular
vector will be mostly expressed in cluster A. We call these “variance driving” genes. Our
approach thus not only identifies relevant substructure in a cell cluster but can also reveal
the genes responsible for it. In contrast to differential expression tests, the variance driving
genes can be obtained before clustering and might help the user interpret the observed
variability and make an informed decision on whether it is useful to sub-cluster the data. If
the variance driving genes have enriched biological features (such as being involved in the
same signaling pathway or cellular function), we can take that as additional evidence for
biologically meaningful sub-population.
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Figure 2.10: Variance-driving genes identified in gene singular vectors coincide with differentially
expressed genes in a simulated data set. Genes with high absolute values in the gene singular vector contribute
the most to the variability. a Value of the largest singular value versus the squared cosine of the angle between
the gene singular vector of the signal matrix and the gene singular vector of the measured expression matrix
(g-phiclust) in simulated data. Arrows indicate examples shown in Figure 1b. b First two gene-singular vectors.
Differentially expressed genes of each cluster are indicated by color. c First two (cell-)singular vectors for the
simulated data set shown in panel b. Dashed grey lines indicate the 0 value on each of the axes. Cell clusters are
indicated by color. d First two singular vectors as in c. Dashed grey lines indicate the 0 value on each of the axes.
The average log-transformed expression of the top 1% genes driving the variance is indicated by color. The 4
panels show, respectively, from left to right: genes corresponding to the highest values in gene singular vector 1,
genes corresponding to the lowest values in gene singular vector 1, genes corresponding to the highest values in
gene singular vector 2, and genes corresponding to the lowest values in gene singular vector 2.

2.2.6 Application of phiclust to a BMNC data set drives the
discovery of biologically meaningful sub-clusters.

The most important application of phiclust, in our opinion, is to prioritize clusters for
further sub-clustering and follow-up studies. For a complex tissue with dozens of clusters, it
is not feasible to sub-cluster all of them and try to validate all resulting subpopulations. This
is particularly inefficient, if many subclusters are in fact just driven by random noise. High
values of phiclust nominate those clusters that likely have deterministic structure and are
therefore worthwhile to be scrutinized experimentally in more detail. To demonstrate the
application of phiclust and g-phiclust, we analyzed scRNA-seq measurements of complex
tissues. In a data set of bone marrow mononuclear cells (BMNCs) [28] we calculated
phiclust for the clusters reported by the authors (Fig. 2.11a,b).
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Figure 2.11: Application of phiclust to a BMNCdata set drives the discovery of biologicallymeaningful
sub-clusters. a UMAP of BMNC data set. b Phiclust for the BMNC data set. Error bars indicate the uncertainty
obtained by resampling the noise. Inset: UMAP of clusters with low, intermediate, and high values of phiclust.
c Singular value distribution, MP distribution (red line) and TW threshold (green line) of clusters with low,
intermediate, and high values of phiclust. Significant singular values are highlighted with asterisks. In the gdT
cluster, the singular vectors corresponding to the outlying singular values had normal distributed entries and
were thus not significant. d First three graphs: First singular vector of the red blood cell progenitor cluster in the
BMNC data set versus normalized total counts per cell, normalized expression of ribosomal genes, and normalized
expression of mitochondrial genes. Rightmost graph: Second singular vector versus normalized G2M score. The
dashed line indicates the linear regression and the grey area indicates the standard deviation. e Left: UMAP of
the MAIT cell cluster in BMNC data set. The color indicates the normalized total counts per cell. Middle: singular
value distribution, MP distribution (red line) and TW threshold (green line) for the MAIT cell cluster. The only
significant singular value is indicated by an asterisk. Right: Normalized total counts per cell versus the singular
vector associated with the significant singular value (here: first singular vector) in the MAIT cluster.
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Figure 2.12: Congruence between variance-driving genes and differentially expressed genes between
sub-clusters in a BMNC data set. (Caption on the next page)
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For all clusters, except the red blood cell (RBC) progenitor cluster, the bulk of the singular
value distribution was well-described by the MP distribution. (In the RBC progenitors, we
found several singular values below the lower limit of the MP distribution. These outliers
did not influence the further analysis since we are only interested in singular vectors above
the upper limit.) The first cell-singular vectors of all clusters were significantly correlated
with several confounding factors (see Fig. 2.11d for RBC progenitors and Fig. 2.11e for
MAIT cells). After correction for these confounding factors, phiclust corresponded well
with a visual inspection of the cluster UMAPs (Fig. 2.11b): Where obvious clusters were
present, phiclust was highest, while homogeneous, structure-less clusters resulted in a
phiclust of 0. Reassuringly, many progenitor cell types received a high phiclust (indicating
possible substructure) in agreement with the known higher variability in these cell types.
Ranking existing clusters by g-phiclust resulted in a very similar order (Fig. 2.12a).
To confirm the presence of relevant substructure, we subclustered the two original clusters
with the highest phiclust (Fig. 2.12 b-e). In the RBC progenitors, we identified 4 subsets
that correspond to different stages of differentiation, ranging from erythroid precursors
to highly differentiated RBCs, as identified previously [29]. In the dendritic cell (DC)
progenitor cluster, two subclusters were identified, which correspond to precursors of
classical or plasmacytoid DCs, respectively [30]. For both examples, the variance-driving
genes found in the gene-singular vectors were localized to their corresponding clusters
(Fig. 2.12 c,d) and overlapped strongly with differentially expressed genes found after
subclustering (see Table S3).

Figure 2.12: Congruence between variance-driving genes and differentially expressed genes between
sub-clusters in a BMNC data set. (Figure on the previous page) a g-phiclust for each cluster in the BMNC
data set. b Singular vectors of the two clusters from the BMNC data set with the highest phiclust. The color
indicates sub-clustering. Dashed grey lines indicate the 0 value on each of the axes. c Singular vectors of clusters
shown in panel a with color indicating the average log-transformed gene expression of genes with the 1% highest
values in the first gene singular vector. d Singular vectors of clusters shown in panel a with color indicating the
average log-transformed gene expression of genes with the 1% lowest values in the first gene singular vector. e
Genes driving the variance in the two clusters shown in b. These genes have the 20 highest/lowest values in the
first gene singular vector respectively. In blue: top 20 upregulated genes based on differential expression (DE)
test between the sub-clusters using findMarkers (from scran R package).
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2.2.7 Phiclust reveals subpopulations in a fetal human kid-
ney data set that can be confirmed experimentally

As a second example of our approach we analyzed a fetal human kidney data set we
published previously [31]. In our original analysis, we were forced to merge several
clusters, since we were unsure if we the observed variability was just noise. We hence
wanted to use phiclust to find previously overlooked subpopulations. As for BMNCs,
phiclust corresponded well with a qualitative assessment of cluster variability (Fig. 2.13
a): Clusters with visible sub-clusters had the highest values of phiclust. Ordering the
clusters by g-phiclust resulted in a similar ranking as phiclust (Fig. 2.15a). Subclustering
of the cluster with the highest phiclust, ureteric bud/collecting duct (UBCD), revealed
a subset of cells with markers of urothelial cells (UPK1A, KRT7) (Fig. 2.13b, Fig. 2.15
b-e). Immunostaining of these two genes, together with a marker of the collecting system
(CDH1), in week 15 fetal human kidney sections confirmed the presence of the urothelial
subcluster (Fig. 2.14a, Fig. 2.16a).
Another cell type we did not find in our original analysis, are the parietal epithelial cells
(PECs). They could now be identified within the SSBpr cluster (S-shaped body proximal
precursor cells) (Fig. 2.13b, Fig. 2.15 b-e).
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Figure 2.13: Phiclust reveals subpopulations in a human fetal kidney data a Force-directed graph layout
and phiclust for the fetal kidney data set. Error bars indicate the uncertainty obtained by resampling the noise.
Inset: UMAP of clusters with low, intermediate, and high values of phiclust. b UMAPs of the UBCD, SSBpr, and
ICa clusters. Left: Colors indicate sub-clusters. Right: Colors indicate the log-normalized gene expression of the
two indicated genes. One gene follows the red color spectrum, the other gene the green color spectrum. Absence
of color indicates low expression in both genes, yellow indicates co-expression of both genes.
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To reveal these cells in situ, we stained for AKAP12 and CAV2, which were among the top
differentially expressed genes in this subcluster (Table S4), together with CLDN1, a known
marker of PECs, and MAFB, a marker of the neighboring podocytes (Fig. 2.13d, Fig. 2.16b).
Next to the PECs and proximal tubule precursor cells, SSBpr also contained a few cells that
were misclassified in the original analysis, indicating the additional usefulness of phiclust
as a means to identify clustering errors.
Further analysis of a cluster of interstitial cells (ICa) revealed multiple subpopulations
(Fig. 2.13b, Fig. 2.15 b-e). Immunostaining showed that a POSTN-positive population is
found mostly in the cortex, often surrounding blood vessels, whereas a SULT1E1-positive
population is located in the inner medulla and papilla, often surrounding tubules (Fig.
2.14c, Fig. 2.16c). CLDN11, another gene identified by analysis of the gene-singular vectors
(Fig. 2.15b-e), was found mostly in the medulla, but also in the outermost cortex. A more
detailed, biological interpretation of the results can be found in Additional File 3.
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Figure 2.14: Subpopulations in a human fetal kidney data set revealed by phiclust can be confirmed
experimentally.c-e Immunostainings of week 15 fetal kidney sections. c UPK1A and KRT7 are expressed in the
urothelial cells of the developing ureter (upper panel) and absent from the tubules in the adjacent inner medulla
(lower panel). d PECs express CLDN1 and CAV2 (upper panel), as well as CLDN1 at the capillary loop stage and
later stages (lower panel). MAFB staining is found in podocytes and their precursors in the SSB (lower panel). e
CLDN11 and POSTN are expressed in interstitial cells visualized by immunostaining (upper panel). SULT1E1 is
expressed in the interstitial cells surrounding the ureter (marked by UPK1A) and the tubule in the inner medulla
(lower panel). Scale bars: 100 µm.
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Figure 2.15: Congruence between variance-driving genes and differentially expressed genes between
sub-clusters in a fetal kidney data set. a g-phiclust for each cluster in the fetal kidney data set. b First two
singular vectors of three clusters from the fetal kidney data set with high phiclust. The color indicates sub-
clustering. Dashed grey lines indicate the 0 value on each of the axes. c First two singular vectors of clusters shown
in panel a with color indicating the average log-transformed gene expression of genes with the 1% highest values
in the first gene singular vector. d First two singular vectors of clusters shown in panel a with color indicating
the average log-transformed gene expression of genes with the 1% lowest values in the first gene singular vector.
e Genes driving the variance in the three clusters shown in b. These genes have the 20 highest/lowest values in
the first gene singular vector respectively. In blue: top 20 upregulated genes based on differential expression (DE)
test between the sub-clusters using findMarkers (from scran R package).
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on the next page)
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2.3 Discussion

Here, we presented phiclust, a clusterability measure that can help detect subtly different
phenotypes in scRNA-seq data. Universal properties of the underlying theory make it
possible to apply phiclust to arbitrary noise distributions, and the noise can be additive
or multiplicative. Empirically, we find that the bulk of the singular value distribution of
measured expression matrices is well-approximated by the MP distribution. This supports
the assumption that the noise is generated by independent and identically distributed
random processes.
While most of the technical and biological noise can likely be considered random, there are
also known systematic errors and unwanted, confounding factors (such as the efficiency of
RNA recovery, cell cycle phase etc.) Therefore, regressing out uninformative, deterministic
factors, is an important part of the method.
The approach underlying phiclust also allows us to identify the genes that are most relevant
for the biological interpretation of the observed variability. We found these genes to overlap
strongly with differentially expressed genes identified after sub-clustering. The g-phiclust
measure, a conjugate to phiclust, quantifies how distinguishable the expression profiles of
different phenotypes are in the presence of noise.
The most important application of phiclust is the nomination of clusters for sub-clustering
and subsequent experimental validation. All clusters that were nominated in the fetal
kidney data set turned out to have subpopulations that could be validated by experiments:
rare urothelial cells, which differ from nearby clusters in only a few genes; PECs and
subtypes of interstitial cells, which had distinct spatial distributions.
There are several other methods that attempt to detect the presence of meaningful in-
formation in single-cell RNA-seq data. Below, we will compare phiclust to some of the
most popular examples: the silhouette coefficient, ROGUE, robust PCA, the dip test and
ZINB-WaVE.
The silhouette coefficient is a popular tool to assess clustering quality. In contrast to
phiclust, this coefficient requires a (sub-)clustering and it cannot be used to decide, whether
a cluster contains meaningful variability and should be sub-clustered further. As demon-
strated, using the silhouette coefficient can lead to over-clustering of random noise as well
as missing the presence of subtly different phenotypes. Likewise, phiclust appeared to be
more sensitive than ROGUE, an entropy-based clusterability measure. Both ROGUE and
the silhouette coefficient do not scale linearly with the tARI, which we introduced as an
upper limit to the achievable agreement of an empirical clustering with the ground truth.

Figure 2.16: Immunostaining validates newly identified subclusters in fetal kidney data set. (Figure
on the previous page) a-c Upper panels show UMAPs of the selected clusters in the fetal kidney data set.
Log-normalized expression of selected genes is indicated by color. Lower panels show immunostainings of week
15 fetal kidney sections. a UBCD cluster. UPK1A, CDH1, and KRT7 expression is shown in a complete section
(leftmost image) and in the urothelial epithelium. b SSBpr cluster. Expression of AKAP12, CLDN1 and CAV2
is shown. The dashed lines indicate S-shaped bodies, arrowheads indicate PECs in developing glomeruli c ICa
cluster. Expression of SULT1E1 and UPK1A is visible around the ureter expression of POSTN is visible in cortical
areas, CLDN11 is visible in the cortical area (CLDN11, left image) and around the ureter (CLDN11, right image).
Scale bars: 100𝜇𝑚.
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Robust PCA [32, 33] decomposes ameasured expressionmatrix into a sparse component and
a low-rank component. Under the assumption that noise is sparse, the sparse component
is identified with random noise. In our opinion, there is no reason to assume that the
noise in scRNA-seq data is sparse, or sparser than the measured expression matrix itself.
Likely, every non-zero gene expression measurement was corrupted by noise. Additionally,
the remaining low-rank component cannot be identified as the noise-free signal. It is
fundamentally impossible to reconstruct the noise-free signal from the measured expression
because the noise is created by a random process. The low-rank component is therefore
only a (noisy) approximation of the noise-free signal. Given the fundamental limit to signal
reconstruction, the best thing we can do is quantify the closeness between signal and
measured expression, as implemented by phiclust. In robust PCA, the low-rank matrix is
often further subjected to dimensionality reduction, where it is difficult to determine the
correct number of dimensions. phiclust does not require any dimensionality reduction and
uses all available data.
The dip test [9], a method aimed at detecting the presence of clusters, tests whether
there are multiple modes in the data. It can be applied directly to the distribution of
distances between expression profiles or a low-dimensional representation of the data,
such as principal component scores. The dip test will miss relevant variability, if it does
not manifest itself as separate modes, which can easily occur, for example in the case of
differentiation paths. It also just provides a binary result (modes present or not), whereas
phiclust is a continuous measure and does not require the presence of modes.
ZINB-WaVE [25] performs dimensionality reduction based on a zero-inflated negative
binomial distribution and is similar to principal component analysis, if no additional
covariates are added to the model. ZINB-WaVE acknowledges the fact that principal
components are prone to correlate with nuisance parameters, even after normalization.
The problem is circumvented by adding such parameters as covariates to the model, which
is similar to the confounder regression used for phiclust. However, the user has to decide
the number of dimensions to use and currently there is no principled way to determine the
optimal number. phiclust does not have any such adjustable parameters.

2.4 Conclusion

We hope that this manuscript will bring renewed awareness to random noise as a factor that
imposes hard limits on clustering and identification of differentially expressed genes. We
hope that quantitative measures of clusterability, such as phiclust, can play an important
role in making single-cell RNA-seq analysis more reproducible and robust.
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2.5 Methods

2.5.1 Preprocessing
Before applying the method to simulated or measured single-cell RNA-seq data sets, several
preprocessing steps are necessary. The raw counts are first normalized and log-transformed.
Next, the expression matrix is standardized, first gene-wise, then cell-wise. These steps
assure the proper agreement of the bulk of the singular value distribution with the MP
distribution (Additional file 1: Fig. S2). See also Supplementary Note, Section 3.1.

2.5.2 Phiclust

To derive phiclust, we assume that the expression matrix 𝑋 measured by scRNA-seq, can be
written as the sum of a random matrix X, which contains random biological variability and
technical noise, and a signal matrix P, which contains the unobserved expression profiles
of each cell: 𝑋 = 𝑋 +𝑃
Note that in this decomposition, cells that belong to the same cell type (or phenotype) have
identical expression profiles in the signal matrix P. Below we will show that multiplicative
noise can be treated analogously.

We apply SVD to obtain the singular values, as well as the right and left singular vectors of𝑋 . The left singular vectors span gene-space and the right singular vectors span cell-space.
Hence, we call them gene-singular vectors and cell-singular vectors, respectively. If we use
the term “singular vector” it is implied to mean cell-singular vector.

Considering the signal matrix P a perturbation to the random matrix X, we can apply
results from both random matrix theory and low-rank perturbation theory. Random matrix
theory [33, 34] predicts that the singular value distribution of X is a Marchenko-Pastur (MP)
distribution [18, 19, 35], which coincides with the bulk of the singular value distribution
[12–14] of 𝑋 . The singular values of 𝑋 above the values predicted by the MP distribution
characterize the signal matrix P. Since the agreement with the MP distribution holds strictly
only for infinite matrices, we use two additional concepts to identify relevant singular
values exceeding the range defined by the MP distribution. The Tracy-Widom [16, 36] (TW)
distribution describes the probability of a singular value to exceed the MP distribution, if
the matrix is finite. Additionally, since singular vectors of a random matrix are normally
distributed, relevant singular vectors have to be significantly different from normal [14].
To test for normality we used the Shapiro-Wilk test.

We apply low-rank perturbation theory [17] to calculate the singular values (𝜃𝑖) of P from
the outlying singular values (𝛾𝑖) of the measured expression matrix 𝑋 :

𝜃𝑖 (𝛾𝑖) = √ 2𝑐𝛾𝑖2 − (𝑐 +1)− √(𝛾𝑖2 − (𝑐 +1))2 −4𝑐
where c is the cell-to-gene ratio, i.e. the total number of cells divided by the total number
of genes.
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The values of 𝜃𝑖 are then used to obtain the angles 𝜙𝑖 between the singular vectors of 𝑋
and P. These angles are conveniently expressed in terms of their squared cosine as

𝜙𝑖 = 𝑐𝑜𝑠 (𝛼𝑖)2 = 1− 𝑐 (1+𝜃2𝑖 )𝜃2𝑖 (𝜃2𝑖 + 𝑐) .
The leading singular vector of the measured expression matrix, which has the largest
singular value, has the smallest angle to its unperturbed counterpart. The squared cosine
of this smallest angle is then used as a measure of clusterability:

𝜙𝑐𝑙𝑢𝑠𝑡 = cos(𝑚𝑖𝑛𝑖𝜙𝑖)2 = 𝑚𝑎𝑥𝑖 cos(𝜙𝑖)2, 𝑝ℎ𝑖𝑖 ∈ [0, 𝜋2 ]
For a detailed derivation of phiclust, see Additional File 2, Section 2.1-2.4.

Uncertainty of phiclust

The uncertainties for the values phiclust are estimated using a sampling approach. The
basic idea is to approximate the signal matrix P and add new realizations of the noise matrix
by sampling from a random distribution. The uncertainty is then obtained from the values
phiclust calculated for this ensemble of sampled matrices. First, we decompose a simulated
or measured expression matrix 𝑋 into a noise matrix Xr and a matrix Xs that contains
deterministic structure. Xs is constructed from the relevant singular vectors, which were
identified as described in the previous section. Note that Xs contains noise and is thus
different from the signal matrix P. To create an approximation Ps of the signal matrix P,
we replace the singular values 𝛾𝑖 used in the construction of Xs with the singular values𝜃𝑖 of P, calculated using low-rank perturbation theory as shown in the previous section.
The entries of the noise matrix Xr have a mean of 0 and a standard deviation of 1, as a
result of preprocessing. Since the results of RMT are valid irrespective of the particular
noise distribution, we can create additional realizations of the noise matrix by sampling
from a normal distribution with mean 0 and standard deviation 1. By adding sampled noise
matrices to the approximated signal matrix Ps, we can create an ensemble of matrices with
the same singular value spectrum as the original measured expression matrix but different
realizations of the noise. The uncertainty for positive and negative deviations from the
mean is then calculated as the standard deviation for at least 50 sampled matrices. See
Supplementary Note, Section 2.4.3 for a detailed description.

Test for deviation from the MP distribution

To validate the use of the MP distribution, we test whether the bulk of the measured
singular value distribution deviates significantly. Singular values are considered to be part
of the bulk, if they are located below the MP upper bound and not associated with the
transcriptome mode. We sample 1000 values from the MP distribution using the RMTstat
R package (V 0.3) and subsequently test for similarity with the Kolmogorov-Smirnov
test [35]. The resulting p-values are adjusted for multiple hypothesis testing with the
Benjamini-Hochberg procedure [37].
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Confounder regression

scRNA-seq data contains various confounding factors that drive uninformative variability.
These either emerge from technical issues (such as the varying efficiency of transcript
recovery, which cannot be fully eliminated by normalization) or biological factors (such
as cell cycle phase, metabolic state, or stress). To account for these factors, a regression
step, inspired by current gene expression normalization methods [23, 26], is included. We
perform a linear regression by using each relevant singular vector as a response variable
and the confounding factors as covariates. This is a valid approach because the singular
vectors of the measured expression matrix contain normal distributed noise. The amount
of variance explained by the nuisance parameters is then given by the value of the adjusted
R2 (coefficient of determination) of this linear regression. To relate the regression result
to the singular values, we consider the squared singular values (= eigenvalues) which
correspond to the variance explained by the corresponding singular vectors / eigenvectors.
Squared singular values are corrected by multiplication with (1 – adjusted R2) to retrieve
the fraction of variance not explained by nuisance parameters. The square root of the result
is the corrected singular vector. See also Supplementary Note, Section 3.2. For Additional
file 1: Fig. S5a, each nuisance parameter was individually regressed on, to compare the
influence of each factor.

Multiplicative noise

To model multiplicative noise, we use a rectangular random noise matrix X with the same
dimensions as the measured expression matrix 𝑋 and a square signal matrix P whose
number of rows or columns is equal to the number of measured genes. The measured
expression matrix 𝑋 is then modeled as:𝑋 = (𝐼 +𝑃) 12 𝑋 ,
Where I denotes the identity matrix. Importantly, the bulk of the singular vector distribution
of the measured expression matrix 𝑋 still follows the MP distribution in this model. The
singular values of the signal matrix P are calculated from the outlying singular values of 𝑋
by: 𝜃𝑖 = 2𝑐𝜆𝑖 − 𝑐 −1− √(𝜆𝑖 −𝑎) (𝜆𝑖 − 𝑏)
with 𝑎,𝑏 = (1± √𝑐)2

. The angles between the corresponding singular vectors of the mea-

sured expression matrix and the signal matrix are then calculated as: 𝜙𝜎𝑖𝑚𝑢𝑙𝑡 = 1𝜃𝑖 𝜃𝑖2−𝑐𝜃𝑖(𝑐+1)+2𝑐
More information on multiplicative perturbation can be found in [38].

2.5.3 Clustering
Theoretically achievable clustering qality

To construct a Bayes classifier [22], which achieves the minimal error rate, we need to know
the ground truth clustering. Hence, we used data simulated with Splatter [20], containing
two clusters. For each ground truth cluster, we fit a multidimensional Gaussian to the
corresponding entries of the singular vectors (see Additional file 1: Fig. S3a). We only
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consider singular vectors with singular values larger than predicted by the MP distribution.
For the fit, we use the mclust [39] R package (V 5.4.6). We then construct a classifier by
assigning a cell to the cluster for which it has the highest value of the fitted Gaussian
distribution. This classifier is thus approximately a Bayes classifier (for a true Bayes
classifier, we would need to know the exact distributions of the singular vector entries). The
ARI [21] calculated based on this classification is thus approximately the best theoretically
achievable ARI (tARI). We also tested the silhouette coefficient [8] as a potential alternative
to the ARI for quantifying our notion of clusterability. The silhouette coefficient was
calculated on the first singular vector using Euclidean distances. In Additional file 1: Fig.
S4 the silhouette coefficient averaged over all cells is reported. The theoretically achievable
silhouette coefficient tSIL is defined as the silhouette coefficient of the Bayes classification
described in the previous paragraph. The calculation of tARI and tSIL is described in more
detail in Additional File 2, section 2.5.

Clustering methods

For the validation of the tARI and tSIL, several clustering methods were used on simulated
data with two clusters. Seurat clustering [2] was performed with the Seurat R package
with 10 principal components (PCs) and 20 nearest neighbors. Three different resolution
parameters were used: 0.1, 0.6, and 1.6. Scanpy clustering [3] was performed with the
scanpy python package with 10 PCs and 20 nearest neighbors. Three different resolution
parameters were used: 0.1, 0.6, and 1.6. Hierarchical clustering [5] was performed on the
first 10 PCs and Euclidean distances. The hierarchical tree was built with the Ward linkage
and the tree was cut at a height where 2 clusters could be identified. K-means [4] was
performed on the first 10 PCs using Euclidean distances and two centers. TSCAN [40]
was calculated on the first 10 PCs. In Additional file 1: Fig. S7 k-means clustering was
performed on the first 3 principal components and using Euclidean distances.

Clusterability measures

ROGUE [10] is an entropy-based clusterability measure. A null model is defined under the
assumption of Gamma-Poisson distributed gene expression and its differential entropy is
then compared to the actual differential entropy of the gene expression profile. For the
RNA-mix data set ROGUE (V 1.0) was used with 1 sample (see Fig S6), “UMI” platform, and
a span of 0.6. For the simulated data sets, ROGUE was used with k = 10 (Additional file 1:
Fig. S4 d). The silhouette coefficient was calculated with the cluster R package (V 2.1.0)
using euclidean distances in the space of the relevant singular vectors. The reported values
for the silhouette coefficients are average values per cluster. The confidence intervals given
in Additional file 1: Fig. S6 and S7 are standard deviations of its values per cluster.

2.5.4 Variance driving genes
Genes that drive the variance in the significant singular vectors can be used to explore the
biological information in the sub-structures. Genes with large positive or negative entries
in a gene-singular vector are localized in cells with high positive or negative entries in the
corresponding cell-singular vector. It is also possible to assess the signal-to-noise ratio
for the genes by calculating the angle between the gene singular vectors of the measured
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expression matrix 𝑋 and the gene singular vectors of the signal matrix P, given by15

𝜙𝑔𝑐𝑙𝑢𝑠𝑡 = 𝑐𝑜𝑠 (𝛼𝜙)2 = 1− (𝑐 +𝜃2𝑖 )𝜃2𝑖 (𝜃2𝑖 + 1) ,
where c is the cell-to-gene ratio. We call 𝜙𝑔𝑐𝑙𝑢𝑠𝑡 the gene phiclust (g-phiclust). See Additional
File 2, section 2.4 for a more detailed discussion.

2.5.5 Data sets
The simulated data sets in Additional file 1: Fig. S1 comprised 201 cells and 350 genes. The
random noise matrix was sampled from a normal distribution with mean 0 and variance 1
in panels a and b, or from a Poisson distribution with parameter 1 in panels c and d. The
rank 1 signal matrix was constructed from one cell-singular vector and one gene-singular
vector. The cell-singular vector consisted of 67 entries equal to 1/ √𝑁𝑐𝑒𝑙𝑙 and all other

entries equal to −1/ √𝑁𝑐𝑒𝑙𝑙 , where Ncell is the number of cells. The gene-singular vector

consisted of 200 entries equal to 1/ √𝑁𝑔𝑒𝑛𝑒 and the rest equal to −1/ √𝑁𝑔𝑒𝑛𝑒 , where Ngene
is the number of genes. The signal matrix was then created by matrix multiplication of
the gene-singular vector and the transposed cell-singular vector times the singular value 𝜃
(𝜃 = 2 in a,c and 𝜃 = 5 in b,d). In Additional file 1: Fig. S2f,g a rank 1 signal matrix was
created similarly as described above. The cell-singular vector with a number of entries
matching the number of cells in the cluster was constructed as before. The gene-singular
vector was drawn from a normal distribution and subsequently normalized to unit length.
The rank 1 signal matrix was then added to the preprocessed expression matrix of the
indicated cluster. The remaining simulated data sets were produced with the splatter [20]
R package (V 1.10.1). The parameters used for the simulation are shown in Table S1. For
Fig. 1c,d, Additional file 1: Fig. S3b-e, Additional file 1: Fig. S4, and Additional file 1: Fig.
S8a the simulations for each parameter were performed 50 times, each with a different
seed. The results were averaged over the 50 runs. Confounder regression was performed
for the total number of transcripts per cell. PBMC data [23] was downloaded from the
10x genomics website (). For the calculation of the tARI, clustering with Scanpy, TSCAN,
k-means, and hierarchical clustering, preprocessing was performed with the scanpy python
package (V 1.4.6) following the provided pipeline () for the filtering of cells and genes,
normalization, and log-transformation as well as cluster annotation. For the clustering
with Seurat, the provided Seurat pipeline was used () for preprocessing, such as cell and
gene filtering, normalization, log-transformation and cluster annotation using the Seurat R
package (V 3.1.5). CD8 T cells and B cells were extracted from the data and each cluster
was standardized gene-wise and cell-wise before the calculation of the SVD. To remove
any sub-structure in these clusters and before the reconstruction of the matrices from
the SVD, singular values above the MP distribution were moved into the bulk, and the
transcriptome mode (i.e. the singular vector that would have the largest singular value
without normalization, see Supplementary Methods Note 1) was moved above the MP
distribution. Then, two synthetic clusters containing 150 cells each were created from the
cleaned-up original clusters. For cluster 1, a weighted average of a randomly picked B
cell with expression profile 𝑐𝐵 and a randomly picked CD8 T cell with expression profile𝑐𝐶𝐷8 𝑇 was calculated according to: 𝑐1 = 𝛼 ∙ 𝑐𝐵 + (1− 𝛼) ∙ 𝑐𝐶𝐷8 𝑇 . For cluster 2, the weights
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were flipped: 𝑐2 = (1−𝛼) ∙ 𝑐𝐵 +𝛼 ∙ 𝑐𝐶𝐷8 𝑇 . 𝛼 was chosen in a range from 0 to 1. 𝛼 close to
0.5 produced highly similar clusters, while 𝛼 close to 0 or 1 produced maximally different
clusters (see Fig S3e). For each value of 𝛼 , the procedure was repeated 50 times, each
with a different seed for selecting 300 cells per cell type, and the results were averaged.
RNA-mix data [24] was downloaded from the provided GitHub page. The data were
normalized with the R scran package (V 1.14.6) and then log-transformed. Confounder
regression was performed for the total number of transcripts, average mitochondrial gene
expression, and average ribosomal gene expression. Two different merged clusters were
created from the provided RNA mixtures as shown in Additional file 1: Fig. S6. The bone
marrow mononuclear cell data set (BMNC) [28] was downloaded from the R package
SeuratData (bmcite, V 0.2.1). Normalization and calculation of the G2M score [41] were
performed with the Seurat R package (V 3.1.5). Confounder regression was performed for
the log-transformed total number of transcripts, cell cycle score, and average expression of:
mitochondrial genes and ribosomal genes (list obtained from the HGNC website). For the
fetal kidney data set [31], the same preprocessing and normalization was used as reported
previously (scran R package [42]). The data was then log-transformed and the G2M score
was calculated with the Seurat R package. Confounder regression was performed for the
log-transformed total number of transcripts, G2M scores, and the average expression of:
mitochondrial genes, ribosomal genes, and stress-related genes [43].

2.5.6 Single cell data analysis
Embedding

Uniform Manifold Approximation and Projections [44] (UMAPs) for individual clusters
were calculated with the R package umap (V 0.2.7.0) on the first 10 PCs, 20 nearest neighbors,
min_ dist = 0.3, and Euclidean distances. The umap for BMNC data was calculated with the
Seurat R package using 2000 highly variable genes (hvg), d = 50, k = 50, min.dist = 0.6 and
metric = cosine. For the fetal kidney data set a force-directed graph layout was calculated
using the scanpy python package. The graph was constructed using 100 nearest neighbors,
50 PCs, and the ForceAtlas2 layout for visualization.

Differential expression test

Differentially expressed genes within the sub-clusters found in Additional file 1: Fig. S9
and Additional file 1: Fig. S10 were calculated with the function findMarkers of the scran R
package on log-transformed normalized counts. Genes with a false discovery rate below
0.05 were selected and then sorted by log2 fold change. In Figures S9e and S10e, genes with
the top 20 highest/lowest values in the gene singular vectors are listed and colored blue if
they correspond to the top 20 DE genes.

2.5.7 Staining
A human fetal kidney (female) at week 15 of gestation was used for immunofluorescence
using the same procedure as reported previously [31]. The following primary antibodies
were used: rabbit anti-UPK1A (1:35, HPA049879, Atlas Antibodies), mouse anti-KRT7
(1:200, # MA5-11986, Thermo Fisher Scientific), rabbit anti-CDH1 (1:50, SC-7870, Santa
Cruz), rabbit anti-CLDN1 (1:100, # 717800, Thermo Fisher Scientific), goat anti-CAV2 (1:100,
AF5788-SP, R& D Systems), mouse anti-AKAP12 (1:50, sc-376740, Santa Cruz), rabbit anti-
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CLDN11 (1:50, HPA013166, SIGMA Aldrich), mouse anti-POSTN (1:100, sc-398631, Santa
Cruz) and goat anti-SULT1E1 (1:50, AF5545-SP, R& D Systems). The secondary antibodies
were all purchased from Invitrogen and diluted to 1:500: Alexa Fluor 594 donkey anti-mouse
(A21203), Alexa Fluor 594 donkey anti-rabbit (A21207), Alexa Fluor 647 donkey anti-mouse
(A31571), Alexa Fluor 647 donkey anti-rabbit (A31573), Alexa Fluor 647 donkey anti-goat
(A21447). The sections were imaged on a Nikon Ti-Eclipse epifluorescence microscope
equipped with an Andor iXON Ultra 888 EMCCD camera (Nikon, Tokyo, Japan).

2.5.8 Data availability
All sequencing data sets were obtained from publicly available resources. The BMNC data
can be downloaded with the R package SeuratData, named “bmcite.” The fetal kidney data
is available in the GEO database under the accession number GSE114530. The PBMC data
can be downloaded at https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_

gene_bc_matrices.tar.gz and the RNA-mix data is available at https://github.com/LuyiTian/

sc_mixology, named “mRNAmix_qc”. Supplementary tables are available in the online
version at https://doi.org/10.1186/s13059-021-02590-x.
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2.6 Supplementary Note 1

Introduction
Our aim is to develop a clusterability measure for scRNA-seq data. As we define more
precisely in section (2.6), we consider clusterability to be the clustering quality that is
optimally achievable, given a certain amount of noise in the data. Clustering quality can
only be assessed quantitatively if the ground truth is known, which is strictly only the
case for simulated data. A clusterability measure must thus be able to reflect clustering
quality without knowledge of the ground truth. Such a measure would be highly useful,
since it would allow us to detect the presence of meaningful (non-random) variability, and
thus determine the necessity to sub-cluster measured data. For the development of this
clusterability measure we will use concepts from random matrix theory and perturbation
theory. In short, we decompose the single-cell gene expression matrix 𝑋̃ into a random
matrix 𝑋 , which contains technical and biological noise, and a signal matrix 𝑃 , which
contains the expression profiles of different cell types or states. Then, we apply perturba-
tion theory, treating the signal matrix 𝑃 as a low-rank perturbation of the noise matrix 𝑋 .
Perturbation theory then allows us to calculate the angle between the singular vectors of
the measured single cell expression matrix 𝑋̃ and the corresponding singular vectors of
the unobserved signal matrix 𝑃 . The cosine of this angle constitutes a useful clusterability
measure because a large value (small angle) indicates a high signal-to-noise ratio (and thus
high clusterability) and a small value (large angle) indicates a low signal-to-noise-ratio
(and thus low clusterability). We show empirically that this clusterability measure is a
proxy for the theoretically achievable adjusted rand index [Fig. 1d].
In what follows, we first present our model of gene expression data (2.6) and introduce
matrix decomposition (2.6). Subsequently, we introduce the Marchenko-Pastur (MP) dis-
tribution (2.6), which describes the eigenvalue spectrum of a random matrix and apply
perturbation theory to link the (unobserved) signal matrix to the spectrum of the measured
expression matrix (2.6). In section (2.6), we establish our notion of clusterability. In section
(2.6), we describe the preprocessing steps necessary for the application of the theory to
single-cell RNAseq data. Then, in section (2.6), we develop a method to remove the effect
of nuisance variables (i.e. sources of systematic, non-random variability that should not
drive clustering.) The complete algorithm can be found in section (2.6).

Phiclust
Model

Let 𝑋̃ ∈ ℝ𝑀×𝑁 be the measured single-cell expression matrix with 𝑀 the number of genes
(rows) and 𝑁 the number of cells (columns). We model the measurement 𝑋̃ as the sum of a
random noise matrix 𝑋 ∈ ℝ𝑀×𝑁 and a "signal" matrix 𝑃 ∈ ℝ𝑀×𝑁 .𝑋̃ = 𝑋 +𝑃 (2.1)

In our model, 𝑋 contains both technical and biological noise. For example, if there was
only one cell type or cell state present in a data set, 𝑃 would consist of identical columns.
Note that we only observe the matrix 𝑋̃ experimentally. We will show below, that we can
make a statement about the influence of the noise 𝑋 on the signal 𝑃 , without knowing𝑋 or 𝑃 . To achieve that we invert the logic of conventional models: instead of modeling
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the influence of random noise on the signal, we consider the influence of a deterministic
perturbation on a random matrix. All results rely on matrix decomposition, which will be
introduced next.

Matrix decomposition

1. Eigendecomposition

We first define the cell-cell correlation matrix. To that end, we assume that 𝑋̃ has been
standardized cell-wise (i.e. column-wise) to mean 0 and standard deviation 1. The cell-cell
correlation matrix 𝐶 ∈ [−1,1]𝑁 ×𝑁 is then defined as:𝐶 = 1𝑀 −1𝑋̃𝑇 𝑋̃ (2.2)

The correlation matrix is a square and symmetric matrix which can hence, by the spectral
theorem, undergo eigendecomposition into the form𝐶 = 𝑉 Σ𝑉 𝑇 = 𝑁∑𝑖=1𝜆𝑖𝑣𝑖𝑣𝑇𝑖 . (2.3)𝑉 ∈ ℝ𝑁 ×𝑁 contains the eigenvectors 𝑣𝑖 of 𝐶 in the columns and Σ ∈ ℝ𝑁 ×𝑁 is a diagonal
matrix containing the eigenvalues 𝜆𝑖 of 𝐶 . If 𝑀 < 𝑁 , then 𝐶 is a singular matrix and will
contain at least 𝑁 −𝑀 eigenvalues equal to 0, which is an important consideration for the
definition of the Marchenko-Pastur distribution (see below).
In full analogy to the cell-cell correlation matrix we can define a gene-gene correlation
matrix 𝐶̂ , now assuming that the expression matrix 𝑋̃ has been standardized gene-wise
(row-wise) to mean 0 and standard deviation 1:𝐶̂ = 1𝑁 −1𝑋̃ 𝑋̃ 𝑇 . (2.4)

If 𝑀 > 𝑁 , then 𝐶̂ is a singular matrix and will contain at least 𝑀 −𝑁 eigenvalues equal to0. Therefore either 𝐶 (if 𝑀 < 𝑁 ) or 𝐶̂ (if 𝑀 > 𝑁 ) is a singular matrix (unless 𝑀 = 𝑁 ) with
at least |𝑁 −𝑀| eigenvalues equal to 0.
2. Singular value decomposition

To decompose the (rectangular) expression matrix 𝑋̃ into noise and signal, we use singular
value decomposition: 𝑋̃ = 𝑁∑𝑖=1𝛾𝑖𝑢𝑖𝑣𝑇𝑖 .
The 𝑣𝑖 ’s are the right singular vectors of 𝑋̃ and correspond to the eigenvectors of the
cell-cell correlation matrix. We will call them cell singular vectors or singular vectors in the
following. The 𝑢𝑖 ’s are the left singular vectors of 𝑋̃ and correspond to the eigenvectors of
the gene-gene correlation matrix, which we will call gene singular vectors. The singular
values are denoted by 𝛾𝑖 . The singular values of 𝑋̃ and the eigenvalues of the corresponding
correlation matrix have a known connection given by:𝜆𝑖 = 𝛾2𝑖 .
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Random Matrix Theory

The Marchenko-Pastur (MP) distribution is widely used to reveal nonrandom properties
of empirical correlation matrices in physics and finance [12, 13]. The MP distribution
describes the distribution of eigenvalues of a random correlation matrix in the asymptotic
limit [18, 19, 36] (for 𝑁 → ∞ and 𝑀 → ∞, 𝑁𝑀 < 1). The entries of the random matrix are
arbitrary as long as they are distributed identically and independently. scRNA-seq data are
typically modeled by a Poisson, a negative binomial or a zero-inflated negative binomial
distribution, which are in principle admissible in random matrix theory.

Theorem 1 (Marchenko-Pastur) ([18, 19, 36]) Let 𝑌 be a 𝑀 ×𝑁 matrix with entries that

are independent identically distributed (i.i.d.), mean 0 and variance 𝜈2 < ∞. The corresponding

Wishart matrix is defined as 𝑊 = 1𝑀 𝑌 𝑇 𝑌 . For 𝑁 → ∞, 𝑀 → ∞ and 0 < 𝑐 < 1, where 𝑐 is

defined as 𝑁𝑀 . The distribution of the eigenvalues 𝜆 of 𝑊 is given by𝜇(𝜆) = √(𝑏 −𝜆)(𝜆 −𝑎)2𝜋𝑐𝜆𝜈2 𝑑𝜆 if 𝑎 ≤ 𝜆 ≤ 𝑏
For 𝑐 > 1 the distribution has an additional number of 0 eigenvalues:𝜇(𝜆) = √(𝑏 −𝜆)(𝜆 −𝑎)2𝜋𝑐𝜆𝜈2 �[𝑎,𝑏] + (1− 1𝑐 )𝛿0(𝜆)
with 𝑎,𝑏 = 𝜈2 [1± √𝑐]2 .𝛿0(𝜆) is the Dirac delta function, which is 1 if 𝜆 = 0 and 0 otherwise. For the correlation
matrix we obtain 𝜈 = 1 because the mean of all eigenvalues is 1.
This theorem places the eigenvalues of a random correlation matrix into a compact interval
between [𝑎,𝑏]. All eigenvalues of an empirical correlation matrix that fall within this
interval can be considered to be due to random noise. The presence of eigenvalues above
this distribution indicates the existence of non-random structure in the data. An empirical
(measured) correlation matrix can therefore be decomposed into a random part 𝐶𝑟 and a
signal part 𝐶𝑠 [19]: 𝐶 = ∑𝜆≤𝑏 𝜆𝑖𝑣𝑖𝑣𝑇𝑖 + ∑𝜆>𝑏 𝜆𝑖𝑣𝑖𝑣𝑇𝑖 = 𝐶𝑟 +𝐶𝑠
𝐶𝑠 contains the non-random and therefore biologically relevant correlations.

For the application of the MP distribution to an empirical correlation matrix we need
to consider that the eigenvalues of a correlation matrix always sum up to 1. Thus, if there
are eigenvalues above the MP distribution the bulk of the distribution (which is described by
MP) will shift to the left. To approximately account for this shift, we introduce a modified
MP-distribution as follows: 𝜇∗(𝜆) = 𝜇(𝜆)𝛼 ,𝑎∗ = 𝛼𝑎, 𝑏∗ = 𝛼𝑏.
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where 𝛼 = 1− 𝜆𝑚𝑎𝑥𝑁 and 𝑎∗ and 𝑏∗ replace 𝑎 and 𝑏 respectively.

We can formulate the MP distribution also for singular values, via a variable transform,
and obtain the following density:

𝑑𝜌(𝛾 ) = √(𝑏 −𝛾2)(𝛾2 −𝑎)𝜋𝛾𝑐 𝑑𝛾 if
√𝑎 ≤ 𝛾 ≤ √𝑏 (2.5)

In this case, all singular values that lie within the compact interval of [ √𝑎, √𝑏] can be
considered to arise from random noise and singular values above this threshold indicate
deterministic biological relevant signal. Thus, we can decompose the matrix 𝑋̃ into two
parts: 𝑋̃ = ∑𝛾≤ √𝑏 𝛾𝑖𝑢𝑖𝑣𝑇𝑖 + ∑𝛾> √𝑏 𝛾𝑖𝑢𝑖𝑣𝑇𝑖 = 𝑋̃ 𝑟 + 𝑋̃ 𝑠 (2.6)

The first part 𝑋̃ 𝑟 is random noise, the second part 𝑋̃ 𝑠 contains relevant signal.
The MP theorem holds strictly only in the asymptotic limit, but provides a very good
approximation for big enough 𝑁 and 𝑀 . For finite dimensions, there is however a non-zero
probability that a random i.i.d matrix has eigenvalues above the MP distribution. That
probability is described by the Tracy-Widom (TW) distribution.

Theorem 2 (Tracy-Widom) ([36]) For empirical correlation matrices of size 𝑁 ×𝑁 of i.i.d.

random variables with a finite fourth moment, the distance between the upper edge of the

spectrum of the MP distribution 𝑏 and the largest eigenvalue 𝜆𝑚𝑎𝑥 converges towards the

Tracy-Widom distribution Prob(𝜆max ≤ 𝑏 +𝛾𝑁 −2/3𝑢) = 𝐹1(𝑢),
where 𝛾 in this case is given by 𝛾 = √𝑐 𝑏2/3.𝐹1(𝑢) is the TW distribution, the probability distribution of the re-scaled eigenvalues of a
random Hermitian matrix. We are interested in the type-1 distribution which holds for
Gaussian orthogonal ensembles [15]. The distribution function can not be explicitly stated
but relies on numerical approximations.
The TW distribution can be formulated, as well, for the singular values via the variable
transform: Prob(𝛾𝑚𝑎𝑥 ≤ √𝑏 +𝛾𝑁 −2/3𝑢) = 𝐹1(𝑢), (2.7)

Since we always work with finite matrices in practice, we use the TW distribution to dis-
criminate between singular values that belong to noise and signal, respectively. Specifically,
we use 𝑢 = 1 as a cutoff, so that 𝐹1(1) ≈ 0.95. In other words, there is a probability of 0.05
that a singular value bigger than

√𝑏 +𝛾𝑁 −2/3 is observed, if the matrix is entirely random.
If 𝑁 is very low, the MP distribution is not a good approximation anymore. For 𝑁 < 50, we
create an empirical distribution of noise-related singular values, by permuting the entries
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of the measured expression matrix 𝑋̃ . For each permutation we calculate the singular
values and note the largest singular value. The 95th quantile of the distribution of the
largest singular values across permutations is then taken to be the cutoff between singular
values stemming from noise and signal respectively.

To discriminate random from non-randommatrix components we can also look at the singu-
lar vectors [14]. Singular vectors that correspond to random components are "de-localized"
and their elements have the following distribution:𝑓 (𝜓 ) = (1−𝜓2) 𝑁 −32
If 𝑁 is large, this distribution can be estimated by a Gaussian distribution with mean zero
and variance 1𝑁 .

𝑓 (𝜓 ) ∼ 𝑁√2𝜋 𝑒 −𝑁 𝜓22 (2.8)

In order to distinguish localized from de-localized singular vectors, we can therefore assess
the normality of the singular vectors. In our implementation we use a Shapiro-Wilk test.
We assign singular vectors that obtain a p-value < 0.01 or are associated to singular values
far from the bulk (the highest 50% of signal singular values) to real variability above the
MP distribution.

Perturbation theory

As explained above, we model the observed expression matrix 𝑋̃ as a random matrix 𝑋
perturbed by a deterministic signal matrix 𝑃 . There is an important difference between the
perturbation matrix 𝑃 in equation 2.1 and the matrix 𝑋̃ 𝑠 in equation 2.6. 𝑋̃ 𝑠 does contain
biologically relevant information, but is still influenced by the effects of random noise,
whereas the matrix 𝑃 consists of the pure signal without any added noise. The only case
where these two matrices are identical is when the singular vectors of the noise matrix 𝑋
and the perturbation matrix 𝑃 are linearly independent, which is rarely the case. It is thus
not possible to recover the unobserved, noise-free signal matrix by using those singular
vectors that are associated with the highest singular values.

While it is not possible to reconstruct the signal matrix from measured data, perturbation
theory [17] establishes a simple relationship between the singular value of the observed
expression matrix 𝑋̃ and those of the signal matrix 𝑃 . 𝑃 is assumed to have finite rank 𝑟 .
Its singular value decomposition is thus:𝑃 = 𝑟∑𝑖=1𝜃𝑖𝑢𝑖𝑣𝑇𝑖 , where 𝑟 ≪ 𝑁 ,𝑀
For scRNA-seq data, we only have to consider singular values 𝜃𝑖 > 0, which means that 𝑋̃
potentially has singular values above the MP distribution. Thus, we only need to consider
the largest singular values of 𝑋̃ .
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Theorem 3 (Largest Singular Value for MP) ([17] ) The 𝑟 largest singular values 𝛾𝑖(𝑋̃ )
of the 𝑀 ×𝑁 perturbed matrix 𝑋̃ exhibit the following behaviour as 𝑀,𝑁 → ∞ and 𝑁𝑀 → 𝑐:
For each fixed 1 ≤ 𝑖 ≤ 𝑟 ,

𝛾𝑖(𝑋̃ ) a.s.→ { √(1+𝜃2𝑖 )(𝑐+𝜃2𝑖 )𝜃2𝑖 if 𝑖 ≤ 𝑟 and 𝜃𝑖 > 𝑐1/4,𝑏 otherwise
(2.9)

Moreover, for each fixed 𝑖 > 𝑟 , we have that 𝛾𝑖 (𝑋̃𝑛) a.s.⟶ 𝑏.
This theorem establishes a functional relationship between the largest singular values 𝛾𝑖
of the measured expression matrix and the singular values 𝜃𝑖 of the signal matrix 𝑃 . Note
that if 𝜃𝑖 is smaller than or equal to 𝑐 14 , the corresponding 𝛾𝑖 will be equal to 𝑏, which is
the upper limit of the MP distribution. In other words, if the perturbation (signal) is too
small, the singular value spectrum of the observed expression matrix 𝑋̃ will be just the MP
distribution and hence, no meaningful signal can be extracted.

From the above formula we are able to calculate the singular values of the perturba-
tion matrix 𝑃 . These are the values that describe the actual variances of the signal matrix
without any contribution of the noise. This is achieved by calculating the inverse function

𝜃𝑖(𝛾𝑖) a.s.⟶ ⎧⎪⎪⎪⎨⎪⎪⎪⎩
√ 2𝑐𝛾2𝑖 −(𝑐+1)− √(𝛾2𝑖 −(𝑐+1))2−4𝑐 if 𝛾𝑖 > 𝑏,𝑐 14 otherwise

(2.10)

Phiclust

Next, we want to establish how the singular vectors of 𝑋̃ depend on the perturbation 𝑃 . In
section 2.6 it is described that the elements of the singular vectors will follow a Gaussian
distribution for a random matrix and large 𝑁 . The elements of the singular vectors of
the perturbation 𝑃 are deterministic and correspond to biological variance. The following
theorem describes the scalar product between the singular vector of the perturbation 𝑃
and the perturbed matrix 𝑋̃ .

Theorem 4 (Norm of Projection of Largest Singular Vectors for MP) ([17] ) Let 𝑣̃ the

right unit singular vectors of 𝑋̃ . Then, the norm of projection of the right singular vector is

given by

|⟨𝑣̃𝑖 ,𝑣𝑖⟩|2 a.s.⟶ { 1− 𝑐(1+𝜃2𝑖 )𝜃2𝑖 (𝜃2𝑖 +𝑐) if 𝜃𝑖 ≥ 𝑐1/40 otherwise
(2.11)

This theorem shows the same qualitative behavior as equation 2.9. If the singular value 𝜃𝑖
of the perturbation matrix is below the threshold of 𝑐 14 , the scalar product is zero, indicating
that the perturbed matrix 𝑋̃ has no relationship to the perturbation 𝑃 . In other words, no
relevant signal can be extracted. In the other limit, when the scalar product goes to 1, the
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singular vectors of the perturbation 𝑃 are perfectly aligned with the singular vectors of the
perturbed matrix 𝑋̃ . Thus, random noise has a negligible influence on the signal.

The scalar product given by |⟨𝑣̃𝑖 ,𝑣𝑖⟩|2 is identical to the squared cosine of the angle between
the vectors: 𝜙clust = 𝑐𝑜𝑠(𝛼)2 = ( 𝑣̃ ⋅ 𝑣‖𝑣‖ ‖𝑣̃‖)2 = (𝑣̃ ⋅ 𝑣)2 = |⟨𝑣̃𝑖 ,𝑣𝑖⟩|2.
This holds because the singular vectors are assumed to have norm 1.
We propose 𝜙clust (phiclust) as a measure of clusterability in scRNA-seq data. If, for a
given cluster, there are no values above the MP distribution the signal of the perturbation
matrix 𝑃 can not be recognized any more and phiclust will be zero. If there are singular
values above theMP distribution, phiclust evaluates how closely related the singular vectors
of the expression matrix 𝑋̃ are to those of the perturbation matrix 𝑃 .
We obtain a value of phiclust for each singular value that can be found above the MP
distribution. Each of them indicates the signal-to-noise ratio for the variance that the
corresponding singular vector explains. Thus, the more singular values are above the
MP distribution, the more variances can be found in the data and it can be interpreted as
proportional to the number of clusters. In the definition of phiclust, we have decided to use
the maximum of all angles, thus indicating the maximal clusterability that can be achieved
from clustering.

G-phiclust

In accordance with the above definition of phiclust (2.6), we can also define the cluster-
ability, or signal-to-noise ratio, for the gene space. The following theorem describes the
equation.

Theorem 5 (Norm of Projection of Largest Singular Vectors for MP) ([17] ) Let 𝑢̃ be

the left unit singular vectors of 𝑋̃ . Then, the norm of projection of the left singular vector by

|⟨𝑢𝑖 ,𝑢𝑖⟩|2 a.s.⟶ { 1− (𝑐+𝜃2𝑖 )𝜃2𝑖 (𝜃2𝑖 +1) if 𝜃𝑖 ≥ 𝑐1/40 otherwise
(2.12)

For the gene singular vector, 𝜙𝑔
clust (g-phiclust) indicates how closely the variance among

genes is related to the original variance in the perturbation matrix 𝑃 . For each singular
vector, the variance-driving genes correspond to those with the highest absolute loading in
the corresponding gene singular vector. Cells with high positive or negative entries in the
singular vector have high expression of genes with large positive or negative entries in the
corresponding gene singular vector, respectively. This relationship is not a replacement
for the calculation of differentially expressed genes, but merely indicates the genes that
drive the variance across cells for each singular vector. Based on the value of g-phiclust, it
is possible to evaluate how accurate the determination of differentially expressed genes
will be. With a low signal-to-noise ratio, it is more likely to obtain genes differentially
expressed that can be attributed to noise. As well as for phiclust, we obtain several angles,
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one for each singular value above the MP distribution. Thus, genes driving the variances
in gene singular vectors with a higher g-phiclust are more accurate. We decided, to be
consistent, to define g-phiclust as the highest squared cosine of the angle.

Uncertainty of phiclust

The theory presented above holds as the expected value in the infinite limit, however we
do not know about the variations within the finite limit. To address this, we constructed
a confidence interval for the values of phiclust using the following sampling approach.
The basic idea is to approximate the signal matrix P and add new realizations of the noise
matrix by sampling from a random distribution. The standard deviation is then constructed
from the values of phiclust calculated for this ensemble of sampled matrices.
First, the matrix 𝑋̃ is pre-processed as described in section 2.6. By applying the MP dis-
tribution, we then determine the singular values associated with signal and noise. We
decompose the simulated or measured expression matrix 𝑋̃ into a noise matrix 𝑋𝑟 and a
matrix 𝑋𝑠 that contains deterministic structure (see equation 2.6).
Then, we estimate the first two moments of 𝑋𝑟 , which due to the pre-processing of the
measured expression matrix are equal to a mean of 0 and a standard deviation of 1. It is
thus possible, given the universality property of the MP distribution, to sample a new noise
matrix 𝑋 with the same two first moments (mean = 0 and variance = 1) from a normal
distribution.
To approximate the perturbation matrix, we use the singular values 𝜆𝑖 of 𝑋𝑠 to calculate
the expected singular values 𝜃𝑖 of the perturbation matrix based on equation 2.10. We
replace the singular values 𝜆𝑖 of the matrix 𝑋𝑠 with those of the perturbation matrix 𝜃𝑖 and
call it 𝑃𝑠 . In this way we have created a perturbation matrix with the expected singular
values 𝜃𝑖 and unit singular vectors. Note that 𝑃𝑠 contains noise and is thus different from
the signal matrix 𝑃 . Luckily, low rank-perturbation theory is independent of the exact
distribution of the signal singular vectors.
Together, we obtain a sample measurement matrix (Step 1):𝑋̃ ∗ = 𝑋 +𝑃𝑠.
We next calculate the values phiclust of 𝑋̃ ∗ (Step 2). By sampling new values for the noise
matrix 𝑋 several times (∼ 50), and repeating step 1 and 2, we are now able to estimate the
influence of random variations, in finite limits, on the additive perturbation and thus on
phiclust.
We can subsequently calculate the upper 𝜙𝑢𝑝

clust and lower 𝜙𝑑𝑜𝑤𝑛
clust standard deviation as

follows. Let 𝑘 be the number of values above the original value 𝜙∗
clust and 𝑁 the total

number of sampled values then

𝜙𝑢𝑝
clust = ( 1𝑘 −1 ∑𝜙∗

clust≥𝜙clust(𝜙∗
clust −𝜙clust)2)1/2

(2.13)

𝜙𝑑𝑜𝑤𝑛
clust = ( 1𝑁 −𝑘 −1 ∑𝜙∗

clust<𝜙clust(𝜙∗
clust −𝜙clust)2)1/2

(2.14)

are the upper and lower boundaries of the interval.
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Clusterability

Assessing clustering quality

We use two different methods to assess clustering quality, the adjusted rand index (ARI)
and the silhouette coefficient.
Assuming two partitions, 𝐴 and 𝐵, of a set of 𝑁 cells, the rand index is defined as[21]:𝑅𝐼 (𝐴,𝐵) = 𝑁11 +𝑁00(𝑁2 ) ,
where 𝑁11 is the number of pairs of elements that are in the same cluster in 𝐴 and in the
same cluster in 𝐵. 𝑁00 is the number of pairs of elements that are in a different cluster
in 𝐴 and in a different cluster in 𝐵. The rand index takes values between 0 and 1, where
0 indicates the complete lack of agreement between the partitions and 1 would indicate
identical partitions. Even a random clustering of elements produces a non-zero rand index.
The ARI is defined in such a way, that its value is on average 0 for a pair of partitions with
randomly permuted cluster labels. A positive ARI thus indicates that partitions agree more
than expected to happen by random chance. Let partition 𝐴 have 𝐾𝐴 clusters of sizes 𝑎𝑖
and partition 𝐵 have 𝐾𝐵 clusters of sizes 𝑏𝑗 , then the adjusted rand index is defined as:

𝐴𝑅𝐼 (𝐴,𝐵) = 𝑅𝐼 (𝐴,𝐵)−𝔼[𝑅𝐼 (𝐴,𝐵)]1.0−𝔼[𝑅𝐼 (𝐴,𝐵)] = (𝑁2 )∑𝐾𝐴𝐾𝐵𝑘,𝑚=1 (𝑛𝑘𝑚2 )−∑𝐾𝐴𝑚=1 (𝑎𝑘2 )∑𝐾𝐵𝑚=1 (𝑏𝑚2 )12(𝑁2 )[∑𝐾𝐴𝑘=1 (𝑎𝑘2 )∑𝐾𝐵𝑚=1 (𝑏𝑚2 )]−∑𝐾𝐴𝑘=1 (𝑎𝑘2 )∑𝐾𝐵𝑚=1 (𝑏𝑚2 )
For synthetic data, we take a high ARI between a clustering and the ground truth partition
to indicate a clustering of high quality.

Another useful measure for clustering quality is the silhouette coefficient. Let 𝑎(𝑖) be
the mean distance from point 𝑖 to all other data points in the same cluster and 𝑏(𝑖) be the
mean distance from point 𝑖 to all other points from different clusters, then the silhouette
coefficient is defined as [8]: 𝑠(𝑖) = 𝑏(𝑖) − 𝑎(𝑖)𝑚𝑎𝑥{𝑎(𝑖),𝑏(𝑖)} .
For the calculation of the distance, we consider the euclidean distance metric in the space
spanned by the singular vectors that are associated with singular values above the MP
distribution of the expression matrix 𝑋̃ (see 2.6). The final silhouette coefficient is taken as
the mean value over all data points. For the calculation of the silhouette coefficient we use
the cluster R package (V 2.1.0).

Theoretically achievable clustering quality

A perfect clustering would coincide with the ground truth and obtain an ARI of 1. Here
we argue that such a perfect clustering is in general not achievable, if there is noise in
the data. In other words there is always a finite Bayes error rate (also called irreducible
error) for assigning cells to the appropriate cluster. To construct a Bayes classifier, which
achieves the minimal error rate, we need to know the ground truth partition. Hence, we
use simulated data. For each ground truth cluster, we fit a multidimensional Gaussian to
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the elements of the singular vectors of the expression matrix 𝑋̃ that correspond to the cells
in the respective cluster (see Additional file 1: Fig. S3a). We only consider singular vectors
with singular values above the MP distribution. For the fit we use the mclust R package

(V 5.4.6). We then construct a classifier by assigning a cell to the cluster for which it has
the highest value of the fitted Gaussian distribution. This corresponds to the best cluster-
ing one can achieve if the ground truth partition is known. We define the theoretically
achievable adjusted rand index (tARI) as the ARI between this best achievable clustering
and the ground truth partition. Similarly, we define the theoretically achievable silhouette
coefficient (tSIL) as the silhouette coefficient of the best achievable clustering. Since we use
the fitted Gaussian distributions instead of the actual (unknown) distribution of singular
vector elements, the constructed classifier only approximates the Bayes classifier. However,
we confirmed empirically, that the tARI defined above is an upper bound for all tested
clustering methods, which comprises the currently most popular tools used for single-cell
RNA-seq data [Additional file 1: Fig. S3 b, c].
The tARI embodies our notion of clusterability. We define high clusterability as a low Bayes
error rate for cluster assignments, which corresponds to a high tARI. We show empirically
that our clusterability measure is a proxy of the tARI and thus a way to assess clusterability
without knowing the ground truth [Fig. 1d].

Application to single-cell RNA-seq data

Preprocessing of scRNA-seq data

In the following the necessary preprocessing steps for the application of the clusterability
measure for scRNA-seq data are described.

Transcriptome Mode

The largest eigenvalue 𝜆1 of an expression matrix is typically much larger than all the
other singular values and its corresponding singular vector has entries of equal sign, which
often have similar magnitude (of order 1√𝑁 , which is the ideal value in the perfectly ho-

mogeneous case). This singular vector reflects a general, global trend in the data. This
structure has been observed for many empirical data matrices. (In time series analysis of
the stock market, this singular vector is called the "market mode" since it corresponds to a
trend that is common across many stocks [19]). Here, we refer to this singular vector as
"transcriptome mode" since it reflects a trend that is shared across the whole transcriptome
(see Additional file 1: Fig. S2 a-d). In order to reduce the influence of this singular value on
the calculation of the MP fit, we center the expression matrix 𝑋̃ gene-wise. As a result, the
singular value of the transcriptome mode will be reduced to a value close to 0.
Normalization

The efficiency of the capture of transcripts and their conversion to cDNA is known to be
highly variable between cells. Hence, single-cell gene expression data is usually normal-
ized cell-wise. We have tested several normalization methods but none of them seemed
sufficient to remove all technical variability in the data. Thus, in section 2.6 we describe a
method to reduce these effects for our clusterability measure phiclust. Nevertheless, we
normalize the expression to the total counts per cell and subsequently log-transform to
stabilize the variance.
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Gene distribution

Gene expression is typically modelled by a Poisson, negative binomial or zero inflated neg-
ative binomial distribution. However, the parameters of these distributions differ between
genes, this violates the assumptions of the MP theorem, where all values are sampled from
the same distribution. In practice, gene-wise standardization to a mean of 0 and standard
deviation of 1 mostly circumvents this problem. Additionally, we have observed that there
is a bias resulting from variations in cells. These biases are as well reduced by standardising
the cells to a mean of 0 and standard deviation of 1 (see Additional file 1: Fig. S2 c,d). This
is equivalent to calculating the eigenvalues and vectors of a correlation matrix instead of a
covariance matrix.

Zero inflation

Another factor to be considered is the large amount of zero values in scRNA-seq data.
These zeros might be on the one hand due to technical artefacts (low efficiency, dropout)
or simply due to low, stochastic gene expression. After performing the above mentioned
preprocessing steps we mostly do not observe deviations from the MP distribution. How-
ever, this is a known problem discussed within the framework of sparsity induced singular
values. For single cell RNA-seq data an extensive analysis has been performed in [14],
where the authors observe deviations from the MP distribution caused by sparsity. The
authors suggest the exclusion of outlier genes that can be identified through the fit of the
MP distribution. For phiclust we do not use this preprocessing step, however we do exclude
genes that have a high expression in only a few number of cells.

Regressingoutunwanted sources ofvariability (ConfounderRegression)

scRNA-seq data suffers from several sources of technical variability that can obscure or
even be mistaken for relevant biological signal. One of the most important of these is
the variable efficiency of mRNA capture and cDNA conversion. The total number of
detected transcripts per cell is typically taken as a proxy of this efficiency. There are
also biological processes that can cause unwanted signal. Most cells are stressed due to
the tissue dissociation necessary for single-cell library preparation. The percentage of
expression coming from mitochondrial genes or the expression of marker genes for stress
can be used to estimate the level of stress. Different metabolic states of cells might be
reflected in the level of ribosomal gene expression and many genes fluctuate with the cell
cycle. Here, we seek to establish a method to remove any effect of these nuisance variables
on the clusterability measure.
We model the signal matrix 𝑃 as a sum of relevant signal 𝐵 and unwanted signal due to
nuisance variables 𝑌 . Inspired by published approaches to expression data normalization
[23, 26], we model the influence of 𝑌 by linear regression. This is a valid approach because
the regression is performed on the singular vectors of 𝑋̃ , which contain Gaussian distributed
noise. Given the singular value decomposition of 𝑋̃ and singular vectors 𝑣̃𝑖 ,𝑣̃𝑖 = 𝛽𝑍 , with 𝛽 ∈ ℝ𝑘 (2.15)

where 𝑍 ∈ ℝ𝑁 ×𝑘 is a matrix of covariates, such as the total counts per cell, with 𝑘 the
number of covariates and 𝑁 the number of cells. Each covariate is normalized to a length
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of 1 such that the range agrees with the range of the singular vectors. The amount of
variance explained by the nuisance parameters is then given by the value of the adjusted R
squared (𝑅2𝑎𝑑𝑗 ) of this linear regression. Since the eigenvalues of the cell-cell correlation
matrix can be interpreted as the amount of variance explained, we reduce the eigenvalues𝜆𝑖 by 𝜆̃𝑖 = (1−𝑅2𝑎𝑑𝑗 )𝜆𝑖 . In the next step, we calculate adjusted singular values by 𝛾𝑖 = √𝜆𝑖
and use these adjusted singular values 𝛾𝑖 for the consecutive steps in the calculation of the
clusterability measure.

Algorithm

The procedure to obtain the clusterability measure involves the following steps:

1. Preprocess the single cell expression matrix as described in section 2.6:

(a) Normalization

(b) Log-transformation

(c) Standardization gene-wise

(d) Standardization cell-wise

2. Calculate the singular value decomposition of the gene expression matrix 𝑋̃ .

3. Fit the MP distribution to the singular values (equation 2.5).

4. Determine singular values/vectors that correspond to non-random variability using
the Tracy-Widom distribution (equation 2.7) or the Shapiro-Wilk test (equation 2.8),
respectively.

5. Adjust the singular values for effects of nuisance variables by linear regression
(equation 2.15).

6. Calculate the singular values 𝜃𝑖 of the signal matrix 𝑃 using the inverse of equation
2.9, given by 2.10.

7. Calculate the projections of the singular vectors of the expression matrix 𝑋̃ on the
corresponding singular vector of the signal matrix 𝑃 with equations 2.11 for the
singular vectors and 2.12 for the gene singular vectors.

8. The clusterability measure is the largest of the projections for the singular vectors
obtained in the previous step.
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Application of phiclust to our previously published single-cell RNA-sequencing study of
the human fetal kidney [31] revealed two distinct groups of clusters (Fig. 3a). Connecting
tubule (CnT), nephron progenitor cells-a (NPCa), nephron progenitor cells-b (NPCb), and
mesangial cells (Mes) all obtained a phiclust of 0, which signified that these clusters consist
of pure populations with homogeneous gene-expression profiles. The rest of the clusters
obtained higher values of phiclust, indicating that they contained subpopulations that were
previously overlooked. For further analysis, we explored all clusters with highest phiclust
and chose to further investigate clusters in which new cell populations were identified: the
ureteric bud/collecting duct (UBCD), the S-Shaped Body proximal precursor cells (SSBpr),
and the Interstitial cells a (ICa), with phiclust of 0.97, 0.95, and 0.93, respectively.

UBCD The analysis of this cluster yielded two clearly separate subpopulations (Fig. 3b,
Additional file 1: Fig. S10b). The bigger subpopulation contained developing collecting
duct cells and their precursors (ureteric bud), indicated by the expression of genes such as
WFDC2, AQP2, CLDN3, MMP7, and CALB1. In contrast, the smaller sub-cluster showed
little or no expression of the aforementioned genes and was characterized by UPK1A and
UPK1B, well-known markers of the urothelial epithelium, which constitutes the inner
lining of the ureter. The presence of such cells in our data is plausible given that the whole
fetal kidney was used in our sequencing experiment. Both DE analysis (Table S4) and
inspection of the top variance-driving genes (Additional file 1: Fig. S10e) revealed SPINK1,
UPK2, S100A6, KRT7, and KRT19 as additional markers. Staining of week 15 fetal kidney
sections with UPK1A and KRT7 antibodies confirmed our interpretation (Fig. 3c, Additional
file 1: Fig. S11a). UPK1A was restricted to the superficial urothelial cells in major and minor
calyces as well as the developing ureter. KRT7 was expressed more broadly, across the
superficial, intermediate, and basal urothelium. Both KRT7 and UPK1A were completely
absent from the whole collecting system and the branching ureteric bud, marked by CDH1
(Additional file 1: Fig. S11a).

SSBpr Sub-clustering the SSBpr population showed the presence of 3 subpopulations
(Fig. 3b, Additional file 1: Fig. S10b). One subpopulation contained markers of proximal
cell precursors (GPC3, LHX1, CADM2) together with low expression of AMN and APOE
(see Table S4), which is consistent with the original annotation of the cluster. A second
subpopulation, contiguous to the previous one, showed the expression of CLDN1, which
is expressed in the proximal epithelium, together with CITED2, expressed in developing
podocytes. This suggested parietal epithelial cells (PECs) as the most likely cell type, as
these cells were reported to share several markers with both proximal epithelium and
podocytes [45]. To confirm this interpretation, we performed Immunostaining of CLDN1,
as well as CAV2 and AKAP12 which were found by DE analysis (Fig. 3d, Additional file 1:
Fig. S11b). Interestingly, CLDN1 was found in all segments of the S-shaped body except in
the precursors of the PECs, which are the thin layer of cells at the lateral side of the proximal
segment of the SSB. CLDN1 appeared in the parietal epithelium only at the capillary loop
stage and continued to be expressed in all PECs in more mature glomeruli. CAV2 was
present in the parietal epithelium in developing glomeruli, but also in the endothelial cells
of both the glomerular capillaries and the surrounding vasculature. Intriguingly, CAV2
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overlapped with CLDN1 only in a subpopulation of PECs in individual glomeruli, which
might indicate previously unobserved heterogeneity within these cells in the developing
kidney. Only AKAP12 marked the precursors of the PECs in S-shaped bodies and continued
to be abundantly expressed. However, AKAP12, was not specific to PECs, as it was also
expressed in interstitial cells in the cortex. Finally, a third, small and distinct subpopulation
in the SSBpr cluster expressed distal tubule markers (SPP1, ODC1, IRX3, and S100A10),
suggesting that these cells were misclassified during the original clustering. This shows
that phiclust can pinpoint clustering errors, making it a useful tool for clustering quality
control.

ICa This cluster consisted of 5 subpopulations (Fig. 3b, Additional file 1: Fig. S10b). All
subpopulations expressed markers of the renal interstitium. One also expressed genes
found uniquely expressed in other cell types (EPCAM, CD24, BST2, NNAT, DAPL1) and
thus likely contains doublets. Another small subset was characterized by markers of mesan-
gial cells (MGP, ACTA2, PDGFRB), suggesting that it contains mesangial cells erroneously
grouped with the ICa or renal pericytes, which share a similar gene expression profile
[46]. Another subpopulation showed high expression of non-specific genes related to
components and regulators of microtubules together with metabolic, mitochondrial and
stress-related genes (H2AFZ, TUBA1B, TYMS, STMN1, DUT, MT-CO3, MT-ND5). The
two remaining subpopulations were clearly interstitial but their gene expression profiles
could not be linked to known interstitial populations, likely due to the dearth of knowledge
about the renal stroma. We hypothesized that these two subpopulations were localized
in different regions of the kidney. To test this idea, we stained fetal kidney sections with
POSTN, CLDN11, and SULT1E1 (Fig. 3e, Additional file 1: Fig. S11c), which were identified
by DE analysis and inspection of the top variance-driving genes. SULT1E1 was highly
expressed in the pelvic area in the immediate vicinity of the developing ureter, as well
as the inner and outer medulla, preferentially surrounding tubules. This marker might
thus indicate the medullary interstitium as well as pelvic smooth muscle cells. Staining
with CLDN11 showed a higher signal in the medulla and papilla, similar to SULT1E1, but
with a wider spatial distribution. In contrast to SULT1E1, CLDN11 was also expressed in
groups of cortical interstitial cells, situated directly underneath the renal capsule, in the
nephrogenic zone. CLDN11 might thus also be expressed by the interstitial progenitor
cells or their immediate progeny. Lastly, POSTN was mainly found in the renal cortex
surrounding tubules and glomerular microvasculature. POSTN was also expressed in
cortical blood vessels with larger diameters together with their arborizations. POSTN is
a secreted extracellular matrix protein known to be expressed in cardiac smooth muscle
cells, as well as connective tissues. Here, POSTN might mark smooth muscle cells of the
cortical vasculature.

In conclusion, a reanalysis of our previously published data showed the ability of ph-
iclust to reveal overlooked subpopulations. Interestingly, phiclust identified sub-clusters
with only a few cells (41 developing PECs, 68 urothelial cells, 29 distal cells), highlighting
its sensitivity to relevant substructure hidden within a bigger cluster. Finally, phiclust
was also useful to pinpoint clustering errors and the presence of doublets, which makes it
useful for quality control prior to DE analysis.
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3
ETV2 upregulation marks the

specification of early cardiomyocytes

and endothelial cells during

co-differentiation

The ability to differentiate human induced pluripotent stem cells (hiPSCs) efficiently into de-

fined cardiac lineages, such as cardiomyocytes and cardiac endothelial cells, is crucial to study

human heart development and model cardiovascular diseases in vitro. The mechanisms under-

lying the specification of these cell types during human development are not well-understood,

which limits the fine-tuning and broader application of cardiac model systems. Here, we

used the expression of ETV2, a master regulator of hematoendothelial specification in mice,

to identify functionally distinct subpopulations during the co-differentiation of endothelial

cells and cardiomyocytes from hiPSCs. Targeted analysis of single-cell RNA sequencing data

revealed differential ETV2 dynamics in the two lineages. A newly created fluorescent reporter

line allowed us to identify early lineage-restricted states and show that a transient ETV2-high

state initiates the specification of endothelial cells. We further demonstrated that functional

cardiomyocytes can originate, unexpectedly, from progenitors expressing ETV2 at a low level.

Our study thus sheds light on the in vitro differentiation dynamics of two important cardiac

lineages.

This chapter is based on Xu Cao, Maria Mircea, Gopala Krishna Yakala, Francijna E. van den Hil, Hailiang Mei,
Christine L. Mummery, Stefan Semrau, and Valeria V. Orlova. ETV2 upregulation marks the specification of early
cardiomyocytes and endothelial cells during co-differentiation. Manuscript submitted.
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Significance statement

In vitro differentiation of cardiac cell types is of great importance for disease modeling and
future regenerative medicine. Many of the relevant molecular mechanisms are currently
not understood, which limits the efficiency and fine-tuning of existing differentiation
protocols. Here, we focus on the master regulator ETV2 and show that its upregulation
marks the specification of two cardiac cell types during co-differentiation. Using single-cell
RNA-seq and a new fluorescent reporter line, we identify lineage-restricted subpopulations
in the ETV2+ cells. Our study is the first to resolve ETV2 dynamics at the single-cell level
in the context of in vitro human cardiac differentiation.

3.1 Introduction

In vivo, cardiomyocytes (CMs) and endothelial cells (ECs) originate from Mesp1+ pro-
genitors specified during gastrulation. In mice, these cells appear in the primitive streak
and subsequently migrate towards the lateral plate mesoderm around E6.5 [1–4]. It is
still controversial when the segregation of CMs and ECs from their common progenitor
occurs. Single-cell RNA-seq (scRNA-seq) of mouse Mesp1+ progenitors collected at E6.75
and E7.25 showed that these cells were already segregated into distinct cardiovascular
lineages, including CMs and ECs [5]. However, other studies showed that multipotential
progenitors were still present in Flk-1-expressing lateral plate mesoderm [6, 7]. These
cells were the first to be recognized as multipotent cardiac progenitor cells (CPCs) [8].
Studies in mouse and chick showed that CPCs come from two different sources [9, 10]: the
first and second heart field (FHF, SHF). The FHF in the cardiac crescent contributes to the
primitive heart tube, which serves as a scaffold into which SHF cells can migrate before
heart chamber morphogenesis. It has been shown that cells from the SHF are patterned
before migration to give rise to different parts of the heart [2, 11]. CPCs from FHF and SHF
can be distinguished by the expression of ISL1, which is specifically expressed in SHF [12].
NKX2-5 expressing CPCs in both FHF and SHF from E7.5 to E7.75 contribute to both CMs
and ECs in the heart [13]. As a direct target of NKX2-5, ETV2 was found to be expressed
in all ECs but not myocardium by E8.5 [14]. ETV2 was required for the development of
endothelial and hematopoietic lineages and directly targets TAL1, GATA2, LMO2, TEK,
NOTCH1, NOTCH4, and CDH5 [14–17]. In mouse embryonic stem cells (ESCs), VEGF-
FLK1 signaling upregulates ETV2 expression to induce hemangiogenic specification via an
ETV2 threshold-dependent mechanism [18]. ETV2 expression was also found to direct the
segregation of hemangioblasts, and smooth muscle cells (SMCs) in mouse ESCs [19].
In human heart development, much less is known about the specification of endothelial and
myocardial lineages from multipotent CPCs, both in terms of timing and gene regulatory
mechanisms. More specifically, it is still unclear whether ETV2 also plays a role in the
segregation of ECs and CMs from CPCs in humans. Overexpression of ETV2 converts
human fibroblasts into endothelial-like cells [20] and ETV2 expression levels were manipu-
lated in several studies to drive hiPSCs towards ECs in 2D, and 3D cultures [21–27]. Paik
et al. performed scRNA-seq analysis of hiPSC-derived ECs (hiPSC-ECs), which made up
less than 10% of the cells that expressed the cardiac maker TNNT2. The developmental
dynamics of ECs and cardiac lineages as such were not further studied [28].
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Figure 3.1: scRNA-seq analysis of EC and CM co-differentiation reveals transient ETV2 upregulation
after bifurcation. (A) Schematic overview of the co-differentiation protocol from day -1 to day 6. Cells were
collected for scRNA-seq on day 6. (B) Two-dimensional representation of the scRNA-seq data. Each data point is
a single cell. Left: log2 transformed ETV2 expression is indicated by color. Top right: Cell identities are labeled
with different colors. Bottom right: Pseudotime is indicated by color. (C) Average expression of ETV2 in bins of
pseudotime for the developmental path of CMs or ECs . Cell identities are labeled with different colors. (D-E)
Average expression of ETV2 and its direct target genes TAL1, GATA2, LMO across binned pseudotime along
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the average ETV2 expression in EC reaches 0.25. (F) GO enrichment analysis of genes that were differentially
expressed between ETV2+ ECs and ETV2+ CMs in the scRNA-seq dataset. 128 and 136 genes were upregulated in
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In a scRNA-seq study of hiPSC-ECs created with another differentiation protocol [29], ECs
were collected atmultiple time points. This study showed that endothelial andmesenchymal
lineages had a common developmental origin in mesoderm cells, but the identity and
differentiation potential of these cells was not characterized.
Previously, we found that MESP1+ progenitors derived from human ESCs could give
rise to CMs, ECs and SMCs [30, 31]. We also developed a co-differentiation system for
ECs and CMs from hiPSCs through a common cardiac mesoderm precursor [32]. Here we
performed scRNA-seq analysis of this co-differentiation system to elucidate the relationship
between ETV2 expression and specification of ECs and CMs from cardiac mesoderm. ETV2
expression was observed principally in the form of an initial pulse in the endothelial
lineage but also in a subpopulation of the myocardial lineage. Using a newly generated
ETV2mCherry hiPSC reporter line, we purified two subpopulations of ETV2+ cells and
revealed their respective EC and CM expression characteristics by bulk RNA-seq. These
sorted populations also showed distinct differentiation potentials towards CMs and ECs
upon further differentiation with VEGF. In summary, this study depicted ETV2 dynamics
during the segregation of human CMs and ECs differentiated from hiPSCs.

3.2 Results
3.2.1 ETV2 is upregulated after a bifurcation into CMs and

ECs

To characterize the expression of ETV2 during co-differentiation of ECs and CMs [32] (Fig.
3.1A), we collected scRNA-seq data on day 6 of differentiation (Fig. 3.1B). We identified
three distinct clusters: cardiac mesoderm, CMs, and ECs (Fig. 3.1B, top right and Table S3).
Pseudotime analysis revealed cardiac mesoderm as the common developmental origin of
CMs and ECs (Fig. 3.1B, bottom right). We found ETV2 to be highly expressed in the EC
cluster, as well as a small fraction of cells in the cardiac mesoderm and CM clusters (Fig.
3.1B, left). We next focused on ETV2 expression dynamics along the developmental path
from cardiac mesoderm to CMs and ECs. Notably, ECs extended to larger pseudotimes (0.15-
0.8) compared to CMs (0.15-0.3), which might indicate faster differentiation dynamics in the
EC lineage (Fig. 3.1C, 3.2A). After the bifurcation into ECs and CMs (around pseudotime
0.15), ETV2 increased only slightly in the CM lineage. In the EC lineage, however, it
was initially strongly upregulated (until pseudotime 0.25), and subsequently declined to a
similar level as in cardiac mesoderm (Fig. 3.1C). ETV2 downstream target genes, such as
TAL1, GATA2, and LMO2 [17], were only slightly increased in the CM lineage (Fig. 3.1D),
while in the EC lineage, they were highly induced and strongly correlated with ETV2 (Fig.
3.1E). Notably, TAL1, GATA2, and LMO2 only showed significant expression after ETV2
expression exceeded 0.25 in ECs, an expression level that was not reached in CMs (Fig.
3.2B-C). Endothelial specific genes KDR, CD34, SOX17, CDH5, and PECAM1 increased on
the path from cardiac mesoderm to ECs (Fig. 3.2E). Most of these genes started to increase
when ETV2 was already declining, as exemplified by CDH5 (Fig. 3.2D). Genes related to
cardiac or muscle functionalities, like ACTC1, PDLIM5, HAND1, PKP2, and GATA4, most
of which were already expressed in the cardiac mesoderm, were further increased in the
CM lineage (Fig. 3.2F). Identification of genes that are differentially expressed between
ETV2+ CMs and ECs showed enrichment in CM- and EC-specific genes, respectively (Fig.
3.1F, Table S4).
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Figure 3.2: Pseudotime analysis of co-differentiation (A) Distributions of pseudotime for each cell cluster.
(B-C) Average expression of ETV2 and ETV2 target genes along the developmental path of CMs (B) and ECs (C).
Threshold (indicated in black) is set to the timepoint where the average ETV2 expression in the endothelial cell
cluster reaches 0.25. (D) Average expression of CDH5 and ETV2 in the EC cluster across pseudotime. Binning and
averaging was performed as for (B) and (C). The p-value for the correlation between CDH5 and ETV2 expression is
based on the null hypothesis that the correlation is zero. (E) Expression of endothelial markers across pseudotime
along the development path of ECs. (F) Expression of cardiac markers across pseudotime along the development
path of CMs.
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Taken together, these analyses confirmed the differentiation of cardiac mesoderm into CMs
and ECs, which we had discovered previously. They also revealed the increase of ETV2
as a global indicator of early lineage separation and a transient pulse of high ETV2 at the
beginning of EC specification.

A

B

day 4 day 5 day 6 day 8
0

10

20

30

40
ETV2+CD144+ cells

%
of

to
ta

lp
op

ul
a

on

H

D

0

1

2

3 ETV2

Re
la

tiv
e

RN
A

ex
pr

es
sio

n

day 0 day 3 day 4 day 5 day 6 day 8 day 10

ETV2 exons 3’ UTRStop 
codonmCherry NeoRFRT PGKP2A NLS FRT

ETV2 exons 3’ UTRStop 
codonmCherry FRTP2A NLS

Product 1 (1395 bp)
Product 2 (3476 bp)

Product 3 (3285 bp)

Product 4 (1710 bp)
1’ 2’ + -

Clone #

Product 3

Product 4

ladder

2 3 4

Clone #

Product 1

Product 2

1 -

Total colonies screened 35

Targeted colonies 9 (26%)

Both alleles targeted 1 (3%)

Single allele targeted 8 (23%)

Single allele targeted, 
WT allele intact

0 (0%)

C

G

5’ HA mCherry NeoRFRT PGK FRTP2A NLS

ETV2 exons 3’ UTRStop 
codon

3’ HA

ETV2 exons 3’ UTRmCherry NeoRFRT PGKP2A NLS FRT

ETV2 exons 3’ UTRmCherry FRTP2A NLS

Cas9

Homologous 

ETV2 
gene

5’ HA

Day 4 Day 5 Day 6 Day 8 E Day 8
ECs/mCherry

F

C
D

14
4

Day 4 Day 5 Day 6 Day 8

ETV2-mCherry

4.64

0.94

8.37

23.6

3.70

35.4

2.73

21.2

ETV2+CD144- cells

day 4 day 5 day 6 day 8
0

2

4

6

8

%
of

to
ta

lp
op

ul
a

on

I

Figure 3.3: Generation and characterization of an ETV2mCherry hiPSC reporter line. (Caption on the
next page.)
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3.2.2 Generation and characterization of an ETV2mCherry flu-
orescent hiPSC reporter line

In order to follow ETV2 expression in real-time, we introduced a fluorescent reporter for
ETV2 in hiPSCs. P2A-mCherry with a nuclear localization signal (NLS) and a neomycin
selection cassette was inserted into the endogenous ETV2 locus before the stop codon using
CRISPR/Cas9-facilitated homologous recombination (Fig. 3.3A). After neomycin selection
and excision of the selection cassette, targeted hiPSC clones were validated by PCR (Fig.
3.3B) and Sanger sequencing. Clones with ETV2mCherry in both alleles were selected for
downstream analysis (Fig. 3.3C). Time-lapse imaging of differentiating cultures showed the
appearance of nuclear mCherry from day 4 of differentiation (Fig. 3.3D and supplemental
online Video 1). Co-staining of live cells with EC-specific fluorescent agglutinin showed
distinct EC clusters on day 8 of differentiation (Fig. 3.3E). Flow cytometry analysis at
different stages of differentiation revealed upregulation of ETV2 (mCherry protein) as early
as day 4 of differentiation, followed by the upregulation of the EC-specific marker CD144
(Fig. 3.3F). Quantification of percentages of single positive (SP; ETV2mCherry+CD144-)(Fig.
3.3G) and double positive (DP; ETV2mCherry+CD144+)(Fig. 3.3H) cells on day 4, 5, 6 and 8
of differentiation from at least three independent experiments showed a decrease and an
increase of SP and DP cells respectively (Fig. 3.3G-H). mCherry protein remained present
for a longer period than endogenous ETV2 mRNA (Fig. 3.3I), likely due to a longer half-life
of the protein compared to the mRNA. This also explains the persistence of mCherry signal
in both the DP and SP population.

Figure 3.3: Generation and characterization of an ETV2mCherry hiPSC reporter line (Figure on the
previous page.) (A) Schematic of CRISPR/Cas9-Mediated Knock-in of mCherry into the ETV2 locus of hiPSCs.
mCherry and Neomycin Resistance (NeoR) was inserted into the ETV2 locus through homologous recombination.
Then NeoR cassette was removed by flpo recombinase. (B) PCR screening of targeted clones with correct insertion
at the ETV2 locus. Two pairs of primers (for product 1 and 2) were used to confirm the integration of the construct.
Clone 1, 2, 3 were correctly targeted and clone 4 was not targeted. Non-targeted hiPSCs (-) were included as
negative control. Lower panel: The excision of the neomycin-resistance cassette was confirmed by PCR (product
3 and 4 for before and after excision). Clone 1’ ad 2’ were successfully excised. Genomic DNA before excision (+)
and non-targeted hiPSCs (-) were included as positive and negative control, respectively. (C) Summary of CRISPR
targeting efficiency. Out of 35 colonies screened, 1 colony was targeted in both alleles. 8 colonies were targeted
in only one allele, but the other allele showed undesired mutations. (D) Overlay of bright-field and mCherry
fluorescence images on differentiation day 4, 5, 6 and 8 of differentiation using the ETV2-mCherry reporter line.
Scale bar 200 µm. (E) FITC-agglutinin staining of cells at the same location as shown in (D) on day 8. mCherry
is in red and Agglutinin is in green. Scale bar 200 µm. (F) Fluorescence activated cell sorting (FACS) based on
CD144 and ETV2mCherry expression on day 4, 5, 6 and 8 of differentiation. (G-H) Quantification of ETV2+CD144-
(SP) ETV2+CD144+ (DP) cells by flow cytometry on differentiation day 4, 5, 6 and 8. (I) Quantification of ETV2
expression by qPCR on different days of differentiation. (F-G) Error bars are standard deviations calculated from
three independent experiments.



3

88 3 ETV2 upregulation during co-differentiation

CDK2AP2
CNOT9
CCND1

EIF4G1

CDK4

MYC
E2F1

ITGB1

CDC6

POLE2.5

5.0

7.5

D4 D5 D6 D8
Differentiation day

lo
g2

(R
P

K
M

)

A

Heart valve morphogenesis

E

TGF beta receptor signaling pathway 

Consensus Matrix of DP
D3D2D1

Consensus Value
0             0.5            1

B

C D

SMAD6

GATA5

GATA3
NOS3

TGFBR2

EFNA1

EMILIN1
HEY2

HIPK2

0

2

4

6

8

D4 D5 D6 D8
Differentiation day

lo
g2

(R
P

K
M

) 

EMILIN1

HIPK2

TGFBR3

CDKN1C

SMAD6

BMPR2

SMAD7

FOXH1

LTBP1

LTBP4

2

4

6

D4 D5 D6 D8
Differentiation day

lo
g2

(R
P

K
M

)

S1 S2 S3

Consensus Value
0             0.5            1

Consensus Matrix of SP

G1/S transition of mitotic cell cycle

Fatty-acyl-CoA biosynthetic process F

ACLY

ACSL4

SLC25A1

FASN

ELOVL1

ACSL3
PPT1

ELOVL5

ELOVL6
3

4

5

6

7

D4 D5 D6 D8
Differentiation day

lo
g2

(R
P

K
M

)

H

CDC20

CDC25C

CCNA2

NEK2

NDC80
PLK1

CHMP5

PRC1

AURKA

TPX2

3

4

5

6

7

D4 D5 D6 D8
Differentiation day

lo
g2

(R
P

K
M

)

Mitotic nuclear division Ribonucleoprotein complex assembly

PRPF8

DDX23

SNRPD3

SNRPE
C1QBP

SART1

RRP1B

SF1

PRMT5

DDX3X

4

5

6

D4 D5 D6 D8
Differentiation day

lo
g2

(R
P

K
M

)

I J

MYL7
MYL4

CALD1

MEF2A

KCNH2
EHD3

EDN1

MYL9

ACTA2

MYL6B

2

4

6

8

D4 D5 D6 D8
Differentiation day

lo
g2

(R
P

K
M

)

Muscle system development

Notch signalling pathway

HEY1

DLL4
JAG2

NOTCH3

NOTCH1

NOTCH4

HES4

EGF

COL1A2

TGFBR2

2

4

6

8

D4 D5 D6 D8
Differentiation day

lo
g2

(R
P

K
M

) 

G

-0.2
0.0
0.2
0.4

Cluster D2

-0.2

0.0

0.2

0.4

Cluster D3

-0.2

0.0

0.2

0.4
Cluster S2

-0.25

0.00

0.25

Cluster S3
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3.2.3 The ETV2mCherry fluorescent reporter allows for the
purificationofdifferentiating cellswithlineage-specific
expression profiles

We next sorted DP and SP cells at different stages of differentiation (Fig. 3.3F) and performed
bulk RNA-seq of at least three independent replicates. Principal component analysis (PCA)
showed that DP and SP populations diverged progressively over time (Fig. 3.5A). Mapping
of the bulk transcriptomes to the scRNA-seq data revealed that DP samples aligned on the
EC branch and SP cells on the CM branch (Fig. 3.5B). Notably, SP and DP cells of later time
points were further away from cardiac mesoderm, reflecting ongoing differentiation (Fig.
3.5B).
We next leveraged the higher sensitivity and accuracy of bulk RNA-seq compared to
scRNA-seq, to get a more comprehensive and robust transcriptional characterization of
the subpopulations. By consensus clustering of the most variable genes across DP or SP
cells (3000 genes each) we found three gene clusters for each population, with distinct
expression dynamics (Fig. 3.5C-D, Fig. 3.4A-B, Table S5). In DP cells, cluster D1 (1226 genes)
expression increased over time. Gene Ontology (GO) terms enriched in cluster D1 included
“angiogenesis”, “Notch signaling pathway”, “transforming growth factor beta receptor
signaling pathway”, “receptor-mediated endocytosis” and “developmental maturation”
(Fig. 3.5E, Table S6). In accordance with this analysis, angiogenesis-related genes (CDH5,
TIE1, TEK, EFNB2, SOX18, VEGFB, LEPR), Notch and transforming growth factor beta
receptor signaling pathway related genes (COL1A2, NOTCH1, HES4, DLL4, JAG2, HEY1,
NOTCH3, NOTCH4, TGFBR2, EGF) and heart valve morphogenesis related genes (SMAD6,
EFNA1, GATA5, HEY2, EMILIN1, NOS3, GATA3) were upregulated over the course of
differentiation in DP cells (Fig. 3.5G, Fig. 3.4C). In the scRNA-seq data, cluster D1 genes
were specifically expressed in the EC cluster and showed increasing expression along
pseudotime (Fig. 3.5I). Cluster D1 genes are thus likely involved in EC-specific functions.
Cluster D2 (1127 genes), which was downregulated after day 4 (Fig. 3.5C), was enriched for
cell cycle-related genes (ITGB1, CDK4, CCND1, CDK2AP2, MYC, CDC6)(3.4D). Cluster D3
(647 genes), which was downregulated after day 5-6 (Fig. 3.5C), contained cell proliferation-
and fatty-acyl-CoA biosynthetic process-related genes (ACLY, FASN, ELOVL1, SLC25A1,
ACSL3, ACSL4)(Fig. 3.4E). Genes in clusters D2 and D3 were more broadly expressed in
the scRNA-seq data (Fig. 3.4I). Their dynamics likely reflect changes in proliferation and
metabolism at the exit from the multipotent progenitor state.
In SP cells, cluster S1 (936 genes) increased over time and contained genes enriched for
GO terms related to heart development and function (Fig. 3.5F, Table S6). In agreement
with this observation, cardiac chamber and cardiac muscle development related genes
(MYH6, HAND1, MYH10, TNNT2, NKX2-5, ISL1, TNNC1, MYOD, LMO4 and HEY1, MYL7,
MYL4, ACTA2, KCNH2) were upregulated over the course of differentiation (Fig. 3.5H, Fig.
3.4F). Cluster S1 genes were highly expressed in the cardiac mesoderm and CMs clusters
in the scRNA-seq data, which showed an increase over pseudotime in the CM lineage
(Fig. 3.5J). These genes are thus likely involved in CM-specific functions. Cluster S2 (746
genes), which increased slightly until day 6 and was downregulated afterwards (Fig. 3.5D),
contained mitotic nuclear division genes (TPX2, CDC20, NEK2, PLK1, PRC1 and CDC25C)
(Fig. 3.4G).
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Cluster S3 (1318 genes), whose expression decreased continuously over time (Fig. 3.5D),
contained transcription and translation process-related genes (SF1, SNRPE, DDX23, RRP1B
and PRMT5) (3.4H). In the scRNA-seq data, genes from clusters S2 and S3 showed broader
expression patterns compared to cluster S1 genes (Fig. 3.4J). The dynamics of clusters S2
and S3 likely reflect changes in proliferation and metabolism in the CM lineage, analogous
to the role of clusters D2 and D3 in the EC lineage.
All in all, time-resolved bulk RNA-seq of sorted SP and DP populations confirmed that
ETV2-positive cells contained transcriptionally distinct subpopulations. DP cells were part
of the EC lineage, while SP cells corresponded to the CM lineage.

3.2.4 ETV2+ cells contain lineage-restricted subpopulations

Next, we wanted to find out how far the various subpopulations we identified differed
in terms of their further differentiation potential. To that end, we sorted cells on ETV2
reporter levels shortly after the bifurcation (on day 5) and attempted to differentiate them
further towards ECs by adding VEGF (Fig. 3.6A-B). After 5 days of additional differentiation,
ETV2mCherry+ cells produced more than 90% CD144+CD31+ ECs, while ETV2mCherry- cells
gave rise to only 10-15% ECs (3.6C-D). Only cells derived from ETV2mCherry+ cells expressed
endothelial-specific markers, as observed by qPCR and immunofluorescence (Fig. 3.6E-H).
These cells also upregulated pro-inflammatory markers, such as ICAM-1 and E-Selectin
upon TNF-𝛼 stimulation (Fig. 3.6I-L), as shown previously for hiPSC-derived ECs [33].
We could thus conclude that the majority of ETV2-positive cells on day 5 have a strong
propensity to produce ECs.
Both the analysis of the scRNA-seq data and the time-resolved bulk RNA-seq of sorted cells
identified a subpopulation of ETV2+ cells with CM characteristics. We strongly suspected
that the differentiation potential of those cells would be restricted to the CM lineage. To
test this hypothesis with our reporter line, we co-differentiated cells until day 7. We chose
a later time point for this experiment because the majority of cells are past the bifurcation
at this point, and it is, therefore, easier to identify the ETV2+ population that does not
correspond to early ECs. We co-stained for CD144 and sorted the cells into DP, SP, and
double negative (DN) populations. These subpopulations were then further cultured in the
presence of VEGF until day 18 (Fig. 3.6A, M). The majority (>80%) of DP cells differentiated
into CD144+CD31+ ECs, in agreement with the previous experiment (Fig. 3.6N-O). In
contrast, more than 50% of SP and DN cells differentiated into cTnT+ CMs while very
few ECs were detected (Fig. 3.6N-O). Interestingly, CMs derived from SP cells seemed to
proliferate more and formed a monolayer composed of a contracting cell sheet, while CMs
from DN cells proliferated to a lesser extent and produced only a few, separated clusters of
contracting cells (supplemental online Video 2). Almost all DP cells on day 18 expressed the
EC marker CD31, while only few cells derived from SP and DN cells were positive for CD31
(Fig. 3.6P-R). Most cells derived from SP and DN expressed CM-specific 𝛼-Actinin and
cTnT and showed typical sarcomeric structures (Fig. 3.6Q-R). A small number of SP and
DN-derived cells were also positive for the smooth muscle cell marker SM22, while negative
for cardiac markers (data not shown). Furthermore, SP cell fraction-derived 𝛼-Actinin
positive CMs were positive for SM22, possibly indicating their immaturity (Fig. 3.6R).
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Figure 3.6: ETV2+ cells contain two lineage-restricted subpopulations (Caption on the next page.)
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Taken together, the VEGF differentiation experiments showed that DP and SP cells are
restricted to the EC and CM lineage respectively. DN cells were largely unable to give rise to
EC, but produced CMs, albeit with lower efficiency than SP cells. Entering a transient state
characterized by high ETV2 expression, thus seems necessary to initiate EC specification.

3.3 Discussion

In this study, we characterized the dynamics of EC and CM co-differentiation from hiPSCs
[32]. ETV2 was identified as an early indicator of lineage separation and found to be
strongly, but transiently, upregulated in ECs, in agreement with its fundamental role in
hemangiogenic development [34]. Interestingly, ETV2 expression was also observed in
a small population of cardiac mesoderm and CMs. This is reminiscent of a recent study
where etv2 expression was observed in lateral plate mesoderm and the CM population
in zebrafish [35]. In our experiments, expression of ETV2 target genes seemed to occur
only beyond a certain level of ETV2 expression, although this observation could also be
explained by a temporal delay between ETV2 upregulation and target gene expression. An
ETV2 threshold in our system would be in line with previous reports of an ETV2 threshold
in hemangiogenic specification [18, 19]. Our results thus support an ETV2 pulse- and
threshold dependent specification of ECs.
With the ETV2mCherry hiPSC reporter line generated to track, isolate and characterize
ETV2+ cells, we showed that ETV2+ cells could give rise to both ECs and CMs. Over
time, EC and CM precursors acquired more specific endothelial and myocardial identities,
respectively, as well as downregulated cell cycle-related genes, which indicated exit from
the progenitor state and further maturation.
In the DP subpopulation (EC precursors), several key angiogenesis and Notch signaling
pathway genes, like LEPR, FOXO4, DLL4, NOTCH4 and EGF, strongly increased starting
from day 4, indicating a specified EC fate but an immature state on day 4. These relatively
late expressed genes could potentially be used as markers to distinguish early and late ECs
during development in vitro or in vivo.

Figure 3.6: ETV2+ cells contain two lineage-restricted subpopulations (Figure on the previous page.)
(A) Schematic of the differentiation protocol and cell sorting. ETV+ and ETV2- cells were sorted on day 5
and cultured in VEGF until day 10. DP, SP, DN were sorted on day 7 and cultured in VEGF until day 18. (B)
Representative flow cytometry analysis ETV2-mCherry expression on day 5 and gates for cell sorting of ETV2+
and ETV2- cells are shown. (C) Flow cytometry analysis of endothelial markers CD144 and CD31 on day 10 of
sorted ETV2+ and ETV2- cell differentiation. (D) Quantification of CD144+CD31+ cells in the total population on
day 10 of sorted ETV2+ and ETV2- cell differentiation. (E-F) Quantification of CDH5 and PECAM1 expression
in sorted ETV2+ and ETV2- cells on day 5 and day 10. (G-H) Immuno-staining of CD144, CD31 and cell-cell
junctional marker ZO-1 for sorted ETV2+ cells on day 10. Scale bar 200 µm. (I-J) Flow cytometry analysis of
ICAM1, E-Selectin and CD144 for sorted ETV2+ cells on day 10. Cells were stimulated with TNF-𝛼 for 24 h before
analysis. (K-L) Quantification of CD144+ICAM-1+ (K) and CD144+E-Selectin+ (L) cells in the population on day
10. (M) Flow cytometry analysis of CD144 and ETV2-mCherry expression on day 7. DP, SP and DN cells were
gated and sorted. (N) Flow cytometry analysis of CD144 and CM marker cTnT expression on day 18 of sorted
DP, SP and DN cells. Isotype control antibodies were included as negative control. (O) Quantification of CD144+
ECs and cTnT+ CMs on day 18 of DP, SP and DN cell differentiation. (P) Immuno-staining of CD31, a-Actinin,
cTnT and DAPI on day 18 of DP cell differentiation. Scale bar 50 µm. (Q-R) Immuno-staining of CD31, a-Actinin,
cTnT, SM22 and DAPI on day 18 of SP and DN cells. Scale bar 50 µm. Error bars are ± SD of three independent
experiments in (D-F, K-L, O).
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Genes involved in heart development and definitive hematopoiesis were also upregu-
lated during EC development, suggesting cardiac endothelial- and probably a mixture
of hemogenic endothelial identity of these ECs. A better characterization of these cells’
hematopoietic potential would be interesting, but is beyond the scope of this study. ECs
that were further differentiated with VEGF showed a clear endothelial identity and were
fully functional based on their inflammatory response upon TNF-𝛼 stimulation. Notably,
they also expressed a number of cardiac markers like MEOX2, GATA4, GATA6 and ISL1,
suggesting a cardiac specific EC identity [32].
The SP subpopulation (CM precursors) had already committed to a cardiac fate on day 4,
as evidenced by the expression of cardiac genes HAND1, MYH10, NKX2-5, ISL1, TNNC1,
MYOCD and LMO4. However, some crucial genes for CMs were still absent, including
MYH6 and TNNT2. MYH6 encodes the major CM thick filament protein MHC-𝛼 and
TNNT2 is routinely used as a CM marker. Both genes are essential for CM contractility
and started to be expressed only after day 4. Their relatively late expression could allow
us to identify early and late cardiac progenitors during cardiac development in future
studies. CMs were still early progenitors on day 6 of the differentiation as no functionally
contracting CMs were observed yet at this stage. Pseudotime analysis also suggested
that ECs had differentiated further compared to CMs on day 6. After additional VEGF
differentiation, SP cells gave rise to contracting CM, which provided direct evidence they
were CM precursors. More importantly, it demonstrated that both ECs and CMs could be
derived from ETV2+ progenitors, confirming the presence of a common precursor implied
by our earlier studies [32].
Notably, ETV2- cells (DN population) also gave rise to contracting CMs after VEGF treat-
ment, albeit less frequently than SP cells. This difference could be due to either the different
cell growth rates or their different developmental origins (FHF vs. SHF). More work is
needed to establish the identity of CMs from SP and DN populations in the future.

3.4 Conclusion

Transcriptomic analysis at bulk and single cell levels done in this study provide insight
into the differentiation dynamics of two important human cardiac lineages and a rich data
set for comparison with in vivo data. An ETV2 reporter system was generated in hiPSCs
and utilized to identify a new subpopulation of early CM precursors that expressed ETV2.
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3.5 Materials and Methods

3.5.1 Experimental Methods

hiPSC culture

The NCRM1 hiPSC line (NIH) was used in this study. This hiPSC control line was cultured
in TeSR-E8 on Vitronectin XF and was routinely passaged once a week using Gentle Cell
Dissociation Reagent (all from Stem Cell Technologies). Prior to targeting, NCRM1 hiPSCs
were passaged as a bulk on feeders in hESC-food medium. RevitaCell (Life Technologies)
was added to the medium (1:200) after every passage to enhance viability after single cell
passaging with TrypLE (Life technologies).

Generation of hiPSC reporter line using CRISPR/Cas9

The p15a-cm-hETV2-P2A-NLS-mCherry-neo repair template plasmid was generated using
overlap PCR and restriction-based cloning and ligation. The ETV2 homology arms were
amplified from genomic DNA and the neomycin cassette flanked by two flippase recognition
target (FRT) sites was amplified from the P15 backbone vector (kindly provided by Dr.
Konstantinos Anastassiadis, Technical University Dresden). P2A-NLS-mCherry double-
stranded DNA fragment was ordered from IDT. The sgRNA/Cas9 plasmid was modified
from SpCas9-2A-Puro V2.0 plasmid (Addgene, Feng Zang).
NCRM1 hiPSCs were passaged with ratio 1:2 or 1:3 into 60 mm dishes to reach 60-70%
confluency the next day for transfection. 20 µl lipofectamine (Invitrogen), 8 µg of repair
template and 8 µg of sgRNA/Cas9 plasmid were diluted in 600 µl of Opti-MEM and added to
each 60 mm dish. After 18 hours the medium was changed to hESC-food. After another 6
hours, G-418 (50 µg/ml) selection was started and was kept for 1 week. Survived cells were
cultured in hESC-food and passage into 6-well plate for the transfection of Flp recombinase
expression vector to remove the neomycin cassette [36]. 300 µl of Opti-MEM containing
10 µl lipofectamine and 4 µg CAGGs-Flpo-IRES-puro plasmid was added per well for 18
hours. Puromycin (0.5 µg/ml) selection was started 24 hours post transfection and lasted
for 2 days. Once recovered, cells were passage into 96-well format for clonal expansion via
limited dilution. Targeted clones were identified by PCR and sequencing. Primers outside
the ETV2 homology arms and primers inside the targeting construct were used to confirm
on-target integration. The absence of mutation within inserted sequence and untargeted
allele were confirmed by Sanger sequencing (BaseClear).

Endothelial and myocardial lineages co-differentiation from hiPSCs

Endothelial and cardiac cells were induced from hiPSCs in a monolayer using CMEC
protocol as described previously [32]. Briefly hiPSCs were split with a 1:12 ratio and seeded
on 6-well plates coated with 75 µg/mL (growth factor reduced) Matrigel (Corning) on day
-1. At day 0, cardiac mesoderm was induced by changing TeSR-E8 to BPEL medium [37],
supplemented with 20 ng/mL BMP4 (R& D Systems), 20 ng/mL ACTIVIN A (Miltenyi
Biotec) and 1.5 µM CHIR99021 (Axon Medchem). At day 3, cells were refreshed with BPEL
supplemented 5 µM XAV939 (Tocris Bioscience) and 50 ng/ml VEGF (R& D Systems). From
day 6 onwards, cells were refreshed every 3 days with BPEL medium supplemented with
50 ng/ml VEGF.
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Fluorescence-activated cell sorting

For FACS sorting on day 5 of CMEC protocol, ETV2-mCherry positive and negative cells
were sorted using FACSAria III (BD-Biosciences). Around 20k cells/cm2 were seeded on
Fibronectin (from bovine plasma, 5µg/ml, Sigma Aldrich) coated plates. Cells were cultured
in BPEL supplemented with VEGF (50 ng/ml) until day 10. The mediumwas refreshed every
3 days. For FACS sorting on day 7 of CMEC protocol, VEC+mCherry+ (DP), VEC-mCherry+
(SP) and VEC-mCherry- (DN) cells were sorted using FACSAria III. 1 million cells were
seeded in each well of Matrigel-coated 12-well plate in BPEL supplemented with VEGF (50
ng/ml) and RevitaCell (1:200). Cells were refreshed 24 h after seeding and every three days
afterwards with BPEL supplemented with VEGF (50 ng/ml).

Immunofluorescence staining and imaging

Cultured cells were fixed in 4% paraformaldehyde for 15 min, permeabilized for 10 min with
PBS containing 0.1% Triton-X 100 (Sigma-Aldrich) and blocked for 1h with PBS containing
5% BSA (Sigma-Aldrich). Then cells were stained with primary antibody overnight at
4℃. The next day cells were washed three times (20 min each time) with PBS. After that
cells were incubated with fluorochrome-conjugated secondary antibodies for 1h at room
temperature and washed three times (20 min each time) with PBS. Then cells were stained
with DAPI (Life Technologies) for 10 min at room temperature and washed once with
PBS for 10min. Both primary and secondary antibodies were diluted in 5% BSA/PBS.
Images were taken with EVOS FL AUTO2 imaging system (ThermoFischer Scientific)
with 20x objective. For staining of ECs and CMs on day 18, images were taken with a
Leica SP8WLL confocal laser-scanning microscope using a 63x magnification objective and
Z-stack acquisition. Details of all antibodies that were used are provided in Table S1.

FACS analysis

Cells were washed once with FACS buffer (PBS containing 0.5% BSA and 2 mM EDTA) and
stained with FACS antibodies for 30 min at 4oC. Samples were washed once with FACS
buffer and analyzed on MACSQuant VYB (Miltenyi Biotech) equipped with a violet (405
nm), blue (488 nm) and yellow (561 nm) laser. The results were analyzed using Flowjo
v10 (FlowJo, LLC). Details of all fluorochrome conjugated FACS antibodies are provided in
Table S1.

Quantitative Real-Time Polymerase Chain Reaction (qPCR)

Total RNA was extracted using the NucleoSpin® RNA kit (Macherey-Nagel) according to
the manufacturer’s protocol. cDNA was synthesized using an iScript-cDNA Synthesis kit
(Bio-Rad). iTaq Universal SYBR Green Supermixes (Bio-Rad) and Bio-Rad CFX384 real-
time system were used for the PCR reaction and detection. Relative gene expression was
determined according to the standard ΔCT calculation and normalized to housekeeping
genes (mean of HARP and RPL37A). Details of all primers used are provided in Table S2.

3.5.2 Bulk RNA seqencing and analysis
Cells were sorted on differentiation day 4, 5, 6 and 8 for bulk RNA-Seq. Total RNA
was extracted using the NucleoSpin® RNA kit (Macherey-Nagel). Whole transcriptome
data were generated at BGI (Shenzhen, China) using the Illumina Hiseq4000 (100bp
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paired end reads). Raw data was processed using the LUMC BIOPET Gentrap pipeline
(https://github.com/biopet/biopet), which comprises FASTQ preprocessing, alignment
and read quantification. Sickle (v1.2) was used to trim low-quality read ends (https:
//github.com/najoshi/sickle). Cutadapt (v1.1) was used for adapter clipping [38], reads
were aligned to the human reference genome GRCh38 using GSNAP (gmap-2014-12-23)
[39, 40] and gene read quantification with htseq-count (v0.6.1p1) against the Ensembl v87
annotation [41]. Gene length and GC content bias were normalized using the R package
cqn (v1.28.1) [42]. Genes were excluded if the number of reads was below 5 reads in ≥ 90%
of the samples. The final dataset comprised gene expression levels of 31 samples and 22,419
genes.
Differentially expressed genes were identified using generalized linear models as imple-
mented in edgeR (3.24.3) [43]. P-values were adjusted using the Benjamini-Hochberg
procedure and FDR ≤ 0.05 was considered significant. Analyses were performed using
R (version 3.5.2). PCA plot was generated with the built-in R functions prcomp using
transposed normalized RPKM matrix. Correlation among samples was calculated using cor
function with spearman method and the correlation heatmap was generated with aheatmap
function (NMF package).
Gene clusters were calculated with CancerSubtypes package [44]. The top 3000 most
variable genes across all chosen samples were identified based on the most variant Median
Absolute Deviation (MAD) using FSbyMAD function, then z_ score normalization was per-
formed for each gene. K clusters were calculated using the K-means clustering of euclidean
distance. Clustering was iterated 1000 times for K clusters in the range 2 to 10. Heatmap
of genes in all clusters was generated using R basic heatmap function. Gene ontology
enrichment for each cluster of genes was performed using compareCluster function of
clusterProfiler package (v3.10.1) [45] and q ≤ 0.05 was considered significant.

3.5.3 Single-cell RNA seqencing and analysis
Sample preparation and seqencing

Cells were dissociated into single cells on day 6 of CMEC differentiation and loaded into
the 10X Chromium Controller for library construction using the Single-Cell 3’ Library Kit.
Next, indexed cDNA libraries were sequenced on the HiSeq4000 platform. The mean reads
per cell were reported as 28,499 in the first replicate and 29,388 in the second replicate.

Pre-processing

Both replicates of day 6 CMEC differentiation were merged into one data set. The average
number of detected genes is 2643 and the average total expression per cell is 10382 (Fig.
3.2A-B). Then, undetected genes (> 1 UMI count detected in less than two cells) and cells
with low number of transcripts were removed from further analysis (3.2A-B). This resulted
in 5107 cells for the first replicate, and 3743 cells for the second replicate with 13243 genes
each. Expression profiles were normalized with the scran package in R (V 1.10.2) using the
method described in [46]. The 5%most highly variable genes (HVGs) for each replicate were
calculated with scran after excluding ribosomal genes (obtained from the HGNC website
without any filtering for minimum gene expression), stressed genes [47] and mitochondrial
genes. For downstream analysis the top 5% HVGs were used after excluding proliferation
[48] and cell cycle [49] related genes.
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Cell cycle analysis

For each combined data set, cell cycle analysis was performed with the scran package using
the cyclone function [50] on normalized counts. Cells with a G2/M score higher than 0.2
were considered to be in G2/M phase. Otherwise, they were classified as G1/S. Using this
binary classifier as predictor, we regressed out cell cycle effects with the R package limma
(V 3.42.2) [51] applied to log-transformed normalized counts. Then, the two replicates
were batch corrected with the fast mutual nearest neighbors (MNN) correction method
[52] on the cell cycle corrected counts, using the 30 first principal components and 20
nearest-neighbors.

Clustering

First, batch-corrected counts were standardized per gene and then used to create a shared
nearest neighbour (SNN) graph with the scran R package (d = 30, k = 20). Louvain clustering
was applied to the SNN graph using the igraph python package (V 0.7.1) with 0.4 for
resolution parameter. This resulted in 5 clusters. Two of these 5 clusters were excluded
from further analysis based on the expression of pluripotency markers [53].

Dimensionality reduction and pseudotime

Dimensionality reduction was performed using the python scanpy pipeline (V 1.4.6). First a
20 nearest-neighbors (knn, k=20) graph was created from diffusion components of the batch
corrected data sets. Diffusion components are the eigenvectors of the diffusion operator
which is calculated from Euclidean distances and a gaussian kernel. The aim is to find a
lower dimensional embedding which considers the cellular progression. The graph was
projected into two dimensions with the default force-directed graph layout and starting
positions obtained from the partition-based graph abstraction (PAGA) output [54]. PAGA
estimates connectivities between partitions and performs an improved version of diffusion
pseudotime. Diffusion pseudotime [52, 54] was calculated on these graphs with root cells
selected based on the graph layout from the “Cardiac Mesoderm” cluster.
Average gene expression trajectories were calculated by dividing the cells of each cluster
into bins along pseudotime. 50 bins were created for cardiac mesoderm and 30 bins for
each, endothelial cells and cardiomyocytes. Then, the average log-expression per bin was
shown. The value of the threshold shown in Fig. 3.1D,E was determined by calculating the
point in pseudotime where the average ETV2 expression was the lowest in the endothelial
cell cluster before the peak expression, which corresponds to a value around 0.25 [48].

Differential expression analysis and identification of cluster maker

genes

The R package edgeR (V 3.24.3, 31) [43] was used to perform differential expression analysis.
We used raw counts and a negative binomial distribution to fit the generalized linear
model. The covariates were comprised of 6 binary dummy variables that indicate the three
remaining clusters per replicate and a variable that corresponds to the total number of
counts per cell. Finally, p-values for each cluster considering both replicates were obtained
and adjusted for multiple hypothesis testing with the Benjamini-Hochberg method.
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Comparison to bulk RNA-seqencing data

Both replicates of normalized single cell counts were combined with bulk RNA-sequencing
data. The MNN approach was used to correct between the two single-cell replicates using
the 10% HVG per replicate and the bulk RNA-sequencing data, with d = 30 and k = 20.
After batch correction a diffusion map was calculated on the MNN corrected values with
default parameters.

Statistics

Statistical analysis was conducted with GraphPad Prism 7 software. Data are represented
as mean± SD.

3.5.4 Data availability
The accession numbers for the bulk and single cell RNA sequencing datasets reported
in this paper are https://www.ncbi.nlm.nih.gov/geo/ GEO: GSE157954 (bulk) and GEO:
GSE202901 (single cell). Supplementary tables and videos are available at https://doi.org/
10.5061/dryad.9p8cz8wkg.
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4
Tissue microenvironment partially

removes signatures of developmental

origin in a 3D in vitro model of cardiac

endothelial cell differentiation

Endothelial cells (ECs) are ubiquitous across different organs of the body. They line the surface

of different types of vessels, forming a tight barrier between a liquid and the surrounding tissue,

and carry out various crucial functions. Dysfunction of ECs can therefore lead to a wide range of

diseases. Importantly, the functions of ECs are highly organ-specific. For example, cardiac ECs

line the blood vessels in the heart and have an essential role in nutrient transport. It is currently

unknown, how ECs obtain their organ-specific characteristics. Developmental origin and tissue

microenvironment are two possible determining factors, but their relative importance is unclear.

This study uses human-induced pluripotent stem cells to derive ECs from two developmental

origins: paraxial and cardiac mesoderm. We compare their characteristics and further integrate

them into a cardiac microtissue, containing cardiomyocytes and fibroblasts, to investigate the

influence of the surrounding cells on EC identity. Upon integration into the microtissue, the

developmental origin is partially removed, and ECs from both developmental origins acquire

an intramyocardial signature.

This chapter is based on Xu Cao*, Maria Mircea*, Francijna E. van den Hil, Hailiang Mei, Konstantinos Anastas-
siadis, Christine L. Mummery, Stefan Semrau and Valeria V. Orlova. Tissue microenvironment partially removes
signatures of developmental origin in a 3D in vitro model of cardiac endothelial cell differentiation. Manuscript
to be submitted. (*contributed equally)
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4.1 Introduction

All organs of the body rely on highly specialized cells to carry out their particular functions.
Yet, there are cells with similar characteristics that appear across many different organs.
A prime example are endothelial cells (ECs). ECs line the interior surfaces of vessels
and form a tight barrier between a liquid, such as lymph or blood, and the surrounding
tissue [1–6]. Due to their ubiquity, EC dysfunction is associated with a wide range of
disease states, including atherosclerosis, diabetes, heart failure, hypertension and ischemia
[7]. Despite the similarity in function, ECs from different vessels (artery, capillary, vein,
lymphatic) show significant differences, reflecting the specific requirements of a particular
environment. It is currently not well understood, how ECs (or other ubiquitous cell types)
acquire their organ-specific characteristics. Developmental origin likely plays a role but
cues from the microenvironment could be equally important. Using cardiac ECs as a model,
this study explores the factors that lead to organ-specific molecular profiles.
In the adult heart, ECs constitute > 60% of nonmyocytes [8] and can be divided into
two subtypes: endocardial ECs (eEC) and intramyocardial ECs (iECs). eECs form the
innermost layer and serve as a barrier between blood and myocardium. iECs constitute
the coronary vessels, which transport oxygen and nutrients to the heart. In the mouse
heart, eECs and iECs are distinguished by specific expressions of the eEC markers Nfatc1,
Npr3, Tmem100, Cdh11, Hapln1 [9–12], and the iEC markers Apln, Fabp4, Cd36 [9, 13–15].
Equivalent EC subtypes have also been identified in the human heart, by single-cell RNA
sequencing (scRNA-seq)[16–18]. Some of the eEC and iEC markers identified in the mouse
are conserved in humans, such as CDH11, NPR3 in eECs, and CD36, FABP4 in iECs [17].
Unlike eECs, which have a sole origin, iECs have been shown to have multiple origins.
The first established origin is the proepicardium on the venous pole of the heart, which
later migrates onto the heart and gives rise to the epicardium and a small number of
iECs [13, 19, 20]. More recently, sinus venosus [13, 16] and endocardium [10, 15] were
revealed as two additional, major sources of iECs, by lineage tracing in mice. Postnatally,
the endocardium continues to give rise to iECs that generate the majority of coronary
vessels in the myocardium closest to the endocardium [21].
In addition to distinct developmental origins, the cardiac microenvironment could also
endow eECs and iECs with tissue specific signatures. eECs are formed initially in the heart
tube and exposed to blood flow, while iECs are developed first as a vascular plexus in the
myocardium and are surrounded by other cell types like cardiomyocytes and fibroblasts.
Cardiomyocytes are known to produce a vast amount of vascular endothelial growth factor-
A (VEGF-A) [22] and other factors like Angiopoetin-1 [23], nitric oxide (NO), endothelin-1
(ET-1), fibroblast growth factor (FGF)-2, urocortin, haemoxygenase and adenosine [24]
, which are all key regulators of the EC phenotype. Other cardiac cell types, including
fibroblast, vascular smooth muscle cells (VSMCs) and macrophages, also affect heart EC
functions through either direct cell-cell contact or paracrine factors [25].
Most of what we know about EC development has been established in the mouse. Human
in vitro systems provide a convenient, easily manipulated model to study human EC
development. Human induced pluripotent stem cells (hiPSCs) provide an unlimited source
of ECs [26, 27], which can be differentiated through different mesodermal origins including
lateral plate mesoderm and paraxial mesoderm (PM) [28]. Several studies derived organ-
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specific ECs from hiPSCs. Two groups claimed to have obtained brain microvascular ECs
from hiPSCs through either co-differentiation or co-culture with neuronal cells [29, 30].
Our group previously developed a method to co-differentiate cardiomyocytes and ECs from
hiPSCs through cardiac mesoderm (CM). These hiPSC-derived ECs expressed a number
of cardiac specific genes like MEOX2, GATA4, GATA6 and ISL136, while tissue specific
identities (of eEC or iEC) were still absent.
In vitro systems also allow probing the influence of the microenvironment, because different
cell types can be easily combined. Recently our group established heart microtissues (MTs),
a 3D cell culture model composed of ECs, cardiomyocytes and fibroblasts, all derived from
hiPSCs [31, 32]. This model provides an ideal tool to investigate the influence of both
the developmental origin and the cardiac specific microenvironment on the acquisition
of a tissue specific EC identity. In this study, we derived ECs from hiPSCs through two
mesodermal origins (CM and PM), using our established protocol [31] and an adapted
protocol from the literature [28]. MTs were then generated using these two sources of ECs
respectively. Interestingly, although newly differentiated ECs from two origins showed
distinct identities, they became more similar after extended culture in MTs. Furthermore,
based on eEC- and iEC-specific signatures extracted from a published single-cell RNA
sequencing (scRNA-seq) dataset of human fetal heart [18], we observed an iEC rather than
an eEC identity for both developmental origins after MT culture. In summary, this study
shows that, although certain characteristics are inherited from progenitors, ECs efficiently
adapt to the microenvironment and acquire new tissue-specific signatures. Our results
provide new insights into the acquisition of organ/tissue-specific cell identities, which will
inform the preparation of hiPSC-derived, organ specific ECs for disease modeling and drug
development.
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A

B

Figure 4.1: Single-cell RNA sequencing analysis of endothelial cells differentiated from cardiac and
paraxial mesoderm(A-B) Schematic overview of CMEC (A) and PMEC (B) differentiation protocols until day 6.
Cells were collected for scRNAseq on day 6. ACTA: activin-A. CHIR: CHIR99021. APS/PPS: anterior/posterior
primitive streak. LPM: lateral plate mesoderm.

4.2 Results

4.2.1 Derivation of endothelial cells from different meso-
dermal origins

We set out to derive ECs from hiPSCs via two different mesodermal intermediates. To
obtain cardiac mesoderm-derived ECs (CMECs), we used a protocol that was established
previously in our group [31] (Figure 4.1A). Briefly, BMP4, Activin A (ACTA) and CHIR99021
(CHIR) were used to induce anterior primitive streak (APS) on day 3. Then, CMECs and
early cardiomyocytes were induced on day 6 in the presence of XAV-939 (XAV) and VEGF.
To obtain paraxial mesoderm-derived ECs (PMECs), we developed a new protocol (Figure
4.1B) based on a published approach [28]. Briefly, posterior primitive streak was derived
through induction by CHIR for two days and subsequently XAV for one day. Next, PMECs
and a mixed lateral plate mesoderm/sclerotome population were derived by exposure to
CHIR for two days and VEGF for one day.
To facilitate the characterization of the newly developed PMEC protocol, we generated an
hiPSC line harboring fluorescent reporters for PAX3 andMSGN1 (𝑃𝐴𝑋3𝑉𝑒𝑛𝑢𝑠 𝑀𝑆𝐺𝑁 1𝑚𝐶ℎ𝑒𝑟𝑟𝑦 )
using CRISPR/Cas9 and the piggyBac transposon system. More than 70% of the cells ex-
pressed 𝑀𝑆𝐺𝑁 1𝑚𝐶ℎ𝑒𝑟𝑟𝑦 on day 2 of PMEC differentiation (Figure 4.2 A, B). MSGN1 expres-
sion persisted in 50% of the cells until day 8. However, MSGN1 mRNA was only detectable
on day 2 (Figure 4.2E). On day 5, around half of the cells started to express 𝑃𝐴𝑋3𝑉𝑒𝑛𝑢𝑠
(Figure 4.2A,C). Most of these cells also expressed 𝑀𝑆𝐺𝑁 1𝑚𝐶ℎ𝑒𝑟𝑟𝑦 . Both 𝑃𝐴𝑋3𝑉𝑒𝑛𝑢𝑠 and
PAX3 mRNA were highly expressed from day 5 to day 8 (Figure 4.2A, C-E). On day 2,
pan-mesoderm markers TBXT and MIXL1 were expressed in both the CMEC and the
PMEC differentiation protocol. While cardiac genes (MESP1, GATA4 and NKX2-5) were
exclusively expressed in CMEC differentiation, paraxial mesoderm related genes (MSGN1,
TBX6, PAX3) were specifically expressed during PMEC differentiation (Figure 4.2E). Taken
together, mRNA measurements and assessment of reporter fluorescence suggested that
our new protocol produces ECs with paraxial mesoderm characteristics.
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Figure 4.2: Characterization of PMEC differentiation using 𝑀𝑆𝐺𝑁 1𝑚𝐶ℎ𝑒𝑟𝑟𝑦 𝑃𝐴𝑋3𝑉𝑒𝑛𝑢𝑠 dual reporter
line(A) FACS analysis of 𝑃𝐴𝑋3𝑉𝑒𝑛𝑢𝑠 and 𝑀𝑆𝐺𝑁 1𝑚𝐶ℎ𝑒𝑟𝑟𝑦 expression at day 2, 3, 5, 6 and 8 of PMEC differentiation.
(B-C) Quantification of percentages of mCherry+ (B) and Venus+ (C) cells in the total population by flow
cytometry on day 2, 3, 5, 6 and 8. (D) Representative fluorescence image of 𝑃𝐴𝑋3𝑉𝑒𝑛𝑢𝑠 expression on day 5
of PMEC differentiation. Scale bar represents 200 𝜇m. (E) Quantification of TBXT, MIXL1, MESP1, GATA4,
NKX2-5, MSGN1, TBX6 and PAX3 expression by qPCR on day 0, 2, 5 and 8 of CMEC (green) and PMEC (purple)
differentiation.
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4.2.2 Transcriptomic profiling of CMECs and PMECs

To compare CMECs and PMECs more broadly, cells expressing the EC marker VEC were
sorted on day 6 and day 8 of both protocols and characterized by bulk RNA sequencing
(RNA-seq) (Figure 4.3A). Principle component analysis (PCA) showed that CMECs and
PMECs clustered separately along PC1, and day 6 and day 8 were separated along PC2
(Figure 4.2B). On day 6, 3307 and 2592 genes were significantly differentially upregulated
(𝑝𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 ≤ 0.05, fold-change ≥ 2) in CMECs and PMECs respectively (Table S1). Gene
ontology (GO) analysis showed that cardiac related genes were specifically upregulated
in day 6 CMECs (CMEC_D6), while genes related to skeletal system development and
function were specifically upregulated in day 6 PMECs (PMEC_D6) (Figure 4.2C, Table S2).
Genes involved in heart development, like GATA4, GATA5, TBX3, ISL1 and MYH6, were
highly expressed in day 6 and day 8 CMECs. TBX3, ISL1 and MYH6 were upregulated from
day 6 to day 8 in CMECs. Essential genes for skeletal muscle development like PAX3, TBX1,
FOXC1, EYA1 and MEOX1 were majorly expressed in day 6 and day 8 PMECs. FOXC1 and
EYA1 were upregulated from day 6 to day 8, while TBX1 and MEOX1 were downregulated
(Figure 4.2D). In summary, unbiased expression analysis by bulk RNA-seq confirmed the
respective mesodermal origins of the two derived EC cultures.
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4.2.3 Characterization of CMEC and PMEC differentiation
by single-cell RNA-seq
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Figure 4.4: Quality control of scRNAseq datasets (A-B) Distribution of number of detected genes (A) and
total expression (B) in each cell of the scRNAseq datasets. Dotted blue line indicates quality control threshold for
datasets. Two different batches are labelled with different colors. (C) Two different batches of cells collected for
each scRNAseq dataset are visualised using force-directed graph layout. (D) scRNAseq data of CMECs on day 6
is visualized using PAGA. Five cell clusters were identified and labelled with different colors. (E) Expression of
pluripotency genes POU5F1 and NANOG in theCMEC dataset on day 6 is shown in PAGA plot. Color represents
log transformed expression value. (F-G) scRNAseq data of CM_MTs (F) and PM_MTs (G) are visualized using
PAGA. Four cell clusters were identified. Cluster labelled with “Other” was excluded in the downstream analysis
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To reconstruct the differentiation trajectories of ECs, single-cell RNAseq (scRNA-seq) was
performed on day 6 of CMEC and PMEC differentiation for two independent biological
replicates (Figure 4.1, A-B, Figure 4.4). The replicates appeared highly similar in a low-
dimensional representation (Figure 4.4C) and were therefore combined for further analysis.
Undifferentiated hiPSCs remaining in the culture were excluded from further analysis (Fig-
ure 4.4D-E). In the CMEC differentiation data set, cells were grouped in 3 clusters, which
we identified as cardiac mesoderm, cardiomyocytes and CMECs by marker gene analysis
(Figure 4.5A, Table S3). The cardiac mesoderm cluster was characterized by mesoderm
and early cardiac genes, such as MESP1, SMARCD3, ABLIM1, TMEM88, ISL1, MYL5, as
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well as the cell cycle-related genes CDK6 and NEK2. The CMEC cluster was characterized
by EC markers (CDH5, CD34, KDR, HEY2, TEK, TIE1, ACVRL1, SOX17, ENG, ICAM2,
PECAM1). Cardiomyocytes were identified by expression of cardiomyocyte-specific genes,
including MYL4, TNNI1, MYL7, ACTA2, TNNT2, HAND2 and NKX2-5 (Figure 4.5B, 4.6A-B).
Pseudo-time analysis showed that both CMECs and cardiomyocytes differentiated from
cardiac mesoderm, and CMECs progressed further compared to cardiomyocytes (Figure
4.5C).
In the PMEC differentiation data set, all cells were divided into 3 clusters, which were inter-
preted as paraxial mesoderm, PMECs and mixed lateral plate mesoderm (LPM)/sclerotome
(Figure 4.5D, Table S2) using marker gene analysis (Table S3). The paraxial mesoderm
cluster was characterized by posterior primitive streak and dermomyotome genes, such as
MEOX1, PDGFRB, SIX1, CRABP2, NR2F1, EYA1, FOXC1 and PAX3. PMECs were charac-
terized by EC markers, like ETV2, CDH5, CD34, KDR, ENG, SOX17, PLVAP, APLN, NRP1.
The mixed LPM/sclerotome cluster was characterized by LPM and sclerotome specific
genes, such as TMEM88, HAND1, TNNI1, PRRX1, ACTA2, DES, FOXH1, LEF1 and JAG1
(Figure 4.5E, 4.6C-D). Pseudo-time analysis showed that both PMECs and LPM/Sclerotome
developed from paraxial mesoderm (Figure 4.5F). All in all, clustering and marker gene
analysis of the scRNA-seq data confirmed the bulk RNA-seq results and revealed high
similarity in developmental dynamics between the two differentiation protocols.
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Figure 4.6: Single-cell RNA-sequencing analysis of CMEC and PMEC datasets on day 6 (Caption on
the next page.)



4

114 4 Tissue microenvironment partially removes signatures of developmental origin

4.2.4 hiPSC-ECs acqired organ-specific signatures in a car-
diac microenvironment

Being able to produce ECs with properties corresponding to their mesodermal origins
finally enabled us to test in how far the cellular microenvironment can either reinforce or
reverse this specification. Specifically, we set out to mimic the cardiac microenvironment
in vitro using a protocol for creating cardiac microtissues (MTs), which was published
previously by our group [32]. Briefly, CD34+ CMECs or PMECs were sorted on day 6 and
combined with hiPSC-derived cardiomyocytes (hiPSC-CMs) and hiPSC-derived fibroblasts
(hiPSC-CFs) at a ratio of 3:14:3 to formMTs. MTs made from CMECs (CM_MTs) and PMECs
(PM_MTs) were collected after 21 days for scRNA-seq (Figure 4.7A). Two independent
biological replicates were deemed highly similar (Figure 4.4C) and were therefore combined
for further analysis. Both CM_MTs and PM_MTs datasets were divided into three clusters
that correspond to hiPSC-CFs, hiPSC-CMs and hiPSC-ECs (Figure 4.7B). Marker genes
identified for each cluster, confirmed the cluster identities (Table S6).
In both cases, a fourth cluster of cells with an uninterpretable signature was ignored
(Figure 4.4F-G). Next, we compared the CMECs from monoculture differentiation on day
6 (CMEC_day 6) with the CMECs in MTs (CMECs_MT). Most intramyocardial makers
including CLDN5, GMFG, APLNR, CD36, NOTCH4, OIT3, IGFBP3, ARHGAP18, A2M
and BCAM and several endocardial markers (TFPI2, EDN1, ECE1, FOXP1, FOXC1) were
upregulated in CMEC_MT (Figure 4.7C-D, 4.8A, Table S7). However, the differences in
endocardial marker expression were smaller compared to intramyocardial markers (Figure
4.7C-D, 4.8A, Table S7). Then, we compared PMECs from monoculture differentiation on
day 6 (PMECs_day 6) to PMECs in MTs (PMECs_MT). Most intra-myocardial markers,
including CLDN5, GMFG, NOTCH4, IGFBP3, ARHGAP18, A2M and BCAM, and some
endocardium markers (TFPI2, EDN1, TEK, ECE1, FOXP1, ALDH2, FZD6) were upregulated
in PMEC_MT (Figure 4.7C, 4.8B, Table S7).
Compared to PMECs_MT, CMECs_MT expressed higher levels of intra-myocardial markers,
especially APLNR, CD36, OIT3, ARHGAP18, A2M, BCAM which were barely expressed
in the majority of PMECs_MT cells (Figure 4.7F, Table S8). Although most endocardium
markers were also higher in CMECs_MT than in PMECs_MT, their average expression
levels were lower in general compared to intra-myocardial markers (Figure 4.8C, Table S8).
Notably, most endocardial makers (including CDH11, FOXC1, FZD6, TMEM100 and NPR3)
were barely expressed in both CMECs_MT and PMECs_MT, (Figure 4.8C). Overall, heart
tissue-specific genes, especially intramyocardial markers, were upregulated in hiPSC-ECs
upon extended culture in the cardiac microenvironment of the MT.

Figure 4.6: scRNAseq analysis of CMEC and PMEC datasets on day 6 (Figure on previous page.) (A)
Volcano plots showing fold changes and adjusted p-values for differential gene expression between a specific
cluster in the CMEC dataset and all other cells in that dataset. Representative, significantly up-regulated genes
(𝑃𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 ≤ 0.05 & fold change ≥ 1.2) are labelled in red. (B) MESP1, SMARCD3, KDR, CDH5, MYL4 and NKX2-5
expression (log transformed) in three clusters of CMEC dataset on day 6. (C) Volcano plots showing fold changes
and p-values for differential gene expression between a specific cluster in the CMEC dataset and all other cells in
that dataset. Representative significantly up-regulated genes (𝑃𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 ≤ 0.05 & fold change ≥ 1.2) are labelled
in red. (D) PAX3, MEOX1, CD34, CDH5, LEF1 and PRRX1 expression (log transformed) in three clusters of the
PMEC dataset on day 6.
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Figure 4.7: hiPSC-ECs acquired organ-specific signatures in a cardiac microenvironment (A) Schematic
overview; generation of cardiac microtissues (MTs) from hiPSC-CMs, hiPSC-CFs and hiPSC-ECs. CMECs and
PMECs were used for CM_MTs and PM_MTs, respectively. MTs were collected after 21 days for scRNAseq. (B)
scRNAseq data of CM_MTs (left) and PM_MTs (right) were visualized using force-directed graph layout. Three
clusters of cells were identified in both datasets. (C) Volcano plot shows fold changes and p values of all genes
tested between two selected clusters: CMECs_day 6, CMECs_MTs (left), and PMECs_day 6, PMECs_MTs (right).
Representative intra-myocardial and endocardial markers that are differentially expressed (𝑃𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 ≤ 0.05) are
labelled in red and green respectively. (D-F) Differential expression tests between CMECs_day 6 and CMECs_MT
(D), PMECs_day 6 and PMECs_MT (E), CMECs_MT and PMECs_MT (F) for representative intra-myocardial EC
markers. ns: 𝑝 ≥ 0.05; * p ≤ 0.05; ** p ≤ 1e-10; *** p ≤ 1e-100; **** p ≤ 1e-200. Clusters with higher expression value
were indicated with stars. ne: not expressed (0 counts) in ≥ 85% of cells in both groups.
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Figure 4.8: Characterization of endocardial signatures of hiPSC-ECs on day 6 and in MTs (A-C) Differ-
ential expression tests between cluster CMECs_day 6 and CMECs_MT (C), PMECs_ day 6 and PMECs_MT (D),
CMECs_MT and PMECs_MT (E) for representative endocardial EC markers. ns: 𝑝 ≥ 0.05; * p ≤ 0.05; ** p ≤ 1e-10;
*** p ≤ 1e-100; **** p ≤ 1e-200. Clusters with higher expression value were indicated with stars. ne: not expressed
(0 counts) in ≥ 85% of cells in both groups.

4.2.5 Extraction of organ-specific signatures of human fetal
heart ECs from a published scRNA-seq dataset

To assess how closely ECs in MTs assume an organ-specific identity, we sought to compare
them to primary heart ECs. To that end, we re-analyzed a published scRNA-seq dataset of
the fetal human heart (EGAS0000100399) [18] and identified the expression signature of
heart ECs. The whole cell population was divided into 14 clusters. Our interpretation of
these cluster deviated from the published annotation in two cases (Figure 4.9A): 1. The origi-
nal endothelium/pericytes/adventia cluster (cluster 10) was reannotated as intramyocardial
ECs, based on differentially expressed markers such as A2M, CD36, APLNR, ARHGAP18,
IGFBP3, CLDN5, FABP4 and FABP5. 2. The cluster annotated as capillary endothelium in
the original publication (cluster 0) was reannotated as endocardium, due to the presence
of differentially expressed markers like NPR3, ALDH2, CDH11, ECE1, TMEM100, FOXC1
and EDN1 (Figure 4.9B, Table S5). Supporting the differential expression test, UMAP vi-
sualization of representative intra-myocardial and endocardial markers showed specific
expression in the respective clusters (Figure 4.9C-D). In conclusion, our clustering and
differential expression analysis revealed distinct endothelial tissues in the fetal human
heart.
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Figure 4.9: Re-analysis of a published scRNAseq dataset to identify organ specific signatures of human
fetal heart ECs (A) Dimensionality reduction of scRNAseq data of human fetal heart using Uniform MAnifold
Approximation and Projection (UMAP). 14 cell clusters were identified and named based on their identities
according to the original publication except for two EC clusters: intra-myocardial ECs and endocardium. (B)
Volcano plot showing fold changes and adjusted p-values for differential gene expression between intra-myocardial
ECs and endocardium. Representative differentially expressed genes (𝑃𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 ≤ 0.05) that are known to be intra-
myocardial or endocardial markers are labelled in red and green, respectively. (C-D) Expression (log transformed)
of representative intra-myocardial EC markers (C) and endocardium markers (D) in individual cells (UMAPs).

4.2.6 BothCMECs and PMECs acqired intra-myocardial iden-
tity in MT culture

To obtain a clear view of the similarities between ECs in MTs and primary fetal heart
ECs, we combined the CM_MT or PM_MT dataset with the published in vivo data (Fig-
ure 4.10A-B). In both cases, hiPSC-CFs in MTs (CF_MT) cluster together with fetal heart
fibroblast-like cells; hiPSC-CMs in MTs (CM_MT) cluster together with fetal heart ventric-
ular cardiomyocytes. Notably, both CMECs_MT and PMECs_MT cluster together with
fetal heart intra-myocardial ECs rather than endocardium (Figure 4.10A-D).



4

118 4 Tissue microenvironment partially removes signatures of developmental origin

A B

C D

CMECs_MT
or PMECs_MT
CFs_MT

Cardiomyocytes_MT

iECs

eECs

Fibroblast-like (related to 
cardiac skeleton connective tissue)

Fibroblast-like (related to 
smaller vascular development)

Fibroblast-like (related to 
larger vascular development)

Smooth muscle cells / fibroblast-like)

Epicardium-derived cells

Atrial cardiomyocytes

Ventricular cardiomyocytes

Myoz2-enriched cardiomyocytes

Cardiac neural crest cells 
& Schwann progenitor cells
Epicardial cells

Erythrocytes

Immune cells

E

G

0.00

0.25

0.50

0.75

R
el

at
iv

e 
C

el
l C

ou
nt

CFs Cardiomyocytes ECs

Fibroblast-like (related to 
cardiac skeleton connective tissue)
Fibroblast-like (related to 
smaller vascular development)

Fibroblast-like (related to 
larger vascular development)
Smooth muscle cells / fibroblast-like)

Epicardium-derived cells
Atrial cardiomyocytes
Ventricular cardiomyocytes
Myoz2-enriched cardiomyocytes

Intra-myocardial ECs
Endocardium

CM_MTs dataset
PM_MTs dataset

F

0.0

0.1

0.2

0.3

0.4

CMECs (P2 > day 6)

PMECs (MTs > day 6)

CMECs (MTs > day 6)

PMECs markers (in MTs)

CMECs markers (in MTs)Ja
cc

ar
d 

si
m

ila
rit

y 
to

 In
tra

-m
yo

ca
rd

ia
l E

C
s

-0.3

-0.2

-0.1

0.0

0.1

0.2

-0.2 -0.1 0.0 0.1 0.2 0.3
PC2  10%

P
C

3 
  9

%

SC human fetal heart 
intra-myocardial ECs 6.5-7 PCW

human fetal heart ECs d12.5

human fetal heart ECs d15

human fetal heart ECs d21

SC PMECs_day 6

PMECs day 6

PMECs day 8

SC PMECs_MT

SC CMECs_day 6

CMECs day 6

CMECs day 8

SC CMECs_MT

CMECs P2

CMECs_day 6
         vs
 PMECs_day 6

CMECs_MT
vs

PMECs_MT

1365 81 251

p.adj<0.05
fc>1.5

H

Figure 4.10: Both CMECs and PMECs acquired intra-myocardial identity in a cardiac microenviron-
ment (A-B) The published human fetal heart scRNAseq dataset (EGAS0000100399) was combined with the
CM_MTs (A) or PM_MTs (B) dataset and visualized using Uniform Manifold Approximation and Projection
(UMAP). EC clusters are marked with dashed boxes. (C-D) Zoom-ins of EC clusters marked in (A-B), showing
overlap of CMECs_MT (C) and PMECs_MT (D) with intramyocardial ECs of the fetal heart dataset. Cell clusters
are labeled with different colors. Cells in the fetal heart dataset are represented with dots and cells in MT datasets
are represented with contour lines. (E) The nearest clusters to the published dataset were identified for each
cell of CM_MTs and PM_MTs. The result of knn-assignment is visualized in the bar plot. Cells from CM_MTs
and PM_MTs are labelled in dark and light colors respectively. Identities of each cell clusters of the published
dataset are shown with different colors. (F) Jaccard similarity to the amrker genes of intra-myocardial ECs from
the published fetal heart dataset was calculated for each group of genes. CMEC markers (in MTs): specific
markers of CMECs within CM_MT dataset; PMEC markers (in MTs): specific markers of PMECs within PM_MT
dataset; CMECs (MTs ≥ day 6): differentially expressed genes (DEGs) that are higher in CMECs_MT compared to
CMECs_day 6; PMECs (MTs ≥ day 6): DEGs that are higher in PMECs_MT compared to PMECs_day 6; CMECs
(P2 ≥ day 6): DEGs that are higher in passage two CMECs compared to CMECs_day 6. (G) Venn diagram showing
numbers and overlap of DEGs (𝑃𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 ≤ 0.05 and foldchange ≥ 1.5) between CMECs and PMECs from day 6
(in red) and MTs (in blue). (H) PCA of different EC populations in scRNAseq (triangle and diamond) and bulk
RNAseq (circle) datasets using the marker genes of the intra-myocardial ECs from the in vivo data set. Average
expression values of all cells in the cluster were used for the scRNAseq data.

To quantify our observation, we calculated the distances (in expression space) between
each cell in MTs and the fetal heart dataset. This calculation showed that CF_MT cells are
closest to fibroblast-like cells in vivo (related to cardiac skeleton connective tissue); CM_MT
cells are closest to ventricular cardiomyocytes; and CMECs_MT as well as PMECs_MT
are closest to intra-myocardial ECs in vivo. Annotating the in vitro cells based on the
closest in vivo neighbors revealed that cell type identities were very similar in CM_MTs
and PM_MTs (Figure 4.10E). Correspondingly, the set of markers of the CMECs_MT and
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the PMECs_MT cluster showed a high overlap (Jaccard similarity) with the markers of
intra-myocardial ECs we extracted from the in vivo data set. The gene set upregulated in
CMECs_MT (compared to CMECs_day 6) had a higher overlap with intra-myocardial EC
markers than the set of genes upregulated in PMECs_MTs (compared to PMECs_day 6).
Genes that were upregulated in passage two CMECs compared to CMECs_day 6 overlapped
the least with intra-myocardial EC markers (Figure 4.10F). CMECs_MT and PMECs_MT
thus both resembled intra-myocardial ECs but a difference between the two differentiation
systems remained. To quantify this difference directly, we used differential gene expression
analysis. On day 6 of differentiation, 1446 genes were differentially expressed between
CMECs and PMECs (Table S9), while only 332 genes were differentially expressed between
CMECs_MT and PMECs_MT (Table S8). 81 genes were shared between the two sets (Figure
4.10G).
Next, all EC clusters from bulk and single cell RNA-seq datasets were combined and vi-
sualized using principal component analysis (PCA) (Figure 4.10H). CMECs_day 6 and
PMECs_day 6 cluster far part, while CMECs_MT and PMECs_MT clustered closely to-
gether. Bulk and single cell RNA-seq samples clustered together for both CMECs and
PMECs. CMECs_MT and PMECs_MT were found close to fetal heart intra-myocardial
ECs and fetal heart ECs sequenced in our previous study ([32](Figure 4.10H). All in all, the
integrated analysis of the in vitro and in vivo data sets revealed that the cardiac microenvi-
ronment, mimicked by cardiac MT, partially removed expression differences due to distinct
mesodermal origins.

4.3 Discussion

In this study we set out to delineate the possible factors that can confer organ-specific
characteristics to cardiac ECs. In principle, those characteristics could be inherited from
developmental precursors or induced by the tissue microenvironment. We investigated the
contributions from both factors using hiPSC-derived ECs and cardiac MTs as tools.
To model different developmental origins, CMECs and PMECs were derived through CM
and PM respectively. CMECs obtained a clear cardiac phenotype but no tissue-specific (eEC
or iEC) identity. PMECs expressed a number of limb/skeletal muscle specific genes. Both
protocols thus resulted in early or immature organ-specific identities. However, we cannot
conclude that these identities were conferred by the respective mesoderm precursors in
an entirely cell-autonomous manner, since other cell types were co-differentiated in both
protocols and could have influenced the ECs. To exclude the contribution from other cells
in the culture, early EC progenitors would have to be purified and further differentiated to
establish whether organ-specific identities are present.
To model the influence of cell-extrinsic factors, we took advantage of our cardiac MT
model which mimics the heart-specific microenvironment better than other in vitro models
[3]. Both CMECs and PMECs acquired an iEC identity after incorporation into MTs and
continued culture. This result supports that high plasticity [5, 6] allows ECs to adapt
efficiently to signals from the microenvironment.
Notably, the iEC identity was more pronounced in CMECs_MT than in PMECs_MT, as it
might take extra steps and therefore more time for PMECs to adopt a cardiac fate, compared
to CMECs. Importantly, extended monoculture of CMECs did not result in an iEC identity,
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suggesting that the heart-specific microenvironment, modeled by cardiac MTs, caused
the specification. Some of the genes upregulated during MT culture are essential for EC
function. For example, CLDN5 and NOTCH4 were among the most highly upregulated
genes in both protocols. CLDN5 is critical for the tight junction and barrier functions of
endothelium [8], while NOTCH signaling plays key roles in both vascular morphogenesis
and adult endothelium homeostasis [9]. These results might indicate that ECs also mature
functionally in MTs.
ECs have been incorporated into hPSC-derived organoids of liver [10, 11], intestine [12],
brain [13–15], pancreas [16] and kidney [17, 18] by either codifferentiation or aggregation.
In most studies, organ/tissue-specific identities were barely investigated. Camp et al. [33]
used an approach similar to our MTs, combining hepatic, stromal, and endothelial cells
to make liver organoids [11]. Interestingly, that study reported transcriptomic changes in
ECs upon coculture in liver organoids, suggesting further maturation. Similarly, coculture
with neuronal cells was found to endow hPSC-derived ECs with a brain microvascular
identity [34]. Together with these previous studies, our results support the notion that the
microenvironment plays an essential role in developing an organ/tissue-specific identity
of ECs. More work is needed to investigate the molecular mechanisms underlying the
influence of the microenvironment, which likely include direct cell-cell contact, secretion
of paracrine factors and modulation of the extracellular matrix.
We hope that our findings will guide the derivation of organ-specific ECs in the future and
lay the foundation for various biomedical applications.
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4.4 Materials and Methods

4.4.1 Experimental Methods
hiPSC culture

The NCRM1 hiPSC line (NIH) was used for all experiments in this study. The cells were
cultured in TeSR-E8 on Vitronectin XF and was routinely passaged once a week using
Gentle Cell Dissociation Reagent (all from Stem Cell Technologies). Prior to targeting, were
grown on feeders in maintenance medium. RevitaCell (Life Technologies) was added to
the medium (1:200) after every passage to enhance viability after single cell passaging with
TrypLE (Life technologies).

Generation of 𝑃𝐴𝑋3𝑉𝑒𝑛𝑢𝑠𝑀𝑆𝐺𝑁 1𝑚𝐶ℎ𝑒𝑟𝑟𝑦 hiPSC dual reporter line

The 𝑃𝐴𝑋3𝑉𝑒𝑛𝑢𝑠 reporter was introduced first by CRISPR/Cas9 as follows: NCRM1 hiPSCs
were passaged using split ratios of 1:2 or 1:3. The cells were transfected in 60 mm dishes
after reaching 60-70% confluency. For transfection, 20 𝜇l lipofectamine (Invitrogen), 8 𝜇g
repair template and 8 𝜇g sgRNA/Cas9 plasmid were diluted in 600 𝜇l Opti-MEM and added
to each 60 mm dish. After 18 ho the medium was changed to maintenace medium. After
another 6 h G-418 (50 𝜇g/ml) selection was started and kept for 1 week. Surviving cells
were cultured in maintenance medium and grown in 6-well plates for the transfection with
a Flp recombinase expression vector to remove the neomycin cassette. 300 𝜇l Opti-MEM
containing 10 𝜇l lipofectamine and 4 𝜇g CAGGs-Flpo-IRES-puro plasmid was added per
well for 18 h. Puromycin (0,5 𝜇g/ml) selection was started 24 h post transfection and lasted
for 2 days. Once recovered, individual clones were expanded by limiting dilution in 96-well
plates. Targeted clones were identified by PCR and Sanger sequencing (BaseClear).
Next, the 𝑀𝑆𝐺𝑁 1𝑚𝐶ℎ𝑒𝑟𝑟𝑦 reporter was integrated into the genome of the 𝑃𝐴𝑋3𝑉𝑒𝑛𝑢𝑠
reporter line using a piggyBac transposon system created by Katrin Neumann, Konstantinos
Anastassiadis (Biotechnology Center TU Dresden).

Endothelial cell differentiation from hiPSCs

Endothelial cells with a cardiac mesoderm origin were induced from hiPSCs in a monolayer
using the CMEC protocol as described previously [31]. Briefly hiPSCs were split at a 1:12
ratio and seeded in 6-well plates coated with 75 𝜇g/mL growth factor reduced Matrigel
(Corning) on day -1. On day 0, cardiac mesoderm was induced by changing from TeSR-E8
medium to BPEL medium [35], supplemented with 20 ng/mL BMP4 (R&D Systems), 20
ng/mL ACTIVIN A (Miltenyi Biotec) and 1.5 𝜇M CHIR99021 (Axon Medchem). From day 3,
the cells were grown in BPEL medium supplemented 5 𝜇M XAV939 (Tocris Bioscience) and
50 ng/ml VEGF (R&D Systems), with or without 100 𝜇M retinoic acid (MERCK) and the
medium was refreshed every 3 days.
To derive endothelial cells with paraxial mesoderm origin, hiPSCs were split at a 1:12 ratio
and seeded in 6-well plates coated with 75 𝜇g/mL growth factor reduced Matrigel on day
-1. On day 0, paraxial mesoderm was induced by changing from TeSR-E8 to BPEL medium,
supplemented with 8 𝜇M CHIR99021. On day 2, the medium was exchanged with BPEL
medium supplemented with 5 𝜇M XAV939. On day 3, the medium was exchanged with
BPEL medium supplemented with 4 𝜇M CHIR99021. From day 5 onwards, cells were grown
in BPEL medium supplemented with 50 ng/ml VEGF and the medium was refreshed every
3 days.
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Fluorescence-activated cell sorting

Cells were dissociated with TrypLE on day 6 and 8 of the CMEC or PMEC protocol and
stained with a VE-Cadherin (VEC) antibody conjugated with PE (R&D Systems). Then
VEC-positive cells were purified using a FACSAria III cell sorter. Total RNA was extracted
right after sorting using the NucleoSpin®RNA kit (Macherey-Nagel).

Generation of 3D Cardiac Microtissues (MTs)

Cardiac MTs were generated from hiPSC-derived ECs (hiPSC-ECs), hiPSC-derived cardiac
fibroblasts (hiPSC-CFs) and hiPSC-derived cardiomyocytes (hiPSC-CMs) as previously de-
scribed [32]. Briefly, on day 6 of CMEC or PMEC differentiation, CD34-positive hiPSC-ECs
were isolated using a Human cord blood CD34 Positive selection kit II (StemCell Tech-
nologies) following the manufacturer’s instructions. On the day of MT formation, freshly
isolated hiPSC-ECs and cultured hiPSCs-CFs and hiPSC-CMs were combined together (70%
hiPSC-CMs, 15% hiPSC-ECs and 15% hiPSCs-CFs) at a concentration of 5000 cells per 50𝜇l
in BPEL medium supplemented with VEGF (50 ngml) and FGF2 (5 ngml). Cell suspensions
were seeded in V-bottom 96-well microplates (Greiner bio-one) and centrifuged for 10 min
at 1100 rpm. MTs were incubated at 37 ◦C, 5% CO2 for 21 days. The medium was refreshed
every 3 to 4 days. single-cell RNA-sequencing analysis of MTs was performed after 21 days.

Flow cytometry analysis

Cells were dissociated with TrypLE, washed once with flow cytometry buffer (PBS con-
taining 0.5% BSA and 2 mM EDTA) and analyzed on a MACSQuant VYB (Miltenyi Biotech)
equipped with a violet (405 nm), blue (488 nm) and yellow (561 nm) laser. The results were
analyzed using Flowjo v10 (FlowJo, LLC).

Quantitative Real-Time Polymerase Chain Reaction (qPCR)

Total RNA was extracted using the NucleoSpin®RNA kit according to the manufacturer’s
protocol. cDNA was synthesized using an iScript-cDNA Synthesis kit (Bio-Rad). iTaq
Universal SYBR Green Supermixes (Bio-Rad) and Bio-Rad CFX384 real-time system were
used for the PCR reaction and detection. Relative gene expressionwas determined according
to the standard ΔCT calculation and normalized to housekeeping gene RPL37A.

4.4.2 Bulk RNA seqencing (RNA-seq) and analysis
Bulk RNAseq of passage two CMECs (CMECs P2) and human fetal heart ECs from week
12.5 (W12.5), W15 and W21 of gestation were performed in our previous study [32] and
obtained from GEO (accession number GSE116464).
Bulk RNAseq of day 6 and 8 of CMEC and PMEC differentiation were performed by BGI
(Shenzhen, China) using the Illumina Hiseq4000 sequencer (100bp paired end reads). Raw
data was processed using the LUMC BIOPET Gentrap pipeline (https://github.com/biopet/

biopet), which comprises FASTQ preprocessing, alignment and read quantification. Sickle
(v1.2) was used to trim low-quality read ends (https://github.com/najoshi/sickle). Cutadapt
(v1.1) was used for adapter clipping [36]. Reads were aligned to the human reference
genome GRCh38 using GSNAP (gmap-2014-12-23) [37, 38] and htseq-count (v0.6.1p1) was
for quantification using the Ensembl v87 annotation [39]. Biases related to gene length
and GC content were corrected by conditional quantile normalization using the R package
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cqn (v1.28.1) [40]. Genes were excluded if read count was below 5 in ≥90% of the samples.
Differentially expressed genes were identified using a generalized linear model as imple-
mented in edgeR (3.24.3) [41]. P-values were adjusted for multiple hypothesis testing using
the Benjamini-Hochberg procedure and q-values of ≤ 0.05 were considered significant.
Analyses were performed using R (version 3.5.2). The Principal Component Analysis (PCA)
plot was generated with the built-in R functions ’prcomp’. Spearman correlation between
samples was calculated using the ’cor’ function and the correlation heatmap was generated
with a heatmap function from the NMF package. Gene ontology term enrichment was
performed using the compareCluster function of the clusterProfiler package (v3.10.1) [42]
and q-values ≤ 0.05 were considered significant.

4.4.3 Single-cell RNA seqencing and analysis
Library preparation and seqencing

Cells were dissociated into single cells differentiation and loaded into the 10X Chromium
Controller for library construction using the Single-Cell 3’ Library Kit, Version 2 Chemistry
(10x Genomics) according to the manufacturer’s protocol. Next, indexed cDNA libraries
were sequenced on the HiSeq4000 platform. Single-cell expression was quantified using
unique molecular identifiers (UMIs) by 10x Genomics’ “Cell Ranger” software.

Mean reads per cell for all eight data sets:
CMEC (R1): 28,499; CMEC (R2): 29,388; PMEC (R1): 31,860; PMEC (R2): 38,415; CM_MT
(R1): 39,319; CM_MT (R2): 29,741; PM_MT (R1): 36,726; PM_MT (R2): 26,421.

Single-cell RNA-seqencing data pruning and normalization

For data pruning and normalization, the two replicates of each of the 4 conditions (CMEC,
PMEC, CM_MT and PM_MT) were combined without batch correction. Cells with a number
of genes per cell below a certain threshold (1200 (CMEC), 1200 (PMEC), 900 (CM_MT), 750
(PM_MT), see Figure 4.4) were removed. Genes expressed in less than 2 of the remaining
cells with a count of at most 1 were excluded from further analysis. Each combined data set
was normalized using the R package scran (V 1.14.6) [43]. Highly variable genes (HVGs)
were calculated (using ’improvedCV2’ from the scran package) for each replicate of the
combined data sets after excluding ribosomal genes, stress markers [44] and mitochondrial
genes. For downstream analysis the top 5% HVGs were used after excluding proliferation
[45] and cell cycle [46] related genes.

Cell cycle analysis and batch correction

For each combined data set, cell cycle analysis was performed with the scran package
using the ’cyclone’ function [47] on normalized counts (Figure 4.4H). Cells with a G2/M
score higher than 0.2 were considered to be in G2/M phase. Otherwise, they were classified
as G1/S. Using this binary classifier as predictor, we regressed out cell cycle effects with
the R package limma (V 3.42.2) [48] applied to log-transformed normalized counts. Then,
for each combined data set, the two replicates were batch corrected with the fast mutual
nearest neighbors correction method (MNN) [49] on the cell cycle corrected counts, using
the 30 first principal components and 20 nearest-neighbors (Figure 4.4C).
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Clustering

For each combined data set, batch-corrected counts were standardized per gene and then
used to create a shared nearest neighbour (SNN) graph with the scran R package (d = 30, k
= 2). Louvain clustering was applied to the SNN graph using the igraph python package
(V 0.7.1) with these resolution parameters: 0.4 (CMEC), 0.4 (CM_MT), 0.3 (PMEC), 0.1
(PM_MT). For the CMEC data set, this resulted in 5 clusters (Figure 4.4D). Two of these
5 clusters were excluded from further analysis based on the expression of pluripotency
markers (Figure 4.4E). For CM_MT and PM_MT, clustering resulted in 4 clusters (Figure
4.4F and 4.4G), where one cluster was excluded from further analysis, because it was mainly
present in one of the two replicates. Additionally, the attempt to map this cluster to in
vivo data resulted in mostly unassigned cell types (plot not shown). For PMEC, clustering
resulted in 3 clusters.

Dimensionality reduction and pseudotime

Dimensionality reduction was performed using the python scanpy pipeline (V 1.4.6). For
both data sets (CMEC and PMEC) a 20 nearest-neighbors (knn, k=20) graph was created
from diffusion components of the batch corrected data sets. Diffusion components are the
eigenvectors of the diffusion operator which is calculated from Euclidean distances and
a Gaussian kernel. The aim is to find a lower dimensional embedding which considers
the dynamics of differentiation. Both graphs were projected into two dimensions using a
force-directed graph layout and starting positions obtained from the partition-based graph
abstraction (PAGA) output [50]. PAGA estimates connectivities between partitions and
performs an improved version of diffusion pseudotime. Diffusion pseudotime [50, 51] was
calculated on these graphs with root cells selected from the “Cardiac Mesoderm” cluster in
CMEC, and the “Paraxial Mesoderm” cluster in PMEC.
For CM_MT and PM_MT, the knn graphs (k=50 for PM_MT, k=100 for CM_MT) were
created from the first 30 principal components of the batch-corrected data sets. These
graphs were projected into two dimensions with a force-directed graph layout and starting
positions from the PAGA output.

In vivo data analysis and mapping

The in vivo data set, downloaded from
https://www.spatialresearch.org/resources-published-datasets/doi-10-1016-j-cell-2019-11-025/,
contains a 6.5 PCW (postcoitum weeks) human fetal cardiac tissue sample. The clusters
and cluster annotations were obtained from the original publication [18]. The data set
was normalized with the scran R package and HVGs were calculated as described above.
Dimensionality reduction was performed with the R package umap (V 0.2.5.0) using 20
nearest-neighbors, min_dist = 0.7 and Euclidean distances.

Differential expression analysis

All differential expression tests were performed with edgeR (V 3.28.1) [41] using a negative
binomial regression and raw counts. The predictors in the regression were: cluster and
replicate (both discrete variables), as well as the total number of counts per cell.
For marker gene analysis (Figures 4.6A and 4.6C), p-values were obtained for a contrast
between the cluster of interest and all other clusters using regression coefficients averaged
over the replicates. For tests between different data sets (Figure 4.7C), the corresponding
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endothelial cell cluster was extracted from each data set. Then, a contrast between MT
and day 6 was calculated by averaging over the predictors of both replicates. For the in
vivo test (Figure 4.9B), intra-myocardial EC and endocardium clusters were extracted from
the data set to calculate the contrast between them. P-values were adjusted for multiple
hypothesis testing with the Benjamini-Hochberg procedure.

Comparison to the in vivo data set

CM_MT and PM_MT data sets were mapped on the in vivo data set using the MNN method
(d = 30 principal components, k = 100 nearest neighbors). First, in vitro replicates were
mapped to each other, then the in vivo data was mapped on the combined in vitro data,
using normalized, log- transformed counts and the 10% top HVGs of the in vivo data set.
Dimensionality reduction was performed with the R package umap using 100 nearest-
neighbors, min_dist = 0.3 and Euclidean distance.
K-nearest-neighbour (KNN) assignment was performed in the batch corrected, principal
component space (30 PCs). The 100 nearest-neighbors in the in vivo data set based on
Euclidean distances were calculated for each in vitro cell. The in vitro cell was ascribed the
cell type most abundant among the 100 in vivo neighbors. Each such assignment received
a confidence score, which is the number of in vivo neighbors with that cell type divided by
the number of all nearest neighbors (=100). A cell was not ascribed a cell type if either the
average distance to its nearest neighbour exceeded a certain threshold (determined by the
long tail of the histogram of average distances: 0.35), or the assignment had a confidence
score smaller than 0.5. In addition, clusters containing less than 10 cells were not ascribed
a cell type.
For the Jaccard similarity measure, marker genes of each differential expression test were
selected with adjusted p-value ≤ 0.05. The remaining genes were ranked by log2 fold-
change and the first 478 genes were selected for analysis. Then, the Jaccard distances were
calculated between the marker genes of intra-myocardial endothelial cells and each of the
other gene sets. For principal component analysis (Figure 4.10H), human fetal bulk samples
[32] and in vitro bulk samples were combined with the single cell data sets. For each
single-cell data set, the endothelial cells were extracted and the sum per gene over all cells
was calculated. Then, bulk and single cell samples were log-transformed and combined
into one data set. Principal component analysis was applied on the gene-wise standardized
data set, using marker genes of the intra-myocardial endothelial cells from the in vivo data
set.

4.4.4 Data availability
The accession numbers for the bulk and single-cell RNA-sequencing datasets reported in
this paper are https://www.ncbi.nlm.nih.gov/geo/. Supplementary tables are available at
https://doi.org/10.5061/dryad.9p8cz8wkg.
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5
A gastruloid model of the interaction

between embryonic and extra-embryonic

cell types

Stem-cell derived in vitro systems, such as organoids or embryoids, hold great potential for

modeling in vivo development. Full control over their initial composition, scalability and easily

measurable dynamics make those systems useful for studying specific developmental processes

in isolation. Here we report the formation of gastruloids consisting of mouse embryonic stem

cells (mESCs) and extraembryonic endoderm (XEN) cells. These XEN-enhanced gastruloids

(XEGs) exhibit the formation of neural epithelia, which are absent in gastruloids derived from

mESCs only. By single-cell RNA-seq, imaging and differentiation experiments, we demonstrate

the neural characteristics of the epithelial tissue. We further show that the mESCs induce the

differentiation of the XEN cells to a visceral endoderm-like state. Finally, we demonstrate that

local inhibition of WNT signaling and production of a basement membrane by the XEN cells

underlie the formation of the neuroepithelial tissue. In summary, we establish XEGs to explore

heterotypic cellular interactions and their developmental consequences in vitro.

This chapter is based on Bérenger-Currias NM, Mircea M, Adegeest E, et al. A gastruloid model of the
interaction between embryonic and extra-embryonic cell types. Journal of Tissue Engineering. (2022).
doi:10.1177/20417314221103042. [1]
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5.1 Introduction

Multicellular in vitro systems have become a major focus of biology and bioengineering
over the last few years. Stem cell-derived systems, such as embryoids and organoids show
complex organization and have the potential to serve as models for in vivo development
[2–5]. Among the most prominent examples of such model systems are gastruloids. These
aggregates of mouse or human embryonic stem cells (ESCs) recapitulate elements of
embryonic development, such as body axis formation and extension [6–10]. Notably,
gastruloids do not contain extraembryonic cells, which provide numerous signaling inputs
during gastrulation in vivo [11]. The remarkable self-organizing capabilities of ESCs thus
raise questions about the precise role of extraembryonic tissues in gastrulation. Here, we
will focus on the extraembryonic endoderm, which derives from the primitive endoderm
(PrE) in vivo. At the blastocyst stage, prior to implantation of the embryo in the uterine wall,
the PrE overlays the developing epiblast, which gives rises to all embryonic tissues (see
Fig. 5.1a for a schematic of early mouse development.) Subsequently, the PrE differentiates
into the Parietal Endoderm (PE), which covers the inside of the blastocoel cavity [12]
and the Visceral Endoderm (VE), which surrounds the embryo until the formation of
the visceral yolk sac and integration of some VE cells in the embryonic gut [13, 14].
Another subpopulation of the VE, the Anterior Visceral Endoderm (AVE) is involved
in the establishment of the embryo’s body axes [15, 16]. In this study, we set out to
develop an in vitro model system for the interaction between the extraembryonic endoderm
and the gastrulating embryo. As a proxy for the extraembryonic endoderm in vivo, we
used XEN cells, which can be derived from the PrE cells in blastocysts. XEN cells have
been previously incorporated in embryoid systems [17–21] that model the earliest stages
of development. Here, we wanted to explore, whether the role of the extraembryonic
endoderm in gastrulation can be modeled by adding XEN cells to the gastruloid model
system. Below, we report that aggregates of mESCs and XEN cells can produce columnar
neural epithelia. Using multiple markers, perturbation of the signaling pathways that play
a role in neural development in vivo, and further differentiation to neural organoids, we
confirmed that the epithelial structures indeed have neural characteristics. By single-cell
RNA-seq, we identified differences in composition and molecular profiles between our
new model system and regular gastruloids. We then established that a majority of XEN-
derived cells become visceral endoderm-like due to co-differentiation with the mESCs.
Finally, we showed that XEN cells promote epithelia formation by local, DKK1 mediated,
WNT inhibition, as well as through production of a basement membrane. Our study thus
highlights the complex interplay between embryonic and extraembryonic cells and explores
possible mechanisms underlying their interaction.
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Figure 5.1: XEN cells induce neuroepithelial structures in XEN enhanced gastruloids. a, Schematic of
early mouse embryonic development. Tissues discussed in this manuscript are indicated with color. A: anterior,
P: posterior, D: dorsal, V: ventral, L: left, R: right. b, Schematic of the culture protocol: at 0 h, 200 cells (150
ESCs and 50 XEN cells) were aggregated; CHIR99021 was added between 48 h and 72 h after cell seeding to
activate the WNT pathway; cell aggregates were cultured until 96 h. c, T and SOX2 expression at 96 h in XEGs
Inset: Aggregate resulting from the standard gastruloid protocol (without XEN cells) at 96 h. Z-projections
of wholemount immunostaining. Scale bars: 100 µm. d, Expression of SOX2, E-cadherin, N-cadherin, ZO-1
and 𝛼𝑃𝐾𝐶𝜁 in XEGs at 96 h (immunostaining of cryosections). Scale bar: 50 𝜇m. e, Live-cell imaging of SOX1
expression in a gastruloid (top panels, scale bar: 20 𝜇m) and a XEG (bottom panels, scale bar: 50 𝜇m), grown with
Sox1-GFP mESCs (see Supplementary Videos 3-8). In all images, a single z-plane is shown. The arrows indicate
epithelial structures. c-d, Cell nuclei were stained with DAPI.

5.2 Results

5.2.1 XEN cells induce neuroepithelial structures inXENen-
hanced gastruloids

We first implemented the original mouse gastruloid protocol4, in which mESCs are aggre-
gated in N2B27 media and exposed to a 24 h pulse of CHIR99021 (CHIR), which activates
the WNT pathway. After 96 h, this protocol results in elongated gastruloids. As reported
before [6–8], 96 h gastruloids contained localized compartments, marked by Brachyury
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(T) or SOX2, respectively (Fig. 5.1c, inset). These compartments are believed to resemble
early in vivo mesendodermal (T) or neural progenitor (SOX2) cell types. Starting from the
gastruloid protocol, we developed a new system by aggregating mESCs and XEN cells,
keeping all other experimental conditions the same (Fig. 5.1b). We call our mixed aggregates
“XEN Enhanced Gastruloids” (XEGs). Like gastruloids, 96 h XEGs showed an elongated
morphology and localized T-positive and SOX2-positive compartments. However, unlike in
gastruloids, SOX2-positive cells in XEGs were organized in columnar epithelia surrounding
one or several lumina (Fig 5.1c).

Dorso-ventral neural markers in XEGs
DAPI   SOX2   PAX6   NKX6.1

DAPI   SOX2   MSX1   NRCAM

DAPI   Wnt4   Wnt8a   Fgf8

AP axis gradients in XEGs

a

b

Figure 5.2: Neural epithelia in XEGs are heterogeneous and contain subpopulations with dorsal or
ventral characteristics. a, Expression of dorsal (PAX6, MSX1) and ventral (NKX6.1) neural tube markers and a
neural cell adhesion molecule (NRCAM) in 96 h XEGs (immunostaining of sections). Top, expression of PAX6
and NKX6.1. Scale bar: 100 𝜇m. Bottom, zoomed pictures of neural epithelia showing the expression of MSX1
and NRCAM. Scale bars: 20 𝜇m. b, Wnt4, Wnt8a and Fgf8 expression in XEGs at 96 h, visualized by smFISH on
sections. Each diffraction limited dot is a single mRNA molecule. Scale bar: 100 𝜇m. a-b, Cell nuclei were stained
with DAPI.
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Expression of the broadly expressed neural marker SOX2 and the striking morphology
suggested that the observed structures resemble neural epithelia. The lack of pluripotency
marker expression (Supplementary Fig. 5.1a) excluded that the structures were formed by
remaining undifferentiated cells. The presence of N-cadherin and absence of E-cadherin in
the epithelia (Fig. 5.1d, top) is consistent with the known switch from E- to N-cadherin
during neural differentiation in vivo [22] and in vitro [23]. We could also observe that
the epithelial cells were polarized and expressed apical markers ZO-1 and aPKC (Fig.
5.1d, bottom), consistent with neural epithelia in vivo [24]. Finally, we detected the
neural progenitor markers PAX6 and NKX6.1 [25] in a subpopulation of epithelial cells
(Supplementary Fig. 5.1b). Combined, these results suggest that the observed structures in
XEGs have the characteristics of neural epithelia.
To understand how these structures formed, we used time-lapse microscopy of developing
XEGs. Around 48 h after seeding, cells formed rosette-like shapes (Fig. 5.3c, Supplementary
Video 1), which resembled structures found in Matrigel-embedded mESCs [26, 27] and
indicated a mesenchymal-epithelial transition. Subsequently, a columnar epithelium was
formed. Then, lumina opened at different places and merged between 48 h and 72 h (Fig.
5.3d, Supplementary Video 2). During the final 24 h, the epithelium kept extending and
differentiated further, as revealed, by the expression of the neural progenitor marker SOX1
[28] (Fig. 5.1e, bottom; Supplementary Videos 3-5). A SOX1 positive cell population also
appeared in gastruloids within the same time frame, but, importantly, remained unorganized
(Fig. 5.1e, top; Supplementary Videos 6-8).
To explore the robustness of the protocol and identify optimal conditions for the formation
of epithelial structures, we tested different ratios of mESCs and XEN cells (Fig. 5.3e, f).
Interestingly, even the smallest proportion of XEN cells tested (1:5), was able to induce
some epithelia formation. On the other hand, elongation and symmetry breaking were
inhibited when the proportion of XEN cells exceeded 1:2. A ratio of 1:3 gave optimal
results, with the concurrence of SOX2-positive epithelia and T-positive cells in nearly all
aggregates.

5.2.2 Neuroepithelial cells in XEGs are heterogeneous and
show further specification

To establish whether the neuroepithelial cells are a homogeneous population of progenitors
or have undergone further specification, we carried out additional immunostaining. In
subpopulations of cells, we observed the expression of PAX6, MSX1 and ASCL1 (Fig. 5.2a,
Fig. 5.3b), which can be found in dorsal progenitors in the developing neural tube [29].
Notably, these markers were localized close to the XEN-derived cells at the outside of the
XEGs. By contrast, the ventral marker NKX6.1 was found only sporadically and did not
show any preferential spatial localization (Fig. 5.2a). Finally, the neural adhesion molecule
NRCAM was ubiquitously expressed in epithelial cells, further supporting their neural
character (Fig. 5.2a).
We also attempted to establish a possible specification related to the anteroposterior axis in
vivo. Using single-molecule FISH, we observed the expression of Wnt4, Wnt8a and Fgf8 as
gradients along the long axis of XEGs (Fig. 5.2b), which resembled similar anteroposterior
gradients found in vivo [30]. However, important canonical markers of the most anterior
part of the embryo (OTX2, LEFTY1, EN1, ZIC1) could not be detected in XEGs (data not
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shown). Taken together, our measurements indicated that neuroepithelial cells in XEGs
are heterogeneous and contain subpopulations that might correspond to either dorsal or
ventral neural progenitors.
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Figure 5.3: Optimization and characterization of XEGs. a, Expression of SOX2 and OCT4 (immunostaining)
in cultured ESCs (left, scale bar: 10 𝜇m) and sections of XEGs at 96 h (right, scale bars: 100 𝜇m). b, Expression of
T, SOX2, PAX6, ASCL1 and NKX6.1 (immunostaining) in sections 96 h XEGs. Scale bars: 100 𝜇m. c-d, Live-cell
imaging of morphological changes in XEGs grown from mCherry-GPI expressing mESCs. mCherry-GPI is
localized to the cell membrane. In all images, a single z-plane is shown. Scale bars: 50 𝜇m. c, Rosette formation.
The center of the rosette is indicated by a dashed line. Inset: tracing of cell outlines. See also Supplementary
Video 1. d, Cavitation of rosettes. The top row shows the brightfield channel, the bottom row shows the mCherry
channel. Dashed lines indicate the opening lumen. See also Supplementary Video 2. e, Average fraction of
aggregates showing epithelial structures and T staining at 96 h for different starting ratios of ESCs and XEN cells
(n = 2 experiments, error bars show standard deviation). f, SOX2 and T expression in gastruloids and XEGs with
different starting ratios of ESCs and XEN cells (z-projection of whole mount immunostaining). Scale bars: 100 𝜇m.
a, b, f, Cell nuclei were stained with DAPI.
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Figure 5.4: Signaling perturbation experiments and continued differentiation confirm neural charac-
ter. a, Top: schematic of signaling sources patterning the developing neural tube in vivo. A: anterior, P: posterior,
D: dorsal, V: ventral, L: left, R: right. Bottom: time line of the signaling experiments. XEGs were treated from 72 h
to 96 h, with either BMP pathway inhibitor (BMPi), retinoic acid (RA) or hedgehog pathway agonist (Hh agonist).
The XEGs were then allowed to grow for an additional 48 h before staining. b, Expression of SOX2, NKX6.1 and
PAX6 in XEGs at 144 h, treated with the indicated factors (immunostaining of sections). n = 3 experiments. Scale
bars: 100 𝜇m. c, Expression of SOX2 and TUJ1 in XEGs, 8 days after cell seeding, differentiated according to a
cerebral organoid protocol for 4 days (immunostaining of sections). Scale bar: 100 𝜇m. b-c, Cell nuclei are stained
with DAPI.

5.2.3 Signalingperturbationexperimentsandfurtherdiffer-
entiation support the neuroepithelial character

To further characterize the neuroepithelial structures, we tested how they respond to
signaling inputs found in vivo. Specifically, we explored the response to BMP pathway
inhibition, as well as Sonic Hedgehog (Shh) and retinoic acid (RA) pathway activation (Fig.
5.4a, b). BMP signaling is known to prevent premature neural specification [31] and to be
involved in dorsal patterning of the neural tube [32]. In XEGs, BMP inhibition resulted in
an increased number of cells expressing the neural progenitor markers SOX2 and PAX6, as
well as NKX6.1, which is expressed in ventral progenitors in the developing neural tube.
Sonic hedgehog, produced in vivo by the notochord and the floor plate (see schematic in
Fig. 5.4a), is known to be necessary for the patterning of the ventral part of the neural
tube [33]. The activation of the Hedgehog signaling pathway led to a higher frequency
of cells expressing a ventral marker (NKX6.1) in XEGs. RA, involved in anteroposterior
and dorsoventral patterning [34], strongly increased the number of cells expressing PAX6,
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which is expressed in dorsal progenitors in the neural tube in vivo [35]. The neuroep-
ithelial structures in XEGs thus responded to signaling inputs as expected from in vivo
development.
To test the developmental potential of the neural progenitors further, we sought to differ-
entiate them to more advanced states. Within four days of additional culture in cerebral
organoid differentiation media [36], XEGs developed a layered organization of neural
progenitors (SOX2+/PAX6+) and neurons (TUJ1+/CTIP2+/PAX2+), surrounding cavities,
reminiscent of the organization of the developing dorsal spinal cord [29, 37] (Fig. 5.4c, Fig.
5.5a-c). Interestingly, we also observed a population of cells expressing the endothelial
marker CD31 (Fig. 5.5d). This might indicate that non-neural cells remained and might
have differentiated further. Those CD31+ cells could specifically represent an early stage
of vasculature. Taken together, the signaling perturbation and differentiation experiments
confirmed the neural potential of the epithelia.
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Figure 5.5: Developing spinal cord markers are expressed in XEGs further differentiated with a cere-
bral organoid protocol. a-d, Immunostaining of sections of XEGs on day 8 after cell seeding. a, TUJ1, a neuron
marker, and SOX2 (top) and PAX6 (bottom), neural progenitor markers. The dashed box highlights an example
of layered organization reminiscent of the ventricular and mantle zones in the developing spinal cord. b, TUJ1,
SOX2 and CTIP2, a neuron marker. c, TUJ1, SOX2 and PAX2, a marker of dorsal neurons in the developing spinal
cord. d, TUJ1, SOX2 and CD31, an endothelial marker. Insets show clusters of cells positive for CD31. a-d, Cell
nuclei were stained with DAPI. Scale bars: 100 𝜇m.
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5.2.4 Single-cell RNA-seq reveals the transcriptional pro-
files of XEG cells

Having focused on the most striking, morphological difference between gastruloids and
XEGs, we wanted to take a more comprehensive approach to reveal additional differences
between the two model systems. To that end, we used single-cell RNA-sequencing (scRNA-
seq) (Fig. 5.6a-e). By mapping the data to single-cell transcriptomes of mouse embryos
from E6.5 to E8.5 [38] (Fig. 5.7a,b) we classified the transcriptional identity of the cells (Fig.
5.8a,b). Except for the least abundant cell types, the distribution of cell types was consistent
across two biological replicates (Fig. 5.8c). Expression of known markers confirmed the
classification by mapping to in vivo data (Fig. 5.7c, Supplementary Table 1). Most cell
types belonged to the E8.0 or E8.5 embryo (Fig. 5.7d), which might indicate that in vitro
differentiation proceeded roughly with the same speed as in vivo development.
Neuromesodermal progenitors (NMPs) and spinal cord-like cells were the most abundant
in both model systems (Fig. 5.8c). Gastruloids thus already contain cells of the neural
lineage, which, however, seem to lack organization (Fig. 5.1c, inset). To identify the cells
forming epithelial structures in XEGs, we used the neural markers Sox2, Pax6 and Nkx6.1
[25], which we had detected by immunostaining (Fig. 5.3b). We found these markers to be
co-expressed in cells classified as “spinal cord” and “brain” in the scRNA-seq data (Fig. 5.8d,
Fig. 5.7e), confirming their neural ectoderm identity. While NMPs also expressed Sox2 and
Nkx6.1, neuroepithelial structures were clearly distinguishable by the presence of Pax6
and the absence of T.
We next asked, whether there are any subpopulations in the neural ectoderm-like cells, as
hinted at by our immunostaining results (Fig. 5.2). Differential gene expression analysis
between spinal cord-like cells and other cells in XEGs identified markers of both the
dorsal and ventral neural tube (Fig. 5.9a, Supplementary Table 2). A comparison between
XEGs and gastruloids revealed that neural ectoderm-like cells (including spinal cord and
clusters identified as neuroectoderm or brain) expressed more dorsal markers in XEGs
(Fig. 5.9b, Supplementary Table 3). This dorsal identity was confirmed by mapping the
neural ectoderm-like cells to single-cell expression profiles of in vivo neural tube [37]
(Fig. 5.9c). The majority of neural ectoderm-like cells from XEGs turned out to be more
similar to dorsal progenitors in vivo. To reveal subpopulations, we clustered the neural
ectoderm-like cell using a curated list of genes that are dorsoventral axis markers in the
developing neural tube [29, 37, 39] (Fig. 5.8e). This analysis resulted in 5 clusters with
distinct dorsoventral characteristics (Fig. 5.8f). Two clusters (1 and 2) had a more ventral
identity, two clusters (4 and 5) had dorsal transcriptional characteristics and cluster 3
expressed both dorsal and ventral markers at a low level. Roughly one third of the cells
had a dorsal identity (Fig. 5.8g), which is qualitatively consistent with our immunostaining
results (Fig. 5.2). Overall, both model systems showed a diverse cell type distribution, also
comprising a variety of mesodermal cell types. Thus, XEG cells are not globally biased
towards the neural fate, as occurring in other protocols for induction of neural epithelia [27,
40, 41]. On the contrary, XEGs even contained a bigger proportion of mesoderm-like cells,
compared to gastruloids (Fig. 5.8c, Fig. 5.10a). While paraxial, intermediate and somitic
mesoderm-like clusters were present in both model systems, only XEGs contained cells
transcriptionally resembling primitive streak, nascent mesoderm, pharyngeal mesoderm
and hematoendothelial progenitors. To confirm the presence of mesodermal cell types
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in XEGs, we focused on two genes, Tbx6 and Pax2, which are markers of nascent and
intermediate mesoderm, respectively. Our single-cell RNA-seq data showed expression
of both genes in subpopulations of XEG cells (Fig. 5.10b) and immunostaining confirmed
their presence (Fig. 5.10c). However, we did not observe any tissue-level organization of
those cells in XEGs. Taken together, these results suggest that the XEN-derived cells in
XEGs also have an effect on the mesodermal cell population.
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Figure 5.7: Single-cell RNA-seq resolves cell type diversity in XEGs and gastruloids. a, UMAP of the
Pijuan-Sala et al. [38] dataset with cell types indicated by color. b, MNN mapping of XEG cells from replicate 2
(opaque color) to the Pijuan-Sala et al. dataset (pale colors), as an example for the mapping procedure. c, Heat
map of standardized expression of genes associated with mouse embryonic development in XEGs and gastruloids.
References describing the in vivo expression of the genes are given in Supplementary Table 1. d, Developmental
age of cell types based on mapping to in vivo data. e, Expression of Sox2, Pax6 and Nkx6.1 and T in XEGs, as
measured by single-cell RNA-seq.
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Figure 5.8: Single-cell RNA-seq reveals the transcriptional profiles of XEG cells. a,b, UMAP of cells in
XEGs and gastruloids colored by cell type based on the mapping to in vivo data shown in Supplementary Fig. 4a,b.
c, Cell type frequencies for both replicates in XEGs and gastruloids. d, Sox2, Pax6, Nkx6.1 and T log-expression
levels indicated by color in UMAPs of XEGs. e, Principal Component Analysis of neural ectoderm-like cells in
XEGs. Left: Colored by cell type based on the mapping to in vivo data. Right: Colored by neural progenitor
subtypes (NP sub) found by sub-clustering. f, Heatmap of standardized expression of dorsoventral markers in the
sub-clusters of neural ectoderm-like cells shown in e. g, Relative frequency (percentage) of sub-clusters. Left: For
all neural ectoderm-like cells. Right: Per cell type (based on mapping to in vivo data).

We repeated this analysis on integrated neural ectoderm-like cells from gastruloids and
XEGs. Strikingly, the clusters with clear dorsal characteristics were almost exclusively
comprised of XEG cells (Fig. 5.9d). XEN-derived cells thus seem to promote dorsal spec-
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ification in a subpopulation of neural ectoderm-like cells. Judged by the expression of
Hox genes (Fig. 5.9e), there was no overt difference in anterior-posterior characteristics
between the neural ectoderm-like clusters in XEGs. However, scRNA-seq did confirm the
heterogeneous expression of Fgf8, Wnt4 and Wnt8a (Fig. 5.9f) we had observed by smFISH
(Fig. 5.2b), hinting at additional subpopulations related to the anteroposterior axis in vivo.
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Figure 5.9: Neuroepithelial cells in XEGs are biased towards a dorsal expression profile. (Caption on
the next page)
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5.2.5 Most XEN cells become VE-like in XEGs
Compared to gastruloids, XEGs additionally contained extraembryonic endoderm cell
types (Fig. 5.8c). By using GFP-expressing XEN cells in XEGs (Fig. 5.11a), we established
that those cell types were exclusively differentiated from XEN cells. By comparison to
undifferentiated XEN cells, which were spiked into the scRNA-seq samples, we studied the
transcriptional changes in XEN-derived cells. Undifferentiated XEN cells mostly mapped to
PE [38] (Fig. 5.12a, Fig. 5.11b), consistent with a previous study [42, 43]. Their derivatives
in XEGs mapped to multiple kinds of extraembryonic endoderm: PE, embryonic VE and
extraembryonic VE. Interestingly, some also mapped to gut, reminiscent of the contribution
of VE to the gut in vivo [13, 14]. The identification of those cell types was confirmed by
mapping our scRNA-seq data to an endoderm-focused scRNA-seq dataset [14] (Fig. 5.11c,d).
Quantification revealed that, on average, 8% of the initially PE-like XEN cells acquired a
gut-like and 66% a VE-like transcriptomic profile (29% embryonic VE, 37% extraembryonic
VE) when co-cultured in XEGs. However, 25% retained a PE-like transcriptome (Fig.
5.12a). Differential gene expression analysis between undifferentiated XEN cells and
XEN-derivatives revealed several differences (Fig. 5.11e, Supplementary Table 4). PE
markers were less expressed in XEN-derivatives, while VE markers were highly expressed,
suggesting that most XEN cells differentiate from a PE to a VE-like state in XEGs. To
validate this finding experimentally, we performed single-molecule FISH of Dab2, Fst
and Spink1 (Fig. 5.12b). Dab2 is a pan-extraembryonic endoderm marker [44], which is
exclusively expressed in undifferentiated XEN cells and XEN-derived cell types in our
scRNA-seq data set (Fig. 5.7c). Within the extraembryonic endoderm, Fst is expressed in
the PE [45], whereas Spink1 is found in the VE [46]. The smFISH measurement showed
that XEN-derived cells in XEGs only expressed Dab2 and Spink1, while undifferentiated
XEN cells broadly co-expressed all markers. Some XEN cells in XEGs were also highly
expressing E-cadherin, known to be expressed in VE [47] (Fig. 5.12c).

Figure 5.9: Neuroepithelial cells in XEGs are biased towards a dorsal expression profile. (Figure on
the previous page) a, Gene expression differences between cells classified as “spinal cord” and all other cells
in XEGs (fold-change vs p-value). Named genes are expressed in the neural tube according to previous studies
(Supplementary Table 2). b, Gene expression differences between neural ectoderm-like cells in gastruloids and
XEGs (fold-change vs p-value). Underlined genes are expressed in the dorsal part of the neural tube according
to previous studies (Supplementary Table 3). c, Left, UMAP of the cells in the Delile et al. dataset [37], colored
by cell type. Right, MNN mapping of cells classified as “spinal cord” in replicate 2 XEGs (opaque color) to the
Delile et al. dataset (pale colors), as an example of the mapping procedure. Bottom: Absolute cell type frequency
as a result of MNN mapping. d, Top row: Principal component analysis of neural ectoderm-like cells from all 4
data sets (XEGs and gastruloids) after integration. Colors from left to right: Cell types based on mapping to in
vivo data, sub-clusters and data sets. Bottom: Relative frequency (percentage) of data sets in each sub-cluster.
Right: Heatmap of standardized expression of dorsoventral markers in the sub-clusters shown in the PCA plot. e,
Heatmap of standardized expression of Hox genes in neural ectoderm-like sub-clusters shown in Fig. 4e. f, UMAP
of cells in XEGs with log-expression of the genes Wnt4, Wnt8a and Fgf8 indicated by colors. The UMAP shows
both replicates, batch corrected.
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However, the more anterior VE marker Hhex [48] was not detected by single-molecule FISH
(Fig. 5.12d). Exposing undifferentiated XEN cells to CHIR in the same way as XEGs did not
cause differentiation (Fig. 5.12d), which suggests that the interaction with mESCs plays
a role. Cell-cell communication analysis of our scRNA-seq data with CellPhoneDB [49]
suggested that mESCs and some mesodermal cell types in XEGs signal to the XEN-derived
cells via the BMP4 pathway (Fig. 5.11f). This result is consistent with a previous study
showing the differentiation of XEN cells in monolayer culture to a VE-like state with BMP
[50].
Taken together, these results suggest that the mESCs or their derivatives induce the differ-
entiation of the XEN-derived cells in XEGs. While undifferentiated XEN cells have both PE
and VE characteristics, the majority (66%) of these cells becomes more VE-like. This effect
is possibly mediated by BMP signaling originating in the mESCs.

5.2.6 XEN cells guide symmetry breaking by local inhibition
of WNT signaling
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Figure 5.10: XEGs and gastruloids differ in cell type distribution. a, Differences between relative fre-
quencies of cell types in XEGs and gastruloids. b, UMAP of cells in XEGs (both replicates, batch corrected)
with log expression of Tbx6, Sox2 and Pax2 indicated by color. c, Expression of mesoderm markers. Left, TBX6
expression in a 96 h XEG (immunostaining of a section). Right, PAX2 expression in a 96 h XEG (wholemount
immunostaining). Scale bars: 100 µm. Nuclei were stained with DAPI.

Although XEN-derived cells in XEGs did not express canonical AVE markers (Fig. 5.7c),
we were wondering if they might effectively carry out an AVE-like function. XEN cells
always formed the outermost layer (Fig. 5.1c, Fig. 5.3), resembling in vivo organization.
Focusing on XEGs partially covered with XEN cells, we observed that epithelial structures
were always adjacent to the XEN cells, while the T-positive population was on the opposite
side (Fig. 5.3f). Notably, this organization was already established at 72 h, when aggregates
are still spherical (Fig. 5.13a). This observation suggested that XEN cells guide symmetry
breaking by a local effect on the adjacent mESCs.
We speculated that this effect might be mediated by a basement membrane produced by
the XEN cells. As established above, cells were polarized early during XEG development,
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prior to forming a columnar epithelium (Fig. 5.3c, d). This epithelium was supported
by a basement membrane containing laminin and collagen (Fig. 5.13b, c), which were
mostly produced by the XEN cells (Fig. 5.14a). CellPhoneDB analysis of the scRNA-seq
data supported the existence of laminin signaling between XEN-derived cells and multi-
ple mESC-derived cell types (Fig. 5.14b). It has been demonstrated previously, for small
aggregates of mESCs, that the presence of an extracellular matrix can be sufficient for
polarization and lumen formation [26, 27, 41]. Exposing gastruloids to a soluble basement
membrane extract (Geltrex) did result in some, fragmented epithelia, if exposure was started
after WNT activation (Fig. 5.14c). If exposure was started earlier, localized T-positive or
SOX2-positive compartments were not formed, possibly due to unknown factors in the
basement membrane extract that interfered withWNT activation. The results of the Geltrex
experiments are consistent with the notion that the basement membrane provided by the
XEN cells plays a role in epithelium formation.
To test whether XEN cells produced other, diffusible factors that were also involved, we
grew gastruloids in medium conditioned by XEN cells (Fig. 5.13d). We observed that the
gastruloids did not elongate and had a T-positive cell population that was restricted to
the center of the aggregate. We hypothesized that the WNT inhibitor DKK1, which is
expressed in XEN cells (Fig. 5.13e; Fig. 5.15a), might be one of those factors. In vivo, DKK1
is expressed by the AVE and limits the growth of the primitive streak [51], together with
the NODAL antagonists CER1 and LEFTY1, which are not expressed in XEGs (Fig. 5.13e,
Fig. 5.7c). Growing gastruloids in the presence of DKK1 resulted in a round morphology,
with the T-positive cells confined to the center, as observed for XEN-conditioned medium
(Fig. 5.13f, Fig. 5.15b). Factors limiting the primitive streak expansion in vivo are also
known to preserve the anterior part of the epiblast and are thereby necessary for proper
ectoderm domain differentiation [52]. Thus, we wanted to explore, if DKK1 could have
a similar role in XEGs and bias differentiation towards the ectodermal lineage. Growing
XEGs with the DKK1 inhibitor WAY-262611 [53] led to XEGs with elongated shapes but
without epithelial structures (Fig. 5.13g, Fig. 5.15c). Since growing XEGs without CHIR
resulted in similar epithelial structures as in regular XEGs (Fig. 5.15d), XEN cells likely
suppressed pre-existing, low-level endogenous WNT activity [7, 54].
Finally, we noticed that XEN-derived cells highly expressed BMP2 (Fig. 5.15a) and that
several of the dorsal markers expressed in XEGs are induced by BMP signaling (Supple-
mentary Table 3). Cell-cell communication analysis of our scRNA-seq data supported the
presence of BMP2 signaling between XEN-derived cells and multiple mESC-derived cell
types, including neural ectoderm-like cells (Fig. 5.15e). Thus, XEN-derived cells might also
contribute to the dorsal characteristics of the neural progenitor cells in XEGs.
All combined, our experiments suggest that XEN cells guide symmetry-breaking by local
inhibition of cell differentiation into a T-positive population. Diffusible factors, including
DKK1, and the presence of a basement membrane both seem to contribute to the formation
of the neuroepithelial structures.
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Figure 5.11: Most XEN-derived cells become visceral endoderm-like in XEGs. a, UMAP of cells in XEGs
and gastruloids with spiked-in cells and XEN derived cells highlighted by color and circled (replicate 2). b, c,
UMAPs of the Pijuan-Sala [38] or Nowotschin [14] dataset, respectively. XEN spike-ins and XEN-derived cells
from XEG replicate 2 (opaque colors) are mapped to the in vivo datasets (pale colors). d, Cell type frequencies of
XEN spike-ins and XEN derived cells in XEGs, resulting from knn assignments based on the mapping in (c). e,
Gene expression differences between XEN spike-ins and XEN-derived cells in XEGs (fold-change vs p-value).
Orange and pink lines indicate genes with PE-like and VE-like identity, respectively (see Supplementary Table
4). f, Sum of expression of BMP4 ligand-receptor pairs for cell types with significant communication identified
by CellPhoneDB analysis. DE: definitive endoderm, emVE: embryonic visceral endoderm, EPI: epiblast, ExE:
extraembryonic ectoderm, exVE: extraembryonic visceral endoderm, Mes: mesoderm, ParE: parietal endoderm,
PrE: primitive endoderm, TE: trophectoderm, VE: visceral endoderm, YsE: yolk sac endoderm.



5.2 Results

5

149

ca

N
um

be
r 

of
 c

el
ls

ExE
 e

nd
.

Gut

Visc
er

al 
en

d.

Par
iet

al 
en

d.

XEN-derived cells in XEGs Spike-in XEN cells

ExE
 e

nd
.

Gut

Visc
er

al 
en

d.

Par
iet

al 
en

d.

d
DAPI Dab2 Fst Spink1

Single molecule FISH

CHIR-treated XENs in culture

Untreated XENs in cultureXEGs

d

2

3

3

2

1

1

DAPI   E-cadherin  GATA6 

Immunostaining of XEN cells in XEGs

b Single molecule FISH

DAPI Dab2 Fst Hhex

Untreated XENs in cultureXEGs

CHIR-treated XENs in culture

Figure 5.12: Most XEN cells become VE-like in XEGs. a, Left, cell types of XEN-derived cells in XEGs. Cells
were classified as gut, PE (“parietal end.”), embryonic VE (“visceral end.”) or extraembryonic VE (“ExE end.”) by
mapping to the data set from Pijuan-Sala et al. [38]. Right, cell types of spiked-in XEN cells. b, Dab2, Spink1
and Fst expression in a section of an XEG at 96 h (left, scale bar: 50 𝜇m), in XEN cells cultured under standard
maintenance conditions (top right, scale bar: 20 𝜇m) and in XEN cells treated with CHIR according to the XEG
protocol (bottom right, scale bar: 20 𝜇m). Expression was visualized by smFISH. Each diffraction limited dot is a
single mRNA molecule. c, Expression of E-cadherin in XEGs at 96 h (immunostaining of sections). XEN cells
were localized by expression of GATA6. Scale bars: 50 𝜇m. d, Dab2, Fst and Hhex expression in a section of an
XEG at 96 h (left, scale bar: 50 𝜇m), in XEN cells cultured under standard maintenance conditions (top right, scale
bar: 20 𝜇m) and in XEN cells treated with CHIR according to the XEG protocol (bottom right, scale bar: 20 𝜇m).
Expression was visualized by smFISH. Each diffraction limited dot is a single mRNA molecule. b-d, Cell nuclei
were stained with DAPI. The dashed boxes are shown at a higher magnification in the insets.
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a XEG at 96 h (scale bar: 50 𝜇m) or XEN cells cultured under standard maintenance conditions (inset, scale bar: 20𝜇m). Expression was visualized by smFISH. Each diffraction limited dot is a single mRNA molecule. The dashed
boxes are shown at a higher magnification in the insets. f, T and SOX2 expression in 96 h gastruloids treated with
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Figure 5.14: Basement membrane components produced by XEN cells, play a role in epithelia forma-
tion. a, Expression of genes in spiked-in XEN cells and XEN-derived cells in XEGs. Top left, UMAP with spiked-in
XEN cells and XEN-derived cells colored by cell type (gut, parietal endoderm (parietal end.), embryonic VE
(visceral end.) or extraembryonic VE (ExE end.)). Expression of basement membrane components collagen IV
(Col4a1, top right), laminin alpha 1 (Lama1, bottom left) and laminin beta 1 (Lamb1, bottom right). UMAPs
indicate log expression by color and contain both replicates, batch corrected. A violin plot of log expression in
XEN-derived cell types is shown below the UMAP for each gene. b, Sum of expression of Laminin ligand-receptor
pairs for cell types with significant communication identified by CellPhoneDB analysis. c, Expression of SOX2, T,
PAX6, NKX6.1, ZO-1, 𝛼𝑃𝐾𝐶𝜂, E-cadherin and N-cadherin in 96 h gastruloids grown in 5% Geltrex from 24 h, 48 h
or 72 h onwards (immunostaining of cryosections). Scale bars: 50 µm. Cell nuclei were stained with DAPI.
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5.3 Discussion

In this study we explored how the interaction between embryonic and extraembryonic
cells in a multicellular in vitro system can lead to the formation of neuroepithelial tissue.
While the neuroepithelial cells resembled in vivo neural progenitors transcriptionally, their
organization was lacking, compared to embryonic neural tissue. In vivo, the neural tube
forms via two distinct mechanisms [55]. During primary neurulation, the main part of
the neural tube is formed by the folding of the neural plate, an epithelial sheet of neural
ectoderm cells. Secondary neurulation, which gives rise to the most posterior part of the
neural tube, works differently: mesenchymal cells condense to an epithelial rod which
cavitates to form a tube [56, 57]. The two parts of the tube are then connected during
junctional neurulation [58]. While we did not observe cell rearrangements characteristic
of primary neurulation, the rosette formation seen in XEGs was reminiscent of secondary
neurulation [55], which gives rise to the posterior neural tube. We could successfully
differentiate XEGs further towards neural organoids that showed layered organization
reminiscent of the developing spinal cord, which derives from the posterior neural tube.
The recently reported Trunk-Like Structures (TLS) [39], another gastruloid-derived model
system, produce neural tube-like tissues, together with mesodermal tissue resembling
somites. Notably, TLS are formed exclusively from mESCs and are grown in 5% Matrigel
from 96 h onwards. Interestingly, the majority of neural tube cells in TLS had dorsal
characteristics, as we also observed in XEGs. It will be interesting to explore, if the same
mechanisms cause this phenomenon in both model systems. Another recent approach
uses BMP4-treated ESCs as signaling centers to elicit neural tube-like tissues and other
embryonic structures in untreated ESCs [14].
The fact that the majority of XEN cells becomes VE-like in XEGs clearly shows that there
are reciprocal interactions between the co-differentiating, embryonic and extraembryonic
cells. This observation supports the notion that such interactions are necessary for proper
development, as previously observed in vivo [13, 59]. Recently, tissue-level organization has
been achieved in vitro by exogenous induction of relevant signaling pathways [17, 40, 60].
XEN cells represent a potential alternative way to augment existing developmental in
vitro systems, by providing a basement membrane and extraembryonic signaling inputs.
Finally, with their large diversity of cell types, XEGs could be a starting point for developing
more complex models containing all three germ layers as well as extraembryonic cells.
Specifically, the CD31 positive endothelial cells observed in the neural organoids obtained
from XEGs might be able to form a vascular network, if additional signaling cues are given
[61]. In conclusion, in this study we showed how the gastruloid system can be used to
explore complex heterotypic cell-cell interactions.
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Figure 5.15: The WNT inhibitor DKK1, expressed exclusively by XEN cells and XEN-derived cells,
plays a role in epithelia formation. a, Expression of genes in spiked-in XEN cells and XEN-derived cells.
Left, UMAP with spiked-in XEN cells and XEN-derived cells colored by cell type (gut, parietal endoderm (parietal
end.), embryonic VE (visceral end.) or extraembryonic VE (ExE end.)). Right, expression of signaling factors Dkk1
and Bmp2. UMAPs indicate log-expression by color and contain both replicates, batch corrected. A violin plot of
log expression in XEN-derived cell types is shown below the UMAP for each gene. b, Expression of SOX2 in 96 h
gastruloids treated with various concentrations of DKK1 between 24 h and 96 h (wholemount immunostaining).
Scale bars: 100 µm. c, Expression of SOX2 and T in 96 h XEGs treated with various concentrations of DKK1
inhibitor WAY-262611 between 24 h and 96 h (wholemount immunostaining). d, Expression of SOX2 in XEGs
grown without CHIR (immunostaining of cryosections). No specific T staining could be detected (data not shown).
XEN cells were localized by expression of GATA6. Scale bars: 50 µm. e, Sum of expression of BMP2 ligand-receptor
pairs for cell types with significant communication identified by CellPhoneDB analysis.
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5.4 Methods

5.4.1 Experimental Methods
Cell culture

All cell lines were routinely cultured in KO DMEM medium (Gibco) supplemented with
10% ES certified FBS (Gibco),0.1 mM 2-Mercaptoethanol (Sigma-Aldrich), 1 × 100 U/mL
penicillin/streptomycin, 1× MEM Non-Essential Amino Acids (Gibco), 2 mM L-glutamine
(Gibco), 1000 U/mL mouse LIF (ESGRO). Cells were passaged every other day and replated
in tissue-culture treated dishes coated with 0.2% gelatin. E14 mouse ES cells were provided
by Alexander van Oudenaarden. The Sox1GFPiresPac mouse ES cell line was created by
Mario Stavridis and Meng Li in the group of Austin Smith [62] and provided by Sally
Lowell. XEN and XEN-eGFP were provided by Christian Schr𝑜̇ter [43]. All cell lines were
regularly tested for mycoplasma infection. The ES-mCherry-GPI cell line was obtained
by introducing a mCherry-GPI transgene in the PdgfraH2B-GFP cell line, provided by the
group of Anna-Katerina Hadjantonakis [63].

Differentiation

Gastruloids The gastruloid differentiation protocol was adapted from van den Brink
et al. [6]. ES cells were collected from tissue-culture treated dishes by trypsinization,
gentle trituration with a pipet and centrifugation (1200 r.p.m., 3 min). After collection, cells
were resuspended in 2 mL of freshly prepared, prewarmed N2B27 medium: DMEM/F12
(Life technologies) supplemented with 0.5 × N2 supplement (Gibco), 0.5 × B27 supplement
(Gibco), 0.5 mM L-glutamine (Gibco), 1 × 100 U/mL penicillin/streptomycin (Gibco), 0.5× MEM Non-Essential Amino Acids (Gibco), 0.1 mM 2-Mercaptoethanol (Sigma-Aldrich).
Cells were counted to determine the cell concentration. For gastruloids, 200 ES cells were
seeded in 40 𝜇L of N2B27 in each well of a round-bottom low-adherence 96-well plate. 48
h after seeding, 150 𝜇L of prewarmed N2B27 supplemented with 3 𝜇M of GSK3 inhibitor
(CHIR99021, Axon Medchem) was added to each well. 72 h after seeding, 150 µL of medium
was removed from each well and replaced by 150 𝜇L of preheated N2B27. Gastruloids
were collected at 96 h after seeding and fixed with 4% paraformaldehyde (PFA, Alfa Aesar)
overnight at 4 ºC.
For the experiments with gastruloids grown in Geltrex, cell aggregates were cultured with
medium supplemented with 5% LDEV-Free, hESC-Qualified, reduced growth factor Geltrex
(Gibco) from 24 h, 48 h or 72 h until the end of the protocol. At 96 h, gastruloids were
washed twice with PBS supplemented with 1% BSA, then fixed with 4% PFA overnight at 4
ºC.

XEN Enhanced Gastruloids (XEGs) ES and XEN cells were collected from tissue-
culture treated dishes by trypsinization, gentle trituration with a pipet and centrifugation
(1200 r.p.m., 3 min). After collection, cells were resuspended in 2 mL of fresh and prewarmed
N2B27 medium. Cells were counted to determine cell concentration. For XEGs, several
ratios of XEN and ES cells were tested (1:1, 1:2, 1:3, 1:4, 1:5) and compared with the regular
gastruloid condition (0:1). The total number of cells was fixed at 200. Over two separate
experiments, the proportion of organoids showing T staining and epithelial structures
was quantified (total number of embryonic organoids 1:1=179, 1:2=143, 1:3=143, 1:4=140,
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0:1=130) and the optimal ratio was determined to be 1:3 (Fig. 5.3e,f). A total of 200 cells (150
ES cells and 50 XEN cells) was seeded in 40 µL of N2B27 in each well of a round-bottom
low-adherence 96-well plate. 48 h after seeding, 150 µL of prewarmed N2B27 supplemented
with 3 µM of GSK3 inhibitor (CHIR99021, Axon Medchem) was added to each well. 72
h after seeding, 150 µL of medium was removed from each well and replaced by 150 µL
of prewarmed N2B27. XEGs were collected at 96 h after seeding and fixed with 4% PFA
overnight at 4 ºC.
For the experiment of XEGs grown without GSK3 inhibitor, cells were seeded as usual.
At 48 h, 150 µL of preheated N2B27 was added to each well. At 72 h, 150 µL of medium
was removed from each well and replaced by 150 µL of prewarmed N2B27. XEGs were
collected at 96 h after seeding. For the smFISH control experiments, XEN cells were seeded
at low density in N2B27 medium. At 48 h the medium was replaced by prewarmed N2B27
supplemented with 3 µM of GSK3 inhibitor. 72 h after seeding, the medium was replaced
with prewarmed N2B27. Cells were fixed at 96 h with 4% PFA for 1 h at 4 ºC.

Neural differentiation For neural differentiation, a protocol for creating cerebral organoids
was adapted from Lancaster et al. [36]. Instead of collecting XEGs at 96 h, the medium was
replaced by cerebral organoid differentiation medium: DMEM-F12 (Life technologies), Neu-
robasal (Gibco), 0.5 × B27 supplement containing vitamin A (Gibco), 0.5 × N2 supplement
(Gibco), 2.5 𝜇M/mL Insulin, 2mM L-glutamine (Gibco), 0.5 × cMEM-Non-EssentialcAmino
Acids (Gibco), 1 × 100 U/mL penicillin-streptomycin and 0.05 mM 2-Mercaptoethanol
(Sigma-Aldrich). At 168 h, aggregates were collected and transferred, with fresh medium,
into 10 cm dishes on an orbital shaker installed in the incubator (85 r.p.m.). Aggregates
were grown until 192 h (8 days) during which medium was refreshed every other day until
collection. Collected aggregates were fixed with 4% PFA for 48 h at 4 ºC.

Signaling experiments

In the signaling experiments with XEGs, aggregates were treated between 72 h and 96 h
with either LDN193189 (BMPi, 100 nM, Reagents Direct), a potent BMP pathway inhibitor,
Purmorphamine (1 µM, STEMCELL Technologies), a small molecule agonist of the hedgehog
pathway, Retinoic acid (RA, 100 nM, Sigma-Aldrich) or DMSO (0.1% final concentration,
Sigma Aldrich) as a vehicle control. For this experiment, the XEGs were allowed to grow
for an additional 48 h before fixation (144 h total growth) and preparation for staining (see
Immunostaining).
DKK1 signaling pathways perturbation was performed in two ways, using DKK1 (Sigma-
Aldrich) for activation in gastruloids and Way262611 (Sigma-Aldrich) for inhibition in
XEGs. Gastruloids and XEGs were seeded according to the usual protocols. At 24 h, 40 µL of
N2B27 supplemented with various concentration of DKK1 or Way262611 respectively, were
added to each well. Next steps of the protocol were performed using N2B27 supplemented
with DKK1 or Way262611. Aggregates were fixed at 96 h with 4% PFA overnight at 4 ºC.

Immunostaining

Fixation and blocking After collection, gastruloids and XEGs were fixed in 4% PFA
at 4 °C overnight. Tissue resulting from the cerebral organoid protocol was fixed under
the same conditions, but for 48 h. After fixation, samples were washed three times in
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washing solution (PBS, 1% bovine serum albumin (BSA)) and incubated at 4 °C in blocking
buffer (PBS, 1% BSA, 0.3% Triton-X-100) for a minimum of 16 h. Samples for smFISH were
washed 3 times in PBS after fixation and stored in 70% ethanol at 4 °C. To stain E14 cells for
pluripotency markers, cells in suspension were fixed for 30 min in 4% PFA at 4 °C, washed
three times in washing solution at RT and incubated in blocking buffer for 1 h at 4 °C.

Whole-mount immunolabeling and clearing Immunolabeling and clearing of gas-
truloids and XEGs were based on the protocol described by Dekkers et al. [64]. Briefly, after
fixation and blocking, samples were incubated with primary antibodies at 4 °C overnight
on a rolling mixer (30 r.p.m.) in organoid washing buffer (OWB) (PBS, 2% BSA, 0.1% Triton-
X-100) supplemented with 0.02% sodium dodecyl sulfate (SDS), referred to as OWB-SDS.
The following primary antibodies were used: rat anti-SOX2 (1:200, 14-9811-82, Thermo
Fisher Scientific), goat anti-T (1:200, sc-17745, Santa Cruz Biotechnology), goat anti-T (1:100,
AF2085, R&D systems), mouse anti-DAB2 (1:100, 610464, BD Biosciences). The next day,
samples were washed three times for 2 h in OWB-SDS at RT, followed by incubation with
secondary antibodies (donkey anti-goat Alexa Fluor 488 (1:200, A-11055, Thermo Fisher
Scientific), donkey anti-rat Alexa Fluor 488 (1:200, A-21208, Thermo Fisher Scientific),
donkey anti-goat Alexa Fluor 555 (1:200, A-21432, Thermo Fisher), donkey anti-mouse
Alexa Fluor 555 (1:200, A-31570, Thermo Fisher Scientific), chicken anti-rat Alexa Fluor
647 (1:200, A-21472, Thermo Fisher Scientific)) and 4’,6-diamidino-2-phenylindole (DAPI,
1 µg/mL, Merck) in OWB-SDS at 4 °C overnight on a rolling mixer (30 r.p.m.), protected
from light. Finally, samples were washed three times for 2 h in OWB-SDS at RT. Clearing
was performed by incubation in fructose-glycerol clearing solution (60% vol/vol glycerol,
2.5 M fructose) for 20 min at RT. Samples were imaged directly after clearing or stored at 4
°C in the dark.

Cryo-sectioning and immunolabeling of sections Prior to cryosectioning, fixed and
blocked samples were incubated sequentially in sucrose solutions (10, 20 and 30%) for 30
min (gastruloids and XEGs) or 2 h (neural organoids) at 27 °C, and embedded in optimal
cutting temperature (OCT) compound. Samples in OCT were placed on dry ice for rapid
freezing, and stored at -80 °C prior to cryosectioning. Samples were cut to cryosections
(10 µm thickness) using a cryostat (Thermo Fisher Scientific, USA) and cryosections were
placed on poly-L-lysine coated glass slides (Merck). The slides were stored directly at -80
°C. For immunofluorescence staining, slides were thawed and rinsed with PBS for 10 min
at RT to dissolve the OCT. Subsequently, slides were incubated overnight at 4 °C with the
following primary antibodies diluted in blocking buffer: rat anti-SOX2 (1:200, 14-9811-
82, Thermo Fisher Scientific), goat anti-T (1:200, sc-17745, Santa Cruz Biotechnology),
mouse anti-N-cadherin (1:200, 33-3900, Thermo Fisher Scientific), rabbit anti-E-cadherin
(1:200, 3195, Cell Signaling Technology), rabbit anti-PAX6 (1:100 (cerebral organoids) or
1:200 (gastruloids, XEGs), 42-6600, Thermo Fisher Scientific), mouse anti-NKX6.1 (1:200,
F55A12, Developmental Studies Hybridoma Bank), rabbit anti-NKX6.1 (1:200, HPA036774,
Merck), mouse anti-TUJ1 (1:200, 801202, BioLegend), goat anti-PAX2 (1:200, AF3364, R&D
Systems), goat anti-TBX6 (1:200, AF4744, R&D Systems), mouse anti-ASCL1 (1:200, 14-5794-
80, Thermo Fisher Scientific), rat anti-CTIP2 (1:200, ab18465, abcam), rabbit anti-CD31
(1:50, ab28364, Abcam), rabbit anti-GATA6 (1:200, PA1-104, Thermo Fisher Scientific), goat
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anti-GATA6 (1:200, AF1700, R&D Systems), rabbit anti-Laminin (1:200, PA1-16730, Thermo
Fisher Scientific), mouse anti-OCT4 (1:200, MA1-104, Thermo Fisher Scientific). The next
day, the slides were washed twice for 10 min in PBS at RT. Subsequently, the slides were
incubated with secondary antibodies (donkey anti-goat Alexa Fluor 488 (1:200, A-11055,
Thermo Fisher Scientific), donkey anti-rat Alexa Fluor 488 (1:200, A-21208, Thermo Fisher
Scientific), donkey anti-goat Alexa Fluor 555 (1:200, A-21432, Thermo Fisher), donkey
anti-mouse Alexa Fluor 555 (1:200, A-31570, Thermo Fisher Scientific), chicken anti-rat
Alexa Fluor 647 (1:200, A-21472, Thermo Fisher Scientific), donkey anti-rabbit Alexa Fluor
647 (1:200, A-31573, Thermo Fisher Scientific)) and DAPI (1 µg/mL, Merck) in blocking
buffer for 4 h at 4 °C, and washed three times for 10 min at RT. Slides were mounted in
ProLong™ Gold Antifade Mountant (Thermo Fisher Scientific) and imaged after 24-48 h.

Immunolabeling of E14 cells After fixation and blocking, E14 cells were incubated
with the following primary antibodies in blocking buffer overnight at 4 °C: rat anti-
SOX2 (1:200, 14-9811-82, Thermo Fisher Scientific) and mouse anti-OCT4 (1:200, MA1-104,
Thermo Fisher Scientific). The next day, cells were washed three times in washing solution
for 5 min at RT and incubated with secondary antibodies (donkey anti-rat Alexa Fluor 488
(1:200, A-21208, Thermo Fisher Scientific) and donkey anti-mouse Alexa Fluor 555 (1:200,
A-31570, Thermo Fisher Scientific)) and DAPI (1 µg/mL, Merck) in blocking buffer for 3 h
at 4 °C. Finally, the cells were washed three times in washing solution for 5 min at RT and
imaged directly.

Single-molecule fluorescence in-situ hybridization (smFISH)

smFISH was performed as described previously [65]. Briefly, samples were fixed with PFA
and stored in 70% ethanol, as described above. Custom designed smFISH probes for Dab2,
Fst, Hhex and Spink1 (BioCat, Supplementary Table 5), labeled with Quasar 570, CAL Fluor
Red 610, or Quasar 670, were incubated with the samples overnight at 30 °C in hybridization
buffer (100 mg/mL dextran sulfate, 25% formamide, 2X SSC, 1 mg/mL E.coli tRNA, 1 mM
vanadyl ribonucleoside complex, 0.25 mg/mL BSA; Thermo Fisher Scientific). Samples
were washed twice for 30 min at 30 °C with wash buffer (25% formamide, 2X SSC). The
wash buffer was supplemented with DAPI (1 𝜇g/mL) in the second wash step. All solutions
were prepared with RNAse-free water. Finally, the samples were mounted in ProlongGold
(Life Technologies) and imaged when hardened (sections) or immediately (ibidi dishes). All
components are from Sigma-Aldrich unless indicated.

Imaging

Fixed and stained samples were imaged on a Nikon Ti-Eclipse epifluorescence microscope
equipped with an Andor iXON Ultra 888 EMCCD camera and dedicated, custom-made
fluorescence filter sets (Nikon). Primarily, a 10× / 0.3 Plan Fluor DLL objective, a 20× /
0.5 Plan Fluor DLL objective, or a 40× / 1.3 Super Fluor oil-immersion objective (Nikon)
were used. To image complete sections of neural organoids, multiple adjacent fields of
view were acquired and combined using the tiling feature of the NIS Elements software
(Nikon). Z-stacks were collected of whole-mount gastruloids and XEGs with distances of
10 𝜇m between planes. For smFISH measurements, z-stacks were collected with a distance
of 0.2 𝜇m between planes in four fluorescence channels (DAPI, Quasar 570, CAL Fluor Red
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610, Quasar 670) using a 100× /1.45 Plan Apo Lambda oil (Nikon) objective. Time lapses
to observe the formation of epithelial structures were performed 24 h and 48 h after cell
seeding, on XEGs grown from the mCherry-GPI ES cell line. XEGs were transferred to
a glass-bottom 𝜇-Slide imaging chamber (ibidi) and imaged every 30 min for 24 h with a
Nikon Eclipse Ti C2+ confocal laser microscope (Nikon, Amsterdam, The Netherlands),
equipped with lasers at wavelengths 408, 488 and 561, an automated stage and perfect focus
system at 37°C and 5% CO2. Images were acquired with a Nikon 20x Dry Plan Apo VC NA
0.75 objective. To track SOX1 expression in gastruloids and XEGs during the 24 h growth
after the GSK3 inhibitor pulse, 72 h gastruloids and XEGs grown from the Sox1GFPiresPac
ES cell line were transferred to a glass-bottom 𝜇-Slide imaging chamber (ibidi) and imaged
every 40 min for 24 h, while temperature and CO2 levels were maintained at 37 °C and
5%, respectively, by a stage top incubator (INUG2-TIZW-SET, Tokai Hit) mounted on the
Nikon Ti-Eclipse epifluorescence microscope.

Single-cell RNA-seq library preparation and seqencing

For each replicate, 96 pooled gastruloids and 96 pooled XEGs were collected from a round-
bottomed low-adherence 96-well plate in 15 mL Falcon tubes and pelleted by gentle cen-
trifugation (500 r.p.m. for 2 min). No final aggregate was excluded from the collection. After
washing with cold PBS, samples were resuspended in N2B27. Cells were then dissociated
by 5 min incubation in TrypLE (Gibco) and gentle trituration with a pipet, centrifuged and
resuspended in 1 mL of cold N2B27. Cells were counted to determine cell number and
viability. For the first replicate, ES-mCherry-GPI were spiked in at a frequency of 5%. For
the second replicate, E14 cells were collected from culture dishes and incubated for 30 min
at 4 ºC with CITE-seq cell hashing [66] antibody Ab_CD15 (1:200) (Biolegend). XEN-eGFP
were collected from culture plates and incubated for 30 min at 4 ºC with CITE-seq cell
hashing antibody Ab_CD140 (1:200) (Biolegend). In the gastruloid sample, labeled E14 cells
were spiked in at a frequency of 5%, whereas in the XEG sample labeled E14 and XEN-eGFP
were spiked in, both at a frequency of 5%. High viability of the cells in all samples was con-
firmed before 10X library preparation. Single-cell RNA-seq libraries were prepared using
the Chromium Single Cell 3’ Reagent Kit, Version 3 Chemistry (10x Genomics) according to
the manufacturer’s protocol. CITE-seq libraries were prepared according to the CITE-seq
protocol from New York Genome Center version 2019-02-13. Libraries were sequenced
paired end on an Illumina Novaseq6000 at 150 base pairs.

5.4.2 Computational methods
Analysis of single-cell RNA-seqencing data

Single-cell RNA-seq data pruning and normalization Cells with a low number of
transcripts were excluded from further analysis based on the histograms in Fig. 5.6a
(count < 1300 for replicate 1 of the XEG experiment and count < 2300 for the other
datasets). Genes expressed in less than 2 cells (across merged replicates) were excluded
from further analysis. The final XEG dataset contains 14286 genes and 4591 or 6857
cells for replicate 1 or 2, respectively. The gastruloid dataset contains 14384 genes and
4233 or 8363 cells per replicate. The two datasets were normalized using the scran R-
package (V 1.10.2 [67]). Gene variabilities were calculated (improvedCV2, scran) for each
replicate separately, after excluding ribosomal genes [Ribosomal Protein Gene Database,
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http://ribosome.med.miyazaki-u.ac.jp/], exogenously expressed genes and the cell hashing
antibodies. The 10% most highly variable genes (HVG) were selected based on variability
p-values.

Dimensionality reduction For each of the two datasets, the two replicates were batch
corrected with the fast mutual nearest neighbors (MNN) method implemented in the scran
R-package [68], using the union of the 10% HVG of the two replicates and log-transformed
normalized counts with d = 120 (number of principal components) and k = 50 (number of
nearest neighbours). For dimensionality reduction, a uniform manifold approximation and
projection (UMAP) was calculated on the batch corrected data using the R-package UMAP
(V 0.2.3.1) with n = 50, min_dist = 0.7 and using the cosine distance measure.

Identification of spike-in cells Cells with any expression of mCherry were annotated
as ES (mCherry+). The remaining spike-in cells, E14 (CD15+) and XEN spike-in (CD140+)
(see Single-cell RNA-seq library preparation and sequencing), could not be determined by
the expression level of the antibody alone. We therefore chose to assign spike-ins based on
clusters. For each of the two datasets, a shared nearest neighbor graph was constructed
from the batch corrected data (see Dimensionality reduction) with scran using k = 20 and
d = 30. Louvain clustering was performed on the constructed graphs with the R-package
igraph (V1.2.4.1), which resulted in 8 clusters for XEGs and 7 clusters for gastruloids (see
Fig. 5.6c). We identified 3 out of the 8 clusters in XEGs based on literature markers and
spike-in gene expression. One cluster out of these three was mainly comprised of mESCs,
due to high Ab_CD15 expression and mCherry positive cells. Cells that had an expression
of Ab_CD15 > 50 and were part of this cluster were considered spiked-in E14 and annotated
as E14 (CD15+). The other two clusters were both eGFP positive, where one of them had a
higher Ab_CD140 expression and was thus annotated as XEN spike-in (Ab_CD140+). The
second cluster was annotated as XEN derived (Ab_CD140-). Similarly, for gastruloids, one
of the 7 clusters was comprised of mainly mESCs based on literature markers and spike-in
gene expression. Cells that had an expression of Ab_CD15 > 100 and were part of this
cluster were considered spiked-in E14 and annotated as E14 (CD15+).

Analysis of cell cycle and stress-related genes For each of the two datasets, cell cycle
analysis was performed with the scran package using the cyclone function [69] on the
normalized counts. Cells in G2M phase were distributed evenly across all clusters and thus
the clustering was not biased by cell cycle. No other separate cluster that consisted entirely
of cell cycle related cells appeared. For the analysis of stress-related genes, a list of known
stress genes [70] was used to calculate the average standardized expression per cell based
on normalized counts. Stress-related genes were mainly found within the spike-in cells
and there was no other separate cluster that consisted entirely of highly stressed cells.

Mapping to in vivo datasets Our datasets were mapped to three different in vivo
datasets.

Pijuan-Sala et al. dataset

The Pijuan-Sala et al. dataset [38], which was downloaded from https://content.cruk.cam.



5

160 5 A gastruloid model of the interaction between emb. and extra-emb. cell types

ac.uk/jmlab/atlas_data.tar.gz, consists of 9 timepoints from E6.5 to E8.5. The data was
normalized by size factors provided by the authors. Cells with no cell type assignment
were excluded from further analysis. The 10% HVG were calculated (improvedCV2, scran
package) on the remaining cells excluding sex genes, similar to Pijuan-Sala et al.’s method.
Cells in the “mixed_gastrulation” cluster were also excluded. MNN mapping was applied
to log-transformed normalized counts of the 10% HVG. First, in vivo timepoints were
mapped to each other in decreasing order. Then, each of our four datasets was mapped
separately to the combined Pijuan-Sala et al. dataset (MNN method with d = 120, k =
50). K-nearest-neighbor (knn) assignment was performed in the batch corrected principal
component space. For each cell in our datasets, the 50 nearest neighbors in the in vivo
dataset, based on Euclidean distances, were calculated. Each cell was assigned the most
abundant cell type within the knn, if certain distance and confidence score conditions
were met. This confidence score was calculated for each cell as the number of the most
abundant cell type divided by the total number of neighbors (k=50). A cell was annotated
as “Not assigned” if either, the average distance to its nearest neighbor exceeded a certain
threshold (determined by the long tail of the histogram of average distances for each of our
datasets separately) or the assignment had a confidence score less than 0.5. Additionally,
we placed cells in “Not assigned” if they were assigned to clusters with less than 10 cells, or
to the cluster “Blood progenitors 2” (because this cluster did not show distinct expression of
known literature markers). This resulted in 22 assigned clusters for XEGs and 15 assigned
clusters for gastruloids. For each cell in our dataset we calculated the average and the
standard deviation of the developmental age of the knn.

Nowotschin et al. dataset

The Nowotschin et al. dataset [14], which was downloaded from https://endoderm-explorer.

com/, consists of 6 timepoints from E3.5 to E8.75. The data was normalized (scran) and
the 10% HVG were calculated (improvedCV2, scran package). First, MNN was applied to
the Nowotschin et al. dataset in increasing order of the timepoints (using log-transformed
normalized counts of the 10% HVG, d = 150, k =50). Then, XEN cells from our XEG dataset
(XEN spike-ins (CD140+) and XEN derived (CD140-)) were mapped to the MNN-corrected
Nowotschin et al. dataset. Knn assignment was performed as described above and resulted
in 7 assigned clusters.

Delile et al. dataset

The Delile et al. dataset [37], which was downloaded from https://github.com/juliendelile/

MouseSpinalCordAtlas, consists of 5 timepoints from E9.5 to E13.5. Cells that had a cell
type assignment of “Null” or “Outlier” were excluded from further analysis. The data was
normalized (scran) and the 10% HVG were calculated. First, MNN was applied to the Delile
et al. dataset in order of increasing timepoints (log-transformed normalized counts of
the 10% HVG, d = 120, k =50). Then, we mapped neural ectoderm-like clusters, identified
through the mapping to the Pijuan-Sala et al. dataset (“Rostral neurectoderm”, “Caudal
neurectoderm”, “Spinal cord” and “Forebrain/Midbrain/Hindbrain”) to the MNN corrected
Delile et al. dataset separately for each of our replicates. Knn assignment was performed
as described above and resulted in 3 clusters for XEGs and 3 clusters for gastruloids.
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Differential expression analysis For the differential expression test between “spike-in
XENs” and “XENs in XEGs” a Welch t-test (implemented in findMarkers, scran R package)
was conducted on the normalized log-transformed counts. The test was performed on XEGs
from replicate 2. “spike-in XENs” were chosen as the 100 cells with highest Ab_CD140
expression and “XENs in XEGs” were the 100 cells with lowest Ab_CD140 expression
within the XEN identified cells.
For the differential expression test between XEGs and gastruloids, a negative binomial
regression was performed (R package edgeR V 3.24.3 [71]). Based on the knn assignment
to the Pijuan-Sala et al. dataset, all “neural ectoderm-like” clusters (“Rostral neurectoderm”,
“Caudal neurectoderm”, “Spinal cord” and “Forebrain/Midbrain/Hindbrain”) were extracted
from our four datasets (XEGs: 975 cells in replicate 1 and 357 cells in replicate 2; gastruloids:
2134 cells in replicate 1 and 2106 cells in replicate 2). Raw counts were used for the
regression with these four subsets as dummy variables and a variable corresponding to the
total number of counts per cell. P-values were obtained for the contrast between XEGs and
gastruloids using the average regression coefficients among variables of both replicates.
Similarly, for the differential expression test of the “Spinal cord” in XEGs, a negative
binomial regression was used. Cells were excluded from the test if either their cell type
occurred in less than 10 cells per replicate, or if the cells were annotated as “Not assigned”,
leaving a total of 13 cell types (7742 cells) to be considered. For each cell type and each
replicate a dummy variable was created and a variable corresponding to the total number
of counts per cell. Then, p-values were obtained for the contrast between the average
regression coefficients of the two replicates of the “Spinal cord” cluster and the average
regression coefficients of all other variables considered in the test.
For all differential expression tests p-values were adjusted for multiple hypothesis testing
with the Benjamini-Hochberg method.

Sub-clustering of neural ectoderm-like cells Neural ectoderm-like cells (“Rostral
neurectoderm”, “Caudal neurectoderm”, “Spinal cord” and “Forebrain/Midbrain/Hindbrain”)
were extracted from the XEG data sets for Fig. 4e-g and Fig. S5d. A curated list of genes
that are dorsoventral axis markers in the developing neural tube [29, 37, 39] was used for
all analysis steps (see Fig. 5.8f for the complete list). First, replicates were integrated with
MNN using d=5 and k=20. The UMAP was created from the MNN corrected subspace with
20 nearest neighbors, min_dist = 0.3 and cosine metric. K-means clustering was performed
on the MNN corrected subspace using Euclidean distances and 5 centers.
For Fig. 5.9d, neural ectoderm-like cells were extracted from XEG and gastruloid data
sets. As before, only genes listed in the heatmap in Fig. 5.8f were used for all analysis
steps. MNN mapping was performed using d=15 and k=20 in the following sequence: XEG
replicate 2, XEG replicate 1, gastruloid replicate 2 and gastruloid replicate 1. UMAP and
clustering was performed as described before. To correct for the difference in the number
of cells coming from the 4 samples, first, relative frequencies for the 5 sub-clusters were
calculated per sample. These frequencies were then normalized by dividing by the sum of
relative frequencies for a specific sub-cluster.

Cell-cell interaction analysis with CellPhoneDB CellPhoneDB [49] was applied to
the raw counts of replicate 2 of the XEG data set. All mouse gene names were converted
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to human gene names with the biomaRt R package. All clusters, assigned through the
mapping to the Pijuan-Sala et al. dataset, were used. Finally, results containing the ligands
of interest (BMP2, BMP4 and LAM) were extracted. For each pair of cell types with
significant communication (p-value < 0.05), the expression of all significant ligand-receptor
pairs was summed. The expression of a ligand-receptor pair was taken to be the average of
ligand and receptor expression.

Image analysis

Image stacks of whole-mount immunostained gastruloids and XEGs, and images of im-
munostained sections were pre-processed by background subtraction (rolling ball, radius:
50 pixels = 65 𝜇m (10× objective), 32 𝜇m (20× objective) or 16 𝜇m (40× objective)) in the
channels that showed autofluorescent background using ImageJ [72]. When background
subtraction in images of sections did not result in proper removal of autofluorescent back-
ground signal, the Enhance Local Contrast (CLAHE) tool was used in ImageJ [72]. smFISH
image stacks were pre-processed by applying a Laplacian of Gaussian filter (𝜎 = 1) to
the smFISH channels using scikit-image (v0.16.1) [73]. For all image stacks, a maximum
projection was used to obtain a 2D representation. To show a single object per image,
images were cropped around the object of interest.

5.4.3 Data availability
The single-cell RNA sequencing datasets generated in this study are available in the Gene
Expression Omnibus repository, GSE141530. Supplementary tables and videos are available
in the online version of the manuscript at https://doi.org/10.1177/20417314221103042.
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6
Gene regulatory network inference

with physics informed neural networks

One of the main goals of developmental biology is to reveal the gene regulatory networks

(GRNs) underlying the robust differentiation of multipotent progenitors into precisely specified

cell types. Most existing methods to infer GRNs from experimental data have limited predictive

power as the inferred GRNs merely reflect gene expression similarity or correlation. Here, we

demonstrate, how physics-informed neural networks (PINNs) can be used to infer the parame-

ters of GRNs that provide mechanistic understanding of biological processes. Specifically we

study GRNs that exhibit bifurcation behavior and can therefore model cell differentiation. We

show that PINNs outperform regular feed-forward neural networks on the parameter inference

task and analyze two relevant experimental scenarios: 1. a system with cell communication

for which gene expression trajectories are available and 2. snapshot measurements of a cell

population in which cell communication is absent. Our analysis will inform the design of

future experiments to be analyzed with PINNs and provides a starting point to explore this

powerful class of neural network models further.

Maria Mircea, Diego Garlaschelli and Stefan Semrau. Gene regulatory network inference with physics informed
neural networks. Manuscript in preparation.
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6.1 Introduction

Since the advent of single-cell molecular profiling, developmental biology has been inun-
dated with high-dimensional data we are still learning to make sense of. Various machine
learning methods have been used to find patterns in single-cell data, such as cell types or
differentiation paths [1, 2]. Notwithstanding the great success of these methods, it remains
difficult to infer mechanistic insights or quantitative, predictive models from single-cell
data. Yet, one of the main goals of developmental biology is to understand the gene regula-
tory mechanisms underlying the robust differentiation of precisely defined cell types from
multipotent progenitors [3] (see Chapter 1).
A common approach to the predictive mathematical modeling of differentiation uses the
framework of dynamical systems theory [4–7]. In the context of differentiation, the dy-
namical system governs the abundance of gene products in the cell and stable attractor
states are interpreted as cell types. Under certain conditions, the system can be represented
by a quasi-potential [8]. This potential is the mathematical equivalent of Waddington’s
landscape [9], a seminal, qualitative model of differentiation in which the valleys in the
landscape correspond to different cell types. In most models, the dynamical system has
the structure of a network, in which the nodes are gene products, typically transcription
factors, and the edges indicate interactions between them. Ideally, such a gene regulatory
network (GRN) model should be able to predict the outcome of a differentiation process,
given the initial cell state and external cues. Simulations using small GRNs with 2−5 nodes
indeed exhibit bifurcations resembling actual differentiation processes [10–14].
As the parameter space grows quickly with the the size of a GRN, it can be tedious to
find regimes with relevant behavior. A large body of work has therefore been devoted to
inferring GRNs frommeasurements, typically transcriptomics or proteomics data sets. Most
recently, single-cell data has been leveraged to that end [15]. Many inference methods use
measures of similarity or correlation between genes and prior biological knowledge, most
often about protein-protein binding affinities or the targets of transcription factors [16–19].
These methods can infer the existence of correlative or even causal relationships, especially
if chromatin accessibility is taken into consideration [20]. However, they are typically
unable to infer interaction strengths and are thereby lacking in predictive power. In fact, if
only single-cell snapshot data is used and there is no prior biological knowledge, there are
fundamental limits to GRN inference [21]. One should therefore 1. use time-resolved data
that ideally contains information about the trajectories of individual cells and 2. constrain
the inference problem with assumptions about the GRN. Seminal work using a Boolean
network approach [22] or, more recently, catastrophe theory and approximate Bayesian
computation [23], have successfully inferred predictive GRN models from time resolved
data.
Another class of machine learning tools that have become extremely important in many
fields are neural networks (NNs). These have been highly successful in pattern recognition
and classification tasks [24] and are used extensively to interpret single-cell omics data
[25, 26]. Naturally, NNs have also been used to infer GRNs from measurements [27, 28].
However, existing NN methods require GRNs obtained by other means as training data,
which might limit the fidelity of the inferred GRNs. The optimal NN method would only
use gene expression as training data while allowing us to implement prior knowledge or
assumptions about the GRN to make the inference problem feasible. The recently developed
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physics-informed neural networks (PINNs) [29–31] enable us to do just that. PINNs can
solve a broad range of differential equations and also infer undetermined paramters. They
have been applied successfully to various systems biology tasks [32–34].
In this chapter, we explore in how far PINNs can be used to infer GRNs. In our case,
the differential equations to be solved by the PINN are defined by GRN topology and
the mathematical expressions describing the interactions between the genes. Given gene
expression measurements as training data, PINNs should be able to infer gene interactions.
Fig. 6.1 shows a schematic of the inference procedure. Once the parameters have been
learned, the dynamical system can then be used to make predictions. PINNs should thus
allow us to gain mechanistic insights from measured expression data. As a proof of concept,
we simulate data based on a GRN model recently introduced by Stanoev et al. [35]. At
its core this GRN has two mutually inhibiting genes, 𝑢 and 𝑣, which can be seen as the
master transcription factors governing two alternative cell fates. This network motif has
been studied intensively since it is one of the simplest motifs that exhibit bifurcations
[7, 10, 14, 36]. Historically, this network motif was proposed decades ago to describe the
mutual inhibition of gap genes [37]. The genetic toggle switch has been studied extensively
in theory and demonstrated experimentally in organisms as simple as bacteria [38]. Kaneko
et al. linked cell autonomous regulation with cell-cell interactions to show that cell division
can drive differentiation and the formation of spatial patterns [39, 40]. The basic idea is the
following: The idea is the following: Depending on the network parameters, a single stable
attractor, interpreted as a multilineage primed (mlp) state can split into two stable attractors,
which correspond to two different lineages. Such bifurcations successively create the large
diversity of cell types in an adult organism, starting from the one-cell embryo [41]. In
addition to the cell intrinsic mutual inhibition of the master transcription factors 𝑢 and 𝑣,
the model by Stanoev et al. also implements cell communication, which plays an essential
role in development [42, 43] (see Chapter 3-5). In the Stanoev model, cells communicate
via a diffusible signaling molecule 𝑠. This molecule is assumed to be activated by 𝑢 and
in turn inhibits 𝑢 in both an autocrine and paracrine manner. The differential equations
defining this GRN are shown in Fig. 6.2a. With this system, Stanoev et al. showed that
population size can effectively serve as a control parameter that can bring the system from
a homogeneous, progenitor state to a heterogeneous, differentiated state. This mechanism
is an interesting alternative to the previously suggested noise-driven fate decisions [44, 45].
In certain parameter regimes, the GRN also creates regular, Turing-like spatial patterns.
In this chapter, we first explore the qualitative behavior of the GRN introduced by Stanoev
et al. Subsequently we demonstrate that a naive feed-forward NN architecture and training
based on simulations in a limited parameter regime are insufficient for robust GRN infer-
ence. We then explore how accurately PINNs can infer GRN parameters. Surprisingly, we
find that it is not necessary to use all variables of the GRN for training. In other words, the
measurement of a subset of genes across time can be sufficient for GRN inference. Lastly,
we investigate a simpler system without cell communication. We study in how far GRN
inference is still possible, if only snapshot data at discrete time points is available. This
scenario is highly relevant as it describes the typical single-cell profiling experiment. This
chapter thus provides a thorough assessment of PINNs for the purpose of GRN inference.
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du

dt
=auHI(v)− buu

dv

dt
=avHI(u)− bvv

Gene regulatory network Neural networkDynamical system Gene interactions

au = 2.4

av = 3.1

Figure 6.1: Gene regulatory network (GRN) inference with neural networks (NNs) First, a particular
topology of the GRN is assumed. Together with the functional form of the interactions, the GRN topology defines
a set of differential equations with undetermined parameter values. Next, a NN is trained on experimental or
simulated time-series data. The parameters learned during training set the strength of interactions between genes.
The fully determined dynamical system can then be used for predictions.

6.2 Results

6.2.1 Cell communication drives bifurcations in a GRN model
of differentiation

We first set out to recapitulate the qualitative behavior of the GRN reported by Stanoev et
al. to find interesting parameter regimes and establish a ground truth for GRN inference.
We placed between 1 and 15 cells on a regular square grid and allowed cell communication
between nearest neighbors, unless otherwise indicated by edges in 6.2b). The corresponding
system of differential equations (shown in Fig. 6.2a) was solved by numerical integration.
In the two-cell configuration, the parameter 𝑎𝑢 , which sets the inhibition of 𝑢 by 𝑣 is a
control parameter that can elicit a bifurcation (Fig. 6.2c). For low values of 𝑎𝑢 there is one
stable state. In this state, both cells have identical concentrations of 𝑢 and 𝑣. Following
Stanoev et al., we interpret a homogeneous state, where cells have identical, intermediate
expression of both 𝑢 and 𝑣 as the mlp state. At a particular, critical value of 𝑎𝑢 , two
additional stable states appear through saddle node bifurcations. In one of these states,
cell 1 has a high level of 𝑢 but a low level of 𝑣, while cell 2 has a low level of 𝑢 but a high
level of 𝑣. In the other stable state, the expression patterns of cell 1 and 2 are reversed.
These two states are thus considered differentiated states. Due to the mutual inhibition
between 𝑢 and 𝑣 we will always find anti-correlation between the two genes, outside of the
mlp state. Increasing 𝑎𝑢 further, at a second critical point, the mlp state becomes unstable
through a subcritical pitchfork bifurcation. Between 𝑎𝑢 values of 2.33 and 2.69 the two
differentiated states are the only stable states of the system. In summary, when controlled
by 𝑎𝑢 the system goes from the mlp state for low values of 𝑎𝑢 via a small interval with three
stable states (mlp, two differentiated states) to a wider interval with the two differentiated
states as the only stable states. In other words, for differentiation to occur, a certain level
of mutual inhibition between 𝑢 and 𝑣 is necessary. At even higher values of 𝑎𝑢 additional
bifurcations occur and the system returns to a single stable state. We will not explore this
behavior at high 𝑎𝑢 any further here, since it is unphysiological: In the real biological
system, differentiated states are likely stabilized by other means (such as epigenetic marks),
which would prevent the reversal to a single stable state.
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Figure 6.2: Cell communication drives bifurcations in a GRN model of differentiation. (Caption on
the next page.)
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For larger number of cells, the behavior of the system becomes more complex. We studied
in detail a population of 4 cells where each cell was allowed to communicate with all
other cells (Fig. 6.2d). We varied the strength of the intercellular communication, which
is parameterized by 𝑎𝑢𝑠 , and found that it can serve as a control parameter, similar to 𝑎𝑢 .
Starting from low values of 𝑎𝑢𝑠 for which the mlp state is the only stable state, a sequence
of bifurcations leads to the appearance and disappearance of several additional stable states.
The first stable states to appear have one cell with high levels of 𝑢 (low levels of 𝑣) and 3
cells with high levels of 𝑣 (low levels of 𝑢). With increasing values of 𝑎𝑢𝑠 the balance shifts
to more cells with high 𝑢. At the extreme there is an interval of 𝑎𝑢𝑠 with only two stable
states in which 3 cells have a high level of 𝑢 and one cell has a high level of 𝑣. Interestingly,
the differentiated states are never homogeneous for the set of parameters used here.
Instead of modulating the strength of cell communication by tuning 𝑎𝑢𝑠 , the system can
also be driven out of the mlp state by increasing cell number, which would happen naturally
through cell division. Without cell communication the system remains in the mlp state,
irrespective of cell number (Fig. 6.2). With cell communication, a symmetry-breaking
event occurs and two new stable states appear starting from 4 communicating cells, for
the particular parameter set used (Fig. 6.2f). For 1 or 2 cells, only the mlp state is stable,
and there are no other steady states. From 4 cells on, this state becomes unstable. As
demonstrated previously by Stanoev et al. differentiation can occur simply after a certain
number of cell divisions without changing the topology of the GRN or imposing a change
of its parameters by external cues. Interestingly, more steady states appear in the system
with increasing cell numbers. In the following, we will use simulations based on the 4-cell
configuration with communication between all cells as ground truth training data for GRN
inference with NNs.

Figure 6.2: Cell communication drives bifurcations in a GRN model of differentiation. (Figure on the
previous page.) a System of differential equations corresponding to the GRN model by Stanoev et al. The
mutual inhibition of the two master transcription factors 𝑢 and 𝑣 as well as the inhibition of 𝑢 by the signaling
molecule 𝑠 are modeled with repressive Hill functions 𝐻𝐼 . The cell autonomous activation of signalling molecule𝑠 by 𝑢 is modeled with an activating Hill function 𝐻𝐴. 𝑖 is the cell index. 𝑠𝑒𝑥𝑡 is the level of 𝑠 averaged over
cell 𝑖 and its neighbors (typically nearest neighbors, unless otherwise indicated by the edges in panel b). The
degradation rate for 𝑢, 𝑣 and 𝑠 is assumed to be identical, and time was rescaled with the inverse degradation
rate, so that the rate does not appear explicitly in the equations. b Studied configurations of cells. Edges indicate
cell communication. c Results for the 2-cell configuration. Several bifurcations are driven by the parameter 𝑎𝑢 ,
which sets the strength of the inhibition of 𝑢 by 𝑣. d Results for the 4-cell configuration with communication
between all cells. Bifurcations are controlled by the parameter 𝑎𝑢𝑠 which determines the strength of inter-cellular
communication. Colors distinguish stable states with different ratios of 𝑢- and 𝑣-high cells. e,f Steady states
(both stable and unstable) for the cell configurations shown in panel b without cell communication (panel e) or
with cell communication (panel f). The following parameters were used: 𝑎𝑢 = 2.4, 𝑎𝑣 = 3.5, 𝑎𝑠 = 2,𝑎𝑢𝑠 = 1.
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6.2.2 Feedforward NN regression is unsuitable for GRN pa-
rameter inference

NNs have showed impressive performance in a large variety of supervised learning tasks
[46]. The power of NNs usually relies on the existence of a large amount of high quality
training data. Our first, naive idea was therefore to simulate expression trajectories, based
on the dynamical system discussed above (see Fig. 6.2a), with randomly sampled parameters
and use these trajectories to train a feedforward NN regression model (Fig. 6.3a). The
input layer of this NN consists of the trajectories of 𝑢,𝑣 and 𝑠 for 𝑛 cells and 𝑘 time points.
Training samples are therefore vectors of length 3 ⋅ 𝑛 ⋅ 𝑘. The output nodes correspond to
the 4 parameters of the GRN, 𝑎𝑢 , 𝑎𝑣 , 𝑎𝑠 and 𝑎𝑢𝑠 . Input and output layer were connected by
several, fully-connected hidden layers.
To test this approach we used a configuration of 4 cells, with communication between all
cells (as in Fig. 6.2d), and simulated 1000 trajectories with 25 time points for all variables in
all cells. Parameters were sampled uniformly from intervals chosen such that trajectories
from both the mlp as well as the differentiated regime were created (Fig. 6.3b). Initial
states were also chosen randomly within reasonable intervals (see Methods). With this
setup, the NN seemed to converge quickly and training was stopped after 1000 epochs (Fig.
6.3c). To create the test data we simulated 50 sets of 20 trajectories where the parameters
were identical for each trajectory in a set, but the initial states were chosen randomly.
Comparison of the parameter values used to simulate the trajectories (ground truth values)
with the parameter values inferred by the NN model (Fig. 6.3d) revealed good accuracy of
the model. Large systematic biases were absent for most parameter values. The random
initial conditions contributed to the observed spread around the true values, which might
limit the precision of the model.
At first glance, the simple feedforward architecture seemed to perform well. We next
wanted to test, how important it is that the training data covers the different regimes of
the dynamical system. When we trained the model with trajectories from the bistable,
differentiated regime we observed that the model performed poorly for test trajectories
outside of that regime (Fig. 6.3e). As the model is agnostic to the differential equations
governing the dynamical system, it was unable to extrapolate beyond the parameter ranges
it was trained on. In other words, if trained on a particular regime of the dynamical system,
the NN model learns the behavior of that regime and does not generalize well. It would
therefore be crucial to cover a large enough area of parameter space with the training
data. Importantly, we were only able to identify the correct parameter ranges, because the
system is relatively simple, allowing us to obtain a detailed understanding of its qualitative
behavior (see Fig. 6.2). In an experimental setup, the relevant parameter ranges are usually
unknown and it is typically hard to tune individual parameters. The naive feedforward NN
regression model is therefore unsuitable for inferring GRN parameters from experimental
data.
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6.2.3 Physics informedneuralnetworks can inferGRNparam-
eters from partial and noisy data.

To ameliorate the reliance of NNs on large mounts of training data that represent all regimes
of the dynamical system, we have to constrain the inference problem in a meaningful
way. Ideally, the NN model should be aware of and respect the underlying differential
equations. Physics-informed NNs (PINNs) leverage automated differentiation to solve a
broad class of differential equations [29, 31]. The input layer of a PINN is composed of the
independent variables of the differential equations (such as, for example, space and time
for many applications in physics).
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2

]

a

c db

t

u1

v1

s1

u1

v1

s1

un

vn

sn

cell 1

cell 2

cell n

fully connected 
hidden layers

input layer
(time)

output layer
(dependent
variables)

ODE loss Initial conditions loss

Data loss

e
25 time points of all variables 25 time points of all variables 

with random gaussian noise
Output pattern

 of u

NN
NI

true 
value

Data 
points

True 
trajectory

u      v      s

Neural network architecture

25 time points of u only

au

aus

av

as

0

Tr
ai

ni
ng

 d
at

a
Te

st
 lo

ss
P

ar
am

et
er

 v
al

ue
u 

va
lu

e
v 

va
lu

e
s 

va
lu

e

ODE
IC
Data

NN
NI

NN
NI

Epochs

relative time

relative time

0

00

Figure 6.4: Physics informed neural network to infer gene regulatory networks. (Caption on the next
page.)



6

178 6 GRN inference with PINNs

The PINN is then trained such that the output layer approximates a solution to the differ-
ential equations for arbitrary points (in space and time) given as input. Fulfillment of the
(ordinary) differential equations as well as initial and boundary conditions is ensured by
appropriate loss terms, called ODE, IC and BC loss, respectively. During training, residual
points on which the loss terms are evaluated are chosen randomly or in a way that adapts
to the particular differential equations [30]. For this ’forward problem’ of finding a solution
of fully determined differential equations, no training data is necessary. PINNs can also
infer undetermined parameters of the differential equations (’inverse problem’), which
does require measured or simulated training data and a corresponding loss term (’data
loss’) that penalizes deviation of the solution from that data. The loss terms that ensure
fulfillment of the differential equations strongly constrain the output space of the NN and
thereby reduce the variance of the parameter inference. The issue of poor generalizability
we observed with feedforward NN regression (Fig. 6.3e) should therefore be absent in
PINNs.
To explore whether PINNs can successfully infer GRN parameters (’inverse problem’), we
implemented the architecture shown in Fig. 6.4a with the DeepXDE package [30]. The
input layer of the NN consists of only one node, which corresponds to time, and the output
layer contains all dependent variables (𝑢,𝑣 and 𝑠 in all cells). As above, we used the 4-cell
configuration with communication between all cells as a proof-of-concept. To generate
training data we simulated trajectories with identical parameters but randomly drawn
initial states. To explore the limitations of the PINN, we added noise and/or subset the
data (Fig. 6.4b-e). Starting from noise-free trajectories with 25 time points per variable
(Fig. 6.4b), we added Gaussian noise, since measurements are likely noisy due to biological
and technical variability (Fig. 6.4c). We also explored training the PINN with a subset
of variables as it is typically difficult to obtain measurements of all relevant dependent
variables in experiments (Fig. 6.4d). Lastly, we studied training the model on the first
and last time points only. For the set of parameters used here, the system has closely
approached a stable steady state with two 𝑢-high and two 𝑣-high cells (Fig. 6.4e, top) by
the last time point. This scenario is relevant for measurements with only one or a few time
points or if the system is practically always in a stable steady state. In Fig. 6.4b-e we give
examples of model behavior for different training scenarios. A systematic exploration and
quantification of model performance is presented in Fig. 6.5.

Figure 6.4: Physics informed neural network to infer gene regulatory networks. (Figure on the previ-
ous page.) a Architecture of the PINN. The input to the network is time and the output consists of all dependent
variables of the dynamical system. The PINN is optimized via a loss function that considers the differential
equations (ODE loss), the initial conditions (IC loss) and training data (data loss). b, c, d, e The first row shows
examples of training scenarios. A GRN with 4 cells that all communicate with each other was used. b Training
on noise-free trajectories of all dependent variables with 25 fixed time points. c Training on trajectories shown
on the left with added Gaussian noise. Only the trajectories in one cell are shown. d Training on noise-free
trajectories of 𝑢 only. e Only the first and last time point of the 𝑢 trajectories in all 4 cells were used for training.
The second row shows the resulting test losses. Colours indicate the different loss terms. Row 4 shows the inferred
parameters and rows 3 - 6 show the approximated trajectories for the four scenarios. In the trajectory plots
solid lines are trajectories approximated by the PINN and dashed lines are trajectories calculated by numerical
integration using the inferred parameters.
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When using complete trajectories for training, the PINN converges robustly after a few
epochs and all three loss terms have similar convergence rates (Fig. 6.4b, second row).
The inferred parameters are close to the ground truth parameters (Fig. 6.4b, third row)
and the trajectories approximated by the PINN coincide with the trajectories calculated
by numerical integration using the inferred parameters (Fig. 6.4b, rows 4-6). In contrast
to feedforward NN regression (Fig. 6.3), which required many training samples, the
PINN needs only one set of trajectories for accurate GRN inference. As to be expected,
noise reduced the performance of the model, likely due to over-fitting, which can be
seen for the inferred trajectories in Fig. 6.4c. Model performance was also compromised
when only one dependent variable was used for training (Fig. 6.4d). Providing only the
initial and final time point presented the biggest challenge for the PINN (Fig. 6.4e): The
trajectories approximated by the PINN show large discrepancies with the trajectories
calculated by numerical integration using the same (inferred) parameters. Hence, the
trajectories approximated by the PINN are not a proper solution of the differential equations.
Surprisingly, the inferred parameters were still roughly correct.
For a more systematic and quantitative assessment of model performance we tested 84
different conditions and considered: 1. the mean squared error between trajectories
approximated by the PINN and trajectories found through the numerical integration using
the inferred parameters, 2. the test loss and 3. the relative error of the inferred parameters
(Fig. 6.5). For each condition we averaged over 10 runs with identical GRN parameters
but randomly drawn initial states. First, we focused on the training scenarios that utilized
all time points (Fig. 6.5b-d). As to be expected, increasing levels of noise reduced model
performance (Fig. 6.5b).
In an attempt to mitigate over-fitting to the noisy training data, we introduced weights
for the three loss terms and gave the ODE loss a 1000-times higher weight. Weighting
improved trajectory approximation, but did not have a strong influence on parameter
inference. Removing dependent variables from the training set had a strong and systematic
effect on parameter inference and trajectory approximation was similarly affected when
no weights were used (Fig. 6.5c). Weighting strongly improved trajectory approximation
when only one dependent variable was used for training. Importantly, the relative errors
of the parameter values depended on the set of variables used for training (Fig. 6.5d). For
example, when only 𝑢 and 𝑣 were used, the parameters 𝑎𝑢 and 𝑎𝑣 were inferred more
accurately than the parameters 𝑎𝑢𝑠 and 𝑎𝑠 . Conversely, when only 𝑢 and 𝑠 were used, 𝑎𝑢𝑠
and 𝑎𝑠 had a smaller error than the other parameters. Learning from only the first and last
time point of the training data was overall a harder task for the PINN (Fig. 6.5e-g), but we
observed similar trends for the dependence of model performance on noise (Fig. 6.5f) or
the number of dependent variables used for training (Fig. 6.5g). Surprisingly, parameter
inference from two time points was almost as accurate as when the whole trajectories were
used for training, while the PINN’s approximation of the trajectories was compromised. In
summary, the PINN was able to infer GRN parameters even when only partial data was
supplied for training.
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Figure 6.5: PINNs can infer GRN parameters from partial and noisy data. a Overview of all simulation
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6.2.4 PINNs can infer GRN parameters from snapshot data in
the absence of cell communication.

Most high-throughput single-cell profiling assays are destructive, which prevents the
measurement of single-cell trajectories. These assays therefore only provide "snapshots"
of the system dynamics. Additionally, in conventional single-cell omics experiments, any
information about the spatial arrangement of the cells is lost. Therefore we wanted to
explore, how a PINN would perform when trained with snapshot data that lacks spatial
resolution. As any parameter related to cell communication is unlikely to be estimated well
in such a scenario, we considered a simpler dynamical system of two mutually inhibiting
genes, 𝑢 and 𝑣, without cell communication [10] (Fig. 6.6a). The parameters 𝐼𝑢 and𝐼𝑣 modulate the inhibition of 𝑢 or 𝑣, respectively, by the other gene. For a particular
set of parameters, the dynamical system is bistable and leads to the cell autonomous
differentiation into either a 𝑢-high or a 𝑣-high state. Cells will be attracted to one of these
stable steady states depending on their initial state. As trajectories cannot be obtained
from destructive snapshot measurements it is more natural to model the system at the
level of a population of cells and consider a bivariate probability density of 𝑢 and 𝑣. In
the absence of noise, the dynamics of the probability density is completely determined by
the conservation of probability (Fig. 6.6a), which is therefore the differential equation that
must be fulfilled by the PINN.
Fig. 6.6b shows the architecture of the PINN together with the loss terms. The input layer
is now composed of three nodes, corresponding to time, 𝑢 and 𝑣. The only output node is
the probability density at the point [𝑢,𝑣,𝑡] given as input. As before, the loss considers the
governing differential equations, initial conditions and the training data. For training we
simulated 1000 trajectories with initial values of 𝑢 and 𝑣 randomly drawn from a bivariate
normal distribution centered around 1.5. As mentioned above, the parameters of the GRN
and the distribution of the initial states are chosen such that trajectories tend to one of two
stable steady states (Fig. 6.6c). The simulated trajectory positions were binned for each
time point and the probability densities were approximated by the relative frequencies (Fig.
6.6d). As intended, the initial probability density, a normal distribution, developed into a
bimodal distribution, reflecting the existence of two stable steady states with anti-correlated
expression of 𝑢 and 𝑣. Using these simulations we trained the PINN, leaving the parameters𝐼𝑢 and 𝐼𝑣 undetermined. The PINN converged quickly (Fig. 6.6e) and the parameters were
inferred with reasonable precision (Fig. 6.6f). The probability densities approximated by
the PINN show qualitatively the same dynamics as the densities used for training (Fig. 6.6g).
However, the PINN approximation of the probability density had a few negative values
and was not always properly normalized, which could likely be improved by additional
constraints. All in all, the PINN was able to infer GRN parameters from snapshot data for a
model without cell communication.
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6.3 Discussion

The inference of GRNs from noisy and usually incomplete measurements is a long-standing
challenge which inspired the development of many different approaches. In this chapter,
we studied the performance of PINNs in this context.
PINNs are general tools that approximate the solutions to a broad class of differential
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equations. To apply them to GRN inference requires expressing the dynamical system
defined by the GRN as a set of differential equations. To that end, specific expressions
that model the gene interactions have to be assumed. Here, we used Hill functions with
fixed Hill coefficients for both activation and inhibition. We selected a subset of relevant
parameters to be learned by the PINN, but it might be interesting to leave more parameters
undetermined, especially the Hill coefficients. Most importantly, we used the same network
topology for simulation and training the PINN: The same genes were connected with the
same type of interaction (either activating or inhibiting). In principle, one could base the
training on a fully connected network and model each interaction as the sum of activating
and inhibiting expressions. Such a setup would leave network topology unconstrained and
it would be interesting to explore, if a PINN could infer it from the data. In this context,
it might be useful to add a regularization term to the loss function such that only the
strongest interactions are selected and the inferred GRN is sparse.
As a proof of concept we studied a minimal GRN with two mutually inhibiting genes. Such
a GRN exhibits a bifurcation that models the differentiation of a multipotent progenitor into
one of several differentiated cell types. While several pairs of master transcription factors
that govern such bifurcations have been identified in experiments, real GRNs contain other
relevant genes. It would therefore be useful to determine, how much and what kind of
experimental data would be necessary to infer a much larger GRN with a PINN.
In this chapter we first studied an experimental scenario in which the trajectories of indi-
vidual cells are measured and demonstrated that a PINN outperforms a simple feedforward
NN regression model. While the feedforward NN requires many training samples that must
cover all dynamical regimes of the GRN, the PINN efficiently infers GRN parameters from
a single sample, at the cost of making assumptions or using prior knowledge about the
GRN. The PINN was able to infer parameters even if only a subset of dependent variables
was used for training. The relative errors of the inferred parameter values depended on the
identity of the used variables, which is important to keep in mind for optimal experiment
design. As the training of the PINN becomes computationally more costly with increasing
number of cells, it would be interesting to explore, whether using measurements of a subset
of cells for PINN training is sufficient for GRN inference. Possibly, that would require a
kind of mean field approximation of the cells that are not used for training. Surprisingly,
parameter inference was still possible when we only used the initial and final time point of
the trajectories for training. However, in this case, the approximate trajectories provided
by the PINN did not fulfill the differential equations as they deviated from trajectories
calculated by numerical integration using the inferred parameters. It seems that the loss
terms related to additional time points support the ODE loss in ensuring fulfillment of
the differential equation. Inferring the GRN from the final state, which is in this case
essentially a spatial pattern of differentiated cell types, would be very useful not only to
study morphogenesis but also to inform synthetic biology applications. Recently, NNs were
used to implement a cellular automaton that models morphogenesis [47]. Impressively, it
was shown that providing a desired spatial pattern as training data is sufficient to train
the NN such that the automaton robustly develops into that spatial pattern. While this is
certainly a conceptually important feat, cellular automata are only rough approximations
of real biological dynamics and it would be preferable to achieve a similar performance
with GRNs. We speculate that constraining the final state to be a globally stable steady
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state, potentially by using a Lyapunov function [48], might help in that respect.
In the final section of this chapter we studied a scenario in which only snapshot data of
cell populations are available, which is the case for single-cell RNA-sequencing experi-
ments [49]. As spatial context is not available in this scenario, we described the system
at the population level, with probability densities of gene abundances. We showed that
a PINN was able to infer a simple GRN without cell communication. While parameter
inference was successful, the probability density approximated by the PINN sometimes
had negative values and was not always properly normalized. Positive values could be
enforced by adding an additional term to the loss function or using a rectified linear unit
(ReLU) as activation function in the output layer. To ensure proper normalization one could
reformulate the differential equations such that the dependent variable is a normalized
function [50]. Another option is to discretize the domains of 𝑢 and 𝑣 and add a constraint
on the sum of the resulting discrete densities via an additional loss term [51]. As there was
no noise in the dynamical system used here, the relevant differential equation was simply
given by the conservation of probability. In the presence of noise, one would have to use
the Fokker-Planck equation which the PINN should be able to fulfill without problems.
Next to the two experimental scenarios studied in this chapter, there are a few others,
which are currently very popular and would therefore be worthwhile to explore in future
work. Many snapshot measurements of highly dynamical systems, such as developing
tissues, in fact contain dynamical information: Pseudotime methods have been used to
establish developmental progression from snapshot data [52, 53]. It would be interesting to
work out, how pseudotime information could be leveraged for GRN inference with PINNs.
Spatially resolved omics modalities are also being used extensively at the moment. To infer
GRNs with cell communication from such data will be an interesting challenge.
In summary, we have established that PINNs can be used for the accurate inference of GRNs.
PINNs thus present an exciting, new way to obtain mechanistic insights from single-cell
data. We hope that our work will stimulate colleagues from mathematics, physics and
biology to collaborate on the many fascinating problems presented by single-cell develop-
mental biology.
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6.4 Materials and Methods

Python (V 3.9) was used for all computations. NNs were implemented with tensorflow

(V.2.6). All figures were generated with R (V 4.1).

6.4.1 Inference of a GRN with cell communication from tra-
jectories

Differential eqations

The set of coupled differential equations in Fig. 6.2a were adopted from [35]. For each cell,
there are two mutually inhibiting genes, 𝑢 and 𝑣. Additionally, a signalling molecule 𝑠 that
is stimulated by 𝑢, inhibits 𝑢 in an autocrine and paracrine way. In the model considered
here, all signalling molecules of neighboring cells contribute equally. The dynamics of each
cell 𝑖 ∈ {1, ...,𝑁 } is governed by this system of differential equations𝑑𝑢𝑖𝑑𝑡 = 𝑎𝑢𝐻𝐼 (𝑣𝑖) + 𝑎𝑢𝑠𝐻𝐼 (𝑠𝑒𝑥𝑡 ) −𝑢𝑖𝑑𝑣𝑖𝑑𝑡 = 𝑎𝑣𝐻𝐼 (𝑢𝑖) −𝑣𝑖𝑑𝑠𝑖𝑑𝑡 = 𝑎𝑠𝐻𝐴(𝑢𝑖) − 𝑠𝑖 , (6.1)

where 𝑠𝑒𝑥𝑡 denotes signalling molecule abundance averaged over the neighbors: 𝑠𝑒𝑥𝑡 =1𝑘+1 ∑𝑗∈𝑁 (𝑖)∪𝑖 𝑠𝑗 with 𝑘 the number of neighbours. 𝐻𝐼 and 𝐻𝐴 are the inhibiting and activat-
ing Hill functions, respectively, defined here with a fixed Hill coefficient of 2:𝐻𝐼 (𝑥) = 11+𝑥2 , 𝐻𝐴(𝑥) = 𝑥21+𝑥2 (6.2)

This results in a set of coupled differential equations with 3𝑁 equations and 3𝑁 variables.
The parameters 𝑎𝑢,𝑎𝑣,𝑎𝑠 and 𝑎𝑢𝑠 are the same for each cell. Time was rescaled by an
inverse degradation rate which was assumed to be identical for all genes. An additional
parameter 𝜆, used by Stanoev et al. to control the speed of the temporal evolution, was set
to 1.
We distributed the cells on a regular grid, generated with python-igraph (V 0.9), and cell
communication was typically restricted to nearest neighbors, unless otherwise indicated
by edges in the graph.

Steady states

Steady states were found with a multi-start optimization algorithm using scipy. The stability
was calculated based on the Jacobian matrix evaluated around the steady state. Bifurcation
analysis was performed by repeating the optimization algorithm for each value of the
control parameter (either 𝑎𝑢 or 𝑎𝑢𝑠). For the 2-cell and 4-cell configurations, 500 initial
values were chosen uniformly in the interval [0,3] for each of the 3𝑁 variables. In the
study of the effect of cell number (Fig. 6.2e,f) 100 initial values were used.
Steady states were either mlp, where each cell was an mlp, or differentiated, consisting of𝑢-high and 𝑣-high cells. The mlp steady state was identified based on comparison with
gene expression in the 1-cell configuration with the same parameters. If the relative error
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(comparing to the 1-cell mlp state) for all dependent variables was below 0.1, a steady state
was annotated as mlp. To identify 𝑢-high and 𝑣-high cells in a differentiated steady state,
the ratio of 𝑢 and 𝑣 in individual cells was compared to the ratio of 𝑢 and 𝑣 in the mlp
steady state for the same parameters. If the ratio of 𝑢 and 𝑣 in a cell was larger than in the
mlp steady state, the cell was consider to be a ’𝑢-high’ cell, if the ratio was smaller than in
the mlp steady state, the cell was considered to be ’𝑣-high’.
Data simulation

Data points were generated by numerical integration (NI) of the differential equations for
a given set of parameters. We used scipy (V 1.7) with the explicit Runge-Kutta method for
integration. The initial conditions were chosen randomly from a uniform distribution in
the interval [0,1]. Numerical integration was performed on 100 equidistant time points
in the interval [0,𝑇 ]. When the entire trajectory was used for training, a subset of 25
equidistant time points was used. When only the initial and final state were used as input,
we considered the values at 𝑡 = 0 and 𝑡 = 𝑇 .
6.4.2 Feed-forward neural network

The feed-forward NN architecture is depicted in Fig. 6.3a. The NN input takes 25 time
points for each variable. The GRN consisted of 4 cells, which all communicate with each
other, resulting in 12 independent variables in total. Thus, the input layer of the NN consists
of 300 nodes. We found that a 20% dropout rate in the input layer prevented over-fitting
during training. The NN has 4 fully-connected hidden layers with 32 nodes each and
Rectified Linear Unit (ReLu) activation functions. The output layer has 4 nodes for the
results shown in Fig. 6.3d, corresponding to the parameters 𝑎𝑢 ,𝑎𝑣 ,𝑎𝑠 and 𝑎𝑢𝑠 , and one node
for the result shown in Fig. 6.3e, corresponding to the parameter 𝑎𝑢 . The loss function
was defined using the mean absolute error, which slightly outperformed the mean squared
error. For optimization the Adam optimizer was used.
For training and testing, trajectories were generated by numerical integration using ran-
domly drawn initial states from the interval [0,1]. For Fig. 6.3d, 1000 training trajectories
were generated with parameters chosen randomly from uniform distributions over the
following intervals: 𝑎𝑢 ∈ [1,3], 𝑎𝑣 ∈ [2,5], 𝑎𝑠 ∈ [1,3] and 𝑎𝑢𝑠 ∈ [0,2]. To generate trajectories
for testing in Fig. 6.3d, parameters were chosen from the same parameter ranges. For each
run, 3 out of the 4 parameters were kept fixed (𝑎𝑢 = 2.4, 𝑎𝑣 = 3.5,𝑎𝑢 = 2,𝑎𝑢𝑠 = 1), while the
remaining parameter was varied. For each parameter, 50 values were taken from the above
intervals equidistantly and each set of parameters was used 20 times with different initial
values for the numerical integration.
For Fig. 6.3e, 1000 training trajectories were generated with three parameters fixed
(𝑎𝑣 = 3.5,𝑎𝑢 = 2,𝑎𝑢𝑠 = 1) and 𝑎𝑢 sampled from the interval [2.4,2.7], where the dynam-
ical system has multiple steady states in the 4-cell configuration. The trajectories used for
testing were generated with the same fixed parameters, but 50 values of 𝑎𝑢 were equidis-
tantly drawn from the interval [1,3]. Each parameter value was used 20 times with different
initial conditions for the numerical integration.
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6.4.3 Physics Informed Neural Network
All PINNs were implemented using DeepXDE (V 0.14) [30]. The network architecture is
shown in Fig. 6.4a. The input layer consists of only one node, which corresponds to the
time 𝑡 . The hidden layers are 4 fully connected layers with 40 nodes each. The output layer
has 3𝑁 nodes, where 𝑁 is the number of cells, corresponding to the 3𝑁 dependent variables
of the dynamical system. In Fig. 6.5, a configuration of 4 cells that all communicate with
each other was implemented, which results in an output layer of size 12. tanh was used as
the activation function.
The loss function consists of three terms. The first penalizes deviation from the differential
equations:

(𝑑𝑢1𝑑𝑡 −𝑎𝑢𝐻𝐼 (𝑣1) +𝑎𝑢𝑠𝐻𝐼 (𝑠1𝑒𝑥𝑡 ) −𝑢1)2 +(𝑑𝑣1𝑑𝑡 −𝑎𝑣𝐻𝐼 (𝑢1) −𝑣1)2 +(𝑑𝑠1𝑑𝑡 −𝑎𝑠𝐻𝐴(𝑢1) − 𝑠1)2+…
(𝑑𝑢𝑛𝑑𝑡 −𝑎𝑢𝐻𝐼 (𝑣𝑛) +𝑎𝑢𝑠𝐻𝐼 (𝑠𝑛𝑒𝑥𝑡 ) −𝑢𝑛)2 +(𝑑𝑣𝑛𝑑𝑡 −𝑎𝑣𝐻𝐼 (𝑢𝑛) −𝑣𝑛)2 +(𝑑𝑠𝑛𝑑𝑡 −𝑎𝑠𝐻𝐴(𝑢𝑛)− 𝑠𝑛)2

(6.3)

The second loss term considers the initial conditions, using the mean squared error. The
last term in the loss function includes the training data, also using the mean squared error.
For time points within the trajectory we defined boundary conditions using the PointSet
object from the DeepXDE package. This object allows the user to supply measured data at
any point in the input domain and the coresponding loss term will be added to the loss
function. In order to specify the final time point in the DeepXDE framework, we used the
Dirichlet boundary condition object. In this way, we could set values for the time domain
at the initial point 𝑡 = 0 and the final point 𝑡 = 𝑇 .
To create the results shown in Fig. 6.5, PINNs were trained using 84 different scenarios, 10
times each, with randomly selected initial conditions for the differential equations. Results
were averaged over the 10 simulations. The following properties of the training data and
PINN were varied:

(a) number of time points used for training: 25 (full trajectory) or 2 (initial and final
state)

(b) noise level: no noise; Gaussian with mean 0, standard deviation 0.1; Gaussian with
mean 0, standard deviation 0.2. Negative values resulting from addition of noise
addition were set to 0.

(c) number of dependent variables used for training: 1,2 or 3
(d) identity of dependent variables used for training: [𝑢,𝑣, 𝑠], [𝑢,𝑣], [𝑢, 𝑠], [𝑣, 𝑠],𝑢,𝑣, 𝑠
(d) weights: no weights or ODE loss weighted with factor 1000

Neural network validation

We used three measures to quantify the performance of the PINN. First, we computed
the relative error between the inferred parameters and the true parameters. Second, we
calculated the mean squared error between the PINN approximation of the trajectories
and trajectories obtained by numerical integration using parameters and initial conditions
inferred by the PINN. Lastly, we considered the test loss.
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6.4.4 Inference of a GRN without cell communication from
snapshot data

Differential eqations

Two mutually inhibiting genes, 𝑢 and 𝑣, were modeled with expressions used to describe
lateral inhibition [10]. The differential equations are given by:𝑑𝑢𝑑𝑡 = 𝑎𝑢 11+ (𝐼𝑢𝑣)4 −𝑏𝑢𝑢 = 𝑓1(𝑢,𝑣)𝑑𝑣𝑑𝑡 = 𝑎𝑣 11+ (𝐼𝑣𝑢)4 −𝑏𝑣𝑣 = 𝑓2(𝑢,𝑣) (6.4)

We used a set of parameters for which this dynamical system is bistable: 𝑎𝑢 = 𝑎𝑣 = 1.5,𝐼𝑢 = 𝐼𝑣 = 0.5 and 𝑏𝑢 = 𝑏𝑣 = 0.5. To model inhibition we used an inhibiting Hill function with
Hill coefficient 4.
We describe the system at the population level with the joint probability density for the
abundance of 𝑢 and 𝑣. The time evolution of this probability density is governed by the
conservation of probability:𝜕𝑝𝜕𝑡 +∇𝑝 ⋅ 𝑓 (𝑢,𝑣) +𝑝 div(𝑓 (𝑢,𝑣)) = 0, (6.5)

where 𝑓 (𝑢,𝑣) is defined as 𝑓 (𝑢,𝑣) = [𝑓1(𝑢,𝑣)𝑓2(𝑢,𝑣)] (6.6)

Plugging in 𝑓 (𝑢,𝑣) gives the following differential equations:𝑑𝑝𝑑𝑡 + 𝑑𝑝𝑑𝑢 (𝑎𝑢 11+ (𝐼𝑢𝑣)4 −𝑏𝑢𝑢)+ 𝑑𝑝𝑑𝑣 (𝑎𝑣 11+ (𝐼𝑣𝑢)4 −𝑏𝑣𝑣)− (𝑏𝑢 +𝑏𝑣)𝑝 = 0 (6.7)

Data simulation

Training data was created by numerical integration as described in section 6.4.1. The initial
conditions were sampled from a normal distribution with mean 1.5 and standard deviation0.1. Trajectories with 50 time points in the interval [0,20] were obtained. 4 equidistant
time points were used for further computations. In order to create a probability density
function, 1000 trajectories were generated. The probability density was then estimated by
the relative frequencies calculated for 100 bins with 𝑢 and 𝑣 in the interval [0.5,3], for each
time point. The values for 𝑢 and 𝑣 in each bin were taken as the bin’s midpoint.

Physics Informed Neural Network

A PINN with the architecture shown in Fig. 6.6a was implemented with DeepXDE. The
PINN takes three independent variables as input (𝑢, 𝑣 and 𝑡). The hidden layers are 4
fully connected layers with 40 nodes each and tanh activation functions. The output
layer has only one node, which corresponds to the probability density 𝑝(𝑢,𝑣, 𝑡). Initial
conditions were defined at 𝑡 = 0 as a bivariate normal distribution with mean [1.51.5] and
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variance [0.1 00 0.1]. Simulated data was added, as described previously, with the PointSet

object in DeepXDE. As before, the loss function was composed of 3 terms that consider the
differential equations, the initial conditions and the training data, using the mean squared
error. For training, 500 points were chosen randomly from the joint domain of 𝑢 and 𝑣 to
define the initial condition loss, 100 points from the simulated data were chosen for the
data loss and 1000 points from the joint domain of 𝑢, 𝑣 and 𝑡 were chosen randomly to
define the differential equation loss. We weighted the data loss with a factor of 1000. The
parameters 𝑎𝑢 , 𝑎𝑣 , 𝑏𝑢 and 𝑏𝑣 were fixed and the parameters 𝐼𝑢 and 𝐼𝑣 were inferred by the
PINN.
To visualize the PINN approximation of the probability density, 6 time points (0,4,8,12,16,20)
were selected and the approximated density was plotted on the 𝑢,𝑣-grid that was used
during training.
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Figure 6.7: The three cell types that occur during gastrulation.

embryonic cells:
Cells of the embryo that have the po-
tential to become any cell of the body.
gastrulation:
The point where three important cell
types arise: endoderm, mesoderm and
ectoderm.

Human life starts from a single fertilized egg which de-
velops into around 30 trillion cells that make up our body.
The egg in the beginning is only a single cell with the
potential to divide and change in appearance, function,
and composition. These changes are necessary to develop
into a complete human, where cells of the heart are very
different from cells in the lung or brain. It has been estimated that we have around 200
different cell types in our bodies. Cells at an early stage after fertilization still have the
potential to become any cell of the body, and we call them embryonic cells. The path
from the embryonic cell to a fully specialized cell contains many intermediate stages. We
can imagine this path as our way to find a career. As a child, we can still go on to become
anything we like, but throughout school and university, we make decisions that further
narrow down our field of specialization. With every decision we make, we come one
step closer to a specialized field and at the same time it becomes less likely to change
career path. For example, one of the first and most crucial decision events in development
is gastrulation (see Fig. 6.7). At this point, three different cell types emerge from the
embryonic cells. This would be similar to making a choice of university studies. This
choice will, in most cases, influence the rest of our lives. At this point, the cell can choose
between either of the three cell types: endoderm, mesoderm and ectoderm. This choice
will narrow down the future career choices: For example, mesoderm will become the heart,
blood cells, or bone tissue; Ectoderm will become the nervous system or skin; Endoderm
will become the liver, stomach or lungs. In this summary, I want to guide you further
through the journey of the embryonic cell.

Information flow in a cell:
DNA → RNA → protein

To really understand how a single cell makes decisions
to become a specialized cell type, we have to look into
the inside of the cell. We have to figure out where this
information is stored and how it is used. Every cell in our body contains the same DNA,
which is conserved throughout the cell’s life time. It carries information about the building
blocks of our bodies. More precisely, it consists of many genes encoded into the DNA.
Every gene contains different information, for example about the eye color, hair color or
height. It also contains genes that specify cell types. Thus, for each cell type different
genes have to become active. In order to do that, the information that the cell currently
needs, is passed down from the DNA to the RNA. Every cell in our body has different RNA



196 Summary

molecules. The last information transfer is then, from RNA to protein. It is assumed that
the DNA contains around 20.000 genes that code for a protein, and our cells can have as
many as 500.000 different proteins. Proteins are the most important components in the cell
because they have a wide range of functions. Proteins are like the employees in a company,
each one of them has a different job to do and for the company to work everyone must
do their job. We can see the inside of an embryonic cell in development like a start-up
company. It has to make a lot of changes to its structure and employees until it becomes a
well-established firm. With the help of all the employees in the company, the company will
in the end make a decision for the next stage. One important kind of protein, in this regard,
is called transcription factor (TFs). TFs decide which genes will be active and which will
remain unused in a cell. They control the protein composition in the cell and can be viewed
as the managers in the company. They can hire and fire the people in the company. TFs
which can control a high number of genes are called master TFs and would therefore be
directors of the company. Master TFs in particular often give the cell its identity, meaning
that different sets of master TFs are at play in distinct cell types. So, each company has
their own group of directors and together they decide on the company’s brand. TFs can
also control each other and work in parallel. In this way, they form a network called a
gene regulatory network. In this scenario, you can imagine the management department
having to hire or restructure themselves. If several directors are arguing for a position,
then the winning group of directors can decide the new company brand.

transcription factors:
A protein that can control the activity
of some genes.
master TFs:
TFs that can control the activity of
many genes.
gene regulatory network:
A network of proteins that activate
and suppress each other.
single-cell RNA sequencing:
A method to measure the entire RNA
in every single cell.

In order to know which proteins are active inside the cell,
they have to be measured. Preferably, we would like to
measure all the proteins in a cell to understand exactly
what is going on, but that is not yet possible. What is pos-
sible, is to measure the RNA molecules in a single cell with
a method called single-cell RNA sequencing (scRNA-
seq). The largest data set produced so far with this method
contained 1.3 million brain cells. As proteins are produced
from RNA, we can get an estimate of the number of pro-
teins in a cell by measuring the number of RNAs. scRNA-
seq has given unprecedented insights into the definition of a cell type and the development
of an embryonic cell. Cell types are now defined based on the number of RNAs and many
new cell types were discovered in the past decades in this way.

Chapter 1 of this thesis reviews cell identity in more detail and explains the changes
that occur during the development of a cell. It outlines many single-cell techniques cur-
rently used to measure DNA, RNA, proteins, and chemical modifications in every single
cell. Lastly, it introduces mathematical models for cell development to better understand
the mechanisms and causal relationships between genes.

Chapter 2 derives a method named phiclust to evaluate the purity of a cell type in scRNA-
seq data. As we can measure all RNA molecules in a cell, it is important to evaluate when
two cells are of the same type. Every cell has different RNA molecules due to random
fluctuations and processes unrelated to cell identity. Our new method can decide if the
differences in RNA molecules between cells are different from random fluctuations. If
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the differences are larger, the cells are of different types. We used phiclust on scRNA-seq
data of a developing kidney and discovered previously overlooked cell types. In this way,
phiclust can help classify and identify the many cell types in our body.

During development, cells are influenced by many factors that can change the cells’ de-
cision. Just like for us, when we decide on a career path, it matters what environmental
influences we were exposed to. The same happens for cells: Their decision depends on
the decisions of other cells in their environment. Naturally, an embryonic cell is inside the
womb of the mother. Studying cells in the natural context is called in vivo. For ethical
reasons, it is impossible to study human development in vivo. Additionally, many processes
happen simultaneously in vivo that we can not control and we also do not know their
influence. Thus, we decided to look at in vitro systems. In vitro refers to studies outside
the normal biological context in a controlled lab environment. To study embryonic cells
outside the body, they must be extracted and cultured in a dish. Once they are stable in vitro,
we call them embryonic stem cells. Embryonic stem cells still maintain their potential to
become any cell type of the body but have been extracted from their original environment.
Also for ethical reasons, biologists often use induced pluripotent stem cells (iPSCs).
These cells are taken from mature cells of the body, for example, the skin. Then, they are
reverse-engineered to the characteristics of a stem cell and regain the potential to become
any cell type of the body. In summary: embryonic cells in vivo are embryonic stem cell in

vitro.

in vivo:
A process where cells are in their nat-
ural biological context.
in vitro:
A process where cells are outside their
biological context in a dish.
induced pluripotent stem cells: Ma-
ture cells reverse-engineered to stem
cells.
endothelial cells:
Cells that form vessels in the body.
cardiac:
Related to the heart.

Chapter 3 studies the influence of the master TF ETV2 in
blood vessel cells in vitro. Cells that form the vessels in
our body are called endothelial cells. In general, their
function is to create a barrier between a liquid, for ex-
ample, blood, and the surrounding tissue. In particular,
blood vessel-forming endothelial cells are important for
the proper functioning of the heart. To understand the
decision process of an endothelial cell, iPSCs were put into
a dish and stimulated by specific chemical cues to become
endothelial cells. But as described above, there are inter-
mediate stages in the journey of the embryonic cell, which have to be respected in vitro.
Using the career path metaphor, this means that first, it has to choose one of three basic
career paths that cells have. For an endothelial cell this is mesoderm. In order to become a
blood vessel, it has to specialize, like during master studies, on cardiac mesoderm (related
to the heart). After its master studies, it can now choose the job of an endothelial cell.
Surprisingly, we found that in the experiments, two cell types arise: endothelial cells and
heart muscle cells which are responsible for the contractions in the heart. This means
that after the master studies the cells could still choose between two different jobs. Using
scRNA-seq, we showed that the decision depends on the master TF ETV2. If there is less
ETV2 the iPSCs will become heart muscle cells and if there is more ETV2 they will become
endothelial cells. Here, we can see how important master TFs are in the decision of the
cell. As a master TF, ETV2 is able to manage the activity of other genes. So, if enough
ETV2 is in the cell, then it will activate genes of the endothelial cell identity and in this
way re-brand the cell. After re-branding, ETV2 is no longer needed and will be fired from
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the director position. This is an example of a gene regulatory network and how it changes
as the cell makes choices.

As mentioned above, environmental factors can influence a cell’s decision. One way
in which this happens is by communication with each other. Cells communicate for exam-
ple via specific proteins named ligands. This type of protein has the ability to leave the cell
and wander off to the next cell. Once it arrives at another cell it changes the gene regulatory
network of the receiving cell. In other words, this messaging protein, can influence the
decisions of the managers in another company. In the first half of this thesis, the focus was
on changes in the internal compositions of the cells. In the second half, we will extend
this by investigating the influence of cellular communication on the cell’s composition.
We will study cell types combined in vitro that naturally would occur together in vivo to
understand how they influence each other.

ligands:
Proteins that are used by cells to com-
municate.
paraxial:
Cells situated alongside an axis.
extraembryonic endoderm cells:
Cells surrounding the outside of the
embryo.

Chapter 4 compares the influence of developmental origin
to cellular communication in endothelial cells. This chap-
ter is a continuation of Chapter 3, where heart muscle and
endothelial cells were derived. In vivo, the human heart
comprises multiple cell types, including heart muscle cells,
blood vessel cells (endothelial cells), and connective tissue.
So, these three cell types were put together in a dish in
vitro to create a heart tissue environment. But endothelial cells not only form blood vessels
but can for example also form lymph vessels that transport lymph instead of blood in
the body. We wanted to understand how endothelial cells decide which type of vessel
to become: Are they either influenced by the communication with neighboring cells or
influenced by the cell’s developmental origin (previous career choices)? For this reason, a
second experiment was added where endothelial cells specialized in their master studies
on paraxial mesoderm instead of cardiac mesoderm. Endothelial cells stemming from
paraxial mesoderm usually form lymphatic vessels rather than blood vessels. Then, both
endothelial cells, from either background, were put into the same heart tissue environment.
With scRNA-seq, we saw that the RNA profiles of both endothelial cells were very similar
after integration into the heart tissue environment. This result shows that cellular commu-
nication is more important than the developmental background for endothelial cells. It also
shows in general that environmental influences have a high impact on the decisions of cells.

In a second example in Chapter 5, we show how cellular communication can cause the
formation of a neural tube in vitro. We investigated cellular communication in a well-
known in vitro model system, namely gastruloids. This system is a model for gastrulation
which is the moment of choice between the three university studies of the cell (see Fig. 6.7):
endoderm, ectoderm and mesoderm. We used mouse embryonic stem cells to reproduce
this important decision event. The embryonic stem cells are able to form all three cell types
by themselves in a dish. But we know from in vivo studies that the embryo is surrounded
by a layer of cells called extraembryonic endoderm cells (XEN). When embryonic stem
cells were combined with XEN cells in vitro, the XEN cells formed an outer layer around
the stem cells, just like in vivo. Even more striking was that the stem cells started forming
structures that looked like a tube. These structures have not been observed without the
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addition of XEN cells. Thus, they must be a direct result of the communication between
the two types of cells. With scRNA-seq and imaging, we characterized these structures. We
found that they evolve from ectoderm, which is responsible for creating the nervous system.
These findings indicate the involvement of XEN cells in the formation of neural tube-like
structures. Additionally, we observed that also the mouse embryonic stem cells cause
changes in the RNA of XEN cells. This experiment shows that communication between
cells is already very important in the early stages of a cell’s path.

dynamical systems:
Equations that evolve through time.

In the previous chapters, we have characterized elements
involved in a cell’s decisions with scRNA-seq and imaging.
However, to understand the causal relationships in a gene
regulatory networkwewant to formulate mathematical models. Therefore, we set out to use
this data to inform mathematical equations about gene interactions during development in
Chapter 6. These equations describe the time evolution of each gene in the gene regulatory
network and are called dynamical systems. In a dynamical system, parameters determine
the strength of interactions between genes or molecules. We employed physics-informed
deep neural networks (PINNs) to determine these parameters with measured data. A neural
network is a machine learning technique usually used successfully for pattern recognition.
PINNs combine machine learning with physical laws. In this way, we can learn patterns
from the data while conforming to predefined mathematical equations. We covered two
relevant experimental scenarios: One where cells communicate and measurements of single
cells are available. This data can, for example, be generated by imaging proteins through
time. In the other scenario, cells do not communicate, and only snapshot data is obtainable.
This model could then incorporate, for instance, scRNA-seq measurements. This analysis
provides a starting point for acquiring mechanistic insights into the development of an
embryonic cell by utilizing different data sets.

I hope this summary has allowed you to get a glimpse of the very complex journey of an
embryonic cell. We showed how to define cell identity based on scRNA-seq data, and took
a closer look at the influence of master TFs. Then, we added cellular communication to
the experiments and found that it crucially influences a cell’s developmental path. Lastly,
we wanted to combine all this information into a mathematical model that allows us to
understand the mechanisms involved in the cell’s decisions. There is still much left to
study before we can fully understand how a cell makes its decisions.
May the embryonic cell always make the right choice!
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Figuur 6.8: De drie celtypen die tijdens de gastrulatie voorkomen.

embryonale cellen:
Cellen van het embryo die de potentie
hebben om elke cel van het lichaam te
worden.
gastrulatie:
Het punt waar drie belangrijke celty-
pes ontstaan: endoderm, mesoderm en
ectoderm.

Het menselijk leven begint met één bevruchte eicel die
zich ontwikkelt tot de ongeveer 30 biljoen cellen waaruit
ons lichaam is opgebouwd. In het begin is het ei slechts
één enkele cel met het potentieel om zich te delen en te
veranderen in uiterlijk, functie en samenstelling. Deze
veranderingen zijn nodig om zich tot een volledig mens te
ontwikkelen, waarbij cellen van het hart heel anders zijn
dan cellen in de longen of de hersenen. Er wordt geschat dat wij ongeveer 200 verschillende
celtypes in ons lichaam hebben. Cellen in een vroeg stadium na de bevruchting hebben
nog het potentieel om elke cel van het lichaam te worden. Deze noemen we embryonale

cellen. De weg van de embryonale cel naar een volledig gespecialiseerde cel bevat vele
tussenstadia. We kunnen ons dit pad voorstellen als onze weg naar een carrière. Als kind
kunnen we nog alles worden wat we willen, maar op school en aan de universiteit nemen
we beslissingen die ons specialisatiegebied verder inperken. Met elke beslissing die we
nemen komen we een stap dichter bij een gespecialiseerd vakgebied en tegelijkertijd wordt
het minder waarschijnlijk om van loopbaan te veranderen. Een van de eerste en meest
cruciale beslissingsmomenten in de ontwikkeling is bijvoorbeeld de gastrulatie (zie Fig.
6.8). Op dat moment ontstaan drie verschillende celtypes uit de embryonale cellen. Dit
zou vergelijkbaar zijn met het maken van een keuze voor een universitaire studie. Deze
keuze zal, in de meeste gevallen, de rest van ons leven beïnvloeden. Op dit punt kan de cel
kiezen tussen één van de drie celtypen: endoderm, mesoderm en ectoderm. Deze keuze
zal de toekomstige loopbaankeuzes beperken: Mesoderm wordt bijvoorbeeld het hart, de
bloedcellen of het botweefsel; Ectoderm wordt het zenuwstelsel of de huid; Endoderm
wordt de lever, de maag of de longen. In deze samenvatting wil ik u verder begeleiden op
de reis van de embryonale cel.

Informatiestroom in een cel:
DNA → RNA → eiwitten

Om werkelijk te begrijpen hoe een enkele cel beslissingen
neemt om een gespecialiseerd celtype te worden, moeten
we het binnenste van de cel bekijken. Wemoeten uitzoeken
waar deze informatie is opgeslagen en hoe deze wordt gebruikt. Elke cel in ons lichaam
bevat hetzelfde DNA, dat gedurende het hele leven van de cel bewaard blijft. Het draagt
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informatie over de bouwstenen van ons lichaam. Om preciezer te zijn bestaat het uit vele
genen die in het DNA zijn gecodeerd. Elk gen bevat andere informatie, bijvoorbeeld over de
kleur van de ogen, de haarkleur of de lengte. Het bevat ook genen die celtypes specificeren.
Voor elk celtype moeten dus andere genen actief worden. Om dat te doen, wordt de
informatie die de cel op dat moment nodig heeft doorgegeven van het DNA naar het RNA.
Elke cel in ons lichaam heeft andere RNA-moleculen. De laatste informatieoverdracht vindt
daarna plaats van RNA naar eiwit. Er wordt aangenomen dat het DNA ongeveer 20.000
genen bevat die coderen voor een eiwit, en onze cellen kunnen wel 500.000 verschillende
eiwitten bevatten. Eiwitten zijn de belangrijkste bestanddelen van de cel omdat zij een
groot aantal functies hebben. Eiwitten zijn als de werknemers in een bedrijf, elk van hen
heeft een andere taak te vervullen en om het bedrijf te laten werken moet iedereen zijn
werk doen. We kunnen de binnenkant van een embryonale cel in ontwikkeling zien als een
startend bedrijf. Het moet veel veranderingen aanbrengen in zijn structuur en werknemers
tot het een gevestigde onderneming wordt. Met de hulp van alle werknemers in het bedrijf
zal het bedrijf uiteindelijk een beslissing nemen voor de volgende fase. Een soort eiwit dat
in dit verband belangrijk is, wordt transcriptiefactor (TF) genoemd. TF’s beslissen welke
genen actief zullen zijn en welke ongebruikt zullen blijven in een cel. Zij controleren de
eiwitsamenstelling in de cel en kunnen worden gezien als de managers in het bedrijf. Zij
kunnen de werknemers in het bedrijf aannemen en ontslaan. TF’s die een groot aantal
genen kunnen controleren, worden master TF’s genoemd en zouden dus directeuren van
het bedrijf zijn. Vooral master TF’s geven de cel vaak zijn identiteit, wat betekent dat
in verschillende celtypes verschillende sets van master TF’s een rol spelen. Zo heeft elk
bedrijf zijn eigen groep van directeuren en samen beslissen zij over het merk van het
bedrijf. TF’s kunnen elkaar ook controleren en parallel werken. Op die manier vormen
ze een netwerk dat een genregulerend netwerk wordt genoemd. In dit scenario kunt
u zich voorstellen dat de directie meer moet inhuren of zich moet herstructureren. Als
verschillende directeuren om een positie twisten, dan kan de winnende groep directeuren
beslissen over het nieuwe bedrijfsmerk.

transcriptiefactoren:
Een eiwit dat de activiteit van som-
mige genen kan controleren.
master TFs:
TF’s die de activiteit van veel genen
kunnen regelen.
genregulerend netwerk:
Een netwerk van eiwitten die elkaar
activeren en onderdrukken.
single-cell RNA sequencing:
Een methode om het volledige RNA in
elke cel te meten.

Om te weten welke eiwitten in de cel actief zijn, moeten
ze worden gemeten. Het liefst zouden we alle eiwitten in
een cel willen meten om te begrijpen wat er precies aan
de hand is, maar dat is nog niet mogelijk. Wat wel moge-
lijk is, is het meten van de RNA-moleculen in een enkele
cel met een methode die scRNA-seq (Single Cell RNA Se-
quencing) wordt genoemd. De grootste verzameling van
gegevens die tot dusver met deze methode is geproduceerd
bevatte 1,3 miljoen hersencellen. Aangezien eiwitten wor-
den gemaakt uit RNA, kunnen we een schatting krijgen
van het aantal eiwitten in een cel door het aantal RNA’s te meten. scRNA-seq heeft on-
gekende inzichten opgeleverd in de definitie van een celtype en de ontwikkeling van een
embryonale cel. Celtypen worden nu gedefinieerd op basis van het aantal RNA’s en vele
nieuwe celtypen zijn in de afgelopen decennia op deze manier ontdekt.

In hoofdstuk 1 van dit proefschrift wordt de celidentiteit in meer detail besproken en
wordt uitgelegd welke veranderingen zich voordoen tijdens de ontwikkeling van een cel.
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Het schetst vele single-cell technieken die momenteel worden gebruikt om DNA, RNA,
eiwitten en chemische modificaties in elke enkele cel te meten. Tenslotte introduceert het
wiskundige modellen voor celontwikkeling om de mechanismen en oorzakelijke verbanden
tussen genen beter te begrijpen.

Hoofdstuk 2 leidt een methode af, genaamd phiclust, om de zuiverheid van een celtype in
scRNA-seq gegevens te evalueren. Aangezien we alle RNA moleculen in een cel kunnen
meten, is het belangrijk te evalueren wanneer twee cellen van hetzelfde type zijn. Elke cel
heeft verschillende RNA-moleculen als gevolg van willekeurige fluctuaties en processen
die geen verband houden met celidentiteit. Onze nieuwe methode kan bepalen of de ver-
schillen in RNA-moleculen tussen cellen verschillend zijn van willekeurige fluctuaties. Als
de verschillen groter zijn, dan zijn de cellen van verschillende types. We hebben phiclust
gebruikt op scRNA-seq data van een ontwikkelende nier en ontdekten celtypes die voor-
heen over het hoofd zijn gezien. Op deze manier kan phiclust helpen bij het classificeren
en identificeren van de vele celtypen in ons lichaam.

in vivo:
Een proces waar cellen in hun natuur-
lijke biologische omgeving zijn.
in vitro:
Een proces waarbij cellen buiten hun
biologische omgeving in een schaaltje
liggen.
geïnduceerde pluripotente stam-
cellen: Volgroeide cellen die omge-
vormd zijn tot stamcellen.
endotheliale cellen:
Cellen die vaten vormen in het li-
chaam.

Tijdens de ontwikkeling worden cellen beïnvloed door
vele factoren die de beslissing van de cellen kunnen ver-
anderen. Net als voor ons, wanneer we beslissen over een
carrièrepad, maakt het uit aan welke omgevingsinvloeden
we zijn blootgesteld. Hetzelfde gebeurt voor cellen: Hun
beslissing hangt af van de beslissingen van andere cellen
in hun omgeving. Een embryonale cel bevindt zich natuur-
lijk in de baarmoeder van de moeder. Het bestuderen van
cellen in de natuurlijke context wordt in vivo genoemd.
Om ethische redenen is het onmogelijk de menselijke ont-
wikkeling in vivo nader te bestuderen. Bovendien vinden in vivo veel processen gelijktijdig
plaats die we niet kunnen controleren en waarvan we ook niet weten wat hun invloed is.
Daarom hebben we besloten te kijken naar systemen in vitro. In vitro verwijst naar studies
buiten de normale biologische omgeving in een gecontroleerde laboratoriumomgeving.
Om embryonale cellen buiten het lichaam te bestuderen, moeten ze worden geëxtraheerd
en gekweekt in een schaal. Zodra ze in vitro stabiel zijn, noemen we ze embryonale stam-
cellen. Embryonale stamcellen behouden nog steeds hun potentieel om elk celtype van het
lichaam te worden, maar ze zijn wel uit hun oorspronkelijke omgeving gehaald. Ook om
ethische redenen maken biologen vaak gebruik van geïnduceerde pluripotente stamcel-

len (iPSC’s). Deze cellen worden uit rijpe cellen van het lichaam gehaald, bijvoorbeeld uit
de huid. Vervolgens worden zij omgevormd tot de kenmerken van een stamcel en krijgen
zij het potentieel om elk celtype van het lichaam te worden. Samengevat: embryonale cellen

in vivo zijn embryonale stamcellen in vitro.

In hoofdstuk 3 wordt de invloed van master TF ETV2 op bloedvatcellen in vitro bestudeerd.
Cellen die de bloedvaten in ons lichaam vormen worden endotheelcellen genoemd. In
het algemeen is hun functie het vormen van een barrière tussen een vloeistof, bijvoorbeeld
bloed, en het omringende weefsel. In het bijzonder zijn bloedvatvormende endotheelcel-
len belangrijk voor de goede werking van het hart. Om het besluitvormingsproces van
een endotheelcel te begrijpen, werden iPSC’s in een schaaltje gelegd en door specifieke
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chemische signalen gestimuleerd om endotheelcellen te worden. Maar zoals hierboven
beschreven, zijn er tussenstadia in de reis van de embryonale cel, die in vitro moeten
worden gerespecteerd. Om de metafoor van het carrièrepad te gebruiken, betekent dit
dat de cel eerst één van de drie basis carrièrepaden moet kiezen die voor cellen mogelijk
zijn. Voor een endotheelcel is dit het mesoderm. Om een bloedvat te worden moet hij
zich, bijvoorbeeld tijdens zijn masterstudie, specialiseren in het cardiaal mesoderm (dat
verband houdt met het hart). Na zijn masterstudie kan hij nu kiezen voor de taak van
een endotheelcel. Verrassend is dat bij de experimenten twee celtypes ontstaan: endo-
theelcellen en hartspiercellen die verantwoordelijk zijn voor de samentrekkingen van het
hart. Dit betekent dat de cellen na de masterstudies nog steeds konden kiezen tussen twee
verschillende taken. Met behulp van scRNA-seq hebben we aangetoond dat de beslissing
afhangt van de master TF ETV2. Als er minder ETV2 is zullen de iPSCs hartspiercellen
worden en als er meer ETV2 is zullen ze endotheelcellen worden. Hier kunnen we zien
hoe belangrijk master TFs zijn in de beslissing van de cel. Als een master TF is ETV2 in
staat de activiteit van andere genen te beheren. Als er voldoende ETV2 in de cel is zal
het dus genen van de endotheliale celidentiteit activeren en op deze manier het merk van
de cel te veranderen. Na deze verandering is ETV2 niet langer nodig en wordt het uit de
regiefunctie ontslagen. Dit is een voorbeeld van een gen-regulerend netwerk en hoe het
verandert als de cel keuzes maakt.

cardiaal:
Gerelateerd aan het hart.
liganden:
Eiwitten die door cellen worden ge-
bruikt om te communiceren.
paraxiaal:
Cellen die langs een as liggen.

Zoals hierboven vermeld, kunnen omgevingsfactoren de
beslissing van een cel beïnvloeden. Een manier waarop
dit gebeurt is door communicatie met elkaar. Cellen com-
municeren bijvoorbeeld via specifieke eiwitten, genaamd
liganden. Dit type eiwit heeft de eigenschap de cel te
verlaten en naar de volgende cel te gaan. Als het bij een
andere cel aankomt, verandert het het gen-regulerende netwerk van de ontvangende cel.
Met andere woorden, dit bericht-eiwit kan de beslissingen van de managers in een ander
bedrijf beïnvloeden. In de eerste helft van dit proefschrift lag de nadruk op veranderingen
in de interne samenstelling van de cellen. In de tweede helft zullen we dit uitbreiden
door de invloed van cellulaire communicatie op de celsamenstelling te onderzoeken. We
zullen in vitro celtypes bestuderen die van nature in vivo samen zouden voorkomen om te
begrijpen hoe ze elkaar beïnvloeden.

In hoofdstuk 4 wordt de invloed van de ontwikkelingsoorsprong op de cellulaire com-
municatie in endotheelcellen vergeleken. Dit hoofdstuk is een voortzetting van hoofdstuk

3, waarin hartspiercellen en endotheelcellen werden afgeleid. In vivo bestaat het menselijk
hart uit meerdere celtypes, waaronder hartspiercellen, bloedvatcellen (endotheelcellen),
en bindweefsel. Daarom werden deze drie celtypes samengebracht in een schaaltje in
vitro om een hartweefselomgeving te creëren. Endotheelcellen vormen echter niet alleen
bloedvaten, maar kunnen bijvoorbeeld ook lymfevaten vormen die lymfe in plaats van
bloed vervoeren in het lichaam. Wij wilden begrijpen hoe endotheelcellen beslissen welk
type bloedvat zij worden: Worden ze ofwel beïnvloed door de communicatie met naburige
cellen of beïnvloed door de ontwikkelingsoorsprong van de cel (vorige carrièrekeuzes)?
Om deze reden werd een tweede experiment toegevoegd waarbij endotheelcellen zich
specialiseerden in het paraxiale mesoderm in plaats van het cardiale mesoderm. Endo-
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theelcellen afkomstig van het paraxiale mesoderm vormen gewoonlijk lymfevaten in plaats
van bloedvaten. Vervolgens werden beide endotheelcellen, van beide achtergronden, in
dezelfde hartweefselomgeving gebracht. Met scRNA-seq zagen we dat de RNA-profielen
van beide endotheelcellen zeer vergelijkbaar waren na integratie in het hartweefselmilieu.
Dit resultaat toont aan dat cellulaire communicatie voor endotheelcellen belangrijker is dan
de ontwikkelingsachtergrond. Het laat ook in het algemeen zien dat omgevingsinvloeden
een groot effect hebben op de beslissingen van cellen.

In een tweede voorbeeld in hoofdstuk 5 laten we zien hoe cellulaire communicatie kan
leiden tot de vorming van een neurale buis in vitro. We onderzochten cellulaire commu-
nicatie in een bekend in vitro modelsysteem, namelijk gastruloïden. Dit systeem is een
model voor gastrulatie dat het moment bij uitstek is tussen de drie universitaire studies van
de cel (zie Fig. 6.8): endoderm, ectoderm en mesoderm. Wij hebben gebruik gemaakt van
embryonale stamcellen van muizen om dit belangrijke beslissingsmoment te reproduceren.
De embryonale stamcellen zijn in staat om alle drie celtypes zelf te vormen in een schaaltje.
Maar we weten uit in vivo studies dat het embryo omgeven is door een laag cellen die we
extraembryonale endodermcellen (XEN) noemen. Wanneer embryonale stamcellen in
vitro werden gecombineerd met XEN-cellen, vormden de XEN-cellen een buitenste laag
rond de stamcellen, net als in vivo. Nog opvallender was dat de stamcellen structuren
begonnen te vormen die leken op een buis. Deze structuren zijn niet waargenomen zonder
toevoeging van XEN-cellen. Ze moeten dus een direct gevolg zijn van de communicatie
tussen de twee celtypen. Met scRNA-seq en microscopie hebben wij deze structuren ge-
karakteriseerd. We ontdekten dat ze evolueren uit het ectoderm, dat verantwoordelijk is
voor het ontstaan van het zenuwstelsel. Deze bevindingen wijzen op de betrokkenheid
van XEN-cellen bij de vorming van neurale buis-achtige structuren. Bovendien stelden
wij vast dat ook de muizenembryonale stamcellen veranderingen veroorzaken in het RNA
van XEN-cellen. Dit experiment toont aan dat communicatie tussen cellen al in de vroege
stadia van de ontwikkeling van een cel zeer belangrijk is.

extraembryonale cellen vanhet en-
doderm:
Cellen die de buitenkant van het em-
bryo vormen.
dynamische systemen:
Vergelijkingen die evolueren in de tijd.

In de vorige hoofdstukken hebben we met scRNA-seq en
microscopie elementen gekarakteriseerd die betrokken zijn
bij de beslissingen van een cel. Echter willen we ook wis-
kundige modellen formuleren om de causale relaties in
een gen-regulerend netwerk te begrijpen. Daarom zijn
we begonnen deze gegevens te gebruiken om wiskundige
vergelijkingen op te stellen over geninteracties tijdens de ontwikkeling inHoofdstuk 6. Deze
vergelijkingen, die dynamische systemen worden genoemd, beschrijven de tijdsevolutie
van elk gen in het genregulerend netwerk. In een dynamisch systeem bepalen parameters
de sterkte van interacties tussen genen of moleculen. Wij gebruikten fysisch geïnformeerde
diepe neurale netwerken (PINNs) om deze parameters met gemeten gegevens te bepalen.
Een neuraal netwerk is een techniek voor machinaal leren die gewoonlijk met succes wordt
gebruikt voor patroonherkenning. PINNs combineren machinaal leren met natuurkundige
wetten. Op die manier kunnen we patronen in de gegevens vinden terwijl we ons houden
aan vooraf bepaalde wiskundige vergelijkingen. Wij hebben twee relevante experimentele
scenario’s behandeld: Eén waarbij cellen communiceren en metingen van enkele cellen
beschikbaar zijn. Deze gegevens kunnen bijvoorbeeld worden gegenereerd door eiwitten in
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de tijd in beeld te brengen. In het andere scenario communiceren cellen niet, en zijn alleen
momentopnamen beschikbaar. In dit model kunnen dan bijvoorbeeld scRNA-seq-metingen
worden gedaan. Deze analyse biedt een uitgangspunt voor het verwerven van mechanis-
tische inzichten in de ontwikkeling van een embryonale cel door gebruik te maken van
verschillende datasets.

Ik hoop dat deze samenvatting u een glimp heeft laten zien van de zeer complexe reis
van een embryonale cel. We hebben laten zien hoe we de celidentiteit kunnen bepalen op
basis van scRNA-seq gegevens, en we hebben de invloed van master TF’s nader bekeken.
Vervolgens hebben we cellulaire communicatie aan de experimenten toegevoegd en ontdekt
dat deze een cruciale invloed heeft op het ontwikkelingstraject van een cel. Ten slotte
hebben we al deze informatie gecombineerd in een wiskundig model dat ons in staat stelt
de mechanismen te begrijpen die betrokken zijn bij de beslissingen van de cel. Er valt
echter nog veel te onderzoeken voordat we volledig begrijpen hoe een cel zijn beslissingen
neemt.
Moge de embryonale cel altijd de juiste keuze maken!
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Zusammenfassung

Embryonalzellen

Ektoderm Mesoderm Entoderm

Lunge
Magen

Leber

. . .
Herz

Blut Knochen

. . .
Haut

Nervensystem

. . .

Abbildung 6.9: Die drei Zelltypen, die während der Gastrulation entstehen.

Embryonalzellen:
Zellen des Embryos, die das Potenzial
haben, sich zu einer beliebigen Zelle
des Körpers zu entwickeln.
Gastrulation:
Der Punkt, an dem drei wichtige Zell-
typen entstehen: Entoderm, Meso-
derm und Ektoderm.

Das menschliche Leben beginnt mit einer einzigen be-
fruchteten Eizelle, die sich zu etwa 30 Billionen Zellen
entwickelt, aus denen unser Körper besteht. Die Eizelle
ist zu Beginn nur eine einzige Zelle mit dem Potenzial,
sich zu teilen und ihr Aussehen, ihre Funktion und ihre
Zusammensetzung zu verändern. Diese Veränderungen
sind notwendig, um sich zu einem vollständigen Menschen
zu entwickeln, wobei sich die Zellen des Herzens stark von den Zellen der Lunge oder des
Gehirns unterscheiden. Man schätzt, dass es in unserem Körper etwa 200 verschiedene Zell-
typen gibt. Zellen in einem frühen Stadium nach der Befruchtung haben noch das Potenzial,
sich zu jeder Zelle des Körpers zu entwickeln, und wir bezeichnen sie als embryonale

Zellen. Der Weg von der embryonalen Zelle zu einer voll spezialisierten Zelle enthält viele
Zwischenstufen. Wir können uns diesenWeg als unserenWeg zur Berufsfindung vorstellen.
Als Kind können wir noch alles werden, was wir wollen, aber während der Schul- und
Universitätszeit treffen wir Entscheidungen, die unser Spezialisierungsfeld weiter eingren-
zen. Mit jeder Entscheidung, die wir treffen, kommen wir einem Fachgebiet einen Schritt
näher, und gleichzeitig wird es unwahrscheinlicher, den Berufsweg zu wechseln. Eines der
ersten und wichtigsten Entscheidungsereignisse in der Entwicklung ist zum Beispiel die
Gastrulation (siehe Abb. 6.9). Zu diesem Zeitpunkt entstehen drei verschiedene Zelltypen
aus den embryonalen Zellen. Dies ist vergleichbar mit der Wahl eines Universitätsstudi-
ums. Diese Wahl wird in den meisten Fällen den Rest unseres Lebens beeinflussen. Zu
diesem Zeitpunkt kann die Zelle zwischen einem der drei Zelltypen wählen: Entoderm,
Mesoderm und Ektoderm. Diese Wahl schränkt die künftige Berufswahl ein: Mesoderm
wird zum Beispiel das Herz, die Blutzellen oder das Knochengewebe; Ektoderm wird das
Nervensystem oder die Haut; Entoderm wird die Leber, der Magen oder die Lunge. In
dieser Zusammenfassung möchte ich Sie weiter durch die Reise der embryonalen Zelle
begleiten.

Informationsfluss in einer Zelle:
DNS → RNS → Protein

Umwirklich zu verstehen, wie eine einzelne Zelle Entschei-
dungen trifft, um zu einem spezialisierten Zelltyp zu wer-
den, müssen wir in das Innere der Zelle schauen. Wir
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müssen herausfinden, wo diese Information gespeichert ist und wie sie verwendet wird.
Jede Zelle in unserem Körper enthält dieselbe DNS, die während der gesamten Lebenszeit
der Zelle erhalten bleibt. Sie enthält Informationen über die Bausteine unseres Körpers.
Genauer gesagt besteht sie aus vielen Genen, die in der DNS kodiert sind. Jedes Gen
enthält unterschiedliche Informationen, zum Beispiel über die Augenfarbe, Haarfarbe oder
Körpergröße. Sie enthält auch Gene, die Zelltypen bestimmen. Für jeden Zelltyp müssen
also unterschiedliche Gene aktiv werden. Dazu werden die Informationen, die die Zelle
gerade braucht, von der DNS an die RNS weitergegeben. Jede Zelle in unserem Körper hat
unterschiedliche RNS-Moleküle. Die letzte Informationsübertragung ist dann die von der
RNS zum Protein. Man geht davon aus, dass die DNS etwa 20.000 Gene enthält, die für ein
Protein kodieren, und unsere Zellen können bis zu 500.000 verschiedene Proteine haben.
Proteine sind die wichtigsten Bestandteile der Zelle, weil sie eine Vielzahl von Funktionen
haben. Proteine sind wie die Angestellten in einem Unternehmen, jeder von ihnen hat
eine andere Aufgabe, und damit das Unternehmen funktioniert, muss jeder seine Aufgabe
erfüllen. Wir können uns das Innere einer embryonalen Zelle in der Entwicklung wie
ein Start-up-Unternehmen vorstellen. Es muss viele Änderungen an seiner Struktur und
seinen Mitarbeitern vornehmen, bis es zu einem etablierten Unternehmen wird. Mit Hilfe
aller Mitarbeiter des Unternehmens wird das Unternehmen am Ende eine Entscheidung für
die nächste Phase treffen. Eine Art von Protein, das in diesem Zusammenhang wichtig ist,
heißt Transkriptionsfaktor (TF). Die TF entscheiden, welche Gene in einer Zelle aktiv
werden und welche ungenutzt bleiben. Sie kontrollieren die Proteinzusammensetzung
in der Zelle und können als die Manager in einem Unternehmen angesehen werden. Sie
können die Mitarbeiter des Unternehmens einstellen und entlassen. TF, die eine große
Anzahl von Genen kontrollieren können, werden als "Master-TF" bezeichnet und wären
somit die Direktoren des Unternehmens. Insbesondere die Master-TF verleihen der Zelle oft
ihre Identität, was bedeutet, dass in verschiedenen Zelltypen unterschiedliche Gruppen von
Master-TF im Spiel sind. So hat jedes Unternehmen seine eigene Gruppe von Direktoren,
die gemeinsam über die Marke des Unternehmens entscheiden. Die TF können sich auch
gegenseitig kontrollieren und parallel arbeiten. Auf diese Weise bilden sie ein Netzwerk,
das als Genregulationsnetzwerk bezeichnet wird. In diesem Szenario können Sie sich
vorstellen, dass die Geschäftsleitung sich selbst einstellen oder umstrukturieren muss.
Wenn sich mehrere Direktoren um eine Position streiten, kann die Direktorengruppe, die
den Zuschlag erhält, die neue Unternehmensmarke bestimmen.

Transkriptionsfaktoren:
Ein Protein, das die Aktivität einiger
Gene steuern kann.
master TF:
TF, die die Aktivität vieler Gene
steuern können.
Genregulationsnetzwerk:
Ein Netzwerk von Proteinen, die
sich gegenseitig aktivieren und
unterdrücken.
single cell RNA sequencing:
Eine Methode zur Messung der
gesamten RNA in jeder einzelnen
Zelle.

Um zu wissen, welche Proteine in der Zelle aktiv sind,
müssen sie gemessen werden. Am liebsten würden wir
alle Proteine in einer Zelle messen, um genau zu verstehen,
was vor sich geht, aber das ist noch nicht möglich. Was
jedoch möglich ist, ist die Messung der RNS-Moleküle in
einer einzelnen Zelle mit einer Methode, die als single-
cell RNA sequencing (scRNA-seq) bezeichnet wird. Der
größte Datensatz, der bisher mit dieser Methode erzeugt
wurde, umfasste 1,3 Millionen Gehirnzellen. Da Proteine
aus RNS hergestellt werden, können wir die Anzahl der
Proteine in einer Zelle schätzen, indem wir die Anzahl der
RNS messen. scRNA-seq hat beispiellose Einblicke in die Definition eines Zelltyps und die
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Entwicklung einer embryonalen Zelle gegeben. Zelltypen werden nun auf der Grundlage
der Anzahl der RNS definiert, und viele neue Zelltypen wurden in den letzten Jahrzehnten
auf diese Weise entdeckt.

Kapitel 1 dieser Arbeit gibt einen genaueren Überblick über die Zellidentität und erklärt
die Veränderungen, die während der Entwicklung einer Zelle auftreten. Es werden zahlre-
iche Einzelzelltechniken vorgestellt, die derzeit zur Messung von DNS, RNS, Proteinen
und chemischen Veränderungen in jeder einzelnen Zelle verwendet werden. Schließlich
werden mathematische Modelle für die Zellentwicklung vorgestellt, die dabei helfen die
Mechanismen und kausalen Beziehungen zwischen Genen besser zu verstehen.

Kapitel 2 leitet eine Methode namens phiclust her, um die Reinheit eines Zelltyps in
scRNA-seq-Daten zu bewerten. Da wir alle RNS-Moleküle in einer Zelle messen können, ist
es wichtig zu bewerten, wann zwei Zellen vom gleichen Typ sind. Jede Zelle hat aufgrund
von zufälligen Fluktuationen und Prozessen, die nichts mit der Zellidentität zu tun haben,
unterschiedliche RNS-Moleküle. Mit unserer neuen Methode lässt sich feststellen, ob die
Unterschiede in den RNS-Molekülen zwischen den Zellen von zufälligen Fluktuationen ab-
weichen. Wenn die Unterschiede größer sind, handelt es sich um unterschiedliche Zelltypen.
Wir haben phiclust auf scRNA-seq-Daten einer sich entwickelnden Niere angewendet und
dabei bisher übersehene Zelltypen entdeckt. Auf diese Weise kann phiclust helfen, die
vielen Zelltypen in unserem Körper zu klassifizieren und zu identifizieren.

in vivo:
Ein Prozess, bei dem sich Zellen
in ihrem natürlichen biologischen
Kontext befinden.
in vitro:
Ein Prozess, bei dem sich Zellen
außerhalb ihres biologischen Kon-
textes in einer Schale befinden.
induzierte pluripotente Stam-
mzellen: Ausgereifte Zellen, die in
Stammzellen umgewandelt werden.

Während der Entwicklung werden die Zellen von vie-
len Faktoren beeinflusst, die die Entscheidung der Zellen
verändern können. So wie bei uns, wenn wir uns für einen
beruflichen Weg entscheiden, spielt es eine Rolle, welchen
Umwelteinflüssen wir ausgesetzt waren. Das Gleiche gilt
für Zellen: Ihre Entscheidung hängt von den Entschei-
dungen der anderen Zellen in ihrer Umgebung ab. Eine
embryonale Zelle befindet sich normal im Mutterleib. Das
Studium von Zellen im natürlichen Kontext wird als in
vivo bezeichnet. Aus ethischen Gründen ist es nicht möglich, die menschliche Entwicklung
in vivo zu untersuchen. Außerdem laufen in vivo viele Prozesse gleichzeitig ab, die wir
nicht kontrollieren können und deren Einfluss wir auch nicht kennen. Daher haben wir
beschlossen, uns mit In-vitro-Systemen zu befassen. In vitro bezieht sich auf Studien
außerhalb des normalen biologischen Kontextes in einer kontrollierten Laborumgebung.
Um embryonale Zellen außerhalb des Körpers zu untersuchen, müssen sie entnommen und
in einer Schale kultiviert werden. Sobald sie in vitro stabil sind, nennen wir sie embryonale
Stammzellen. Embryonale Stammzellen haben immer noch das Potenzial, sich in jeden
Zelltyp des Körpers zu verwandeln, sind aber aus ihrer ursprünglichen Umgebung her-
ausgelöst worden. Auch aus ethischen Gründen verwenden Biologen häufig induzierte

pluripotente Stammzellen (iPSCs). Diese Zellen werden aus reifen Zellen des Körpers,
z.B. der Haut, entnommen. Dann werden sie zu stammzellenartigen Zellen zurückverwan-
delt und erhalten wieder das Potenzial, sich in jeden Zelltyp des Körpers zu verwandeln.
Zusammengefasst: Embryonale Zellen in vivo sind embryonale Stammzellen in vitro.
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Kapitel 3 untersucht den Einfluss des Master-TF ETV2 in Blutgefäßzellen in vitro. Zellen, die
die Gefäße in unserem Körper bilden, werden als Endothelzellen bezeichnet. Ihre Aufgabe
besteht im Allgemeinen darin, eine Barriere zwischen einer Flüssigkeit, z.B. Blut, und dem
umgebenden Gewebe zu bilden. Insbesondere die blutgefäßbildenden Endothelzellen sind
wichtig für das reibungslose Funktionieren des Herzens. Um den Entscheidungsprozess
einer Endothelzelle zu verstehen, wurden iPSCs in eine Schale gegeben und durch bes-
timmte chemische Reize dazu angeregt, Endothelzellen zu werden. Wie oben beschrieben,
gibt es jedoch Zwischenstufen auf der Reise der embryonalen Zelle, die in vitro beachtet
werden müssen. In Anlehnung an die Metapher des Karrierewegs bedeutet dies, dass sie
zunächst einen der drei grundlegenden Karrierewege wählen muss, die Zellen haben. Für
eine Endothelzelle ist dies das Mesoderm. Um ein Blutgefäß zu werden, muss sie sich, wie
im Masterstudium, auf das Herzmesoderm spezialisieren. Nach ihrem Masterstudium kann
sie nun den Beruf einer Endothelzelle wählen. Überraschenderweise haben wir festgestellt,
dass bei den Experimenten zwei Zelltypen entstehen: Endothelzellen undHerzmuskelzellen,
die für die Kontraktionen imHerzen verantwortlich sind. Das bedeutet, dass die Zellen nach
den Masterstudien immer noch zwischen zwei verschiedenen Aufgaben wählen können.
Mithilfe von scRNA-seq konnten wir zeigen, dass die Entscheidung von dem Master-TF
ETV2 abhängt. Wenn weniger ETV2 vorhanden ist, werden die iPSCs zu Herzmuskelzellen,
wenn mehr ETV2 vorhanden ist, werden sie zu Endothelzellen. Hier können wir sehen,
wie wichtig Master-TF für die Entscheidung der Zelle sind. Als Master-TF ist ETV2 in
der Lage, die Aktivität anderer Gene zu steuern. Wenn also genügend ETV2 in der Zelle
vorhanden ist, aktiviert es Gene, die für die Identität der Endothelzelle verantwortlich sind,
und verleiht der Zelle auf diese Weise ein neues Image. Nach dem Markenwechsel wird
ETV2 nicht mehr benötigt und wird aus seiner Position als Direktor entlassen. Dies ist ein
Beispiel für ein genregulatorisches Netzwerk und wie es sich verändert, wenn die Zelle
Entscheidungen trifft.

endotheliale Zellen:
Zellen, die Gefäße im Körper bilden.
Liganden:
Proteine, die von Zellen zur Kommu-
nikation verwendet werden.

Wie bereits erwähnt, können Umweltfaktoren die Entschei-
dung einer Zelle beeinflussen. Dies geschieht unter an-
derem durch die Kommunikation untereinander. Zellen
kommunizieren zum Beispiel über bestimmte Proteine, die
Liganden genannt werden. Diese Art von Protein hat die
Fähigkeit, die Zelle zu verlassen und zur nächsten Zelle zu wandern. Sobald es in einer
anderen Zelle ankommt, verändert es das Genregulationsnetzwerk der empfangenden
Zelle. Mit anderen Worten: Dieses Nachrichtenprotein kann die Entscheidungen der Man-
ager eines anderen Unternehmens beeinflussen. In der ersten Hälfte dieser Arbeit lag
der Schwerpunkt auf den Veränderungen in der internen Zusammensetzung der Zellen.
In der zweiten Hälfte werden wir dies erweitern, indem wir den Einfluss der zellulären
Kommunikation auf die Zusammensetzung der Zelle untersuchen. Wir werden in vitro
kombinierte Zelltypen untersuchen, die in vivo natürlich zusammen vorkommen, um zu
verstehen, wie sie sich gegenseitig beeinflussen.

Kapitel 4 vergleicht den Einfluss des Entwicklungsursprungs auf die zelluläre Kommunika-
tion in Endothelzellen. Dieses Kapitel ist eine Fortsetzung von Kapitel 3, wo Herzmuskel-
und Endothelzellen abgeleitet wurden. In vivo besteht das menschliche Herz aus mehreren
Zelltypen, darunter Herzmuskelzellen, Blutgefäßzellen (Endothelzellen) und Bindegewebe.
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Daher wurden diese drei Zelltypen in einer Schale in vitro zusammengebracht, um eine
Herzgewebeumgebung zu schaffen. Endothelzellen bilden jedoch nicht nur Blutgefäße,
sondern können zum Beispiel auch Lymphgefäße bilden, die Lymphe statt Blut im Körper
transportieren. Wir wollten verstehen, wie Endothelzellen entscheiden, welche Art von
Gefäß sie bilden: Werden sie entweder durch die Kommunikation mit benachbarten Zellen
oder durch die Entwicklungsherkunft der Zelle (frühere Berufswahl) beeinflusst? Aus
diesem Grund wurde ein zweites Experiment durchgeführt, bei dem sich die Endothelzellen
in ihren Masterstudien auf das paraxialMesoderm statt auf das kardiale Mesoderm spezial-
isierten. Endothelzellen, die aus dem paraxialen Mesoderm stammen, bilden normalerweise
eher Lymphgefäße als Blutgefäße. Anschließend wurden beide Endothelzellen, unabhängig
von ihrem Hintergrund, in dieselbe Herzgewebeumgebung gebracht. Mittels scRNA-seq
konnten wir feststellen, dass die RNS-Profile beider Endothelzellen nach der Integration in
die Herzgewebeumgebung sehr ähnlich waren. Dieses Ergebnis zeigt, dass die zelluläre
Kommunikation für Endothelzellen wichtiger ist als der Entwicklungshintergrund. Es zeigt
auch allgemein, dass Umwelteinflüsse einen großen Einfluss auf die Entscheidungen von
Zellen haben.

paraxial:
Zellen, die entlang einer Achse liegen.
extraembryonale Endoder-
mzellen:
Zellen, die die Außenseite des
Embryos umgeben.

In einem zweiten Beispiel in Kapitel 5 zeigen wir, wie
zelluläre Kommunikation die Bildung eines Neuralrohrs
in vitro verursachen kann. Wir untersuchten die zel-
luläre Kommunikation in einem bekannten In-vitro-
Modellsystem, den Gastruloiden. Dieses System ist ein
Modell für die Gastrulation, die der Moment der Wahl
zwischen den drei universitären Studien der Zelle ist (siehe Abb. 6.9): Entoderm, Ektoderm
und Mesoderm. Wir haben embryonale Stammzellen der Maus verwendet, um dieses
wichtige Entscheidungsereignis zu reproduzieren. Die embryonalen Stammzellen sind in
der Lage, alle drei Zelltypen in einer Schale selbst zu bilden. Aus In-vivo-Studien wissen
wir jedoch, dass der Embryo von einer Schicht von Zellen umgeben ist, die als extraem-

bryonale Entodermzellen (XEN) bezeichnet werden. Als embryonale Stammzellen in
vitro mit XEN-Zellen kombiniert wurden, bildeten die XEN-Zellen eine äußere Schicht um
die Stammzellen, genau wie in vivo. Noch auffälliger war, dass die Stammzellen anfingen,
Strukturen zu bilden, die wie eine Röhre aussahen. Diese Strukturen sind ohne die Zugabe
von XEN-Zellen nicht beobachtet worden. Sie müssen also ein direktes Ergebnis der Kom-
munikation zwischen den beiden Zelltypen sein. Mit scRNA-seq und Bildgebung haben
wir diese Strukturen charakterisiert. Wir fanden heraus, dass sie sich aus dem Ektoderm
entwickeln, das für die Bildung des Nervensystems verantwortlich ist. Diese Ergebnisse
deuten auf die Beteiligung von XEN-Zellen an der Bildung von Neuralrohr-ähnlichen Struk-
turen hin. Darüber hinaus haben wir festgestellt, dass auch die embryonalen Stammzellen
der Maus Veränderungen in der RNS der XEN-Zellen verursachen. Dieses Experiment zeigt,
dass die Kommunikation zwischen den Zellen bereits in den frühen Stadien des Weges
einer Zelle sehr wichtig ist.

In den vorangegangenen Kapiteln haben wir Elemente, die an den Entscheidungen einer
Zelle beteiligt sind, mit scRNA-seq und Bildgebung charakterisiert. Um jedoch die kausalen
Beziehungen in einem genregulatorischen Netzwerk zu verstehen, müssen wir mathe-



212 Zusammenfassung

matische Modelle formulieren. Deshalb haben wir uns vorgenommen, diese Daten zu
nutzen, um mathematische Gleichungen über Geninteraktionen während der Entwicklung
in Kapitel 6 aufzustellen. Diese Gleichungen beschreiben die zeitliche Entwicklung jedes
Gens im Genregulationsnetzwerk und werden als dynamische Systeme bezeichnet. In
einem dynamischen System bestimmen die Parameter die Stärke der Wechselwirkungen
zwischen Genen oder Molekülen. Wir haben physikinformierte tiefe neuronale Netze
(PINN) eingesetzt, um diese Parameter anhand von Messdaten zu bestimmen. Ein neu-
ronales Netz ist eine Technik des maschinellen Lernens, die normalerweise erfolgreich
zur Mustererkennung eingesetzt wird. Die PINN kombinieren maschinelles Lernen mit
physikalischen Gesetzen. Auf diese Weise können wir Muster aus den Daten lernen und
dabei vordefinierte mathematische Gleichungen einhalten. Wir haben zwei relevante ex-
perimentelle Szenarien untersucht: Eines, in dem Zellen kommunizieren und Messungen
von einzelnen Zellen verfügbar sind. Diese Daten können z. B. durch die Abbildung von
Proteinen im Zeitverlauf gewonnen werden. In dem anderen Szenario kommunizieren die
Zellen nicht, und es sind nur Momentaufnahmen möglich. Dieses Modell könnte dann z.B.
scRNA-seq-Messungen einbeziehen. Diese Analyse bietet einen Ausgangspunkt für die
Gewinnung mechanistischer Erkenntnisse über die Entwicklung einer embryonalen Zelle
durch die Nutzung verschiedener Datensätze.

dynamische Systeme:
Gleichungen, die sich im Laufe der
Zeit weiterentwickeln.

Ich hoffe, diese Zusammenfassung hat Ihnen einen Ein-
blick in die sehr komplexe Reise einer embryonalen Zelle
gegeben. Wir haben gezeigt, wie die Zellidentität auf der
Grundlage von scRNA-seq-Daten definiert werden kann,
und haben uns den Einfluss vonMaster-TF genauer angesehen. Dann fügten wir den Experi-
menten die zelluläre Kommunikation hinzu und stellten fest, dass sie den Entwicklungsweg
einer Zelle entscheidend beeinflusst. Schließlich wollten wir all diese Informationen in
einem mathematischen Modell zusammenfassen, das es uns ermöglicht, die Mechanismen
zu verstehen, die an den Entscheidungen der Zelle beteiligt sind. Es gibt noch viel zu
erforschen, bevor wir vollständig verstehen können, wie eine Zelle ihre Entscheidungen
trifft.
Möge die embryonale Zelle immer die richtige Entscheidung treffen!
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