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Abstract
Purpose Machine Learning (ML) algorithms represent an interesting alternative to maximum a posteriori Bayesian estima-
tors (MAP-BE) for tacrolimus AUC estimation, but it is not known if training an ML model using a lower number of full 
pharmacokinetic (PK) profiles (= “true” reference AUC) provides better performances than using a larger dataset of less 
accurate AUC estimates. The objectives of this study were: to develop and benchmark ML algorithms trained using full 
PK profiles to estimate  MeltDose®-tacrolimus individual AUCs using 2 or 3 blood concentrations; and to compare their 
performance to MAP-BE.
Methods Data from liver (n = 113) and kidney (n = 97) transplant recipients involved in MeltDose-tacrolimus PK studies 
were used for the training and evaluation of ML algorithms. “True” AUC0-24 h was calculated for each patient using the 
trapezoidal rule on the full PK profile. ML algorithms were trained to estimate tacrolimus true AUC using 2 or 3 blood 
concentrations. Performances were evaluated in 2 external sets of 16 (renal) and 48 (liver) transplant patients.
Results Best estimation performances were obtained with the MARS algorithm and the following limited sampling 
strategies (LSS): predose (0), 8, and 12 h post-dose (rMPE = − 1.28%, rRMSE = 7.57%), or 0 and 12 h (rMPE = − 1.9%, 
rRMSE = 10.06%). In the external dataset, the performances of the final ML algorithms based on two samples in kidney 
(rMPE = − 3.1%, rRMSE = 11.1%) or liver transplant recipients (rMPE = − 3.4%, rRMSE = 9.86%) were as good as or better 
than those of MAP-BEs based on three time points.
Conclusion The MARS ML models developed using “true”  MeltDose®-tacrolimus AUCs yielded accurate individual esti-
mations using only two blood concentrations.

Keywords Machine learning · Population pharmacokinetics · Tacrolimus MeltDose · Transplantation · Model informed 
precision dosing

Introduction

Tacrolimus is a calcineurin inhibitor very frequently employed 
in the prevention and treatment of allograft rejection in solid 
organ transplantation. It exhibits a narrow therapeutic index 
and a large interindividual and long-term intraindividual vari-
ability, making therapeutic drug monitoring and individual dose 
adjustment essential [1, 2]. Several factors influence its pharma-
cokinetics and explain part of this inter or intra-individual vari-
ability, such as patient age, drug-drug or drug-food interactions, 
genetic polymorphisms of CYP3A isoenzymes, hematocrit, and 
serum albumin concentration [3].

Therapeutic drug monitoring (TDM) helps to prevent or 
correct overexposure that may increase the risk of adverse 
effects as well as underexposure that may increase the risk of 
allograft rejection [4]. In routine care and as recommended 

What is already known about this subject:
• Machine learning (ML) algorithms are an interesting alternative 

to maximum a posteriori Bayesian estimators (MAP-BE) for 
tacrolimus AUC estimation.

• It is not known if training an ML model using a lower number 
of full pharmacokinetic (PK) profiles (= “true” reference AUC) 
provides better performances than using a larger dataset of less 
accurate AUC estimates.

What this study adds:
• ML algorithms were trained from liver (n = 113) and kidney 

(n = 97) transplant recipients involved in MeltDose-tacrolimus 
PK studies in whom the reference AUC0-24 h was calculated 
using the trapezoidal rule on the full PK profiles.

• External validation showed that the performances of the final 
ML algorithms (MARS) based on two samples were as good as 
or better than those of MAP-BEs based on three time points.

• The performances in an external validation set obtained in the 
present study were similar to and no better than those obtained 
using a larger dataset of less accurate AUC estimates.
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in the Summary of Product Characteristics, tacrolimus TDM 
and dose adjustment for all available formulations are per-
formed using trough concentration (C0) [1, 2]. Indeed,  C0 is 
a surrogate of the area under the concentration–time curve 
(AUC) as it exhibits a good but variable correlation [5]. 
However, AUC seems to be a more precise marker of expo-
sure and has been associated with tacrolimus efficacy/safety 
[6, 7]. One of the limits of the use of AUC is that it requires 
collecting a relatively large number of blood samples.

Envarsus® is a prolonged-release, once-daily formula-
tion of tacrolimus developed by Veloxis using their patented 
technology  MeltDose® (Veloxis Pharmaceuticals, Hørsholm, 
Denmark). Population pharmacokinetic (POPPK) models 
and maximum a posteriori Bayesian estimators (MAP-BE) 
were developed for  Envarsus®. They allow for AUC estima-
tion based on a three-point limited sampling strategy (LSS): 
predose (0), 8, and 12 h post-dose, one model for kidney 
and one for liver transplantation [8], or 0, 4, and 8 h in liver 
transplant recipients [9].

Machine learning (ML) techniques [10] can also be 
used to estimate the AUC of immunosuppressive drugs 
based on patient features and observed concentrations. ML 
encompasses several methods (e.g., support vector machine 
(SVM), partial least squares discriminant analysis (PLS-
DA), random forest, boosting, multivariate adaptive regres-
sion splines (MARS), etc.) that involve complex algorith-
mic designs, including large numbers of free parameters and 
complex interactions, to minimize errors between predicted 
and observed values by means of an error function.

Recently, Woillard et al. trained Xgboost (extreme gradi-
ent boosting) machine learning (ML) algorithms to estimate 
immediate release tacrolimus AUC using only two blood 
concentrations (0 and 3 h) [11]. These algorithms were 
trained from very large numbers of requests gathered on a 
web platform where the reference AUC was estimated using 
a 3-point LSS and MAP-BE (https:// abis. chu- limog es. fr/ 
login). In this case, the “reference” AUC corresponded to 
the real AUC value + uncertainty (“noise”) due to MAP-BE 
estimation. It is possible that training ML algorithms with 
a smaller dataset of more accurate “true” AUCs (calculated 
from rich concentration–time profiles using the trapezoi-
dal rule for instance) would yield a good or even improved 
performance.

The objectives of this study were: (i) to train ML algo-
rithms on a dataset of  MeltDose®-tacrolimus full PK profiles 
to estimate individual AUCs using only 2 or 3 blood con-
centrations and (ii) to compare their performance to those 
of MAP-BE with the LSSs 0, 8, and 12 h or 0,4, and 8 h in 
independent sets of patients.

Material and methods

Patients

Clinical and pharmacokinetic data from 113 liver and 97 
kidney transplant patients from two phase II, open-label, 
multicenter prospective US clinical trials conducted on 
stable adult kidney and liver transplant patients who were 
converted from  Prograf® capsules twice daily to  Envarsus® 
 (MeltDose®-tacrolimus) tablets once daily were used for 
training and testing ML algorithms. These trials complied 
with the Declaration of Helsinki amended in Tokyo, and 
all the patients enrolled gave their written informed con-
sent. These data have been previously used to develop a 
POPPK and derive a MAP-BE based on LSS [8]. Briefly, 
all patients transplanted for at least 6 months were switched 
from  Prograf® to  Envarsus® on day 8 of the study and had 
two PK assessments on days 14 and 21. For each patient, 
13 blood samples were collected pre-dose and 0.5, 1, 1.5, 
2, 3, 4, 6, 8, 12, 20, and 24 h after dosing. All samples were 
measured using a validated liquid chromatography-tandem 
mass spectrometry method with a lower limit of quantitation 
of 0.2 ng/ml.

The “true” AUC was calculated for each patient using 
the trapezoidal rule on the full PK profiles in the PKNCA 
R package [12].

Preparation of the data and feature engineering

Concentrations and sampling times were extracted and 
binned into theoretical time classes: concentrations at 0 (“C0” 
sampled at t = 0 min), 1 h (“C1” sampled between 0.7 and 
1.1 h), 2 h (“C2,” 1.6–2.5 h), 3 h (“C3,” 2.6–3.5 h), 4 h (“C4,” 
3.6–4.5 h), 6 h (“C6,” 4.6–6.5 h), 8 h (“C8,” 6.6–8.5 h), 12 h 
(“C12,” 8.6–12.5 h), 20 h (“C20,” 16.6–20.6 h), and 24 h 
(“C24,” 20.7–25.5 h). The range of the time classes was 
investigated and selected manually in order to have every 
time represented in each patients. When relevant, deviation 
from the theoretical sampling times was taken into account 
by creating a new variable corresponding to the relative devi-
ation with respect to the theoretical time in each bin.

Finally, AUC prediction was attempted based on 2 or 3 
concentrations, the relative time deviation and other pre-
dictors including demographic data (age, sex, time elapsed 
since transplantation, transplanted organ (liver or kidney), 
and hematocrit). The individual status regarding cytochrome 
P450 3A5 polymorphisms was not known in the original 
study and could not be investigated further.

https://abis.chu-limoges.fr/login
https://abis.chu-limoges.fr/login
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Machine learning analysis

All pre-processing and machine learning analyses were per-
formed using the tidymodels framework in R version 4.0.5 
[13]. Missing concentration data were imputed using the k 
nearest neighbors (with k = 5). Data splitting between a train-
ing set (75%) and a test set (25%) was performed by random 
selection of patients. The training set was secondarily split into 
an analysis set (80%) and an assessment set (20%) in order to 
benchmark different ML algorithms and select the best without 
wasting the test set for this purpose. Preprocessing consisted 
of normalization (centering and scaling) of numeric variables 
and one hot encoding of categorical features.

Xgboost [14], MARS [15], and GLMNET (general-
ized linear model via penalized maximum likelihood) [16] 
algorithms with different combinations of three concentra-
tion–time points were first trained and compared based on 
the root mean square error (RMSE) and coefficient of deter-
mination (R2). The combinations investigated were 0/8/12 h, 
0/2/6 h, 0/2/4 h, 0/4/6 h, 0/4/8 h, 0/2/12 h, and 0/6/12 h 
based on previous studies [8, 9].

The combination of C0 with the 2 most important con-
centration–time points in variable importance plots was then 
investigated for the development of ML algorithms based on 2 
points, and the selection was based on performance (RMSE).

For each algorithm and combination, the hyperparameters 
were tuned using ten-fold cross-validation in the analysis 
set. Once optimized, ML algorithms were evaluated in the 
assessment set to select the best in terms of prediction per-
formance. The best algorithm was refined using the analysis 
and assessment sets combined and was finally evaluated in 
the test set. The global procedure is summarized in Sup-
plemental Fig. 1.

External evaluation and comparison with other 
approaches

The final ML algorithms based on 2 or 3 concentrations were 
evaluated in two external, independent datasets in which tac-
rolimus was measured using validated liquid chromatogra-
phy-tandem mass spectrometry methods.

The first comprised 16 full PK profiles (13 blood samples 
collected at pre-dose and 0.5, 1, 2, 3, 4, 6, 8, 10, 12, 13, 15, 
and 24 h after dosing) of  MeltDose®-tacrolimus from stable 
renal transplant patients. The performances of the differ-
ent ML algorithms were compared to those of 2 MAP-BE 
using two different 3-point LSSs: 0/8/12 h, intended for renal 
transplant patients [8], and 0/4/8 h, intended for liver trans-
plant patients [9]. The reference AUC was calculated using 
the trapezoidal rule on all the available samples.

The second external set comprised data from 51 stable 
liver transplant patients at 2 weeks after conversion (9 blood 

samples collected at pre-dose and 1, 2, 3, 4, 6, 8, 12, and 
24 h after dosing), used to develop the POPPK model and 
the MAP-BE based on the 0/4/8 h LSS [9]. Three patients 
with sampling time deviation > 5% or 1 h from the theoreti-
cal LSS were excluded from the analysis. In this dataset, the 
reference AUC was obtained by application of the POPPK 
model and the MAP-BE on the 9 samples. The different ML 
algorithms were compared to MAP-BE using the 0/8/12 h 
LSS [8] and to the results reported in the original study in 
liver transplant patients [9].

Results

Data

Two hundred ten PK profiles were available in the original 
dataset and were randomly assigned to the training (n = 158) 
or test (n = 52) set. In the original dataset used for the devel-
opment of the ML algorithm, the proportion of imputed data 
was 0% for C0, 2.3% for C0.5, 1.9% for C1, 1.4% for C1.5, 
1.4% for C2, 0.95% for C3, 0.95% for C4, 0% for C6, 1.4% 
for C8, 0.5% for C12, 0.5% for C16, 0.95% for C20, and 
0% for C24. In the training set, 130 were randomly assigned 
to the analysis and 28 to the assessment set. In one of the 
external datasets, among the 51 PK profiles from liver trans-
plant recipients, only 48 had concentrations at 0, 8, and 12 h 
available. Patient characteristics in the training, assessment, 
test sets, and in the 2 external validation sets are provided 
in Table 1.

Comparison of algorithms

The results obtained with each ML algorithm and the 
different 3-point combinations showed, as previously 
observed [8], that the 0/8/12 h LSS was always associated 
with the best performances in the assessment set (Sup-
plemental Table 1). While GLMNET displayed slightly 
better results in the analysis set, the MARS algorithm 
yielded the best performances in the assessment set (rela-
tive RMSE = 7.57%, relative MPE = − 1.28%) followed by 
Xgboost (relative RMSE = 9.17%, relative MPE = 0.43%) 
and GLMNET (relative RMSE = 10.12%, relative 
MPE = 0.90%) (Table 2). Figure 1 shows the scatter plot 
and Bland–Altman plot of the individually predicted vs 
reference AUC0-24hs for the 0/8/12 h LSS in the test set 
with the MARS algorithm.

The variable importance plot for the MARS algorithm 
showed that the concentrations at 8, 12, and 0 h were the 
most important, in this order (Fig. 2), leading us to inves-
tigate different combinations of the 3 concentration–time 
points for the 2-point ML algorithms.
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Performances of the 2‑point limited sampling 
strategies

The 2-point LSSs with concentrations measured at time 0 and 
12 h performed best (Supplemental Table 2). The achievements 
of the different ML algorithms with this 0/12 h LSS in the analy-
sis and assessment sets are compared in Table 2. The MARS 
algorithm again performed best and was therefore the only one 
evaluated in the test set, showing rMPE/rRMSE/number (%) 
out of the ± 20% interval of − 0.36/10.4/2 (3.8%), as compared 
to 1.62/9.8/5 (9.4%) with the 3-point LSS. The scatter plot and 
Bland–Altman of predicted vs reference AUCs with the MARS 
algorithm and 2-point LSS in the test set are presented in Fig. 1.

Evaluation in external datasets

The results of the final MARS algorithm based on 2 or 3 
points and of the MAP-BEs based on 3 points in both valida-
tion sets are compared in Table 3. The MARS algorithms with 
2 points: (i) displayed similar performances to that with 3 
points, the two independent datasets, of kidney and liver trans-
plant recipients respectively; (ii) had a lower MPE than MAP-
BE in kidney transplant patients, (iii) showed a RMSE almost 
half of that of the MAP-BE based on the 0/8/12 h LSS in the 
same patient group while similar to that of the MAP-BE based 
on the 0/4/8 h LSS developed in liver transplant patients, and 
(iv) yielded a RMSE similar to that of MAP-BE based on the 

Table 1  Patient characteristics in the analysis, assessment, train, test, and external sets

Continuous variables are presented as mean (SD) and categorical variables as n (%)

Variables Analysis set
N = 130

Assessment set
N = 28

Training set (analysis +  
assesment set)
N = 158

Test set
N = 52

External set 
Renal
N = 16

External set 
Liver
N = 48

Age (years) 49 (11) 47 (11) 49 (11) 48 (12) 49 (16) 54 (12)
Daily dose (mg) 5.0 (3.0) 3.6 (1.7) 4.8 (2.9) 5.2 (3.0) 4.2 (2.4) 2.5 (1.5)
Sex: male (%) 82 (63.1%) 14 (50.0%) 96 (60.8%) 36(69.2%) 9 (56.2%) 35 (68.6%)
Hematocrit (%) 40.7 (4.8) 40.2 (3.7) 40.7 (4.6) 39.8 (4.6) 40.4 (4.3) 40.6 (4.5)
AUC0-24 (μg*h/L) 207 (74.) 209 (61) 207 (73) 205 (53) 202 (78) 152 (66)
Liver n (%) 68 (52.31%) 19 (67.86%) 87 (100.00%) 26 (50%) 0 (0%) 48 (100%)
Kidney n (%) 62 (47.69%) 9 (32.14%) 71 (100.00%) 26 (50%) 16 (100%) 0 (0%)
Concentration at 0 h 6.2 (2.3) 6.4 (2.1) 6.2 (2.3) 6.3 (2.1) 6.3 (2.2) 5.0 (2.1)

Table 2  Performance of different ML algorithms and limited sampling strategies to estimate tacrolimus AUC 0–24 h as compared with the refer-
ence AUC0-24 s: in the analysis set after tenfold cross-validation; and in the assessment set

* Results in the analysis set were obtained after ten-fold cross validation; GLMNET is LASSO and elastic-net regularized generalized linear mod-
els, XGBOOST is extreme gradient boosting, and MARS is multivariate adaptive regression splines

ML algorithm 
dataset

2-sample LSS (0/12 h) 3-sample LSS (0/8/12 h)

Relative 
MPE 
(%)

Relative 
RMSE 
(%)

Number of 
estimates out 
of ± the 20% 
interval n (%)

Number of 
estimates out 
of ± the 10% 
interval n (%)

Relative 
MPE (%)

Relative 
RMSE 
(%)

Number of estimates 
out of ± the 20% 
interval n (%)

Number of estimates 
out of ± the 10% 
interval n (%)

GLMNET
*Analysis set

1.50 11.0 9 (6.9) 35 (26.9) 0.97 9.36 7 (5.3) 29 (22.3)

GLMNET
Assessment set

- 2.9 10.4 2(7.1) 9(32.1) 0.90 10.12 1 (3.6) 5 (17.9)

XGBOOST
*Analysis set

2.12 17.6 13 (10.0) 56 (43.1) 0.79 13.1 14 (10.7) 40 (30.8)

XGBOOST
Assessment set

- 0.9 11.4 3 (10.7) 10 (35.7) 0.43 9.17 2 (7.1) 8 (28.6)

MARS
*Analysis set

1.23 11.1 9 (6.9) 35 (26.9) 0.45 9.8 7 (5.3) 33 (25.3)

MARS
Assessment set

- 1.9 10.0 0 (0) 9 (32.1) - 1.28 7.57 1 (3.6) 6 (21.4)
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0/8/12 h LSS in liver transplant patients and similar bias or 
number of patient out of the 20% bias range in comparison to 
the original study [9]. The corresponding Bland–Altman plot 
of predicted vs reference AUCs is presented in Figs. 3 and 4.

Discussion

The MARS models developed here provide accurate AUC 
estimation for melt-dose tacrolimus, using only concentra-
tions measured at 0 and 12 h and a very limited number of 
other features.

The sample at 12 h may be difficult to draw in routine prac-
tice, as it is unlikely that outpatients are kept for 12 h at the 

hospital. However, as previously observed [8] and shown in the 
variable importance plot (Fig. 2), it was one of the most impor-
tant features in our algorithm. Capillary blood microsampling 
devices may make collection of this late point easier even if 
it could introduce another source of variability. Indeed, there 
is an additional bias and imprecision that can vary between 
the types of device [17–19]. Another MAP-BE developed for 
liver transplant recipients required a late sample at 8 h to yield 
accurate AUC estimation [9]. However, the ML algorithms 
including 8 h instead of 12 h were not associated with better 
performance in the present study. Interestingly, C8 was the 
most important time point in the VIP plot, but its combination 
with C0 led to decreased performances in comparison with the 
C0 and C12 combination.

Fig. 1  Scatter plot of AUC0-
24 s estimated using the MARS 
algorithm based on 2 points at 
0 and 12 h (A) or 3 points at 
0, 8, and 12 h (B) vs reference 
trapezoidal AUC0-24 in the 
test set, and corresponding 
Bland–Altman plots (C and 
D). Difference is the difference 
between the reference and the 
MARS AUC0-24 s, and mean is 
the average of both

Fig. 2  Variable importance plot 
for the MARS algorithm in the 
analysis set. “C0” is concen-
tration sampled at t = 0 min, 
“C8” is the concentration 
sampled between 6.6 and 8.5 h, 
and “C12” is the concentra-
tion sampled between 8.6 and 
12.5 h. Importance is relative 
calculated using a generalized 
cross-validation (GCV) statistic
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We investigated 3 different algorithms that rely on dif-
ferent approaches. GLMNET is a penalized regression and 
is based on a linear relationship between predictors and 
AUC, the 2 others are based on nonlinear relationships 
(Xgboost is an ensemble method that aggregates decision 
trees and MARS is a non-parametric derived regression 
that breaks a given distribution into small linear pieces).

In our previous works on machine learning tacrolimus 
AUC estimation [11], we either used as references 3-point 
MAP-BE estimates of the AUC or PK profiles simulated 
using a POPPK model [20]. Here, the reference AUC was 
calculated for each patient using the trapezoidal rule on rich 
PK profiles (samples collected pre-dose, 0.5, 1, 1.5, 2, 3, 4, 6, 
8, 12, 20, and 24 h after dosing). We hypothesized that using 

complete profiles for model development would decrease 
the noise and improve estimation performance even if the 
training set was smaller. Actually, the performances in an 
external validation set obtained in the present study were 
similar to and no better than those obtained in the previous 
studies. However, this is an indirect comparison since the 
studies were performed for different tacrolimus formulations.

When evaluated in an external dataset of kidney trans-
plant recipients, the ML models developed outperformed 
the MAP-BEs previously developed on the same datasets. 
A possible explanation is that some PK profiles in the data-
set were not necessarily at steady state, which may mislead 
mechanistic models more than ML algorithms. Another 
explanation would be that the patients were quite unusual 

Table 3  Performance of the final MARS algorithm based on 2 concentrations (0 and 12 h) and 3 concentrations (0, 8, and 12 h) to estimate 
AUCs in two independent validation sets as compared with previous MAP-BE using 3-point LSSs

AUC is area under the curve, MAP-BE is maximum a posteriori Bayesian estimation, and MARS is multivariate adaptive regression splines
*Corresponds to the results reported in the original study in which the same patients were used to developed the model and evaluate the LSS

Relative 
MPE
(%)

Relative 
RMSE
(%)

Relative errors 
out of ± 20% n 
(%)

Relative errors out 
of ± 10% n (%)

Kidney 
transplant 
recipients 
(n = 16)

MARS 0/12 h –3.1 11.1 2 (12.5%) 5 (31.3%)
MARS 0/8/12 h –4.2 10.1 1 (6.3%) 5 (31.3%)
MAP-BE 0/8/12 h (developed in renal trans-

plant patients) [8]
7.3 23.0 8 (53.3%) 12 (80%)

MAP-BE 0/4/8 h (developed in liver transplant 
patients) [9]

–7.4 11.2 1 (6.3%) 7 (43.8%)

Liver 
transplant 
recipients 
(n = 48) [9]

MARS 0/12 h –3.4 9.86 3 (6.2%) 13 (27.1%)
MARS 0/8/12 h –3.4 9.14 2 (4.1%) 12 (25%)
MAP-BE 0/8/12 h (developed in liver transplant 

patients) [8]
–1.2 8.84 1 (2.1%) 9 (20.8%)

MAP-BE 0/4/8 h (developed in the same liver 
transplant patients) [9]

1.8* 8.64* 0 (0%) (n = 53)* 4 (7.50%) (n = 53)*

Fig. 3  Bland–Altman of refer-
ence vs predicted AUC0-24 s 
using MARS algorithm based 
on points( 0/12 h, A) or 3 points 
(0/8/12 h, B), and MAP-BE 
based on 3 points (0/8/12 h 
(C) or 0/4/8 h (D)) in the renal 
transplant patient external 
dataset
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and that the ML algorithm is more flexible to model them 
since it is less constrained. On the contrary, for liver trans-
plant recipients, the performances obtained in the same 
external dataset by a MAP-BE previously developed for this 
graft type were similar to those of the ML algorithms trained 
in a dataset of both renal and liver transplant recipients.

When evaluated in liver transplant patients at 2 weeks after 
the switch (i.e., against the profiles used to developed the 
POPPK model [9]), the performances of the 2- or 3-sample 
MARS algorithm and of our MAP-BE previously developed 
in liver transplant patients [8] were excellent and exhibit bias 
and number of profile with bias out of the 20% interval similar 
to the ones reported in the original study [9]. Of note, the per-
formances of the MAP-BE were numerically better than those 
of the MARS algorithm in the validation dataset. This could 
be explained by the limited number of samples available for 
the development of the ML algorithm (data driven approach), 
whereas the POPPK models (mechanistic approach) require 
a lower number of samples to provide very accurate results. 
Recently, we have shown that the addition of simulations 
from a POPPK model to experimental data could improve 
the learning performances of ML algorithms [21].

The methodology used in the present study for the devel-
opment of the model can be regarded as complex since we 
performed 2 consecutive data splitting. However, this two-
set approach allowed us to prevent overfitting and to bench-
mark different algorithms in the train set while keeping the 
test set for the final evaluation only.

The range of the time classes was investigated and selected 
manually in order to have the most patients as possible with 
all the bins. Even if it was a subjective approach, we think that 
is has not biased the analysis. For the external validation, we 
also removed subjectively profiles with sampling time devia-
tion > 5% or 1 h from the theoretical LSS. Interestingly, the 

feature “relative deviation with respect to the theoretical sam-
pling time” was not selected as important by the algorithms. 
Nevertheless, further studies with external data or simulations 
studies have to be performed to clarify this point.

This study has some limitations. First, pharmacogenetic 
data were not available. It is well established that the CYP3A5 
genotype influences tacrolimus clearance and that patients 
expressing CYP3A5 require a higher tacrolimus dose than 
non-expressors; even this influence might be less for Envarsus 
due to its more distal absorption [9]. Anyway, its implication 
has not been studied so far in machine learning estimators of 
tacrolimus AUC, and even without this information the accu-
racy and precision of the models are excellent. Secondly, the 
size of the external validation set is small for renal transplant 
patients, but full PK profiles are not easily available. Finally, 
all the patients used to develop and validate the algorithm 
were at a stable transplant period (at least 6 months post trans-
plantation). The performances of the algorithms developed 
should be further investigated in patients in the early phase 
post transplantation.

In conclusion, a MARS estimator developed from “true” 
reference AUCs very accurately estimated melt-dose tacroli-
mus AUC using only 2 or 3 blood concentrations and a few 
numbers of other features. It performs as well as ML estima-
tors we previously developed for other tacrolimus formula-
tions, where 3-point LSS and MAP-BE AUCs or trapezoidal 
AUCs from simulated PK profiles were used as references. 
The MARS estimator based on two time points may improve 
the use of AUC-based tacrolimus individual dose adjustment.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00228- 022- 03445-5.
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